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Abstract

In enterprise settings, organizational data is segregated, siloed and carefully pro-
tected by elaborate access control frameworks. These access control structures can
completely break down if an LLM fine-tuned on the siloed data serves requests,
for downstream tasks, from individuals with disparate access privileges. We pro-
pose Permissioned LLMs (PermLLM), a new class of LLMs that superimpose
the organizational data access control structures on query responses they generate.
We formalize abstractions underpinning the means to determine whether access
control enforcement happens correctly over LLM query responses. Our formalism
introduces the notion of a relevant response that can be used to prove whether a
PermLLM mechanism has been implemented correctly. We also introduce a novel
metric, called access advantage, to empirically evaluate the efficacy of a PermLLM
mechanism. We introduce three novel PermLLM mechanisms that build on Param-
eter Efficient Fine-Tuning to achieve the desired access control. We furthermore
present two instantiations of access advantage–(i) Domain Distinguishability Index
(DDI) based on Membership Inference Attacks, and (ii) Utility Gap Index (UGI)
based on LLM utility evaluation. We demonstrate the efficacy of our PermLLM
mechanisms through extensive experiments on four public datasets (GPQA, RCV1,
SimpleQA, and WMDP), in addition to evaluating the validity of DDI and UGI
metrics themselves for quantifying access control in LLMs.

1 Introduction

Large Language Models (LLMs), due to their unprecedented natural language processing capabilities,
are being adopted in a vast range of applications across the entire computing industry [20, 47]. The
day may not be too far off when LLMs become the primary interface to a large swath of computing
and information extraction tasks. In this paper, we focus on enterprise settings where LLMs are used
to perform a wide variety of computing tasks using organization-wide data. Using LLMs that have a
wide purview over organizational data brings massive troves of information and utility, including the
ability to combine learnings from disparate information silos of the organization, to the finger tips of
individuals in the organization. However, making all the learnings from organizational data available
to any individual who can query the LLM becomes a critical security challenge: Organizations have
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Figure 1: We propose three types of Permissioned LLM (PermLLM) mechanisms. (a) Activate: that
has one-to-one mapping between the security domains and PEFT adapters. When a user queries the
model, the mechanism activates the relevant adapter(s). (b) Merge: merges subsets of relevant PEFT
adapters to serve the users that have access to multiple security domains. (c) Union: trains adapters
on the unions of various security domains, and at the inference phase the relevant PEFT adapter is
activated to serve a user query that requires access to multiple security domains.

access control structures and hierarchies that tightly control information flow to and from individuals
within them. Information access via LLMs, if not carefully controlled, risks undermining the existing
access control structures and hierarchies.

As an example, consider government agencies using LLMs for a multitude of tasks. The data in
government agencies is typically segregated in multiple “clearance levels” and users can access just
the data they have access privileges for [29]. Any other agency data is inaccessible to the users. An
LLM trained on this agency-wide data can leak privileged information to unauthorized users, thus
breaking the agency’s access control framework that works on the raw data. Another example is that
of role-based access control [10, 11]: Consider a health clinic setting, where individuals performing
different “roles” (doctors, nurses, technicians, administrative staff, patients, etc.) interact with an
LLM to perform many tasks. The roles of the users determine what part of the clinic-wide data they
should have access to. An LLM trained on the clinic-wide data can be easily tricked into leaking
information to unauthorized users.

Research proposals to build system prompts that instruct an LLM to control what information is
generated in the output can help curb some leakage of sensitive information to unauthorized users [8,
24]. However, they do not achieve absolute security, and clever jailbreaking prompts [39, 33, 25, 26]
can be used to overrule these system prompts. A recent work proposes tagging LLM queries with
encrypted access credentials to authenticate users and block unauthorized queries [7]. This is a good
start, but it lacks the flexibility needed to enable access to disparate learnings from the LLM for
different users based on their access credentials. We discuss access control problems and solutions
for agentic systems and Retrieval Augmented Generation (RAG) systems [22] in § 6.

This paper focuses on the access control problem for LLMs when they are tuned on data coming from
a multitude of data silos. The challenge here is to guarantee that users who do not have access to
specific data silos cannot retrieve information from those silos by sending carefully crafted queries to
the LLMs tuned on data from those silos. A recent work [12] took an initial step in this direction, but
lacks the formal framework to evaluate the access control. Moreover they only explore one type of
mechanism. As a security problem, access control is a zero-sum game, hence probabilistic solutions
(e.g. Differential Privacy [9]) are not satisfactory.

Contributions. In this paper, we comprehensively study the problem of access control in LLM
fine-tuning. More specifically: (i) We formalize the notion of access control mechanism in LLMs in
terms of the relevance of responses generated by an LLM to the raw data the users have access to.
We use the notion of security domains in our formalism. Our formalism of response relevance can
be used to prove correctness of access control mechanisms. We also propose a novel metric called
access advantage that helps us empirically quantify the effectiveness of an access control mechanism
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on LLMs (§ 2). (ii) We present three new PermLLM fine-tuning mechanisms (see Figure 1), based
on Parameter Efficient Fine-Tuning (PEFT) [17, 41] (§ 3). (iii) We introduce two novel instances of
our access advantage metric, Domain Distinguishability Index (DDI) and Utility Gap Index (UGI), as
tools to audit access control enforcement via an adversarial gaming setting (§ 4). (iv) We empirically
evaluate our access control mechanisms on two LLMs (Mistral-0.1-7B and Llama-3.1-8B) using four
different data sets: GPQA [32], RCV1 [21], SimpleQA [40], and WMDP [23] (§ 5). Our evaluation
shows the effectiveness of our access advantage metrics in assessing whether a proposed access
control mechanism for LLMs is enforcing data protection correctly.

2 Formalizing Access Control in LLMs

2.1 Basic Setup and Notation

We define a security domain (henceforth called “domain” for brevity) as a collection of data records
that require identical credentials for access (e.g. files with the same group in their access control lists).
We consider settings where pretrained LLMs (such as Llama and Mistral models) are fine-tuned
over data from different domains with an added constraint – responses to inference time queries
will be generated from learnings on data coming from just the domains the user has access to. This
added constraint is enforced via access control mechanisms that govern how the LLM uses data from
different domains.

Consider a universe of n different domains S =
⋃n

i=1{si}, and a training data set consisting of data
from these domains D =

⋃n
i=1 Dsi ∼ Dsi (here Dsi is a data set sampled from data distribution

Dsi of domain si). Let fD be the LLM tuned using data set D. Let W be the set of fD’s parameters.
Model fine-tuning changes values of a subset of W . We say that a domain si affects a subset of
parameters Wsi ⊆ W if data from Dsi is used to change parameters Wsi during model fine-tuning
(unless stated otherwise, the terms “affect” and “affected” mean this relation between si and Wsi
in the rest of the paper). We define M as an access control mechanism that dictates the mapping
of domain si to parameters Wsi via the affects relation. We say that a LLM fine-tuned using data
set D is permissioned (PermLLM), denoted as fM

D , if it uses the access control mechanism M to
map its parameters W to a multitude of domains from S, where each domain si affects parameters
Wsi ⊆ W . Operationally, during fine-tuning, M specifies which set of model parameters Wsi are
tuned for a given domain si (see § 3 for more details). By the same token, during inference, M can
specify which set of model parameters should be used to answer a query based on the user’s access
credentials.

We assume a setting where the PermLLM fM
D resides in an enclosing system S that authenticates

users who send queries to fM
D . S determines the user u’s access credentials credu and calls

authenticate(credu) that takes user credentials credu and maps them to a subset of domains
Su that u can access. Su is maintained by S and is never exposed to user u. This process ensures
u cannot arbitrarily change Su. Each of user u’s subsequent query q to fM

D is annotated with
Su by S. M determines the model parameters WSu

used to generate a response rSu
to q, where

WSu =
⋃

s∈Su
Ws.

2.2 Definitions

Definition 2.1 (Relevant Response). Given a PermLLM fM
D , a query q from user u, and the set Su

of domains u has access to, let r = fM
D (q) be the response of fM

D to query q. Response r is said to
be relevant to Su (i.e., r = rSu

) if fM
D uses parameters WSu

(in addition to any domain-agnostic
model parameters) to generate r.

We say that an access control mechanism M is correctly enforced on PermLLM fM
D iff every

response r generated for every user u’s query q is relevant to Su.

The above definition of relevant response helps us formally determine if a proposed access control
mechanism M is algorithmically correct. We however require an empirically quantifiable metric to
determine if the implementation (and the algorithm by extension) of M is correct. This is particularly
important for auditing. To that end, we propose a new metric called response relevance score,
relv(fM

D (q), Su), which quantifies the information gained on data in the domain set Su by observing
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responses to queries generated using model parameters WSu affected by domains of Su. relv is
expected to be higher when q ∼ DSu (i.e., q is related to domain set Su), compared to when q ̸∼ DSu .

We restrict the domain of relv to the real number interval [0, 1], where 1 is the best expected score
for relevance. relv itself can be represented by another empirical metric such as prediction accuracy,
or logits for the expected response. However, given that LLMs (and ML models in general) are
generalization engines, in practice we expect relv to be less than 1. This restriction can be effectively
addressed by measuring relv for domains that the user has access to and comparing it to relv for
domains that the user does not have access to. We call this the access advantage.
Definition 2.2 (Access Advantage). Given PermLLM fM

D trained over data set D consisting of data
from domains S =

⋃n
i=1{si}, with access control mechanism M, a subset of domains Su ⊆ S, fM

D
achieves α-access advantage w.r.t. Su if:

Eq∼DSu ,Sv⊆S;Su∩Sv=ϕ

[
relv(fM

D (q), Su)⊖ relv(fM
D (q), Sv)

]
≥ α

where relv() is the response relevance score on the corresponding domain subset (Su or Sv), ⊖ is a
“difference” operator specific to the access control assessment method (e.g., subtraction), and α is an
advantage threshold that lies in the range [0,1].

The access advantage metric relies on the assumption that fM
D performs significantly better on

domains user u has access to compared to domains u does not have access to. In other words, fM
D

should have explicit segregation between the different domains, as dictated by M. The existing
approaches to model fine-tuning fail to achieve this goal as the model is traditionally trained on all the
domains without any built-in domain segregation mechanism. To the best of our knowledge, no prior
work on LLM and privacy formally tackles this problem of access control through explicit domain
segregation. We next propose novel mechanisms to achieve domain segregation in § 3 and propose
empirical metrics to evaluate the access control protocols in § 4.

We believe access advantage is a critical metric for auditors to determine if an access control
mechanism is truly achieving the segregation of domains as intended. Hence it is in the auditor’s best
interest to ensure that Su ∩ Sv = ϕ. Access advantage can diminish significantly when Su ∩ Sv ̸= ϕ,
leading to incorrect conclusions about the efficacy of the access control mechanism.

To the best of our knowledge, prior works on retrieval augmented generation (RAG) based LLM
deployments do not explicitly tackle the problem of measuring effectiveness of access control
mechanisms formally or empirically. Our formalism of relevant response and access advantage
extends to RAG systems as well, closing that gap in formalism and empirical evaluation of access
control protocols. While a thorough evaluation of access control for RAG based systems is outside
the scope of this paper, a more detailed analysis of conditions for formal correctness of access control
in RAG systems appears in Appendix A.

2.3 Auditing Access Control

To evaluate the access control mechanisms, we consider a classic adversarial game between the
system S enclosing the model fM

D and the auditor A. We give A the ability to choose domain access
by emulating an end user, send arbitrary queries to the model via S and observe the responses. A
can replay the game multiple times as different users to conclude if the access control is correctly
implemented.

Audit Game. The formal game between auditor A and system S is as follows:

1. Auditor A chooses domain set Su and emulates user u. A sends user credentials credu and
query q ∼ DSu

to system S.
2. S verifies the user credential credu and sends back the model response fM

D (q) to A.
3. A chooses domain set Sv such that Sv ∩ Su = ϕ and emulates user v. A sends user

credentials credv and the same query q ∼ DSu to S.
4. S verifies the user credential credv and sends back the model response fM

D (q) to A.
5. A concludes the access control mechanism is correctly implemented if the access advantage

relv(fM
D (q), Su)⊖ relv(fM

D (q), Sv) ≥ α.

Note that the auditor A has superuser privileges to choose arbitrary domain access unlike an ordinary
user. This is by design to allow the auditor to evaluate the correctness of the claimed access control
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while still following the protocol of querying the model as a benign user. Detailed instantiations of
this adversarial game for different suites of access advantage metrics are discussed in Appendix C.

3 Permissioned LLM Mechanisms

We rely on Parameter Efficient Fine-Tuning (PEFT) [17, 41] to obtain model parameter segregation
for domains. We focus on the LoRA PEFT adapter [17], however our mechanisms seamlessly apply
to other types of adapters [16, 41]. The three mechanisms we describe ensure that domain data
is steered to train select LoRA adapters. Each domain has a unique identifier (domain Id). Our
access control mechanism builds a map between domains and LoRA adapters within the PermLLM’s
metadata. The map is used to steer all examples from a domain to the corresponding adapter/s for
training. This map is also used to steer queries to the correct LoRA adapters at inference time.

One LoRA per Security Domain For our base mechanism called Activate, we assume that users
have access to at most one domain. Figure 1(a) depicts our base mechanism that performs a simple
1-1 mapping between domains and LoRA adapters. We assume that the number of domains is known
beforehand, and use that knowledge to instantiate corresponding number of LoRA adapters. During
training, each minibatch is sampled from one domain, and the domain’s Id is used to select the LoRA
adapter to train. At inference time, a user’s query is annotated with the domain Id the user has access
to. This domain Id is used to activate the LoRA adapter for the corresponding domain.

Merging LoRA Adapters for Security Domain Groups In many application settings, users have
access to data from multiple domains. For queries coming from such users, our Activate enables all
corresponding LoRA adapters, whose activations are averaged at inference time. We however found
that activations from different LoRA adapters tend to disruptively interfere with each other resulting in
catastrophic performance degradation beyond two domains. We leave further refinement of activation
space steering [34, 44] to future work. In our second mechanism, Merge (Figure 1(b)), we adopt
the LoRA adapter merging strategy for users with access to multiple domains [37, 42, 45, 49]. We
experimented with several LoRA merging algorithms including TIES [42] and DARE [45], but
eventually favored the SVD approach [37] because of its better performance and stability in the
context of LoRA merging. We assume that the combination of domains that users may have access to
are known beforehand. Thus, after training LoRA adapters for individual domains, we can merge
them for those exact domain combinations. Correspondingly, our domain-LoRA adapter map is
updated with the domain IDs and the merged LoRA adapters. These new mappings are used at
inference time to activate the correct merged LoRA adapters. We found that adapter merging is more
robust to cross-adapter interference than activation merging.

Training a LoRA per Combination of Security Domains Although Merge is better than activation
space merging of multiple LoRA adapters, we observed that it also leads to model performance
degradation with increasing number of merged adapters. As a result, we explored another simple
alternative, Union, which trains a LoRA adapter on data from each unique combination of domains
users have access to. Union indeed delivers the best performance in all our mechanisms. However, it
comes at the cost of significantly greater tuning time compute – a domain can occur in numerous
combinations of domains (e.g. in Figure 1(c), data Ds2 gets used in the training set of all three LoRA
adapters). Furthermore, data sets containing large number of domains presents the added challenge
of an exponential blow up in domain combinations (at most 2n). However, we believe the number of
combinations present in a real-world setting will be much smaller than that upper bound.

The careful mapping of domains (or groups of domains) to the correct LoRA adapters, and steering
of training examples from domains to the corresponding LoRA adapters ensures precise parameter
segregation for domains. Our assumption that users cannot tamper with their access credentials at
inference time further aids the PermLLM’s enclosing system to determine the correct set of domains
corresponding to a query. The query steering that happens through the PermLLM using domain
IDs guarantees that all responses generated by the PermLLM are relevant to the user’s domains.
Furthermore, the responses are not generated using LoRA adapters that were trained using data
from domains that the user does not have access to. Response relevance for all responses implies
correctness of our PermLLM access control mechanisms. Our proof appears in Appendix B.
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4 Auditing Access Control in Permissioned LLM Mechanisms

We now introduce two novel instantiations of our access advantage metric (Definition 2.2)—Domain
Distinguishability Index (DDI) and Utility Gap Index (UGI)—that quantify access control efficacy
independently of any particular system design. We show how these metrics fit into the framework for
empirically assessing access control mechanisms in PermLLMs through adversarial audit games in
Appendix C. These metrics are in [0,1] range with higher values denoting better access control.

4.1 Metric 1: Domain Distinguishability Index (DDI)

In traditional privacy evaluations, membership inference attacks (MIAs) leverage a sampled member
data set (from the target model’s training set) and a sampled non-member data set to assess privacy
leakage [18, 36]: the more accurately an adversary separates and classifies samples as members or
non-members, the higher the privacy risk. Analogously, we adopt this MIA framework for access
control assessment to distinguish security domains. Specifically, for any security domain set Si,
the auditor holds samples from Si’s training data (member set) and samples from Sj’s training data
(non-member set), where Sj ∩ Si = ϕ. The auditor then evaluates how successfully it can distinguish
the member set from the non-member set when the PermLLM is activated for Si. This evaluation
occurs for all security domains, giving us an aggregate access advantage, which we call Domain
Distinguishability Index (DDI).

Definition 4.1 (Domain Distinguishability Index (DDI)). For a domain universe S consisting of n
security domains, let fM

D denote the PermLLM trained on data D from all security domains with
access control mechanism M. For each ordered pair of domain sets (Si ⊆ S, Sj ⊆ S) with no
overlap (i.e.,Si ∩ Sj = ϕ), let O(Si,Sj) = O(fM

D (q)|Si, f
M
D (q)|Sj);∀q ∼ DSi

be the output of a
membership inference oracle O. For a given membership inference metric m(·), the DDI is defined
as: DDI(m) = ESi⊆S,Sj⊆S

[
m
(
O(Si,Sj)

)]
, where E is the expectation over all domain sets.

We also report the standard deviation of m
(
O(Si,Sj)

)
across all domain set pairs to capture variability.

By 2.2, DDI can be viewed as an access advantage metric, where the response relevance score relv
for Si on query q, relv(fM

D (q), Si), is a binary value on whether the membership inference oracle
O’s output is above a membership threshold. The difference operator ⊖ is the MIA method specific
composition of response relevance for all the samples in the member and non-member sets.

We use AUC-ROC and TPR@(low)FPR, as instantiations of DDI, where higher scores indicate
stronger enforcement, as Si-specific responses become more distinguishable. See Appendices E.1
and E.2 for details on MIA evaluation metrics and an overview of existing MIAs against LLMs.

A higher DDI indicates more robust separation between security domains. In our evaluations, we
employ state-of-the-art MIAs for LLMs, including Loss [43], Zlib [5], Mink [35], Mink++ [46],
Reference [5] attacks.

4.2 Metric 2: Utility Gap Index (UGI)

The UGI metric measures the drop in model utility on the target domain’s data when a different
domain’s adapter is activated in PermLLM instead of the target domain.

Definition 4.2 (Utility Gap Index (UGI)). Let U(·) be a chosen utility metric and for a domain set
pair (Si ⊆ S, Sj ⊆ S) with no overlap (i.e.,Si∩Sj = ϕ), UtilityGap(Si,Sj)(U) = |U(fM

D (q)|Si)−
U(fM

D (q)|Sj)|;∀q ∼ DSi . The UGI aggregates utility gaps across all ordered domain set pairs:
∆U = ESi⊆S,Sj⊆S

[
UtilityGap(Si,Sj)(U)

]
, where E is the expectation over all domain sets.

By 2.2, UGI is also an instantiation of the access advantage metric in which the relevance score for
security domain set Si on query q is the utility value itself, relv

(
fM
D (q), Si

)
= U

(
fM
D (q)|Si

)
, and

the operator ⊖ computes the absolute difference of those relevance scores across the sampled queries.

A larger UGI indicates that enforced access controls yield more pronounced—and thus more easily
perceivable—differences in response quality between security domains. As with DDI, we also report
the standard deviation across pairs to characterize variability. We evaluate the utility gaps w.r.t. Bleurt
Score (∆bluert), Bert F1-Score (∆bert), Sacrebleu Score (∆bleu) and Verbatim Accuracy (∆acc) for
our UGI metrics in § 5. More details on these metrics can be found in Appendix § D.3.
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Table 1: Data Set Details.
WMDP GPQA SimpleQA RCV1

Data Set Size (Train / Test) 2936 / 732 360 / 88 4089 / 1018 45622 / 22811
Number of Security Domains 3 3 10 4

5 Experimental Evaluation

For our experiments, we fine-tune Llama-3.1-8B and Mistral-0.1-7B pretrained models on four
datasets covering multiple distinct security domains (henceforth called domains), where we fine-
tune a separate LoRA adapter for each domain. Details about the model hyperparameters can be
found in Appendix § D.1. The data sets we use in our experiments are WMDP [23], GPQA [32],
SimpleQA [40], and RCV1 [21]. Table 1 shows the brief data set details. More details on the data
sets and generalization gaps can be found in Appendix § D.2. Appendix § D.3 discusses the utility
evaluation of all our models.

5.1 Evaluating Access Control

Our approach achieves comparable model utility to existing approaches of fine-tuning (see discussion
in § D.3), in addition to providing access control. Here we will empirically evaluate the effectiveness
of our access control using a suite of metrics. We will first consider the case where the user has access
to only one domain and report the access control results in § 5.1.1. Next in § 5.1.2, we will consider
the case where the user has access to multiple domains.

5.1.1 Single Active Domain

In Section 4, we proposed an adversarial audit framework for empirically assessing access control
in PermLLMs. We introduced two concrete instantiations of the general access advantage metric:
the Domain Distinguishability Index (DDI) and the Utility Gap Index (UGI) ∆U . Although § 3
gives formal guarantees—each response is computed solely from domains the user is authorized to
access—we measure access control enforcement strength with DDI and UGI (∆U ) to confirm that
the guarantees hold in practice, which is necessary to verify correctness of implementations.

Theoretically, ∆U may reach 1.0, but empirically we observe much smaller—yet substantial—access
advantage gaps (Figure 2). These gaps are significantly impacted by domain distributions and the
strictness of the scoring metric. For example, SimpleQA exhibits the largest UGIs (up to ∆blue≈0.50
and ∆acc ≈ 0.50) because it has the highest number of distinct domains (10 in total). Moreover,
we observe that ∆bleu and ∆acc have the largest values as these metrics look for verbatim pattern
matches, thus requiring the model to memorize the nuances in the target domain. On the other hand,
∆bleurt and ∆bert look for approximate similarities, and hence are impacted by the similarities across
the domains. This suggests that the verbatim matching metrics, ∆bleu and ∆acc, are better model
utility metrics for measuring access advantage compared to the similarity based metrics ∆bleurt and
∆bert. For large data sets like RCV1, all the metrics achieve similar values as the model begins to
generalize more. While these values are not close to 1, they still provide credence to the fact that the
domains are different and our access control protocol works as expected due to the utility gaps. The
access advantage threshold α is dependent on the type of utility metric: verbatim matching metrics
∆bleu and ∆acc have higher threshold than similarity based metrics ∆bleurt and ∆bert. For ∆acc

metric, α > 0.2 is sufficient to infer that access control is happening correctly.

Table 2 shows DDI values obtained from a suite of state-of-the-art MIAs. Across domain pairs, the
access advantage (distinguishability) scores approach α = 1.0, indicating that an external auditor
can almost perfectly identify the active domain. Hence, even when UGI values fall significantly
below 1.0 because of model generalization, the high DDI values show that access control in Activate
still functions as intended. This clearly suggests that DDI is the better method for PermLLM access
control efficacy evaluation.
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Figure 2: Utility Gap Index, ∆U (mean± std) when user has access to one security domain.

Table 2: DDI values with m ∈ {AUC–ROC,TPR@1%FPR,TPR@5%FPR} for the different MIAs.
Mink and Mink++ are run with hyperparameter k = 10%. Entries are reported as mean± std across
security domains.

MIA Llama-3.1-8B Mistral-0.1-7B
auc-roc tpr@1%fpr tpr@5%fpr auc-roc tpr@1%fpr tpr@5%fpr

W
M

D
P

Loss 0.99± 0.01 0.93± 0.10 0.96± 0.06 1.00± 0.00 0.95± 0.06 0.99± 0.01
ZLIB 0.98± 0.03 0.77± 0.31 0.85± 0.21 0.99± 0.02 0.85± 0.25 0.92± 0.14
Mink 1.00± 0.00 0.95± 0.07 1.00± 0.01 1.00± 0.00 1.00± 0.00 1.00± 0.00
Mink++ 1.00± 0.00 0.99± 0.01 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
Ref 0.99± 0.01 0.93± 0.10 0.96± 0.06 1.00± 0.00 0.95± 0.08 0.98± 0.03

G
PQ

A

Loss 0.97± 0.05 0.81± 0.26 0.94± 0.08 0.98± 0.03 0.93± 0.10 0.95± 0.07
ZLIB 0.95± 0.04 0.45± 0.22 0.77± 0.15 0.97± 0.02 0.57± 0.24 0.83± 0.13
Mink 0.99± 0.01 0.94± 0.11 0.98± 0.03 1.00± 0.00 0.98± 0.02 0.99± 0.02
Mink++ 1.00± 0.00 1.00± 0.01 1.00± 0.00 1.00± 0.00 0.99± 0.01 1.00± 0.00
Ref 1.00± 0.00 0.97± 0.04 0.99± 0.01 1.00± 0.00 0.97± 0.05 0.99± 0.02

Si
m

pl
eQ

A Loss 0.98± 0.03 0.81± 0.34 0.90± 0.25 0.99± 0.03 0.81± 0.32 0.92± 0.20
ZLIB 0.98± 0.03 0.80± 0.33 0.90± 0.23 0.99± 0.03 0.80± 0.33 0.91± 0.20
Mink 0.99± 0.03 0.80± 0.32 0.91± 0.21 0.99± 0.03 0.82± 0.31 0.92± 0.20
Mink++ 0.98± 0.03 0.81± 0.32 0.91± 0.21 0.99± 0.03 0.82± 0.31 0.92± 0.21
Ref 0.98± 0.04 0.78± 0.36 0.90± 0.25 0.98± 0.03 0.79± 0.36 0.90± 0.24

R
C

V
1

Loss 0.99± 0.01 0.86± 0.21 0.97± 0.06 0.99± 0.02 0.85± 0.24 0.96± 0.09
ZLIB 0.93± 0.07 0.71± 0.26 0.81± 0.18 0.94± 0.08 0.73± 0.28 0.83± 0.19
Mink 1.00± 0.01 0.94± 0.10 0.98± 0.03 0.99± 0.01 0.88± 0.18 0.98± 0.05
Mink++ 1.00± 0.00 0.97± 0.05 0.99± 0.01 1.00± 0.01 0.96± 0.06 0.99± 0.02
Ref 0.99± 0.01 0.77± 0.28 0.99± 0.03 0.99± 0.01 0.80± 0.28 0.98± 0.05

5.1.2 Multiple Active Domains

As discussed earlier in § 3, we explore three methods of combining knowledge from multiple domains
the user has access to: (a) activating all the domain-specific LoRA modules (Activate), (b) merging
the LoRA modules (Merge), and (c) training separate LoRA modules on the union of domains
and using those for inference (Union). Table 3 reports the UGI (∆U ) for these approaches when
the user has access to two domains for all the data sets. We note that WMDP and GPQA have
only three security domains, and hence activating any two domains always lead to overlap when
calculating ∆U as per 4.2. For these data sets, we calculate ∆U on the non-overlapping data. Activate
is computationally inexpensive but suffers from considerable utility loss when compared to the
previous case of single domain. This is due to the high interference across the multiple domains
in the activation space, which is a known issue in the multi-task learning literature [48, 38, 30].
The utility loss suppresses the absolute ∆U in our experiments. As can be seen in Figure 3, Merge
reduces the cross-domain interference, but still suffers from utility loss. Interestingly Merge achieves
even lower ∆U than Activate when combining two domains, as shown in Table 3. Although it
quickly outperforms Activate when the user has access to more than two domains, the utility loss
due to model merging interference [37, 42, 45, 49] also results in progressive degradation of ∆U (see
Figure 3). Union retains ∆U even beyond four domains, and hence is the best choice when combining
knowledge from several domains. But this comes at the cost of more training-time computation
since new domain-specific modules have to be trained for the union of domains, and there could be
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Table 3: Utility Gap Index (∆U ) for models with different approaches of combining domains when
user has access to two domains. All reported values are mean± std across domains.

Metric Llama-3.1-8B Mistral-0.1-7B
Activate Merge Union Activate Merge Union

W
M

D
P ∆bleurt 0.09± 0.01 0.07± 0.02 0.11± 0.02 0.10± 0.02 0.08± 0.03 0.14± 0.03

∆bert 0.05± 0.01 0.03± 0.01 0.06± 0.01 0.05± 0.01 0.04± 0.02 0.07± 0.02
∆acc 0.27± 0.07 0.21± 0.09 0.34± 0.11 0.32± 0.04 0.25± 0.07 0.49± 0.09

G
PQ

A

∆bleu 0.15± 0.06 0.11± 0.06 0.51± 0.07 0.24± 0.10 0.17± 0.10 0.62± 0.02
∆bleurt 0.10± 0.02 0.06± 0.02 0.26± 0.03 0.14± 0.06 0.10± 0.04 0.32± 0.02
∆bert 0.07± 0.02 0.04± 0.03 0.18± 0.02 0.11± 0.04 0.08± 0.03 0.21± 0.02
∆acc 0.09± 0.04 0.05± 0.02 0.31± 0.08 0.16± 0.07 0.08± 0.07 0.51± 0.04

Si
m

pl
eQ

A ∆bleu 0.26± 0.09 0.23± 0.09 0.61± 0.03 0.30± 0.13 0.25± 0.04 0.61± 0.08
∆bleurt 0.16± 0.05 0.12± 0.04 0.32± 0.04 0.19± 0.05 0.14± 0.02 0.33± 0.05
∆bert 0.07± 0.03 0.05± 0.02 0.14± 0.02 0.08± 0.03 0.06± 0.01 0.14± 0.03
∆acc 0.20± 0.07 0.18± 0.07 0.59± 0.05 0.27± 0.09 0.21± 0.03 0.62± 0.09

R
C

V
1

∆bleu 0.05± 0.03 0.04± 0.02 0.16± 0.09 0.04± 0.02 0.01± 0.03 0.19± 0.10
∆bleurt 0.11± 0.01 0.07± 0.03 0.22± 0.08 0.08± 0.01 0.03± 0.04 0.22± 0.08
∆bert 0.08± 0.01 0.06± 0.02 0.16± 0.04 0.06± 0.01 0.03± 0.05 0.18± 0.06
∆acc 0.03± 0.01 0.04± 0.04 0.24± 0.14 0.02± 0.02 0.01± 0.03 0.26± 0.15
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Figure 3: Utility Gap Index, ∆U (mean± std) for Llama-3.1-8B models fine-tuned on SimpleQA
when user has access to multiple security domains.

potential combinatorial blow-up of the number of such combinations. We observe similar results for
Mistral-0.1-7B model (see Figure 8 in the appendix).

The DDI results for a two-domain setting appear in Table 4 (Llama-3.1-8B) and Table 5 (Mistral-0.1-
7B). As we can see from these tables, we achieve high DDI values (e.g., close to α = 1.0 for auc-roc).
In other words, an auditor can almost perfectly identify which domain is in effect, even when the
corresponding utility gap (∆U ) is far below 1.0 (Figure 3). Union consistently attains the highest DDI,
followed by Activate and then Merge mirroring the trend observed with ∆U . Union’s superiority
however comes at the cost of greater tuning-time computation. Union’s near-perfect distinguishability
mirrors the effect of model performance (with increasing domains) on ∆U (see Figure 3). Crucially,
the high DDI values confirm that even when ∆U drops due to model generalization or degradation due
to activation space or parameter interference, access control remains uncompromised; DDI therefore
provides the more sensitive indicator of enforcement efficacy.

6 Conclusion and Discussion

We presented a comprehensive treatment of the access control problem on fine-tuned LLMs that
includes novel formalism, empirical evaluation metrics, access control enforcement mechanisms,
and evaluation of the mechanisms as well as the proposed metrics. We formalized a new class of
LLMs called Permissioned LLMs (PermLLM) whose access control enforcement can be verified both
theoretically and empirically using the formal tools provided in our work.

Limitations. Our approach does not support deep hierarchy of domains with arbitrary overlaps.
Another issue we observe is with the scalability beyond a handful of domains. This either leads to
severe degradation of utility (as in the case of Activate) or it becomes compute-intensive (for Union).
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Table 4: DDI values for models (with base model Llama-3.1-8B) with different approaches of
combining domains when user has access to two domains. All reported values are mean± std across
domains

MIA Activate Merge Union
auc-roc tpr@1%fpr tpr@5%fpr auc-roc tpr@1%fpr tpr@5%fpr auc-roc tpr@1%fpr tpr@5%fpr

W
M

D
P

Loss 0.98 ± 0.02 0.77 ± 0.22 0.87 ± 0.13 0.93 ± 0.05 0.53 ± 0.25 0.67 ± 0.21 0.99 ± 0.02 0.90 ± 0.14 0.94 ± 0.09
ZLIB 0.92 ± 0.08 0.60 ± 0.27 0.67 ± 0.28 0.86 ± 0.09 0.38 ± 0.21 0.50 ± 0.26 0.97 ± 0.05 0.77 ± 0.31 0.80 ± 0.28
Mink 0.99 ± 0.01 0.88 ± 0.08 0.93 ± 0.04 0.96 ± 0.02 0.65 ± 0.19 0.78 ± 0.12 1.00 ± 0.00 0.94 ± 0.08 0.99 ± 0.01
Mink++ 0.90 ± 0.05 0.62 ± 0.21 0.71 ± 0.16 0.94 ± 0.04 0.65 ± 0.21 0.80 ± 0.15 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Ref 1.00 ± 0.00 0.98 ± 0.02 0.99 ± 0.01 0.99 ± 0.00 0.81 ± 0.05 0.91 ± 0.02 1.00 ± 0.00 0.98 ± 0.02 1.00 ± 0.00

G
PQ

A

Loss 0.99 ± 0.01 0.81 ± 0.09 0.93 ± 0.05 0.93 ± 0.02 0.38 ± 0.14 0.72 ± 0.03 1.00 ± 0.00 0.97 ± 0.04 0.99 ± 0.01
ZLIB 0.90 ± 0.06 0.38 ± 0.26 0.63 ± 0.22 0.82 ± 0.07 0.26 ± 0.17 0.44 ± 0.16 0.99 ± 0.01 0.79 ± 0.30 0.96 ± 0.05
Mink 0.99 ± 0.01 0.92 ± 0.11 0.97 ± 0.04 0.96 ± 0.01 0.69 ± 0.07 0.80 ± 0.07 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Mink++ 0.95 ± 0.06 0.82 ± 0.10 0.85 ± 0.13 0.97 ± 0.03 0.75 ± 0.13 0.88 ± 0.10 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Ref 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.87 ± 0.12 0.93 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Si
m

pl
eQ

A

Loss 0.96 ± 0.03 0.42 ± 0.32 0.73 ± 0.26 0.95 ± 0.03 0.47 ± 0.28 0.74 ± 0.21 0.97 ± 0.04 0.62 ± 0.38 0.83 ± 0.29
ZLIB 0.94 ± 0.04 0.35 ± 0.28 0.66 ± 0.23 0.93 ± 0.04 0.41 ± 0.24 0.67 ± 0.17 0.97 ± 0.04 0.61 ± 0.38 0.82 ± 0.29
Mink 0.94 ± 0.06 0.41 ± 0.33 0.68 ± 0.27 0.94 ± 0.03 0.47 ± 0.22 0.71 ± 0.18 0.98 ± 0.03 0.57 ± 0.38 0.84 ± 0.25
Mink++ 0.85 ± 0.10 0.25 ± 0.19 0.57 ± 0.16 0.92 ± 0.03 0.34 ± 0.16 0.62 ± 0.13 0.97 ± 0.03 0.57 ± 0.37 0.85 ± 0.24
Ref 0.96 ± 0.03 0.37 ± 0.35 0.73 ± 0.30 0.96 ± 0.04 0.43 ± 0.40 0.69 ± 0.35 0.97 ± 0.04 0.58 ± 0.42 0.79 ± 0.31

R
C

V
1

Loss 0.96 ± 0.02 0.40 ± 0.09 0.76 ± 0.15 0.90 ± 0.01 0.24 ± 0.05 0.52 ± 0.07 0.98 ± 0.00 0.55 ± 0.23 0.94 ± 0.01
ZLIB 0.82 ± 0.02 0.27 ± 0.07 0.46 ± 0.06 0.72 ± 0.02 0.11 ± 0.03 0.28 ± 0.03 0.90 ± 0.05 0.52 ± 0.20 0.67 ± 0.13
Mink 0.97 ± 0.02 0.60 ± 0.14 0.87 ± 0.08 0.92 ± 0.02 0.29 ± 0.04 0.65 ± 0.08 0.99 ± 0.00 0.80 ± 0.08 0.97 ± 0.01
Mink++ 0.80 ± 0.13 0.32 ± 0.19 0.49 ± 0.24 0.84 ± 0.07 0.28 ± 0.22 0.52 ± 0.19 0.99 ± 0.00 0.90 ± 0.05 0.98 ± 0.00
Ref 0.97 ± 0.01 0.50 ± 0.09 0.86 ± 0.09 0.95 ± 0.00 0.26 ± 0.07 0.63 ± 0.05 0.98 ± 0.01 0.50 ± 0.31 0.95 ± 0.02

Table 5: DDI values for models (with base model Mistral-0.1-7B) with different approaches of
combining domains when user has access to two domains. All reported values are mean± std across
domains.

MIA Activate Merge Union
auc-roc tpr@1%fpr tpr@5%fpr auc-roc tpr@1%fpr tpr@5%fpr auc-roc tpr@1%fpr tpr@5%fpr

W
M

D
P

Loss 0.99 ± 0.02 0.85 ± 0.21 0.92 ± 0.11 0.95 ± 0.04 0.62 ± 0.21 0.73 ± 0.19 0.99 ± 0.01 0.93 ± 0.10 0.96 ± 0.06
ZLIB 0.93 ± 0.09 0.69 ± 0.30 0.74 ± 0.30 0.87 ± 0.09 0.47 ± 0.26 0.58 ± 0.29 0.98 ± 0.03 0.83 ± 0.23 0.88 ± 0.16
Mink 0.99 ± 0.01 0.89 ± 0.14 0.95 ± 0.07 0.96 ± 0.03 0.73 ± 0.11 0.83 ± 0.12 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Mink++ 0.96 ± 0.02 0.77 ± 0.04 0.86 ± 0.04 0.94 ± 0.03 0.58 ± 0.03 0.80 ± 0.05 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Ref 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.86 ± 0.09 0.96 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

G
PQ

A

Loss 0.99 ± 0.01 0.83 ± 0.18 0.95 ± 0.06 0.96 ± 0.04 0.55 ± 0.24 0.87 ± 0.06 1.00 ± 0.00 0.97 ± 0.04 0.98 ± 0.02
ZLIB 0.93 ± 0.08 0.50 ± 0.35 0.74 ± 0.32 0.86 ± 0.09 0.33 ± 0.23 0.56 ± 0.21 0.99 ± 0.01 0.88 ± 0.17 0.97 ± 0.04
Mink 1.00 ± 0.00 0.94 ± 0.07 0.98 ± 0.02 0.98 ± 0.02 0.74 ± 0.14 0.87 ± 0.12 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Mink++ 0.98 ± 0.02 0.80 ± 0.14 0.92 ± 0.06 0.98 ± 0.01 0.75 ± 0.13 0.89 ± 0.07 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Ref 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 0.84 ± 0.23 0.97 ± 0.04 1.00 ± 0.00 0.97 ± 0.04 1.00 ± 0.00

Si
m

pl
eQ

A

Loss 0.97 ± 0.03 0.58 ± 0.33 0.82 ± 0.27 0.96 ± 0.02 0.49 ± 0.24 0.79 ± 0.17 0.97 ± 0.04 0.50 ± 0.42 0.76 ± 0.31
ZLIB 0.97 ± 0.03 0.51 ± 0.32 0.78 ± 0.28 0.95 ± 0.03 0.44 ± 0.23 0.72 ± 0.19 0.97 ± 0.04 0.51 ± 0.42 0.75 ± 0.31
Mink 0.97 ± 0.03 0.51 ± 0.34 0.83 ± 0.24 0.96 ± 0.02 0.49 ± 0.24 0.77 ± 0.18 0.97 ± 0.04 0.51 ± 0.41 0.79 ± 0.27
Mink++ 0.92 ± 0.04 0.46 ± 0.21 0.68 ± 0.21 0.93 ± 0.05 0.45 ± 0.28 0.73 ± 0.19 0.97 ± 0.04 0.50 ± 0.41 0.76 ± 0.29
Ref 0.98 ± 0.03 0.65 ± 0.39 0.86 ± 0.27 0.98 ± 0.03 0.64 ± 0.34 0.85 ± 0.25 0.96 ± 0.04 0.48 ± 0.43 0.73 ± 0.34

R
C

V
1

Loss 0.93 ± 0.04 0.39 ± 0.23 0.62 ± 0.23 0.85 ± 0.01 0.14 ± 0.03 0.35 ± 0.02 0.98 ± 0.01 0.53 ± 0.22 0.92 ± 0.01
ZLIB 0.82 ± 0.05 0.30 ± 0.10 0.50 ± 0.08 0.69 ± 0.03 0.10 ± 0.04 0.26 ± 0.06 0.90 ± 0.05 0.48 ± 0.23 0.67 ± 0.14
Mink 0.93 ± 0.05 0.44 ± 0.24 0.68 ± 0.23 0.85 ± 0.02 0.16 ± 0.03 0.40 ± 0.04 0.99 ± 0.00 0.73 ± 0.12 0.97 ± 0.01
Mink++ 0.69 ± 0.25 0.27 ± 0.20 0.45 ± 0.33 0.70 ± 0.16 0.18 ± 0.13 0.35 ± 0.21 0.99 ± 0.00 0.89 ± 0.03 0.98 ± 0.00
Ref 0.96 ± 0.02 0.35 ± 0.12 0.71 ± 0.18 0.94 ± 0.01 0.15 ± 0.05 0.52 ± 0.08 0.98 ± 0.00 0.45 ± 0.25 0.97 ± 0.00

We leave this exploration for future work. We also note some limitations in the experiments that
we do not expect to change our key claims. First, we only run one model fine-tuning per parameter
setting due to the computation overhead. Second, we do not perform an ablation study on the LoRA
rank on fine-tuning. Our preliminary experiments with different ranks suggested limited impact on
model utility, so we stick to the default value. For our formalism in § 2, we assume that adversaries
do not tamper with their credentials or domain access, otherwise they can gain arbitrary domain
information. This is enforced by the enclosing system via authentication.

Related Work. Access control problems in agentic systems can manifest in interesting ways, such as
context hijacking [2], and may require further constraining the purview of individual agent contexts.
Retrieval Augmented Generation (RAG) systems [22, 31, 50] are also susceptible to the access control
problem. However, the access control needs to be enforced in the information retrieval engine of
the system [4, 14] and is beyond our work’s scope (although we do provide a formalism for access
control in RAG-based systems in Appendix A).

One may draw some parallels between our formalism of response relevance and access advantage
metric with prior works on indistinguishability [1, 3, 9, 13] in security and privacy. The mechanisms
in this lineage of works are singularly focused on eliminating distinguishability between the effects of
different data on computations. In contrast, PermLLM’s objective is to maximize domain separation,
which implies maximization of distinguishability – the more pronounced the distinguishability, the
more effective is the PermLLM mechanism.
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Broader Impacts. We do not foresee any negative societal impact of our work. Our work aims
to bolster the security and privacy of individual’s data by enforcing strict access control, such that
only people with prior authorization can get access to the information. Our work is applicable to
healthcare, finance, and more broadly, enterprise / governance applications that deal with sensitive
data of individuals.
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A Formalizing Access Control for Retrieval Augmented Generation

For Retrieval Augmented Generation (RAG), we assume a pre-trained LLM f that is used in
applications without additional fine-tuning. Instead, we augment f with a retriever engine R to give
us a retrieval augmented LLM fR.

Each query qc to fR is accompanied by a context c, retrieved by R, that enhances fR’s response to
the query. Let R retrieve contexts from the context database C, i.e. c ∈ C. Furthermore, we have
C =

⋃n
i=1 Csi ∼ Csi , where each Csi is a collection of contexts belonging to security domain si.

For this discussion, we define M as an access control mechanism that dictates the mapping of every
Csi ⊆ C to the security domain si. We say that a RAG system that uses contexts from the context
database C is permissioned (PermRAG), if it uses retriever RM

C , which in turn uses the access
control mechanism M to retrieve context c ∈ Csi from a selected security domain si. Intuitively,
given a security domain si, R uses M to retrieve context c ∈ Csi . One can trivially generalize this
definition of PermRAG to work with subsets of security domains instead of a singleton security
domain si.

For PermRAG, we assume an identical enclosing system setting as in PermLLM (see § 2):
Given a user u the enclosing system determines u’s access credentials credu and calls
authenticate(credu) that takes user credentials credu and maps them to a subset of secu-
rity domains Su that u can access. User u cannot arbitrarily change Su. Each of user u’s subsequent
query q to fR is annotated with Su. The retriever RM

C of fR uses access control mechanism M to
retrieve a context c ∈ CSu

.

14

https://arxiv.org/abs/2306.01708
https://arxiv.org/abs/2306.01708
https://arxiv.org/abs/2311.03099
https://arxiv.org/abs/2311.03099
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2409.16167
https://arxiv.org/abs/2505.01538


Definition A.1 (Relevant Response for PermRAG). Given a PermRAG fR, with retriever RM
C ,

a query q from user u, and Su the security domains u has access to, r = fR(q) is the response by
fR to query q. Response r is said to be relevant to Su (i.e. r = rSu) if retriever RM

C uses a context
c ∈ CSu

to augment the query for r.

To empirically quantify response relevance, we can use the same response relevance score,
relv(fR(q), Su) that quantifies the information gained on data in the security domains q’s user
u has access to (this is the same set of security domains that mapping M gives for u for the retriever
RM

C , i.e. Su). Here RM
C retrieves the query context c ∈ C using mapping M; c is then augmented

to the query q. We restrict the domain of relv to the real number interval [0, 1], where 1 is the best
expected score for relevance. Similar to PermLLM, we define access advantage for PermRAG as
follows:
Definition A.2 (Access Advantage for PermRAG). Given PermRAG fR that uses retriever RM

C
which in turn uses the context database C containing data from domains S =

⋃n
i=1{si}, with access

control mechanism M, a subset of security domains Su ⊆ S, context c ∈ C that is augmented to
query q, fR achieves α-access advantage w.r.t. Su if:

Eq∼DSu ,Sv⊆S;Su∩Sv=ϕ

[
relv(fR(q), Su)⊖ relv(fR(q), Sv)

]
≥ α

where relv() is the response relevance score on the corresponding security domain subset (Su or
Sv), ⊖ is a “difference” operator specific to the access control assessment method (e.g. subtraction),
and α is an advantage threshold that lies in the range [0,1].

B Formal Access Control Enforcement in PermLLM Mechanisms

We now present formal proofs for correct access control enforcement in our PermLLM mechanisms
presented in § 3: Activate, Merge, and Union.

Refreshing the formalism from § 2, we consider a universe of n different security domains S =⋃n
i=1{si}, and a training data set consisting of data from these domains D =

⋃n
i=1 Dsi ∼ Dsi (here

Dsi is a data set sampled from data distribution Dsi of domain si). Let fD be the LLM tuned using
data set D. Let W be the set of fD’s parameters. Model tuning changes values of a subset of W . Let
security domain si affect, per the meaning of affect in § 2, a subset of parameters Wsi ⊆ W . Thus
data from Dsi is used to change parameters Wsi during model fine-tuning. Let M be the access
control mechanism that dictates the mapping of security domain si to parameters Wsi via the affects
relation.

Consider a set of LoRA adapters [17] l1, l2, ..., lm. Each adapter li comprises parameters Wli , such
that Wli ∩Wlj = ϕ, ∀i ̸= j. Let i be the adapter Id for adapter li. Let fM

D by the PermLLM that
uses mapping M of security domains to parameters during tuning and testing. Let FM be the system
enclosing fM

D that performs the mapping from user credentials credu to sets of security domains Su

for each user u. We make two assumptions about FM: (i) FM can correctly determine and maintain
the security domains Su a user u has access to; and (ii) Su remains opaque to the user and any other
adversary and as a result, cannot be tampered with by any user or adversary.

We assume that both fine-tuning and testing are mediated through FM. During fine-tuning, the
dataset D is passed to FM. FM extracts information about the security domains s1, .., sn covered
by D. For settings where users have access to multiple security domains, the list of security domain
combinations that users have access to is also passed on to FM. FM does the mapping between
security domain groups and LoRA adapters differently for each of our PermLLM mechanisms:

Activate FM maps each security domain si to a unique LoRA adapter li. For fine-tuning of fM
D ,

minibatches sampled for each si are routed to the corresponding LoRA adapter li, the other
LoRA adapters are deactivated for the sampled mini-batch.

Merge Security domain-LoRA adapter mappings and fine-tuning of fM
D proceeds identically to

that in Activate. However, after the fine-tuning is done, the security domain groups are used
to merged LoRA adapters. These new LoRA adapters are added to the set of LoRA adapters
in fM

D . The mapping M is also updated with the new mappings between security domain
groups and LoRA adapters.

Union Datasets corresponding to the security domain groups are used to fine-tuning unique LoRA
adapters. M is also updated with these new security domain group-LoRA adapter mappings.
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At the end of fine-tuning, M will have a mapping between each security domain group Su (for each
respective user u) and each LoRA adapter in mechanisms Merge and Union. More formally,
Lemma B.1. In Merge and Union, after fine-tuning, for every user u that has access to Su ⊆ S,∃lSu ,
where lSu is a LoRA adapter, Su affects parameters WlSu

, and WlSu
is not affected by any other

security domains in S.

In case of Activate, Su is used at inference time to activate the LoRA adapters lsi , where si ∈ Su.
More formally,
Lemma B.2. In Activate, after fine-tuning, for every user u that has access to Su ⊆ S, ∀si ∈ Su, si
affects parameters Wlsi

, and Wlsi
is not affected by any other security domain sj ∈ Su, i ̸= j, or

sk ∈ S \ Su.

At inference time, user u sends query q to FM. FM first determines u’s security domains Su, and
then passes q and Su to fM

D , which then activates the LoRA adapter/s corresponding to Su: lSu

in case of Merge and Union, and lsi , where si ∈ Su, in case of Activate. Our assumptions about
accessibility of Su to the user or adversary ensure that the adversary cannot tamper with Su within
the scope of FM.
Theorem B.3. Given any query q from any user u, the response r = fM

D (q) is relevant to Su for M
in Activate, Merge, or Union.

Proof. From Lemmas Theorem B.1 and Theorem B.2, through the fine-tuning process Su affects
parameters WlSu

in Merge and Union, and parameters Wlsi
,∀si ∈ Su in Activate. At inference time,

these same parameters (along with the pretrained model’s parameters) are used to generate response
r = fM

D (q). By implication, the parameters affected by Su are used to generated r. Hence r is
relevant to Su, i.e. r = rSu

.

Since the above response relevance condition applies for all responses r = fM
D (q) on all queries q by

all users u, we say that Activate, Merge, and Union correctly enforce parameter separation and hence
correctly enforce access control for all users u.

C Audit Games

We formalize black-box games that capture: (i) the distinguishability of security domain-specific
responses for DDI, and (ii) the utility disparity induced by access restrictions for UGI. Intuitively,
in these auditing games, we measure how effectively an external auditor can conclude if the access
control mechanism is correctly implemented by verifying if the correct domain adapter is activated
for a query. This effectiveness is directly correlated with the access advantage score for the target
security domain(s). Higher access advantage score denotes stronger access control enforcement. A
perfectly separated system provides the auditor with an access advantage score of 1.0.

We consider the same threat setting and auditor privileges for our adversarial games between auditor
A and system S enclosing the PermLLM fM

D as described in § 2.3.

Game 1: Domain Distinguishability. This game assesses whether the auditor can effectively
conclude if the correct security domains were used based on the generated responses. The primary
motivation of this game is to measure the distinguishability of different security domains’ distributions.

1. Auditor A chooses security domain set Su and emulates user u. A sends user credentials
credu and query q ∼ DSu to system S . S verifies the user credential credu and sends back
the model response fM

D (q) to A.
2. A chooses security domain set Sv such that Sv ∩ Su = ϕ and emulates user v. A sends user

credentials credv and the same query q ∼ DSu
to S. S verifies the user credential credv

and sends back the model response fM
D (q) to A.

3. A sends the models responses and domain information to membership inference oracle O
to obtain domain distinguishability score m(O(fM

D (q)|Su, f
M
D (q)|Sv)), where m(·) is a

membership inference metric (e.g., AUC-ROC or TPR@1%FPR) in the [0,1] range.
4. A concludes the access control mechanism is correctly implemented if the domain distin-

guishability score m(O(fM
D (q)|Su, f

M
D (q)|Sv)) ≥ α.
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Table 6: Data Set Details. Generalization Loss Gap (i.e., gap between model’s loss on training and
test sets) for all models are reported after fine-tuning for 5 epochs on each data set.

Data Set Data Set Size Llama-3.1-8B Loss Gap Mistral-0.1-7B Loss Gap
(# Domains) Train Test Full FT LoRA PermLLM Full FT LoRA PermLLM

WMDP (3) 2936 732 1.96 0.52 1.15 1.36 0.65 1.07
GPQA (3) 360 88 2.51 1.06 1.04 1.58 0.61 1.09
SimpleQA (10) 4089 1018 2.91 0.96 1.49 1.87 0.90 1.25
RCV1 (4) 45622 22811 4.07 0.35 0.83 2.48 0.37 0.74

Note that we can change the above game to distinguish members (q ∼ DSu
) and non-members

(q ∼ DSv
) for the target domain set Su, similar to prior MIA setups, which is what we do in our

experiments in § 5.

Game 2: Utility Gap Evaluation. The second game evaluates how distinctly the responses from
two different security domains impact the utility perceived by users. The rationale behind this game
is to confirm that enforced access controls result in meaningful variations in response quality.

1. Auditor A chooses security domain set Su and emulates user u. A sends user credentials
credu and query q ∼ DSu

to system S . S verifies the user credential credu and sends back
the model response fM

D (q) to A.
2. A chooses security domain set Sv such that Sv ∩ Su = ϕ and emulates user v. A sends user

credentials credv and the same query q ∼ DSu to S. S verifies the user credential credv
and sends back the model response fM

D (q) to A.
3. Given a utility function U(·) (e.g., BLEURT or task accuracy) that outputs values in [0,1]

range, A concludes the access control mechanism is correctly implemented if the utility gap
score |U(fM

D (q)|Su)− U(fM
D (q)|Sv)| ≥ α.

We aggregate the utility gaps from this game across all domain set pairs to obtain our UGI metric.

D Detailed Experiment Setup

D.1 Models

For our instantiation of PermLLM, we fine-tune Llama-3.1-8B[15] and Mistral-0.1-7B[19] pretrained
models on four datasets covering multiple distinct security domains (henceforth called domains),
where we fine-tune a separate LoRA adapter for each domain. To compare our PermLLM, we train
two additional models with full fine-tuning and LoRA fine-tuning respectively on entire training data.
Note that these models are only used for utility baselines as they do not provide access control. For all
the LoRA adapters, we use 64 rank and 0.1 dropout. We use AdamW optimizer with 0.1 weight decay
to fine-tuned all the models for 5 epochs with 300 warmup steps, 2 batch size and 5× 10−4 learning
rate (except for Mistral-0.1-7B full fine-tuning that uses a learning rate of 5× 10−5). We performed
grid search over multiple learning rates and warmup steps and found these values to give the best
results. For all our experiments, we use 8 H100 GPUs (with 80GB VRAM per GPU), 4 workers per
GPU, and 384 GB RAM. One epoch of fine-tuning took from few minutes (for our smallest data
set: GPQA) to a couple of hours (for our largest data set: RCV1). Mistral-0.1-7B is released under
Apache 2.0 license, and Llama-3.1-8B is released under Llama 3.1 Community License.

D.2 Data Sets

For our experiments, we require data sets that consist of multiple distinct domains and are possibly
not seen by the pretrained models. We use four different data sets, namely, WMDP [23], GPQA [32],
SimpleQA [40], and RCV1 [21]. While the first three data sets were collected after the pretraining
cutoff dates for Llama-3.1-8B and Mistral-0.1-7B, RCV1 is an older data set and hence we do not
know if it was used in pretraining. However, we observe a high initial training loss on this data
set, thereby indicating that it was either not used in pretraining or was catastrophically forgotten by
the models, allowing for a gradual reduction in training loss during our fine-tuning (see Figure 7).
Table 6 shows the data set details, along with the generalization gap (test loss - train loss) for different
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Figure 4: Comparing model loss on WMDP data set.
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Figure 5: Comparing model loss on GPQA data set.

approaches of fine-tuning the models on these data sets. See Figure 4, Figure 5, Figure 6, and Figure 7
for complete training and test loss trajectories across different data sets.

WMDP. Weapons of Mass Destruction Proxy (WMDP) [23] is a data set consisting of multi-choice
question–answer pairs spanning three domains: biological weapons (bio), chemical weapons (chem)
and cyber-warfare weapons (cyber). We do 4:1 split of the data set to obtain training and test sets.
The training set consists of 2936 question–answer pairs where 1019 are from bio, 327 are from chem
and the remaining 1590 are from cyber. The test set size is 732 records, consisting of 254 bio, 81
chem and 397 cyber records. The largest record from this data set consists of 1934 tokens (tokenized
using Llama3 tokenizer). This data set is released under MIT License.

GPQA. Graduate-Level Google-Proof Q&A Benchmark (GPQA) [32] data set consists of general
question–answer pairs from three domains: biology, chemistry and physics. We do 4:1 split of the
data set to obtain training and test sets. The training set consists of 360 question–answer pairs where
63 are from biology, 147 are from chemistry and the remaining 150 are from physics. The test set
size is 88 records, consisting of 15 biology, 36 chemistry and 37 physics records. The largest record
from this data set consists of 911 tokens (tokenized using Llama3 tokenizer). This data set is released
under MIT License.

SimpleQA. SimpleQA [40] is a factuality benchmark that measures the ability for language models
to answer short, fact-seeking questions. It consists of general question–answer pairs from ten domains:
art, geography, history, music, other, politics, science and technology, sports, tv shows, and video
games. We do 4:1 split of the data set to obtain training and test sets. The training set consists of
4089 question–answer pairs divided across all ten domains. The test set size is 1018 records spanning
across all ten domains. The largest record from this data set consists of 156 tokens (tokenized using
Llama3 tokenizer). This data set is released under MIT License.

RCV1. RCV1 [21] is a benchmark dataset on text categorization. It is a collection of newswire
articles produced by Reuters between 1996 and 1997. It contains 804,414 manually labeled newswire
documents, broadly categorized with respect to three categories: industries, topics and regions. We
took a subset of this data set and created four non-overlapping domains using topics: commercial
(CCAT), economic (ECAT), governance (GCAT), and mechanical (MCAT). We then did 2:1 split
of the subset to obtain training and test sets. The training set consists of 45622 question–answer
pairs where 23822 are from CCAT, 7460 are from GCAT, 3370 are from ECAT and the remaining
10970 are from MCAT. The test set size is 22811 records, consisting of 11911 CCAT, 3730 GCAT,
1685 ECAT, and 5485 MCAT records. The largest record from this data set consists of 1199 tokens
(tokenized using Llama3 tokenizer). This data set is released under CC BY 4.0 License.
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Figure 6: Comparing model loss on SimpleQA data set.
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Figure 7: Comparing model loss on RCV1 data set.

D.3 Model Utility Evaluation

We use four metrics to evaluate the utility of the model generations: Bleurt Score (bluert), Bert
F1-Score (bert), Sacrebleu Score (bleu) and Verbatim Accuracy (acc). These metrics measure how
similar the generated text is to the ground truth. bleurt and bert measure the semantic similarity, bleu
measures the fraction of common n-grams, and acc gives a binary decision of whether the generated
text verbatim matches the ground truth. All the metrics lie in a [0,1] range, where values close to 1
indicate high model utility.

We check the utility of Activate to determine if tuning different LoRA adapters for each security
domain leads to acceptable model utility. To that end, we show in Table 7 the utility of Llama-3.1-8B
models fine-tuned on different data sets with the three approaches: full fine-tuning, LoRA fine-tuning
and our PermLLM. We do not report the bleu score for WMDP as it is a multi-choice question-
answering task where model only has to generate a single token. bleu requires generating at least
four tokens. Our approach achieves similar or better utility on the training set compared to the LoRA
approach. On the test set, our approach achieves similar utility to LoRA for most of the data sets,
except for SimpleQA where LoRA performs better. This is because SimpleQA has more domains
(10 in total), thus each of our individual domain adapter sees only a fraction of data of what LoRA
approach’s adapter sees (given that SimpleQA is already a small data set). We expect the performance
of our domain-specific adapters to increase as the data set size increases. Full fine-tuning is highly
sensitive to training hyper-parameters, and as a result it either completely overfits on training set to
achieve high utility (e.g., on SimpleQA and RCV1), or it underfits and achieves low utility (e.g., on
WMDP and GPQA). We observe similar results for Mistral-0.1-7B models (see Table 8).
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Figure 8: Utility Gap Index, ∆U (mean± std) for Mistral-0.1-7B models fine-tuned on SimpleQA
when user has access to multiple security domains.
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Table 7: Utility comparison of Llama-3.1-8B models trained with different approaches. All reported
values are mean± std across domains.

Metric Full Fine-Tuning LoRA Fine-Tuning PermLLM
Train Test Train Test Train Test

W
M

D
P bleurt 0.74± 0.06 0.74± 0.06 0.90± 0.08 0.85± 0.08 0.92± 0.08 0.82± 0.06

bert 0.89± 0.03 0.89± 0.03 0.96± 0.03 0.94± 0.03 0.97± 0.03 0.93± 0.03
acc 0.26± 0.07 0.27± 0.07 0.76± 0.20 0.60± 0.20 0.84± 0.22 0.49± 0.15

G
PQ

A

bleu 0.26± 0.02 0.05± 0.03 0.45± 0.12 0.10± 0.05 0.39± 0.20 0.10± 0.04
bleurt 0.53± 0.05 0.39± 0.05 0.64± 0.09 0.46± 0.07 0.62± 0.11 0.47± 0.07
bert 0.67± 0.06 0.59± 0.05 0.77± 0.08 0.67± 0.05 0.75± 0.09 0.67± 0.05
acc 0.24± 0.06 0.02± 0.03 0.32± 0.05 0.05± 0.05 0.31± 0.09 0.04± 0.05

Si
m

pl
eQ

A bleu 0.80± 0.06 0.34± 0.11 0.65± 0.06 0.29± 0.08 0.67± 0.10 0.09± 0.04
bleurt 0.86± 0.03 0.58± 0.05 0.80± 0.02 0.61± 0.02 0.82± 0.04 0.53± 0.04
bert 0.96± 0.01 0.84± 0.02 0.94± 0.01 0.86± 0.01 0.95± 0.02 0.82± 0.03
acc 0.68± 0.10 0.20± 0.12 0.52± 0.07 0.17± 0.07 0.55± 0.13 0.02± 0.02

R
C

V
1

bleu 0.75± 0.08 0.14± 0.08 0.22± 0.10 0.16± 0.08 0.27± 0.10 0.16± 0.08
bleurt 0.88± 0.04 0.46± 0.12 0.57± 0.13 0.49± 0.11 0.62± 0.13 0.50± 0.12
bert 0.94± 0.03 0.67± 0.09 0.75± 0.08 0.70± 0.07 0.78± 0.08 0.70± 0.08
acc 0.78± 0.06 0.16± 0.10 0.27± 0.14 0.17± 0.10 0.31± 0.15 0.18± 0.10

Table 8: Utility comparison of Mistral-0.1-7B models trained with different approaches. All reported
values are mean± std across domains.

Metric Full Fine-Tuning LoRA Fine-Tuning PermLLM
Train Test Train Test Train Test

W
M

D
P Bleurt 0.95± 0.01 0.82± 0.03 0.96± 0.02 0.87± 0.03 0.96± 0.01 0.86± 0.03

Bert 0.98± 0.01 0.92± 0.02 0.99± 0.01 0.94± 0.02 0.99± 0.01 0.94± 0.02
Acc 0.88± 0.04 0.46± 0.14 0.92± 0.07 0.60± 0.09 0.93± 0.04 0.58± 0.11

G
PQ

A

Bleu 0.46± 0.03 0.06± 0.05 0.35± 0.08 0.11± 0.07 0.55± 0.18 0.13± 0.06
Bleurt 0.65± 0.04 0.42± 0.08 0.59± 0.09 0.47± 0.06 0.67± 0.09 0.47± 0.08
Bert 0.75± 0.05 0.62± 0.07 0.73± 0.08 0.68± 0.05 0.79± 0.08 0.66± 0.09
Acc 0.38± 0.04 0.04± 0.05 0.24± 0.04 0.05± 0.06 0.40± 0.09 0.08± 0.02

Si
m

pl
eQ

A Bleu 0.94± 0.02 0.36± 0.11 0.73± 0.06 0.34± 0.09 0.70± 0.13 0.10± 0.04
Bleurt 0.94± 0.01 0.60± 0.04 0.84± 0.03 0.62± 0.03 0.83± 0.06 0.52± 0.04
Bert 0.99± 0.01 0.85± 0.02 0.96± 0.01 0.87± 0.01 0.95± 0.03 0.82± 0.03
Acc 0.91± 0.04 0.23± 0.12 0.62± 0.08 0.20± 0.10 0.60± 0.16 0.03± 0.02

R
C

V
1

Bleu 0.92± 0.06 0.17± 0.09 0.28± 0.13 0.20± 0.10 0.37± 0.14 0.19± 0.09
Bleurt 0.93± 0.02 0.48± 0.12 0.60± 0.13 0.51± 0.12 0.66± 0.12 0.50± 0.12
Bert 0.98± 0.02 0.69± 0.08 0.78± 0.09 0.71± 0.08 0.81± 0.08 0.71± 0.08
Acc 0.92± 0.03 0.19± 0.11 0.31± 0.15 0.20± 0.11 0.38± 0.17 0.19± 0.10

E MIAs against LLMs

In Section 4, we defined the Domain Distinguishability Index (DDI) as the average success rate of
an adversary playing the Domain Distinguishability game over all domain set pairs. That game is
implemented with membership inference attacks (MIAs) [43, 5, 28, 35, 46]: the auditor compares a
member set drawn from the active domain’s training data with a non-member set drawn from some
other domain, and tries to tell them apart. The better this separation, the larger the DDI. Here, in
this section, we expand on the MIA toolbox that underpins DDI—detailing evaluation metrics and
the specific attacks we deploy against LLMs. More generally, an MIA for an LLM f assigns a
membership score A(x, f) to a candidate text x. Thresholding this score at ε declares x a member (if
A(x, f)≥ε) or a non-member (if A(x, f)<ε).
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E.1 Metrics

We employ two complementary metrics to quantify the success of our membership inference attacks,
as used by prior MIA works [18, 6, 27]:

(1) Attack ROC curves: The Receiver Operating Characteristic (ROC) curve illustrates the trade-
off between the True Positive Rate (TPR) and the False Positive Rate (FPR) for the attacks. The FPR
measures the proportion of non-member samples that are incorrectly classified as members, while the
TPR represents the proportion of member samples that are correctly identified as members. We report
the Area Under the ROC Curve (AUC-ROC) as an aggregate metric to assess the overall success of
the attacks. AUC-ROC is a threshold-independent metric, and it shows the probability that a positive
instance (member) has higher score than a negative instance (non-member).

(2) Attack TPR at low FPR: This metric is crucial for determining the effectiveness of an attack
at confidently identifying members of the training dataset without falsely classifying non-members as
members. We focus on low FPR thresholds, specifically 1%, and 5%. For instance, the TPR at an
FPR of 1% is calculated by setting the detection threshold so that only 1% of non-member samples
are predicted as members.

E.2 Existing MIAs

LOSS [43]: The LOSS method utilizes the loss value of model f(.) for the given text x as the
membership score; a lower loss suggests that the text was seen during training, so A(x, f) = ℓ(f, x).

Ref [5]: Calculating membership scores based solely on loss values often results in high false
negative rates. To improve this, a difficulty calibration method can be employed to account for
the intrinsic complexity of x. For example, repetitive or common phrases typically yield low loss
values. One method of calibrating this input complexity is by using another LLM, Ref(.), assumed
to be trained on a similar data distribution. The membership score is then defined as the difference
in loss values between the target and reference models, A(x, f) = ℓ(x, f) − ℓ(x,Ref). In our
evaluations, we used the base models (i.e., Llama-3.1-8B and Mistral-0.1-7B) before any fine-tuning
as the reference models.

Zlib [5]: Another method to calibrate the difficulty of a sample is by using its zlib compression
size, where more complex sentences have higher compression sizes. The membership score is then
calculated by normalizing the loss value by the zlib compression size, A(x, f) = ℓ(x,f)

zlib(x) .

Min-K [35]: This attack hypothesizes that non-member samples often have more tokens assigned
lower likelihoods. It first calculates the likelihood of each token as Min-K%token(xt) = log p(xt|x<t),
for each token xt given the prefix x<t. The membership score is then calculated by averaging over
the lowest K% of tokens with lower likelihood, A(x, f) = 1

|min-k%|
∑

xi∈min−k% Min-K%token(xt).

Min-K++ [46]: This method improves on Min-K by utilizing the insight that maximum likelihood
training optimizes the Hessian trace of likelihood over the training data. It calculates a normalized
score for each token xt given the prefix x<t as Min-K%++token(xt) =

log p(xt|x<t)−µx<t

σx<t
, where

µx<t
is the mean log probability of the next token across the vocabulary, and σx<t

is the standard
deviation. The membership score is then aggregated by averaging the scores of the lowest K% tokens,
A(x, f) = 1

|min-k%++|
∑

xi∈min−k% Min-K%++token(xt).
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