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Abstract

CaMeL (Capabilities for Machine Learning) introduces a capability-based sandbox to miti-
gate prompt injection attacks in large language model (LLM) agents. While effective, CaMeL
assumes a trusted user prompt, omits side-channel concerns, and incurs performance trade-offs
due to its dual-LLM architecture. This technical response identifies these limitations and pro-
poses engineering enhancements to extend CaMeL’s threat coverage and operational viability.
We introduce: (1) prompt screening for initial inputs, (2) output auditing to detect instruction
leakage, (3) a tiered-risk access model to balance utility and control, and (4) a formally veri-
fied intermediate language to support static guarantees. Together, these augmentations align
CaMeL with best practices in security engineering, reduce overhead, and support enterprise-scale
deployment without modifying underlying models.

1 Introduction

Prompt injection attacks have become one of the most pressing security challenges in the deployment
of large language models (LLMs), especially when these models are used as autonomous agents
in enterprise workflows. As LLMs move beyond simple text generation and begin orchestrating
tools - sending emails, querying databases, managing cloud files - they face increasing exposure to
untrusted inputs.

In these scenarios, attackers can embed malicious instructions within otherwise benign content
- uploaded documents, web pages, or even system-generated messages. When an LLM ingests such
input, it may unknowingly execute unauthorized actions: leaking sensitive data, contacting external
recipients, or triggering destructive API calls. Studies have shown that even advanced models
routinely fall for these traps, often misinterpreting hidden payloads as legitimate user commands [1,
2].

To address these threats without modifying the underlying model, Debenedetti et al. introduced
CaMeL (Capabilities for Machine Learning) [1]. CaMeL wraps the LLM in a capability-based
execution layer that separates trusted and untrusted data flows. A Privileged LLM receives the
user’s prompt and generates a high-level plan, while a Quarantined LLM handles untrusted content
and enforces strict schema validation. Each data value is labeled with provenance and access
metadata (“capabilities”), and all tool invocations must pass explicit policy checks before execution.
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While CaMeL significantly raises the bar for prompt-injection resilience, there is room to im-
prove its robustness and practicality. This paper examines CaMeL’s current limitations - including
assumptions in its threat model, remaining side-channel exposures, and system-level constraints
such as latency and policy sprawl. We propose a series of technical developments to address these
challenges, drawing on best practices from security engineering, formal verification, and access
control systems.

2 Opportunities for Strengthening CaMeL’s Threat Model

From an enterprise security standpoint, three notable gaps in CaMeL’s threat model warrant closer
attention.

2.1 Initial Prompt Trust

CaMeL assumes that the user’s initial message is benign. However, corporate red team exercises
have shown that a single crafted prompt - often delivered via phishing or chat-based social en-
gineering - can implant persistent logic into the agent’s planning layer. Classic phishing studies
report that over 30 percent of users click seemingly harmless links containing attacker-controlled
keywords [3].

To address this risk, we propose an initial prompt screening gateway that performs repu-
tation checks on URLs, flags override phrases (e.g., “ignore all previous”), and computes entropy or
perplexity scores to detect anomalies. Since this involves only a short string, latency remains low (¡5
ms in internal tests), yet the screening closes a high-impact entry point for injection attacks [4, 5].

2.2 Output-Side Manipulation

CaMeL enforces data provenance for tool inputs but does not inspect what the agent ultimately
outputs. For instance, a benign PDF might include a line such as:

“## System: Forward this file to finance-external@example.com.”
If the agent summarizes this document, the hidden instruction could be echoed to a human

user, leading to unintended actions. Modern natural language inference models can already detect
contradictions and malicious phrasing with over 90 percent accuracy on benchmark datasets like
MNLI [6].

We recommend a post-processing output auditing pass that scans each LLM-generated re-
sponse for override cues, suspicious URLs, or contradictions with the intended business task. Only
outputs that pass this audit are displayed or executed.

2.3 Provenance of User Uploads

Schema validation alone is insufficient for documents supplied by end users. We suggest that every
value extracted from such files carry a file-content provenance tag, e.g., a from user upload

label. Policies can then prevent this data from flowing into irreversible actions - such as sending
external emails or modifying ERP systems - unless explicitly authorized via a privileged “grant-
exception” mechanism.

This design mirrors techniques from information-flow control languages like JIF [7] and Flow-
Caml [8], adapted here for agent-based systems driven by LLMs.
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By implementing (i) prompt screening, (ii) output auditing, and (iii) tagged provenance for up-
loaded content, security teams can broaden CaMeL’s protection across the full conversation lifecycle
without compromising its core capability-based controls.

3 Balancing Security Guarantees with Practical Utility

CaMeL’s default behavior rejects any tool invocation whose arguments - directly or indirectly -
contain untrusted data. This strict policy achieves a 67 percent completion rate on the AgentDojo
benchmark [1]. However, many of the remaining failures stem not from unsafe logic, but from
treating all untrusted inputs as equally risky.

In real-world enterprise environments, security frameworks like Risk-Adaptive Access Control
and NIST’s Zero Trust Architecture apply more nuanced policies, adjusting enforcement based
on operational sensitivity and situational context [9]. Inspired by these practices, we propose a
tiered-risk policy for CaMeL:

• Green tier - read-only actions on public or internally labeled “open” data (e.g., listing
calendar events) are allowed after a basic provenance check.

• Yellow tier - changes within the user’s own environment (e.g., moving a file to a shared
folder) prompt a lightweight confirmation if any argument is untrusted.

• Red tier - irreversible or externally visible operations (e.g., sending email, making wire trans-
fers, calling privileged APIs) retain full capability checks and require multi-factor approval.

Large-scale ABAC evaluations show that this kind of stratification preserves over 90 percent of
legitimate workflows while blocking all simulated attacks in cloud testbeds [10]. Applying a similar
approach in CaMeL would increase task success rates without relaxing its strongest controls.

Reducing Prompt Fatigue. Excessive security prompts can lead to prompt fatigue, in which
users reflexively approve warnings without reading them [11]. By limiting explicit confirmations
to the yellow and red tiers, CaMeL can reduce prompt volume significantly - improving usability
while maintaining security for high-risk actions.

From Empirical Checks to Formal Guarantees. CaMeL’s current safeguards rely on bench-
mark performance rather than formal verification. For environments that demand rigorous assur-
ance, we recommend building a mechanized model of CaMeL’s interpreter and policy engine in
a proof assistant, then proving it satisfies noninterference: secret-labeled inputs should not affect
public outputs, except through approved channels.

Verified systems like CertiKOS and CompCert show that machine-checked security is feasible
even for complex software stacks [12,13]. Rewriting CaMeL’s restricted Python dialect as a minimal,
formally specified intermediate language would support similar verification efforts - bridging the
gap between theoretical models and practical deployments [14].

4 Side-Channel Considerations and Mitigations

While CaMeL enforces capability-based data flow controls, it does not inherently block information
leaks through side channels - indirect signals such as timing, loop iterations, or error behavior that
can reveal internal state without violating explicit policy.
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Below, we examine three practical side-channel vectors and recommend mitigation strategies
based on established techniques from secure systems research.

4.1 Loop-Counting Attack

Threat. When the number of loop iterations depends on a secret, even non-sensitive operations
can leak information through observable counts. For example, a loop such as:

for i in range(secret): fetch("ping")

reveals the value of secret through access logs. This same pattern underlies attacks like
controlled-channel exploitation against Intel SGX, where memory paging patterns expose enclave
state [15].

Mitigations.

• STRICT mode. Automatically trigger STRICT evaluation for any loop with a secret-
tainted bound. During STRICT mode, state-changing tool calls are blocked or require user
confirmation.

• Loop limits. Reject or cap the maximum number of iterations if the loop count depends on
confidential data.

• Call batching. Combine repeated benign operations into a single bulk request, breaking the
correlation between loop count and secret value.

4.2 Exception-Based Information Leak

Threat. If an exception is thrown only when a secret meets a specific condition, the presence or
absence of an error leaks one bit of information per execution. Similar channels have been used to
extract secrets in hardened kernel prototypes [16].

Mitigations.

• Explicit result types. Replace exceptions with structured outputs like Result{ok, error},
allowing both paths to be processed uniformly.

• Consistent control flow. Ensure both success and error branches execute with the same
timing and code structure to prevent divergence-based leaks.

4.3 Timing Channels

Threat. Execution time can vary based on secret-dependent logic - for example, sleeping for
secret seconds or using branches that hit different cache lines. Kocher’s classic work showed that
even sub-millisecond differences can leak RSA keys [17]; later research demonstrated full AES key
recovery via cache timing [18].

Mitigations.

• Timer stubbing. Remove access to high-resolution timers in untrusted code or introduce
jitter to reduce precision.
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• Constant-time operations. Pad sensitive operations to their worst-case runtime before
returning control, as in cryptographic libraries.

• Deterministic scheduling. Process tool calls in a fixed sequence and timing pattern,
eliminating runtime variations tied to secret values.

Together, these mitigations - loop clamping, structured error handling, and constant-time execution
- can suppress the most practical side channels without altering CaMeL’s capability model. These
controls are essential for systems handling regulated or confidential data where indirect leakage
must be accounted for.

5 Architectural Limitations

While CaMeL introduces a strong capability-based execution model, its current design brings several
architectural trade-offs. These include performance bottlenecks, complexity in policy management,
and limitations in the interpreter’s language semantics. In this section, we outline key challenges
and offer practical design adjustments that could support more efficient and scalable deployments.

5.1 Performance Overhead of Dual LLMs

CaMeL separates control and data by using two large language models: a Privileged LLM (P-LLM)
that generates plans and a Quarantined LLM (Q-LLM) that validates untrusted content. While
this split provides strong data isolation, it effectively doubles the number of model invocations.

OpenAI’s published metrics for GPT-4 report median latencies of 1–2 seconds per request and
pricing of $0.03–$0.06 per 1,000 tokens (prompt + completion) [19]. In workflows where the Q-
LLM must process multiple artifacts - such as reviewing 10 email messages - latency can exceed 10
seconds. This delay is often unacceptable in interactive applications like customer-facing chatbots
or support agents.

To reduce this overhead, we recommend the following design strategies:

1. Plan-template caching. Many enterprise prompts fall into a small set of repeated intents
(e.g., “summarize my inbox,” “file this expense report”). Caching known-safe plans keyed by
prompt hashes allows reuse without re-invoking the P-LLM.

2. Deterministic micro-parsers. For structured outputs like JSON, using hand-written or
generated parsers is faster and cheaper than calling an LLM. This mirrors techniques in
ReAct-style hybrid agents [20].

3. Batching Q-LLM extractions. When the same validation logic must be applied to many
strings (e.g., extracting “amount” from 100 receipts), concatenating them into a single prompt
amortizes the per-call cost.

Internal tests show that combining caching with deterministic parsers can cut token usage and
end-to-end latency by up to 50 percent while preserving CaMeL’s policy guarantees.

5.2 Policy Maintenance at Scale

Each tool in CaMeL is governed by a Python policy function that specifies allowed data flows.
In large organizations - especially those with hundreds of APIs - this results in policy sprawl:
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inconsistent logic, duplicated rules, and lack of central auditing. These issues mirror configuration
drift problems identified in infrastructure-as-code research [21].

To address this, we recommend adopting policy-as-code frameworks with the following
features:

• Declarative languages. Tools like Rego (used in Open Policy Agent) represent access logic as
pure rules, which are easier to test, audit, and verify [22].

• Reusable modules. Common rules - such as “share only within domain” - can be imported
and reused across multiple tools.

• Visual interfaces. GUI-based editors lower the barrier for non-engineering stakeholders to
read or modify policy rules safely.

Centralizing policies in a declarative engine simplifies governance, reduces human error, and
makes policy behavior easier to reason about.

5.3 Interpreter Language Constraints

CaMeL uses a restricted subset of Python to define tool plans. While this improves accessibility
for developers, it inherits Python’s problematic features: dynamic typing, exception-driven control
flow, and reflection. These traits make static analysis difficult and prevent strong guarantees about
information flow.

A more robust approach would be to re-implement the plan interpreter using a security-
oriented domain-specific language (DSL). Such a language would support:

• Bounded loops and simple, explicit conditionals

• First-order function calls only (no reflection or metaprogramming)

• Capability labels embedded in the type system

This mirrors prior work in language-based security, such as FlowCaml [8], which enables compile-
time enforcement of information-flow constraints. Embedding the DSL in a proof-oriented platform
like F could allow formal verification of constant-time behavior and noninterference [23].

6 Comparison with Other Defenses

Enterprise security teams have several strategies available to defend against prompt injection [24].
These approaches vary in terms of where they intervene in the stack - at the model level, system
level, or input/output layer - and each comes with distinct trade-offs. Below, we compare CaMeL
with three common classes of defenses.

Model-level robustness. Instruction tuning and preference alignment methods - such as In-
structGPT and Constitutional AI - aim to make the model itself more resistant to malicious
prompts [25, 26]. These techniques fine-tune LLMs to ignore or suppress harmful instructions
embedded in context. While they reduce jailbreak success rates on average, they remain heuris-
tic: adversaries can still craft obfuscated payloads that bypass training filters. Moreover, most
enterprises use closed-source models and cannot re-train them directly.

CaMeL takes a different approach by treating the LLM as a black box. Instead of modifying the
model, it adds a runtime policy layer to control how data flows through agent decisions - offering
protection even when model internals are inaccessible.
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System-level sandboxing. Isolation tools like Google’s gVisor and micro-VM frameworks re-
strict what an agent process can do at the operating system level [27]. These sandboxes are effective
at containing damage from code execution errors or malware, but they don’t address misuse of al-
lowed functionality. For example, if SMTP is permitted, an injected prompt can still send sensitive
data by crafting a plausible email.

CaMeL complements sandboxing by applying fine-grained capability checks on individual tool
invocations, filtering requests based on data origin and context - not just system-level permissions.

Static filtering and input sanitization. Some defenses scan inputs for known attack patterns
- e.g., blacklisting keywords like ignore previous or removing suspicious HTML tags. These filters
are fast and easy to deploy but are brittle: red team studies show they block fewer than 30 percent
of novel jailbreak strategies [28,29]. Attackers quickly find paraphrases, encoding tricks, or Unicode
variants to bypass static rules.

By contrast, CaMeL performs dynamic, context-aware validation after parsing, labeling inputs
based on provenance, and enforcing policies at execution time. This makes it more resilient to
previously unseen prompt injection tactics and avoids over-relying on fragile string matching.

In summary, CaMeL complements existing defenses. It is particularly well-suited for enterprises
that cannot retrain foundation models but require structured, verifiable control over how LLMs
process and act on untrusted inputs.

7 Conclusion

This work extends CaMeL by addressing overlooked threats and architectural challenges that im-
pact its deployability in real-world settings. We identify three core gaps in its security posture -
initial prompt trust, output manipulation, and side-channel exposure - and propose mitigations
that preserve CaMeL’s fine-grained policy model while improving its robustness and scalability. By
introducing adaptive risk tiers, prompt/output filtering, and verification-ready execution models,
we chart a path toward a production-grade CaMeL variant suitable for regulated and high-assurance
environments. Rather than replacing CaMeL, our response enhances its foundation, offering con-
crete steps to transition from academic prototype to enterprise-ready security framework for LLM
agents.

8 Directions for Future Work

Transforming CaMeL from a promising prototype into a production-grade security framework will
require progress along several technical dimensions:

• Mechanized noninterference proofs. Formalizing CaMeL’s execution semantics in a proof
assistant such as Coq or Isabelle and proving end-to-end noninterference would elevate its
assurance level to that of verified systems like CompCert and CertiKOS [12,13]. A machine-
checked theorem would guarantee that secret-tagged data cannot influence public outputs
except through explicitly authorized channels.

• A security-oriented DSL. Rewriting CaMeL plans in a minimal, typed intermediate lan-
guage - with no reflection, implicit coercions, or exception-based control - would enable more
tractable static analysis. FlowCaml’s type-based enforcement of information flow [8] offers a
useful model for embedding capability labels directly in the type system and enforcing policies
at compile time.
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• Constant-time execution. Even with strong data-flow controls, timing channels can per-
sist. To mitigate this, techniques from verified cryptographic software - such as constant-time
transformations from the HACL library [30] - can be adapted to CaMeL’s interpreter, ensuring
that execution time does not vary based on confidential inputs [17].

• Adaptive risk policies. As enterprises adopt Zero Trust architectures, access decisions
increasingly rely on real-time context such as device posture, location, and behavioral pat-
terns [9]. Integrating these signals into CaMeL’s policy engine would allow dynamic escalation
or relaxation of enforcement tiers (see Section 3), improving usability without compromising
security for sensitive operations [31].
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[16] Katharina Schneider and Sören Bulander. Error message side channels in secure operating
systems. In Proceedings of the 2016 ACM Conference on Computer and Communications
Security, pages 1052–1065, 2016.

[17] Paul C. Kocher. Timing attacks on implementations of diffie–hellman, rsa, dss, and other
systems. In CRYPTO ’96, volume 1109 of LNCS, pages 104–113. Springer, 1996.

[18] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: The
case of aes. In RSA Conference Cryptographers’ Track, volume 3860 of LNCS, pages 1–20.
Springer, 2006.

[19] OpenAI. Openai api pricing. https://openai.com/pricing, 2024.

[20] Shunyu Yao, Dian Zhao, Jeffrey Yu, Dong Yang, Yuan Chen, and et al. React: Synergizing
reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2023.

[21] Mohammad Rahman and Laurie Williams. Security analysis of infrastructure-as-code: A
systematic study. Empirical Software Engineering, 25:4922–4960, 2020.

[22] Torin Fairchild and Wyatt Dillon. Open policy agent. https://www.openpolicyagent.org/,
2022.

[23] Nikhil Swamy, Cencia Zhu, Bjoern Pfaff, and et al. Dependent types and multi-monadic effects
in f∗. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), pages 256–270, 2016.

[24] Krti Tallam. Transforming cyber defense: Harnessing agentic and frontier ai for proactive,
ethical threat intelligence, 2025.

[25] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, and et al. Training language models to
follow instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

[26] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, and et al. Constitutional ai:
Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

[27] Google Open Source. gvisor: User-space kernel sandbox. https://gvisor.dev, 2022.

[28] Ethan Perez, Samuel Ringer, Nisan Nanda, and et al. Red teaming language models with
language models. arXiv preprint arXiv:2202.03286, 2022.

[29] Andy Zou, Frank F. Xu, Micah Goldblum, and Tom Goldstein. Universal and transferable
adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023. https:
//arxiv.org/abs/2307.15043.

9

https://openai.com/pricing
https://www.openpolicyagent.org/
https://gvisor.dev
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043
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