
TensorShield: Safeguarding On-Device Inference by Shielding
Critical DNN Tensors with TEE

Tong Sun
1
, Bowen Jiang

1
, Hailong Lin

1
, Borui Li

2
, Yixiao Teng

1
, Yi Gao

1
, and Wei Dong

1

1
The State Key Laboratory of Blockchain and Data Security

College of Computer Science, Zhejiang University, China

2
School of Computer Science and Engineering, Southeast University, China

{tongsun,jiangbw,linhl,tengyixiao,gaoyi,dongw}@zju.edu.cn,libr@seu.edu.cn

ABSTRACT
To safeguard user data privacy, on-device inference has emerged

as a prominent paradigm on mobile and Internet of Things (IoT)

devices. This paradigm involves deploying a model provided by a

third party on local devices to perform inference tasks. However, it

exposes the private model to two primary security threats: model

stealing (MS) and membership inference attacks (MIA). To mitigate

these risks, existing wisdom deploys models within Trusted Exe-

cution Environments (TEEs), which is a secure isolated execution

space. Nonetheless, the constrained secure memory capacity in

TEEs makes it challenging to achieve full model security with low

inference latency.

This paper fills the gap with TensorShield, the first efficient

on-device inference work that shields partial tensors of the model

while still fully defending against MS and MIA. The key enabling

techniques in TensorShield include: (i) a novel eXplainable AI (XAI)

technique exploits the model’s attention transition to assess critical

tensors and shields them in TEE to achieve secure inference, and

(ii) two meticulous designs with critical feature identification and

latency-aware placement to accelerate inference while maintaining

security. Extensive evaluations show that TensorShield delivers

almost the same security protection as shielding the entire model

inside TEE, while being up to 25.35× (avg. 5.85×) faster than the

state-of-the-art work, without accuracy loss.

1 INTRODUCTION
On-device inference has become an important paradigm for privacy-

and latency-sensitive tasks on mobile and Internet of Things (IoT)

devices [10, 17, 20, 27, 61, 70, 74]. Recent surveys [54, 67] have

indicated that numerous mobile applications have implemented

on-device deep learning models (DNNs) for a variety of uses, in-

cluding liveness detection, video processing, and face recognition.

The major advantages of on-device inference are obvious: (i) it pro-

tects user data privacy. As shown in Figure 1(a), remote inference

requires transmitting user sensitive data to the untrusted clouds,

compromising data privacy, (ii) it reduces the delays inherent in

network communications, and (iii) it operates independently of

internet connectivity.

However, on-device inference introduces new security threats

to the deployed private deep neural network (DNN) models on

billions of devices. As shown in Figure 1(b), attackers can easily

obtain model weights and inference information (e.g., by dumping

device memory), facilitating representative attacks, such as model

stealing (MS) and membership inference attacks (MIA) at low costs.

Mobile &
IoT Devices

Model
Provider

Deploy
private model

Send user
private data

Breaks data privacy!

Mobile &
IoT Devices

Model
Provider

Breaks model security!

(a) Remote inference (b) Directly on-device inference

(c) TEE-based secure inference

public model private model

training security
analysis

Deployment
strategy

❶ Offline Analysis

Model ProviderMobile & IoT Devices

❷ Online Inference
TEEREE

Deploy
private model

Data privacy ✓ Model security ✓

Figure 1: Paradigms of interactions between user and private
models. (a) Remote inference: users send data to the model
provider. (b) Directly on-device inference: model providers
deploy the private model in devices. (c) TEE-based secure
on-device inference: model providers generate a secure de-
ployment strategy (❶) and deploy the model with TEE (❷).

In MS attacks, the adversary queries the target model with care-

fully crafted samples to maximally extract internal model informa-

tion and then uses the returned query results to train a surrogate

model [41, 49]. MS enables attackers to obtain a surrogate (a.k.a.,

shadow) model that closely replicates the functionality of the de-

ployed model, leading to the leakage of private assets of the model

provider. MIA allows attackers to query whether a sample is in the

training set, resulting in sensitive data leakage [8, 28, 38]. These

attacks could lead to severe security threats to numerous IoT appli-

cations. For example, attackers can launch MS attacks to obtain a

surrogate model so as to construct adversarial samples, misleading

the vision recognition systems of autonomous vehicles. Attack-

ers can also launch MIA attacks to a model on health monitoring

devices, causing privacy leakage of the user’s health conditions.

Recently, TEE-based secure inference approaches attract much

research attention [16, 22, 34, 38, 48, 52, 53, 75, 76], primarily due

to its high efficiency compared with previous security approaches

such as Homomorphic Encryption (HE) [9, 30, 63]. In TEE-based

secure inference approaches (Figure 1(c)), the model provider can

train their private model from a large public model using the private

dataset. The training process can be monitored for security analysis.

Given the private model, different security approaches may then

conduct different strategies to safeguard the inference process.

Some approaches achieve secure inference by shielding all layers.

For example, Occlumency [34] (① of Figure 2) shields all layers by

executing the entire model in the TEE, using techniques such as

on-demand loading of the weights and partitioned convolution

calculation to address TEE’s memory limitation. ShadowNet [53]

and GroupCover [76] (⑥ of Figure 2) also shield all layers by placing

1

ar
X

iv
:2

50
5.

22
73

5v
1

 [
cs

.C
R

]
 2

8
M

ay
 2

02
5

Tong Sun1 , Bowen Jiang1 , Hailong Lin1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

Layer 1 Layer 3Layer 2 Layer 1 Layer 3Layer 2
1.2 0.03 1.5 1.80.08

0 0 0.01 0.02 0.02 0.88 0.95

Tensor importance Membership privacy leakage value

1.2

0.03

0.08

1.5

1.8

mask

unmask

mask

unmask

1.2

0.03

0.08

1.5

1.8

mask

unmask

Public model Private model

① Shield all layers
Privacy: ✓ Latency:✘

⑥ Shield non-linear tensors
Privacy: ✓ Latency: ✘

⑦ TensorShield (Ours)
Privacy: ✓ Latency: ✓

1.2

0.03

0.08

1.5

1.8

1.2

0.03

0.08

1.5

1.8

1.2

0.03

0.08

1.5

1.8

1.2

0.03

0.08

1.5

1.8

③ Shield deep layers
Privacy: ✘ Latency: ✓

② Shield shallow layers
Privacy: ✘ Latency: ✓

④ Shield inter. layers
Privacy: ✘ Latency: ✓

1.2

0.03

0.08

1.5

1.8

⑤ Shield large mag. params
Privacy: ✘ Latency: ✓

TEEREE

⑦ TensorShield

Linear
tensor

Non-linear
tensor

Critical tensor

Non-critical tensor

Non-linear tensor with
deobfuscation

Intermediate feature

Critical tensor with
obfuscation

Non-critical tensor
with obfuscation

①②③④⑤⑥⑦
Training

Figure 2: An illustration of previous work for model protection. The model has three layers with eight tensors. ① shields
all (three) layers [34]. ② shields one shallow layer (Layer1) [16] and ③ shields one deep layer (Layer3) [38]. ④ shields one
random intermediate layers (Layer2) [48]. ⑤ shields large magnitude weights of each layer [22]. ⑥ shields non-linear layers and
obfuscates all linear tensors (indicated by rectangles with dashed lines) and all intermediate features [53, 76]. TensorShield (Ours)
shields critical tensors (indicated by blue rectangles) and only masks privacy-related intermediate features.

all non-linear layers in the TEE. The linear layers can be protected in

REE with obfuscating by matrix transformation. These approaches

can cause a high execution overhead because of on-demanding or

(de)obfuscation.

To reduce the execution overhead of on-device inference, some

other approaches only shield partial layers. For example, Serdab [16]

(② of Figure 2) shields the shallow layers in the TEE to protect

general information. DarkneTZ [38] (③ of Figure 2) shields the deep

layers in the TEE to protect classifier information. Unfortunately,

these approaches cannot fully defend against MS and MIA attacks.

The underlying reason lies in that they often fail to shield the most

critical part with respect to model security. The essential of MS

is to steal the decision capabilities of the model. For example, in

DNN for image classification, the decision capability determines

the category of an image. If these capabilities are well shielded, we

can fully defend against MS and MIA [75]. However, the decision

capabilities of a model do not necessarily depend on the shallow

layers or deep layers. The key idea of TensorShield is to identify the
most critical part of a model at the granularity of tensors, which

offers a finer granularity than layers. By shielding these critical

tensors (in TEE or in REE via obfuscation), we can achieve a high

level of security without a large execution overhead.

How to identify the critical tensors? We rely on the recent

progress in eXplainable AI (XAI) technique [24, 25] which lever-

ages the contribution of weight and gradient changes to evaluate

tensor importance. However, directly employing XAI incurs inac-

curacy for model security evaluation because it only focuses on

the contribution to the loss function and ignores the evaluation of

decision-making ability (cf. §4.1). To this end, we propose a new

metric called attention transition between the public pre-trained

model and the victim model to accurately evaluate tensor criticality

(cf. §4.1). After assessing its criticality, TensorShield trains a surro-

gate model on the validation dataset to simulate an attacker. We

leverage the convergence speed of the surrogate model to select

critical tensors in the TEE (cf. §4.2).

We have further proposed two novel techniques to reduce the in-

ference latency. (i) instead of previous work that masks all transmit-

ted features between the TEE and REE via one-time padding (OTP),

TensorShield only masks privacy-related features determined by

the JS-divergence distance to reduce latency overhead of masking

(cf. §5), and (ii) unlike previous efforts that primarily leverage the

REE GPU for inference, TensorShield conducts fine-grained model-

ing of hardware platform capabilities to minimize inference latency

(cf. §6).

We evaluate the TensorShield with four well-deployed DNNmod-

els and four datasets on two hardware platforms (cf. §8). Compared

to existing approaches that shield partial layers [16, 38], Tensor-

Shield reduces MS and MIA accuracy by up to 45.97% (avg. 28.54%)

and 38.33% (avg. 23.15%), respectively, and reduces inference la-

tency by up to 7.17× (avg. 1.49×). In comparison to approaches that

shield all layers [34, 76], TensorShield can reduce inference latency

by up to 25.35× (avg. 5.85×) and achieves almost the same level of

protection.

We summarize our contributions as follows:

• We propose a novel XAI technique for critical tensor identifica-

tion to defend against MS. We propose a metric named attention

transition to more accurately evaluate the criticality of tensors.

• We propose a critical feature identification to defend against

MIA. We leverage JS-divergence to assess membership privacy

leakage and selective mask features via the OTP.

• We propose a latency-aware placement technique, the first to

determine the placement of shielded tensors by jointly consider-

ing the hardware capabilities and the criticality of tensors and

features.

• Our thorough evaluation shows that TensorShield offers almost

the same security guarantee as shielding the entire DNN models

inside TEE with over 25× inference performance improvements

than the state-of-the-art works.

2

TensorShield: Safeguarding On-Device Inference by Shielding Critical DNN Tensors with TEE

Surrogate Model
Initialization

Stage 1

Model
Stealing

Stage 2

𝑀!"#$
Membership

Inference

Stage 3

𝑀%&'

𝑀(#)

TEEREE

Figure 3: A three-stage attack pipeline.

2 BACKGROUND AND THREAT MODEL
2.1 Background
Trusted Execution Environment. TEE (e.g., ARM TrustZone [4])

provides a physical isolation scheme in the hardware devices that

separates memory into the REE and TEE, where the REE can com-

municate with the TEE by invoking a secure monitor call. This setup

ensures that only legitimate users can access the secure world, while

attackers are blocked.

On-device inference attacks. On-device inference can fully

preserve data in-situ, making it awidely utilized approach in privacy-

sensitive applications [10, 17, 20, 27, 61, 70, 74]. However, deploying

third-party private models on devices poses security risks [37, 39].

As shown in Figure 3, two prominent types of inference attacks that

threaten model privacy are model stealing (MS) and membership

inference attacks (MIA). First, the attacker infers the architecture

of the victim model based on the REE part and the model output

with existing techniques. Then, the attacker chooses a public model

M𝑃𝑢𝑏 (with the same architecture) asM𝐼𝑛𝑖𝑡 . Lastly, the attacker

transports the model weights in the unshielded (i.e., REE) part of

M𝑉𝑖𝑐 to the corresponding parts ofM𝐼𝑛𝑖𝑡 .

The goal of model stealing (a.k.a., model extraction) is to extract

the parameters from a target (a.k.a., victim) model. The adversary

queries the target model with carefully crafted samples to maxi-

mally extract internal model information and then uses the returned

query results to generate an auxiliary dataset and train a surrogate

model. Ideally, an adversary will be able to obtain a surrogate (a.k.a.,

shadow) model with very similar performance as the target model.

More formally:

MS: M𝑉𝑖𝑐 ,D𝑎𝑢𝑥 → M𝑆𝑢𝑟

whereM𝑉𝑖𝑐 is the victim model,M𝑆𝑢𝑟 is the surrogate model, and

D𝑎𝑢𝑥 is an auxiliary dataset.

MIAs pose serious privacy risks, leading to extensive research.

These attacks aim to identify whether a particular sample was

used in training a model. In black-box MIAs, attackers use model

outputs and auxiliary data without accessing internal details. In

contrast, white-box MIAs exploit both model outputs and internal

information like gradients and activations to improve their effec-

tiveness. More formally, given a target data sample 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , and a

stolen model M𝑆𝑢𝑟 , and an auxiliary dataset D𝑎𝑢𝑥 , an MIA can be

defined as:

MIA: 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 ,M𝑆𝑢𝑟 ,D𝑎𝑢𝑥 → {member, non-member}.

The term MIA accuracy refers to the accuracy of the surrogate

model M𝑆𝑢𝑟 for the member prediction task. The term MS accu-

racy refers to the accuracy of the surrogate model M𝑆𝑢𝑟 for the

victim’s original task. Thus, the lower these two accuracies, the

more effective the protection is considered. In this paper, we use

𝐴𝑐𝑐𝐴𝑙𝑙𝑆ℎ𝑖𝑒𝑙𝑑
𝑀𝑆

and 𝐴𝑐𝑐𝐴𝑙𝑙𝑆ℎ𝑖𝑒𝑙𝑑
𝑀𝐼𝐴

to represent the MS accuracy and

MIA accuracy achieved by shielding the entire model with TEE,

which represents the lower-bound level of security protection.

2.2 Threat Model
Device platform. In this paper, we focus on mobile and IoT de-

vices requiring low-overhead protection approaches. We assume

these devices are equipped with TEE, such as ARM TrustZone,

which is prevalent in mobile and IoT devices [43]. Furthermore, we

assume the TEE ensures the protection of data privacy and code

execution against unauthorized access. Conversely, the REE is com-

pletely under the control of attackers. Side-channel attacks [6, 14,

36, 44, 71, 72] that could potentially lead to the leakage of sensitive

information from the TEE are outside the scope of our study.

Defender. In our context, the defender is the model provider.

Consistent with previous TEE-based secure inference methods, our

goal to protect the deployed private model from unauthorized ac-

cess and to prevent training dataset privacy breaches. Specifically,

this paper aims to degrade white-box attacks to label-only black-

box attacks, effectively achieving the protection level of enclosing

the entire model within the TEE. We adopt the security assumption

of a black-box baseline where the TEE fully shields the DNN model

and returns only prediction labels, considered the upper-bound

level of security protection offered by previous approaches. Fol-

lowing recent literature [75], we do not seek to entirely prevent

information leakage from TEE outputs, such as prediction labels.

To ensure high-quality ML services, the model provider ensures

the accuracy of models. The system detects any fault injections in

parameters or modifications in inference results that could com-

promise integrity. Advanced protective techniques safeguard the

model before it is securely transmitted to edge TEEs using robust

encryption and authentication methods. Once transmitted, the TEE

selectively offloads the necessary model segments into the REE.

We consider the transmission and offloading processes secure and

tamper-proof [57]. As the model is deployed on the edge, protecting

users’ private inputs is unnecessary.

Adversary.Weassume the attacker possesses considerable power,

enabling control over all aspects of the device environment ex-

cluding the TEE. We recognize that effective security mechanisms

should not depend on the secrecy of the method itself, hence, the at-

tacker is fully informed about the protection strategy implemented

by the defender. We assume that both the model owner and the

attacker can use the public modelM𝑃𝑢𝑏 on the Internet to improve

the accuracy of the model or attacks, a realistic setting for mod-

ern on-device learning tasks. Consistent with previous work, we

assume the private (i.e., victim) model is trained based on a pre-

trained public model. The attacker can infer the architecture of the

whole protected model, or an equivalent one, based on the public

information (e.g., inference results or the unprotected model part).

Besides, we assume that the attacker can query the victim model

for limited times (≤ 1% of the training data), a practical assumption

shared by previous work [52, 75].

3 SYSTEM OVERVIEW
Figure 4 shows the workflow of TensorShield. For protection, we

first need to identify the critical tensors (cf. §4) given the private

model as well as the private dataset and the pre-trained public

model. Each linear tensor (indicated by a rectangle) obtains a criti-

cality value as shown in Figure 4(①). If a tensor has a large criticality

value, it has a large contribution to the final model stealing accuracy.

3

Tong Sun1 , Bowen Jiang1 , Hailong Lin1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

Layer 1 Layer 3Layer 2

Private model

Layer 1 Layer 3Layer 2

Pre-trained Public model (or a randomized model)

InputInputPrivate
Dataset Sample

① Critical Tensor
Identification

(Sec. 4)

② Critical Feature
Identification

(Sec. 5)
1.2 0.03 1.5 1.80.08

Layer 1 Layer 3Layer 2
0 0 0.01 0.02 0.02 0.88 0.95

Step 1

Step 2

HW Performance
Profile

③ Latency-aware
Placement

(Sec. 6) 1.2

0.03 0.08 1.5 1.8

mask unmask

TEE
Placement Plan

REE

Step 3
TEEREE

Linear
tensor

Non-linear
tensor

Critical tensor

Non-critical
tensor

Non-linear tensor
with deobfuscation

Non-critical
feature

Critical tensor
with obfuscation

1.2 0.03 1.5 1.80.08

Layer 1 Layer 3Layer 2

Tensor criticality value

Feature criticality value

Critical feature

Figure 4: Workflow of TensorShield.

Note that non-linear tensors (indicated by circles) do not obtain

criticality values. This is because they do not contain trainable

parameters so they do not require protection. We then select a set

of critical tensors (indicated by blue rectangles) for protection so

that the model stealing accuracy does not exceed a given threshold

(e.g., 𝐴𝑐𝑐𝐴𝑙𝑙𝑆ℎ𝑖𝑒𝑙𝑑
𝑀𝑆

+ 1%).

We next need to evaluate the criticality value of each cross-tensor

transmission (i.e., the intermediate feature exchanged between two

subsequent two tensors), as shown in Figure 4(②). We then select a

set of critical intermediate features (cf. §5) so that the membership

inference attack accuracy does not exceed a given threshold, e.g.,

𝐴𝑐𝑐𝐴𝑙𝑙𝑆ℎ𝑖𝑒𝑙𝑑
𝑀𝐼𝐴

+ 1%. These intermediate features require masking and

unmasking if the transmission across the TEE and REE boundary.

No action will be taken for the intermediate features if the two

subsequent tensors are placed at one side.

Finally, we need to decide how to place the tensors by jointly

considering the criticality value of each tensor and intermediate

features as well as the hardware performance profile (cf. §6), as

shown in Figure 4(③). Each critical linear tensor can be placed

in TEE or in REE via obfuscation, depending on the execution

performance. The placement of the non-linear tensor depends on

its previous linear tensor: if the previous linear tensor is placed

in REE by obfuscation, the non-linear tensor should be placed in

TEE because the protection via obfuscation only takes effect for

linear tensors. If the transmission between two linear tensors is

critical and the linear tensor is placed in REE, then its preceding and

succeeding non-linear tensors should be placed in TEE for masking

and unmasking. Transmission across the TEE and REE should be

protected if it is identified as critical.

It is worth noting to emphasize some major differences com-

pared to existing works: (1) Achieving the same level of protection,

TensorShield protects far more less tensors. In our example, we

only need to protect three linear tensors while shielding all layers

approaches need to protect all eight tensors. (2) TensorShield selec-

tively masks intermediate features related to membership privacy.

For example, we only perform one pair of masking and unmasking

operations while existing works require two pairs of masking and

unmasking operations for all intermediate features. (3) The execu-

tion of critical tensors can be either in TEE or REE via obfuscation

depending on the execution efficiency. For example, the first tensor

is placed in TEE while the sixth and seventh tensors are placed in

REE via obfuscation. Note that mobile GPU has limited computa-

tion capability, rendering execution in TEE without obfuscation

more computationally efficient.

4 XAI-BASED CRITICAL TENSOR
IDENTIFICATION

4.1 Criticality Value Evaluation
As we have described in §3, we have to identify a set of critical

tensors to be protected, i.e., either in TEE or in REE via obfuscation.

We say that a set of tensors to be critical if we can use the cor-

responding parameters and structures to train a surrogate model

which leads to a high model stealing accuracy. Consider a victim

model’s accuracy is 90%. Protecting the entire model may lead to an

accuracy of 60%. A surrogate model may achieve a high accuracy

of 85%.

Given a set of protected tensors, we can measure the model

stealing attack accuracy by simulating the attack. The simulation

involves the following steps: (1) Randomly selecting a small sample

(less than 1% of the training set) from the victim model’s validation

dataset and erasing labels, then imputing it to the victim model to

generate a pseudo-labeled dataset. (2) Using a pre-trained public

model with the same structure as the victim model as the surrogate

model, and initializing the unshielded victim model’s tensors to the

corresponding surrogate model. (3) Training the surrogate model

on the pseudo-labeled dataset (typically for 100 epochs). (4) Testing

the surrogate model accuracy with the validation dataset as the

model stealing accuracy.

However, identifying the set of critical tensors requires testing

all possible combinations of tensors, which is always infeasible

since well-deployed DNN models usually contain a large number

of tensors.

We would like to exploit the recent advances in eXplainable AI

(XAI) [24, 25] to give each tensor a criticality value which corre-

lates the corresponding tensor to the final model stealing accuracy.

4

TensorShield: Safeguarding On-Device Inference by Shielding Critical DNN Tensors with TEE

Intuitively, if a tensor has a large criticality value, it has a large

contribution to the final model stealing accuracy.

Existing efforts [25, 73] suggest that tensor influences are not

equally significant. Specifically, some tensors are considered “am-

bient” when a model shows negligible performance degradation

after reinitializing or randomizing them. In contrast, tensors that

cause significant performance degradation when altered are termed

“important”. In other words, certain tensors are deemed “important”

because they have a substantial impact on the decision boundary,

while others are considered “ambient” due to their smaller effect.

ElasticTrainer [25] measures the importance of tensors by eval-

uating the cumulative gradient changes of their weight updates

during training. This metric aggregates how each weight update

contributes to the reduction of training loss, and its computation

naturally incorporates the impact of weight dependencies in train-

ing.

Directly applying this approach incurs two significant problems.

(1) Overemphasis on tensors which can be easily trained by the

attacker. This is because contribution to the reduction of training

loss does not necessarily mean contribution to the model stealing

accuracy. An important tensor may not necessarily be worth pro-

tecting since it can be easily trained by the attacker and its leakage

does not lead to a significant increase in model stealing accuracy. In

particular, we often find that ElasticTrainer overemphasizes tensors

with a large number of parameters. (2) Overemphasis on tensors

which be easily acquired from the pre-trained public model.

To address these problems, we introduce a novel criticalness

metric for a DNN tensor 𝑘 in a specific training epoch as:

𝐼𝑘 =
∑︁
𝑖

𝜕𝐿

𝑛𝜕𝑤𝑘
𝑖

Δ𝑤𝑘
𝑖︸ ︷︷ ︸

Intrinsic tensor importance

×
(
1 − cos(𝑓 (M𝑘

𝑉𝑖𝑐), 𝑓 (M
𝑘
𝑃𝑢𝑏

))
)

︸ ︷︷ ︸
Attention transition

, (1)

where 𝐿 denotes the training loss function, 𝑤𝑘
𝑖
denotes the 𝑖-th

weight in tensor 𝑘 , 𝑛 is the number of weights in tensor 𝑘 , Δ𝑤𝑘
𝑖
is

the recent update of𝑤𝑘
𝑖
in the training epoch, cos(·) is the cosine

similarity function, and 𝑓 (·) is the evaluation function of Grad-

Cam [47]. We show the explanations in the following.

There are two terms in Eq. (1):

• The first term, intrinsic tensor importance, quantifies the con-

tribution of each weight update to the reduction of training

loss, utilizing a gradient computation that mirrors the backward

pass, thereby naturally accounting for weight dependencies dur-

ing training. Compared to previous work [25], we introduce a

new consideration: a regularization term that accounts for the

average contribution of parameters within tensors. Recent neu-

ral network theory [51] reveals that in the over-parameterized

regime, models become highly reproducible, with wide model

architectures producing nearly identical decision-making capac-

ities across training runs. By normalizing the impact of parame-

ters according to their average influence, we address a limitation

of previous methods that often overemphasize the importance of

parameters solely based on their gradient magnitudes, without

considering the collective behavior of parameters within large

tensors. This regularization provides amore balanced assessment,

preventing the overvaluation of tensors with large parameter

numbers.

Public model

Victim model

conv1 layer1[0] layer2[0] layer3[0] layer4[0]input

Similarity: 37% 6% 13% 12% 35%

conv1 layer1[0] layer2[0] layer3[0] layer4[0]input

Attention
transition

Figure 5: An instance of attention transition. Heat maps rep-
resent the importance of classifying model decisions.

� �
�"!��

���
�

�����

�����

��
��
!&

��
!�
��
��!
$$

�
��
��

#��
$�
��

%%�
#��

� ��
� �� �� ���
�"!��

���	

���

����

����������
�! �������

�!"��
�!"�	

�!"��
�!"�

�!"��
�!"���

Figure 6: Model stealing loss values under different top-k
strategies. Top-9 protects fewer parameters than Top-10 but
also achieves the all-shield protection accuracy.
• The second term, attention transition, quantifies the tensors

which can be easily acquired from the pre-trained model. We

introduce attention transition into the tensor importance identi-

fication. Our key insight is that if a tensor in the victim model

is intrinsically important, but similarly important in the pub-

lic model, it may not need protection. Specifically, if the public

model inherently possesses the capability for a task (e.g., classifi-

cation decisions), an attacker could learn this capability without

needing to steal parameters from the victim model. Figure 5

shows an example of attention transition using the ResNet18

victim model trained with CIFAR100 dataset and a pre-trained

public model. We observe that the attention patterns of the tensor

layer1.conv0, layer2.conv0, and layer3.conv0 are dissimi-

lar between the victim model and the public pre-trained model,

indicating that the victim model has learned new representations

during training.

4.2 Critical Tensor Selection
Selecting critical tensors to achieve a pre-defined MS accuracy

threshold in a cost-effective selection method is a challenge. To

pinpoint the top-k tensors for protection, we utilize the validation

data from the public dataset to simulate the MS attack. However,

selecting from top-1 to top-k tensors (where 𝑘 ≤ # of tensors)

proves time-intensive given the extensive tensor numbers in mod-

ern DNNs. Once 𝑘 is set, evaluating the theft precision typically

requires extensive training (e.g., 100 epochs [75]).

To design our tensor selection mechanism, we make a fundamen-

tal observation that is unique in model stealing where the conver-

gence speed of the shadowmodel’s loss function directly reflects the

ultimate accuracy of the model stealing. We illustrate our approach

using the VGG16_BN architecture for both victim and shadow mod-

els, leveraging the CIFAR-10 dataset. Tensor importance in the

victim model is quantified using Equ. 1. We protect the top-k layers

while using the remaining layers to initialize the shadow model,

with attack accuracy depicted in Figure 6. Our results highlight:

5

Tong Sun1 , Bowen Jiang1 , Hailong Lin1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

(1) Initial loss values provide a coarse measure of protection effec-

tiveness, with initial epochs for top-3 and top-5 layers showing

significantly lower values than the All-Shield scenario. (2) The rate

of loss reduction over the first five epochs offers a fine-grained

indicator of protection precision. Specifically, the rate for top-9

and top-10 closely mirrors that of All-Shield, while top-7 exhibits a

more gradual decline.

Based on these findings, we propose a critical tensor selection

method based on convergence speed. The key insight is that instead

of waiting for the shadow model to converge, we can assess the

accuracy of the top-k shadow model by comparing its convergence

speed and initial loss function values with those of the model un-

der All-Shield conditions. We initiate by evaluating loss variations

across𝑀 iterations under non-shield and all-shield conditions. For

each 𝑘 , initial loss values for the corresponding shadow model and

the rate of loss reduction over the first𝑚 epochs (e.g., m=20) are

computed. If the protection accuracy of the all-shield scenario is

met, we methodically decrease the percentage of protected tensors

in each layer of the top-k. This process is repeated until the protec-

tion precision aligns with the threshold of the all-shield scenario.

5 CRITICAL FEATURE IDENTIFICATION
After identifying a set of critical tensors for protection to defend

against MS, we have to identify critical intermediate features in

order to defend against MIA.

If these intermediate features can be directly observed by the

attacker, they can be used to train a membership attack binary

predictor (i.e., predicts whether or not the input sample is in the

training dataset). We say that the intermediate features are critical

if their use leads to a high membership inference accuracy. Note

that the lower bound of MIA accuracy is 50%, i.e., attackers can

only make random guesses without additional membership privacy

information.

The key to preventing privacy leakage of intermediate features

is to perform masking so that these features cannot be observed

when they are transmitted from TEE to REE. For example, existing

work applies one-time padding (OTP) to mask all intermediate

features transmitted from the TEE to the REE. The features are then

unmasked in the TEE after being transmitted back from the REE to

the TEE to recover the original values.

However, masking all intermediate features imposes significant

execution overheads, especially on mobile and IoT devices. For ex-

ample, ShadowNet incurs 160% and 150% execution time overheads

on the Hikey960 platform for MobileNet and ResNet, respectively,

due to the need to refresh masks [53].

Like identifying critical tensors, we would also like to assign

each intermediate feature a criticality value to correlate them to the

final MIA accuracy. If the intermediate features receive a higher crit-

icality value, they have a larger contribution to the MIA accuracy.

After the assignment of criticality values, we can select the top-k

intermediate features for masking until we have achieved a prede-

fined threshold of MIA accuracy, e.g., a slight increase compared

with masking all intermediate features.

The key insight of our approach is to measure differences the in-

termediate features exhibit when the target model is given member

samples and non-member samples. This is because the greater the

Member
instances

Depth=k
JS-Divergence

Victim tensor Forward pass Backward pass JSD pass

Grad. distribution k

Depth=k
Grad. distribution k

Non-member
instances

Figure 7: Compare the gradient and feature distributions of
member and non-member inputs through JS-divergence.

distinction in the internal behavior of the model between member

samples (i.e., samples in the victim’s training dataset) and non-

member samples (i.e., samples not in the victim’s training dataset),

the larger the membership privacy leakage, leading to a higher MIA

accuracy.

We propose a novel membership privacy criticality metric for

an intermediate feature, which evaluates membership privacy by

calculating the JS-divergence distance of internal information (e.g.,

gradients) distributions for both members and non-members as:

𝐽 𝑆𝐷 (𝑝 (𝑧) ∥𝑞 (𝑥)) = 1

2

𝐾𝐿

(
𝑝 ∥ 𝑝 + 𝑞

2

)
+ 1

2

𝐾𝐿

(
𝑞 ∥ 𝑝 + 𝑞

2

)
, (2)

where 𝐺𝑝 (𝑥) and 𝐺𝑞 (𝑥) are gradient (and activation) distribu-

tions of member instances and non-member instances, respectively,

𝐾𝐿(·) is the Kullback-Leibler(KL) divergence function, and 𝐽𝑆𝐷 is

∈ [0, 1]. If a pair of distributions is similar, the JSD is near 0; If a

pair of distributions is dissimilar, the JSD is near 1. We select JS-

divergence as the distance metric due to its symmetric properties,

i.e., 𝐽𝑆𝐷 (𝑝 (𝑧) | |𝑞(𝑥)) = 𝐽𝑆𝐷 (𝑞(𝑥) | |𝑝 (𝑧)). However, the widely used
KL-divergence has an asymmetric nature, which does not uniformly

characterize the distribution differences between non-member and

member samples.

As shown in Figure 7, we assess the membership information

exposure of various tensors in the victim model by applying Eq. (2)

to these intermediate features.

Once the criticality values of all intermediate features are ob-

tained, we can rank them from highest to lowest. A higher score

indicates that an intermediate feature is more likely to leak member-

ship privacy. We then select a set of critical features for protection

so that the membership inference accuracy does not exceed a given

threshold, e.g., 𝐴𝑐𝑐𝐴𝑙𝑙𝑆ℎ𝑖𝑒𝑙𝑑
𝑀𝐼𝐴

+ 1%. In our experimental observations,

features with a criticality value of less than 0.1 typically do not

affect membership inference attack (MIA) accuracy. Therefore, we

can set a threshold to filter out features that have negligible distri-

bution distinctions before performing MIA, thereby accelerating

the evaluation process.

6 LATENCY-AWARE PLACEMENT
After selecting the critical tensors and intermediate features, Tensor-

Shield needs to decide the tensor’s placement based on the hardware

performance profile.

Due to the unavailability of GPU acceleration within TEE, ex-

isting methods [53, 76] securely outsource the computation of the

model’s linear tensor from the TEE to the REE via obfuscation.

The obfuscated layers can then leverage GPU resources in the REE

for accelerated inference. This approach is effective on powerful

6

TensorShield: Safeguarding On-Device Inference by Shielding Critical DNN Tensors with TEE

0 2 4
FLOPS 1e8

0

20

40

Ti
m

e
(m

s)

0 2048 4096
Allocated memory size (KB)

2.5

5.0

7.5

Ti
m

e
(m

s)

CPU GPU Masking Deobfuscation TEE&REE Switch

Figure 8: Left: Execution time w.r.t. different FLOPS. Right:
TEE and REE switching time w.r.t. memory allocation size.

platforms (e.g., clouds or PCs), where there is a significant dispar-

ity in computing power between CPUs and GPUs. However, our

insight is that on mobile and IoT devices, heterogeneous proces-

sors exhibit varying affinities for different tensor computations.

We illustrate the execution time for secure operations and various

tensors on both CPU and GPU in Figure 8. The tests are performed

on a Hikey960 mobile device. We use FLOPS to measure the com-

putational cost of each tensor. In Figure 8, we can observe that

existing methods overlook two key aspects: (1) Different FLOPS

computations are better suited for different accelerators. For ex-

ample, smaller FLOPS computations are more efficiently executed

on CPUs, while larger FLOPS computations benefit from parallel

execution on GPUs. (2) As the communication memory between

the REE and TEE increases, the overhead associated with switching

increases. This drives our effort to comprehensively establish a

latency-aware placement method to minimize the inference latency

while maintaining model security.

To address the placement issue, we establish a secure inference

latency model and formulate it as a numerical optimization problem.

We have introduced the basic placement rules in §3. Each tensor

is either critical (i.e., requiring shielding) or non-critical. Critical

tensors can be shielded in two ways: executed directly in the TEE

or executed in the REE (after obfuscated offline but still need to be

deobfuscated in the TEE online). To minimize the Trusted Comput-

ing Base (TCB) [19] size, non-critical tensors are executed directly

in the REE. We consider there are two types of heterogenous pro-

cessors, i.e., CPU and GPU, while our formulation could be easily

extended to more processors. There are three options for tensor

execution: (1) in the TEE using the CPU; (2) in the REE using the

GPU, and (3) in the REE using the CPU. We use a binary indicator

𝑥𝑖, 𝑗 to denote whether the 𝑖-th tensor selects the 𝑗-th execution

option in the following:

𝑥𝑖,𝑗 =

{
1 tensor 𝑖 is executed with the 𝑗 option

0 tensor 𝑖 is not executed with the 𝑗 option
. (3)

We further profile the execution time 𝑡𝑖, 𝑗 of each tensor as follows:

𝑡𝑖,𝑗 =

𝑡
(𝑅𝐸𝐸,𝐶𝑃𝑈)
𝑖

𝑗 = 0

𝑡
(𝑅𝐸𝐸,𝐺𝑃𝑈)
𝑖

𝑗 = 1

𝑡
(𝑅𝐸𝐸,𝐶𝑃𝑈)
𝑖

+ 𝑡𝑑𝑒𝑜𝑏𝑓
𝑖

+ 𝑡𝑚𝑎𝑠𝑘
𝑖

𝑗 = 2

𝑡
(𝑅𝐸𝐸,𝐺𝑃𝑈)
𝑖

+ 𝑡𝑑𝑒𝑜𝑏𝑓
𝑖

+ 𝑡𝑚𝑎𝑠𝑘
𝑖

𝑗 = 3

𝑡
(𝑇𝐸𝐸,𝐶𝑃𝑈)
𝑖

𝑗 = 4

, (4)

where 𝑡
𝑑𝑒𝑜𝑏𝑓

𝑖
and 𝑡𝑚𝑎𝑠𝑘

𝑖
denote the deobfuscation time for tensors

and masking (including unmasking) for privacy-related features,

respectively. Our optimization objective is to minimize the total

inference time, which is determined by the computation time of

Table 1: Device specifications in our evaluation.

Device Name CPUs GPU RAM TEE
RAM REE OS TEE OS

Hikey960 [2]

4xCortex-A73

(@2.36 GHz)

4xCortex-A53

(@1.84 GHz)

ARM Mali

G71 MP8

4 GB 64 MB Android 7

OP-TEE

v3.4.0

Raspberry Pi 3B+

(RPI3B+)

[3]

4xCortex-A53

(@1.40 GHz)

VideoCore 4 1 GB 32 MB Raspbian OS

OP-TEE

v3.4.0

each tensor and TEE and REE switching time:

argmin

𝑥

∑︁
𝑖∈𝑁,𝑗 ∈0,1,2

𝑥𝑖,𝑗 · 𝑡𝑖,𝑗︸ ︷︷ ︸
computation time

+
(∑︁
𝑖∈𝑁 −1

𝑥 (𝑖−1),0 ⊕ (
4∑︁
𝑗=1

𝑥𝑖,𝑗)
)
· 𝑡𝑠𝑤𝑖𝑡𝑐ℎ

︸ ︷︷ ︸
switch time

𝑠.𝑡 . (Correctness)

∑︁
𝑗 ∈0,1,2

𝑥𝑖,𝑗 = 1, ∀𝑖∈𝑁

(Memory) 𝑥𝑖,0 ·𝑚𝑖 ≤ 𝑀, ∀𝑖∈𝑁

(5)

where 𝑡𝑠𝑤𝑖𝑡𝑐ℎ denotes the switch time,𝑚𝑖 denotes the allocated TEE

memory of the 𝑖th tensor, and𝑀 denotes a specified TEE available

memory. Note that a switch in execution environments occurs only

if the current tensor and the preceding tensor are processed in

different execution environments. To model this, we use the ⊕
operation to represent the switch.

Our problem is related to the traveling salesman problem and is

NP-hard [65]. Fortunately, we have observed that the proportion of

time spent on switching environments is trivial compared to the ex-

ecution time, allowing us to disregard the overhead associated with

environment switching. Consequently, by relaxing the condition,

we can decompose the problem into multiple subproblems, enabling

us to derive an approximately optimal solution with mature solvers:

𝑥𝑖,𝑗 =

1 𝑗 = 𝑗

𝑜𝑝𝑡

𝑖
=

argmin

𝑗 ∈0,1
{𝑡𝑖,𝑗 } 𝑚𝑖 ≤ 𝑀

argmin

𝑗 ∈1,2
{𝑡𝑖,𝑗 } 𝑚𝑖 > 𝑀

0 𝑗 ≠ 𝑗
𝑜𝑝𝑡

𝑖

. (6)

7 IMPLEMENTATION
We implement the TensorShield as an end-to-end system consisting

of two parts: offline profiling and on-device inference. In offline

profiling, we leverage the Knockoff Net [41] as an emulator for MS

to identify critical tensors. It is a standard query-based stealing

technique where the attacker trains a model from a set of collected

data labeled by theM𝑉𝑖𝑐 [26, 49]. For MIA, we employ a transfer

attack that builds M𝑆𝑢𝑟 to imitate the behavior of M𝑉𝑖𝑐 and infer

the privacy of M𝑉𝑖𝑐 from white-box information of M𝑆𝑢𝑟 [45].

We leverage the attack implementation from a recent benchmark

suite, ML-Doctor [37, 49]. We conduct victim and surrogate model

training using PyTorch 2.1. To support on-device secure inference,

we adopt DarkneTZ [38], the state-of-the-art on-device secure in-

ference framework. We add ∼2.4K LOC in C to DarkneTZ’s TEE

modules and ∼3.2K LOC in C to DarkneTZ’s REE modules for

deobfuscating, masking, and unmasking in the TEE. Our code is

open-sourced for public access
1
.

8 EVALUATION
The key takeaways of our evaluation are:

1
https://github.com/suntong30/TensorShield

7

https://github.com/suntong30/TensorShield

Tong Sun1 , Bowen Jiang1 , Hailong Lin1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

Table 2: Accuracy ofM𝑣𝑖𝑐 used in the evaluation.
CIFAR-10 [31] CIFAR-100 [31] STL-10 [11] Tiny-ImageNet [32]

ResNet18 [21] 86.71% 60.72% 86.73% 42.96%

MobileNetV2 [46] 83.17% 50.06% 74.36% 41.26%

VGG16_BN [50] 85.28% 71.59% 80.20% 41.28%

ResNet50 [21] 86.47% 63.95% 87.28% 54.45%

• Across four datasets and four models, TensorShield can reduce

inference latency and energy consumption by up to 25.35× (avg.

5.85×) and up to 91.35% (avg. 58.66%) compared to the state-of-

the-art obfuscation baseline [76], and up to 16.89× (avg. 4.32×)
and up to 98.35% (avg. 69.86%) compared to the state-of-the-art

shielding the whole models baseline [34], while maintaining

almost same MS (1.03×) and MIA (1.00×) accuracy.
• TensorShield’s critical tensor evaluator can reduce selected pa-

rameters by average relatively 70.32% (absolutely 17.62%) com-

pared to the state-of-the-art XAI-based evaluating method [25]

for achieving the same black-box MS and MIA accuracy.

• TensorShield’s improvement is significant across various work-

loads and platforms, including different input sizes, model archi-

tectures, and hardware devices.

• TensorShield’s system overhead is negligible.

8.1 Experimental Setup
Platforms.We conduct the evaluations on two types of mobile and

IoT devices with different hardware specifications, all equippedwith

Armv8-A CPUs and ARMTrustZone. The detailed specifications are

listed in Table 1. Hikey960 is a mobile development board equipped

with HiSilicon Kirin960 SoC, and Raspberry Pi 3B+ (RPI3B+) is a

typical IoT device. We follow the literature [53] to expand the TEE

RAM (i.e., secure memory).

Models and datasets. We evaluate TensorShield with 4 typical

DNN models that are widely used for device learning (i.e., Mo-

bileNetV2 [46], ResNet-18 [21], ResNet-50 [21], VGG16_BN [50]).

We use 4 popular datasets, i.e., CIFAR-10 [31], CIFAR-100 [31], STL-

10 [11], and Tiny-ImageNet [32] datasets with resized input size

3×32×32, 3×32×32, 3×128×128, and 3×224×224. The MobileNetV2

is the simplest model and the VGG16_BN is the most complex model

in our evaluation. The CIFAR-10 and STL-10 are simple datasets

while CIFAR-100 and Tiny-ImageNet are complex datasets. The

dataset and model selection refers to prior secure inference litera-

tures [37, 38, 41, 53, 75, 76].

Baselines.We compare the performance of TensorShield with

the following 7 baselines, consisting of 1 no-shield (i.e., Native),

4 partial-shield (i.e., DarkneTZ [38], Serdab [16], Magnitude [22],

and ShadowNet [53]), and 2 all-shield (i.e., GroupCover [76] and

Occlumency [34]) solutions:

• Native executes the whole victim model in REE.

• DarkneTZ [38] shields victim model’s deep layers.

• Serdab [16] shiedls victim model’s shallow layers.

• Magnitude [22] shields victim model’s large magnitude weights.

• ShadowNet [53] shields non-linear layers and obfuscates linear

layers in a fixed strategy.

• GroupCover [76] shields non-linear layers and obfuscates linear
layers in a random strategy.

• Occlumency [34] shields all victim weights in TEE.

Metrics. There are two types of metrics in our evaluations. (1)

Security metrics. We use the MS accuracy and MIA accuracy as

model security metrics. The MS accuracy measures how many

test samples can be correctly classified by the attacker’s surrogate

model. Achieving high accuracy is a primary goal of model stealing

attacks. TheMIA accuracy represents the membership classification

accuracy. (2) System metrics. For inference latency, we use the

model inference time as our main metric which measures the time

between feeding an input and getting the output. We also measure

the energy consumption during the inference.

Configuration. For all cases, we use the public models as ini-

tialization to get a better model performance. We follow the hyper-

parameter settings of Knockoff Nets [41]. We use a minibatch size

of 64, select cross-entropy loss, use SGD with weight decay of 5e-4,

a momentum of 0.5, and train the victim models for 100 epochs.

The learning rate is originally set to 0.1 and decays by 0.1 every

60 epochs. For the training in the MIA part, we follow the settings

of ML-Doctor. The learning rate is 1e-2. The hyper-parameters

to train shadow models are the same as victim models. We set the

JS-divergence threshold as 0.1, a common value for evaluating two

distributions [12, 35]. To ensure that the results on the device are

not impacted by the throttle, we lock the CPU frequency and set

sufficient time gaps between each test. We run all experiments ten

times and record the average inference time.

8.2 Overall performance
Figure 9 shows the overall results comparing TensorShield with all

baselines. We follow the attack pipelines in §2.1. For DarkneTZ [38]

and Serdab [16], we use the offloaded layers to replace the corre-

sponding layers ofM𝑖𝑛𝑖𝑡 . For Magnitude [22], we use the offloaded

weights to replace the corresponding weights inM𝑖𝑛𝑖𝑡 . For Shad-

owNet [53], the attacker uses the public model to decode the obfus-

cation algorithm and uses the decoded weights to initialize M𝑖𝑛𝑖𝑡 .

The accuracy of M𝑣𝑖𝑐 used in the evaluation is shown in Table 2.

As shown in Figure 9, TensorShield achieves an inference speedup

of up to 25.35× (avg. 5.85×) and up to 16.89× (avg. 4.32×) compared

to GroupCover and Occlumency, respectively. Meanwhile, Tensor-

Shield achieves the same security protection as shielding the entire

model inside TEE, i.e., 1.03× for MS and 1.00× for MIA. We can

make the following observations:

(i) Under the same model architecture, when compared with

shielding partial layers (i.e., Serdab and DarkneTZ) that achieve

nearly identical inference latency as TensorShield, TensorShield

offers better protection against MS in more complex datasets. For

example, the first and last rows show better MS protection results

than the second and third rows in Figure X. This is because complex

datasets require both shallow and deep tensors in DNNs to perform

comprehensive feature extraction, a task not achievable by tensors

fixed at certain depths. TensorShield is able to identify critical

tensors at varying depths to defend against MS attacks.

(ii) Within the same dataset, as model complexity increases,

TensorShield provides better protection against MIA compared to

shielding partial layers (i.e., Serdab and DarkneTZ) that achieve

nearly identical inference latency as TensorShield. For example,

for the STL10 dataset, TensorShield’s effectiveness in protecting

8

TensorShield: Safeguarding On-Device Inference by Shielding Critical DNN Tensors with TEE

	�
5	

	�
�

��

��

��

�
��
��

	�
�

�!
!1
.�
!4
���

�

��

	�
5	

	�
�

��

��

���

	�
5	

	�
�

�

��

��

��

	�
5	

	�
�

��

��

���

	�
�

�

��

��

��

	�
�

��

��

���

	�
�

��

��

��

	�
�

�

��

��

��
���

	�
5	

	�
�

��

��

��

�
��
��

	�
�!

!1
.�
!4
���

�

	�
5	

	�
�

�

��

��

	�
5	

	�
�

�

��

��

��

	�
5	

	�
��

�

��

	�
�

��

��

	�
�

�

��

��

	�
�

��

��

��

	�
�

�

��

��

	�
�

��

��

��
�	
�

�!
!1
.�
!4
���

�

	�
�

�

��

��

	�
�

�

��

��

	�
�

�

��

��

	�
�

	�
	

��

��

	�
�

	�
	

�

��

��

	�
�

��

��

��

	�
�

�

��

��

	�
�

�+$#.#+!#�0'*#��/�

	�

�

��

��

�'
+4
�*
�%
#�

#0

�
�

�!
!1
.�
!4
���

�

	�
�

�+$#.#+!#�0'*#��/�

��

��

	�
�

	�
	

�+$#.#+!#�0'*#��/�

�

��

��

	�
�

�+$#.#+!#�0'*#��/�

��

��

	�
�

	�
	

�+$#.#+!#�0'*#��/�

	�

�

	�
�

	�
	

�+$#.#+!#�0'*#��/�

�

�

	�
�

�+$#.#+!#�0'*#��/�

��

��

�

	�
�

�+$#.#+!#�0'*#��/�

��

��

��.(+#�� �#."� ��.%#���%� �&�",3�#0 �.,1-�,2#. �!!)1*#+!4 �1./

ResNet18 MobileNetV2 VGG16_BN ResNet50

Bett
er

Bett
er

Bett
er

Bett
er

Bett
er

Bett
er Bett

er
Bett

er

Figure 9: Model stealing (MS) and membership inference attack (MIA) accuracy and inference time regarding baselines on
Hikey960. The dotted line “- - -” represents black-box accuracy. The points of GroupCover and ShadowNet outside the right
border of the subfigure represent OOM (i.e., out-of-memory error in TEE). TensorShield (Ours) shields critical tensors, achieving
inference speeds up to 25.35× (avg. 5.85×) and 16.89× (avg. 4.32×) faster than GroupCover [76] and Occlumency [34], respectively.

against MIA increases for MobileNetV2, ResNet18, ResNet50, and

VGG16_BN. This is because as the complexity of models increases,

it becomes evident that not only the final classifier tensor harbors

substantial membership privacy information, but the preceding

tensors do as well. This indicates that for simple models, protecting

only the final classifier layer is often sufficient. However, for more

complex models, such protection is inadequate to satisfy security

requirements against MIA.

(iii) Compared to shielding all layers (i.e., ShadowNet, Group-

Cover, and Occlumency), the more complex the model, the greater

the improvement in inference performance by TensorShield. For

instance, on the TinyImage200 dataset compared to Occlumency,

TensorShield shows substantial performance improvements for

VGG16_BN, ResNet50, ResNet18, andMobileNetV2 by 16.89×, 5.78×,
4.54×, and 1.66×, respectively. This is because simpler models are

more computationally suited to CPU processing, whereas more

complex models are better handled by TensorShield, which could

execute critical tensors in the REE by obfuscating them on the GPU.

(iv) The shapes of the curves for shielding deep layers (i.e., Dark-

neTZ) and shallow layers (i.e., Serdab) differ significantly across

datasets and models. For a given victim model, setting a uniform

threshold is challenging without comprehensive empirical mea-

surements of both security and inference efficiency. This variability

arises because the “sweet spots” for optimal shielding differ across

datasets. For example, when shielding deep layers of ResNet18 to

prevent model stealing (the first column in Figure X), the curve

shapes for CIFAR-10 and CIFAR-100 differ markedly from those for

STL-10.

(v) As the complexity of a dataset increases, the attack accuracy of

MIA tends to rise while the model’s MS accuracy tends to decrease.

This phenomenon can be attributed to the increased difficulty in

comprehending the model’s decision-making processes when faced

with complex datasets, which also heightens the propensity for over-

fitting. Such overfitting characterized by a lack of generalization,

results in a more pronounced leakage of membership information.

Understanding TensorShield’s improvements. TensorShield
outperforms various baselines for slightly different reasons. (i) Com-

pared to the shielding none or partial layers (or weights) baselines,

TensorShield has lower MS and MIA accuracy that achieves all-

shield protection efficacy, because it dynamically selects critical

tensors based on our critical tensor identificationmethod (cf., §4) for

different datasets and model architectures instead of fixed selection

solutions. We will show the efficacy of our critical tensor evaluator

in §8.3. Since fixed obfuscation is easy to reverse and restore vic-

tim weights, compared to ShadowNet, TensorShield still achieves

higher model security. (ii) Compared to the all-shield baselines,

TensorShield only masks privacy-related features (cf., §5) and plans

tensor optimal execution strategy based on computation modeling

(cf., §6), thus being able to reduce the inference latency. We will

show details of runtime performance in §8.4.

8.3 Efficacy of Critical Tensor Identification
Next, we show the efficacy of critical tensor identification (cf. §4).

We first compare TensorShield with two representative XAI meth-

ods [25, 55]: the Gradient method [55] utilizes integrated gradients,

9

Tong Sun1 , Bowen Jiang1 , Hailong Lin1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

C10 C100 S10 T200
ResNet18

10
−1

10
0

10
1

10
2

Sh
ie

ld
ed

 w
ei

gh
ts

 (%
)

◀
Lo

w
er

 is
 b

et
te

r

C10 C100 S10 T200
VGG16_BN

10
−1

10
0

10
1

10
2

C10 C100 S10 T200
ResNet50

10
−1

10
0

10
1

10
2

C10 C100 S10 T200
MobileNet-V2

10
−1

10
0

10
1

10
2

Gradient ElasticTrainer TensorShield (Ours)

Figure 10: Comparison of representative XAI-based tensor selection methods.

At
ta

ck
 A

cc
ur

ac
y

(%
)

100
80
60
40
20
0

No-Shield
Serdab

DarkneTZ
Ours

All-S
hield

MIA (Acc.)MS (Acc.)

Lo
w

er
 is

 b
et

te
r

Traditio
nal XAI

Not Shielded ShieldedShallow

Deep

Te
ns

or
Lo

ca
tio

n

No-Shield
Serdab

DarkneTZ
Ours

All-S
hield

Traditio
nal XAI

Figure 11: Attack accuracy (lines) regarding different defense
schemes (bars) for ResNet18 with CIFAR100 dataset. We can
only shield ∼8% weights (we show the selected tensors in Fig-
ure 12) within TEE to achieve comparable protection efficacy
as shielding all weights.

whereas ElasticTrainer [25] represents state-of-the-art work com-

bining both gradients and weight updates. To ensure a fair compar-

ison, we evaluate the importance of tensors using these methods

and then rank their importance values. Tensors are selected for

protection from highest to lowest until they meet the specified MS

accuracy threshold (i.e.,𝐴𝑐𝑐𝐴𝑙𝑙
𝑀𝑆

+1%). As shown in Figure 10, Tensor-
Shield selects average 87.82% (absolutely 50.60%) fewer parameters

compared to the Gradient method, and relatively 70.32% (absolutely

17.62%) fewer than ElasticTrainer. Notably, TensorShield exhibits

superior performance on datasets with fewer classification tasks

(e.g., CIFAR-10 and STL-10). This improvement can be attributed

to the public pre-trained models carrying more decision-making

information from simpler datasets. TensorShield effectively reduces

the importance of these tensors, thus excluding them from selection

(cf. §4.1).

To better understand the efficacy, we present in Figure 11 the

MS accuracy of a ResNet18 model trained on the CIFAR100 dataset

using different defense methods. We configure Serdab and Dark-

NeTZ to protect an identical number of layers (i.e., four layers).

In contrast, traditional XAI methodologies employ ElasticTrainer

to safeguard critical tensors. Our key observations include: (i) Al-

though DarkNeTZ protects over 85% of the model parameters, it

fails to secure the model effectively. In comparison, TensorShield

adeptly identifies critical tensors distributed across both shallow

and deep tensors in the victim model. (ii) Although finding impor-

tant tensors via traditional XAI can achieve model security, the

volume of parameters it selects far exceeds that of TensorShield.

This is because important tensors are not necessarily critical tensors.

The tensors selected by each method are illustrated in Figure 12.

Notably, TensorShield (Figure 12(d)) excludes five important tensors

compared to ElasticTrainer (Figure 12(c)). Specifically, TensorShield

excludes three tensors because they perform as well as those in

the pre-trained public model (cf. the attention transition term in

� � � � � 	
 � � �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � 	� 	� 	� 	� 	� 		 	
 	� 	� 	
�
�
�
�
�
	

�
�
 �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � � � � � � 	
 � � ��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

��
�

��

��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

��
�

��

��
�

��
�

������������

� � � � � 	
 � � �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � 	� 	� 	� 	� 	� 		 	
 	� 	� 	
�
�
�
�
�
	

�
�
 �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � � � � � � 	
 � � ��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

��
�

��

��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

��
�

��

��
�

��
�

������������

L1 L2 L3 L4 L5 L6 L7

(a) Serdab

(b) DarkneTZ

L1 L2 L3 L4 L5 L6 L7

� � � � � 	
 � � �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � 	� 	� 	� 	� 	� 		 	
 	� 	� 	
�
�
�
�
�
	

�
�
 �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � � � � � � 	
 � � ��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

��
�

��

��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

��
�

��

��
�

��
�

������������

(c) Shield important tensors by existing XAI

L1 L2 L3 L4 L5 L6 L7

� � � � � 	
 � � �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � 	� 	� 	� 	� 	� 		 	
 	� 	� 	
�
�
�
�
�
	

�
�
 �� �� �� �� �� �	 �
 �� �� � �� �� �� �� �� �	 �
 �� �� � � � � � � 	
 � � ��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

��
�

��

��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

��
�

��

��
�

��
�

������������
Normalized Attention

Transition
Attention Transition

(d) Shield critical tensors by TensorShield

L1 L2 L3 L4 L5 L6 L7

Attention Transition

Figure 12: Tensor selections regarding different defense
schemes for ResNet18 with CIFAR100 dataset. (a) Serdab:
shields four shallow layers. (b) DarkneTZ: shields four deep
layers. (c) Shielding important tensors by traditional XAI
(i.e., ElasticTrainer). (d) TensorShield: shields critical tensors.
The parameters are shown in Figure 11.

Eq. (1)). It also excludes two tensors due to their excessive parame-

ter count, as determined by the intrinsic importance normalization

term in Eq. (1). Additionally, the order of tensor criticality in Ten-

sorShield significantly diverges from the importance ranking used

by ElasticTrainer, thereby demonstrating the superior efficacy of

TensorShield’s critical tensor identification mechanism.

We visualize TensorShield’s critical tensor evaluation process

in Figure 13. The decision-making attention of the conv1 tensor

in the victim model is similar to that in the public model, whereas

layer3.0.conv1 exhibits significant differences. This indicates

that layer3.0.conv1 contains more critical information specific to

the victim model. Therefore, as shown in Figure 13(right), Tensor-

Shield reduces the importance of the conv1 tensor while preserving
the significance of layer3.0.conv1.

8.4 Runtime Performance
Overall latency. We conduct on-device inference experiments on

the four models using three datasets (i.e., CIFAR-100, STL10, and

Tiny-ImageNet). To ensure fairness, we compare TensorShield with

10

TensorShield: Safeguarding On-Device Inference by Shielding Critical DNN Tensors with TEE

Conv1 Layer3.0.conv1Conv1 Layer3.0.conv1 Conv1 Layer3.0.conv1

Figure 13: Visualization of critical tensor evaluation. Higher
brightness indicates greater attention. Left: Public model’s
attention.Middle: Victim model’s attention. Right: Critical
tensor evaluation results.

baselines that achieve the black-box protection security effects (i.e.,

GroupCover and Occlumency). The results on two hardware plat-

forms are shown in Figure 14. On mobile devices (i.e., Hikey960),

TensorShield’s inference time is up to 25.35× (avg. 5.85×) and 16.89×
(avg. 4.32×) faster than GroupCover and Occlumency, respectively.

This latency speedup is due to TensorShield’s computation power

modeling and the reduced overhead from masking, which we will

detail in the following breakdown experiment. Even on IoT de-

vices lacking GPU acceleration (i.e., Raspberry Pi 3B+), Tensor-

Shield achieves inference times that are up to 2.53× (avg. 1.74×)
and 5.74× (avg. 2.11×) faster than GroupCover and Occlumency,

respectively.

Breakdown. To better understand the reasons behind Tensor-

Shield’s speedup, we conduct a breakdown of inference times on the

Hikey960, as shown in Table 3. The inference process for Group-

Cover includes calculation, communication, masking, and deob-

fuscation, while Occlumency’s process involves only calculation

and decryption. We make two observations: (i) Depending on the

size of the input, TensorShield adaptively chooses whether to exe-

cute tensors within the TEE or after obfuscating them to the REE.

For example, for the CIFAR-100 dataset, due to the smaller com-

putational demand, executing critical tensors in the TEE using the

CPU is faster than after obfuscation on the GPU. Therefore, Ten-

sorShield computes critical tensors in the TEE without needing to

mask intermediate features, whereas GroupCover obfuscates all

parameters to the REE GPU and masks all intermediate features.

Compared to Occlumency, TensorShield saves on the additional

overhead of tensor computations and decryption in the TEE. For

the STL-10 and Tiny-ImageNet datasets, which require heavier

computations, GPU execution significantly outpaces CPU, hence

TensorShield obfuscates tensors to the REE for GPU-accelerated

execution, achieving a 3.71×-9.82× improvement in calculation

time over Occlumency. (ii) TensorShield only masks the features of

the last two tensors in the STL-10 dataset, reducing the masking

time by 52.60% compared to GroupCover. This is attributed to the

membership-aware masking technique.

8.5 Energy Consumption
Wemeasure the energy consumption using a Deli DL333501C power

meter [13] during the four model inference processes on two plat-

forms. The results are shown in Figure 15. TensorShield achieves an

average reduction in energy consumption of 58.66% (up to 91.35%)

and 69.86% (up to 98.35%) compared to GroupCover and Occlu-

mency, respectively, on the Hikey960. On the RPI3B+, it similarly

reduces energy consumption by an average of 34.23% (up to 60.05%)

compared to GroupCover and an average of 32.07% (up to 82.09%)

compared to Occlumency. These improvements can be attributed to

Table 3: Inference time breakdown for ResNet18 model with
CIFAR-100 dataset. "Cal", "Dec", "Comm", "Mask", and "Deobf"
refer to calculation, decryption, communication, masking,
and deobfuscation. ✗ represents OOM.

Dataset Work Execution time
Cal. Dec. Comm. Mask. Deobf. Total

C
1
0
0

Occlumency [34] 0.219s 0.080s / / / 0.299s

GroupCover [76] 0.497s / 0.023s 0.403s 0.049s 0.926s

Ours 0.122s / 0.002s / / 0.124s

S
1
0

Occlumency [34] 1.288s 0.080s / / / 1.368s

GroupCover [76] 0.510s / 0.065s 0.481s 0.027s 1.083s

Ours 0.347s / 0.037s 0.228s 0.016s 0.628s

T
2
0
0

Occlumency [34] 3.741s 0.080s / / / 3.821s

GroupCover [76] ✗ ✗ ✗ ✗ ✗ ✗

Ours 0.381s / 0.056s 0.364s 0.062s 0.863s

Table 4: Total profiling times of two devices.

Device Profiling time
CPU GPU Transfer Masking Obfuscating Total

Hikey960 [2] 3min 3min 6min 6min 5min 23min

Raspberry Pi 3B+ [1] 18min / 42min 1h 18min 5min 1h 25min

the reduced on-device inference time. Relative to native execution,

TensorShield on the Hikey960 consumes, on average, 36.89% less

energy than native CPU execution, but 7.07% more than native GPU

execution. On the RPI3B+, it shows an average increase of 60.61%

in energy consumption compared to native CPU execution.

8.6 Overhead
Hardware profiling time.We evaluate the overhead of Tensor-

Shield’s profiling time on two hardware platforms for computation

modeling. The total profiling times for all models on each device are

detailed in Table 4. RPI3B+’s profiling time is significantly longer

than Hikey960 due to the limited computation power.

Tensor Evaluating time. Critical tensor evaluating is another

major overhead in TensorShield. TensorShield requires a maximum

of 20 epochs (average 10.9 epochs) compared to the standard eval-

uation method which uses 100 epochs. This results in an 89.1%

reduction in evaluation time while maintaining equivalent assess-

ment accuracy, showing the efficacy of our selection algorithm

(cf. 4.2).

Planning time. Since the impact of consecutive tensors can be

neglected, our optimization solution time is less than 10 seconds,

which is negligible.

Notably, the profiling is a one-shot offline process for the specific

platform, while the evaluating and planning stages are one-shot

offline processes for the specific victim model.

9 DISCUSSION
Supported models. In this paper, we focus on CNN models be-

cause they are well-deployed on devices. For example, Xu et al. [67]

comprehensively investigated 16,500 of the most popular Android

apps on smartphones, and found that 87.7% of the models used in

deep learning apps are CNN models. TensorShield can also be ap-

plied to other popular model architectures. For example, deploying

Large Language Models (LLMs) on mobile devices has achieved

great advances [7, 66, 68, 69], and the transformer-based model also

shows that different component (sub-layer) in trained Transformer

models have different importance [62]. Expanding TensorShield to

optimize for LLMs will be our future work.

11

Tong Sun1 , Bowen Jiang1 , Hailong Lin1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

C100 S10 T200
ResNet18

0.0

2.5

In
fe

re
nc

e
Ti

m
e

(s
)

◀
Lo

w
er

 is
 b

et
te

r

O
O
M7.

65
x

1.
72

x

2.
47

x 2.
18

x

C100 S10 T200
VGG16_BN

0

20

O
O
M

1.
33

x

1.
39

x

1.
89

x 8.
47

x

C100 S10 T200
ResNet50

0

5

O
O
M5.
62

x

2.
28

x

2.
20

x 2.
45

x

C100 S10 T200
MobileNet-V2

0

5

25
.3

5x

4.
22

x

2.
52

x

1.
30

x

GroupCover Occlumency TensorShield (Ours)

16
.8

9x

5.
81

x

4.
43

x

3.
07

x

1.
17

x

1.
43

x

C100 S10 T200
ResNet18

0

20

In
fe

re
nc

e
Ti

m
e

(s
)

◀
Lo

w
er

 is
 b

et
te

r

O
O
M

2.
53

x 1.
32

x

5.
74

x 2.
13

x

C100 S10 T200
VGG16_BN

0

100

1.
17

x

1.
65

x

2.
45

x 1.
02

x

C100 S10 T200
ResNet50

0

50

O
O
M

O
O
M

2.
34

x 1.
56

x

4.
26

x

1.
77

x

C100 S10 T200
MobileNet-V2

0

20

2.
46

x 1.
70

x

1.
04

x 1.
16

x

GroupCover Occlumency TensorShield (Ours)

1.
60

x

1.
19

x

1.
02

x

1.
02

x

Figure 14: Inference time of 4 models compared with native and two completely secure baselines. Top: Hikey960. Bottom:
RaspberryPi 3B+.

C100 S10 T200
ResNet18

0.0

2.5

5.0

7.5

10.0

En
er

gy
 C

on
su

m
pt

io
n

(J
)

◀
Lo

w
er

 is
 b

et
te

r 11.1

x

14.4

C100 S10 T200
VGG16_BN

38.3 118.1

x

42.9 136.6

C100 S10 T200
ResNet50

24.7

x

10.0 28.9

C100 S10 T200
MobileNet-V2

Native (CPU) Native (GPU) G O T (Ours)

�	�� �	� �
��
�$-�$.	�

	�
�

	�
	

	�

�)
$,
%2
��
*)
-/
(
+.
&*
)�
��
�

��
�*
1
$,
�&-
�#
$.
.$
,

�	�� �	� �
��
 ��	�!��

	���

���

��
	���

�	�� �	� �
��
�$-�$.�

	�	��

�	�� �	� �
��
�*#&'$�$.�

�".&0$������ � � ����/,-�
217.

9
223.

4
222.

0
219.

9

x x

Figure 15: Comparison of native and all-shield solutions
with energy consumption. Left: Hikey960. Right: RPI3B+.
"G", "O", and "T" represent GroupCover, Occlumency, and
TensorShield (Ours), respectively. ✗ represents OOM.

New TEE architectures. Despite ARM TrustZone has been

widely used in the mobile and IoT industry, new TEE architectures

(e.g., ARM CCA [5] and RISC-V KeyStone [33]) are still emerging.

Although such new TEEs may mitigate the performance overhead

of shielding the entire model solutions, they do not harm the practi-

cality of TensorShield because the computation speed of such new

TEEs is still not comparable with the device’s hardware accelerators

(e.g., GPU). We believe TensorShield can be a promising solution to

bridge the gap between the new TEEs and the evolving accelerators.

10 RELATEDWORK
On-device secure inference. We show the related work in Ta-

ble 5. To fully protect model security, some previous work [22, 34,

64] leverage TEE to shield the entire model to achieve black-box

protection. They propose advanced techniques to reduce secure

memory usage but execute all layers in the TEE where lose the

opportunity to leverage GPU for acceleration. To speed up secure

inference, existing research partitions the model and fixed part of

the model to the TEE [16, 22, 38, 48]. Although they reduce infer-

ence latency, they cannot fully defend MS and MIA [75]. In order to

enable the entire model to be accelerated by GPU, ShadowNet [53]

and GroupCover [76] partition the DNN by the layer types and

Table 5: Comparison of TensorShield with related work

Works

Model Security

Shielding Efficiency

MS MIA

DarkneTZ [38] deep layers High

Serdab [16] shallow layers High

Magnitude [22] large mag. weights High

SOTER [48] Inter. layers High

ShadowNet [53] non-linear layers Medium

GroupCover [76] non-linear layers Medium

Occlumency
‡
[34] all layers Low

TensorShield (Ours) critical tensors High

†
stands for fully protection.

‡
It needs to encrypt weights offline.

shield non-linear layers using TEE. The offloaded linear layers are

protected by lightweight obfuscation algorithms (e.g. matrix trans-

formation) and all intermediate features are masked by OTP. The

former utilizes a fixed obfuscation that has security issues while

the latter utilizes random obfuscation achieving the black-box pro-

tection. However, both of them have high overheads of obfuscation

and masking. Overall, none of the existing works simultaneously

satisfy our requirements.

Mitigating model attacks in training. Existing defenses have

explored different training strategies for migrating the model at-

tacks. For example, Beowulf [18] mitigates MS attacks by reshaping

the victim model’s decision regions to more complex and narrow.

AMAO [29] proposed to use adversarial training to shield victim

models from MS. SELENA [56] mitigates MIA by self-distillation by

a novel ensemble architecture in the training process. TEESlice [75]

is a recent work that inserts small external model slices into the

public model and only trains the slices to force private weights

located in the slices. Shielding these slices in the TEE can defend

against MS and MIA. However, the scenario of TensorShield (and

previous TEE-based secure inference solutions) is different from

the above work, i.e., performing security analysis after the victim

model is finished trained in an arbitrary strategy.

TEE in GPUs. Researchers have explored GPU TEEs to guar-

antee data security on GPUs. Implementing trusted architectures

directly inside GPUs could achieve isolation [23, 58], but require

customizing hardware (e.g., NVIDIA H100 GPU [40]) and are spe-

cific designed for cloud servers. Recent works have also proposed

12

TensorShield: Safeguarding On-Device Inference by Shielding Critical DNN Tensors with TEE

several ARM-based GPU TEEs [15, 42, 59, 60]. However, our solu-

tion employs GPUs in an “out-of-the-box” manner, which requires

no change to the hardware or shipped firmware for mobile and IoT

devices.

11 CONCLUSION
In this paper, we present TensorShield, a new technique that selects

critical tensors to fully defend against MS and MIA. TensorShield

achieves up to 25.35× (avg. 5.85×) speedup in inference latencywith-
out accuracy loss when compared to the state-of-the-art schemes,

and also reduces energy consumption by an average of 58.66%.

REFERENCES
[1] 2016. Raspberry Pi 3 Model B. https://www.raspberrypi.com/products/raspberry-

pi-3-model-b/.

[2] 2017. Hikey960. https://www.96boards.org/product/hikey960/.

[3] 2018. Raspberry Pi 3 Model B+. https://www.raspberrypi.com/products/

raspberry-pi-3-model-b-plus/.

[4] ARM. 2022. TrustZone for Cortex-A. https://www.arm.com/technologies/

trustzone-for-cortex-a.

[5] Arm. 2023. Arm Confidential Compute Architecture . https://www.arm.com/

architecture/security-features/arm-confidential-compute-architecture.

[6] Sebanjila Kevin Bukasa, Ronan Lashermes, Hélène Le Bouder, Jean-Louis Lanet,

and Axel Legay. 2018. HowTrustZone could be bypassed: Side-channel attacks on

a modern system-on-chip. In Information Security Theory and Practice: 11th IFIP
WG 11.2 International Conference, WISTP 2017, Heraklion, Crete, Greece, September
28–29, 2017, Proceedings 11. Springer, 93–109.

[7] Dongqi Cai, ShangguangWang, YaozongWu, Felix Xiaozhu Lin, andMengwei Xu.

2023. Federated few-shot learning formobile nlp. In Proceedings of the 29th Annual
International Conference on Mobile Computing and Networking (MobiCom’23).
1–17.

[8] Dingfan Chen, Ning Yu, and Mario Fritz. 2022. Relaxloss: Defending membership

inference attacks without losing utility. In International Conference on Learning
Representations (ICLR’22).

[9] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. 2019. Efficient multi-key

homomorphic encryption with packed ciphertexts with application to oblivious

neural network inference. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS’19). 395–412.

[10] Hao-Jen Chien, Hossein Khalili, Amin Hass, and Nader Sehatbakhsh. 2023. Enc2:

Privacy-Preserving Inference for Tiny IoTs via Encoding and Encryption. In

Proceedings of the 29th Annual International Conference on Mobile Computing and
Networking (MobiCom’23). 1–16.

[11] Adam Coates, Andrew Ng, and Honglak Lee. 2011. An analysis of single-layer

networks in unsupervised feature learning. In Proceedings of the fourteenth inter-
national conference on artificial intelligence and statistics. JMLR Workshop and

Conference Proceedings, 215–223.

[12] Jacob Deasy, Nikola Simidjievski, and Pietro Liò. 2020. Constraining variational

inference with geometric jensen-shannon divergence. Advances in Neural Infor-
mation Processing Systems (NeurIPS’20) 33 (2020), 10647–10658.

[13] Deli. 2024. DL333501 Power Monitor. . https://www.delitoolsglobal.com/Power-

Monitor-DL333501.html.

[14] Sen Deng, Mengyuan Li, Yining Tang, Shuai Wang, Shoumeng Yan, and Yinqian

Zhang. 2023. {CipherH}: Automated Detection of Ciphertext Side-channel

Vulnerabilities in Cryptographic Implementations. In 32nd USENIX Security
Symposium (USENIX Security 23). 6843–6860.

[15] Yunjie Deng, Chenxu Wang, Shunchang Yu, Shiqing Liu, Zhenyu Ning, Kevin

Leach, Jin Li, Shoumeng Yan, Zhengyu He, Jiannong Cao, et al. 2022. Strongbox:

A gpu tee on arm endpoints. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (CCS’22). 769–783.

[16] Tarek Elgamal and Klara Nahrstedt. 2020. Serdab: An IoT Framework for Par-

titioning Neural Networks Computation across Multiple Enclaves. In Proc. of
IEEE/ACM CCGRID. 519–528.

[17] Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. Nestdnn: Resource-aware multi-

tenant on-device deep learning for continuous mobile vision. In Proceedings of
the 24th Annual International Conference on Mobile Computing and Networking
(MobiCom’18). 115–127.

[18] Xueluan Gong, Rubin Wei, Ziyao Wang, Yuchen Sun, Jiawen Peng, Yanjiao

Chen, and Qian Wang. 2024. Beowulf: Mitigating Model Extraction Attacks

Via Reshaping Decision Regions. In Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security (CCS’24). 3838–3852.

[19] Liwei Guo and Felix Xiaozhu Lin. 2022. Minimum viable device drivers for ARM

TrustZone. In Proceedings of the Seventeenth European Conference on Computer
Systems (EuroSys’22). 300–316.

[20] Peizhen Guo, Bo Hu, and Wenjun Hu. 2021. Mistify: Automating DNN Model

Porting for On-Device Inference at the Edge. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’21). 705–719.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR’16). 770–778.

[22] Jiahui Hou, Huiqi Liu, Yunxin Liu, Yu Wang, Peng-Jun Wan, and Xiang-Yang

Li. 2021. Model Protection: Real-Time Privacy-Preserving Inference Service

for Model Privacy at the Edge. IEEE Transactions on Dependable and Secure
Computing (TDSC) 19, 6 (2021), 4270–4284.

[23] Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G Edward Suh. 2022. Guardnn:

secure accelerator architecture for privacy-preserving deep learning. In Proceed-
ings of the 59th ACM/IEEE Design Automation Conference (DAC’22). 349–354.

[24] Kai Huang and Wei Gao. 2022. Real-time neural network inference on extremely

weak devices: agile offloading with explainable AI. In Proceedings of the 28th
Annual International Conference on Mobile Computing And Networking (Mobi-
Com’22). 200–213.

[25] Kai Huang, Boyuan Yang, and Wei Gao. 2023. Elastictrainer: Speeding up on-

device training with runtime elastic tensor selection. In Proceedings of the 21st
Annual International Conference on Mobile Systems, Applications and Services
(MobiSys’23). 56–69.

[26] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas

Papernot. 2020. High accuracy and high fidelity extraction of neural networks.

In 29th USENIX security symposium (USENIX Security’20). 1345–1362.
[27] Fucheng Jia, Deyu Zhang, Ting Cao, Shiqi Jiang, Yunxin Liu, Ju Ren, and Yaoxue

Zhang. 2022. CoDL: efficient CPU-GPU co-execution for deep learning inference

on mobile devices. In Proceedings of the 20th Annual International Conference on
Mobile Systems, Applications and Services (MobiSys’22). 209–221.

[28] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and Neil Zhenqiang

Gong. 2019. Memguard: Defending against black-box membership inference at-

tacks via adversarial examples. In Proceedings of the 2019 ACM SIGSAC conference
on computer and communications security (CCS’19). 259–274.

[29] Wenbo Jiang, Hongwei Li, Guowen Xu, Tianwei Zhang, and Rongxing Lu. 2023.

A comprehensive defense framework against model extraction attacks. IEEE
Transactions on Dependable and Secure Computing 21, 2 (2023), 685–700.

[30] Dongwoo Kim and Cyril Guyot. 2023. Optimized privacy-preserving cnn in-

ference with fully homomorphic encryption. IEEE Transactions on Information
Forensics and Security 18 (2023), 2175–2187.

[31] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learningmultiple layers of features

from tiny images. (2009).

[32] Ya Le and Xuan Yang. 2015. Tiny imagenet visual recognition challenge. CS
231N 7, 7 (2015), 3.

[33] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn Song, and Krste

Asanovic. 2019. Keystone: A framework for architecting tees. arXiv preprint
arXiv:1907.10119 (2019).

[34] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee,

Fengyuan Xu, Chenren Xu, Lintao Zhang, and Junehwa Song. 2019. Occlumency:

Privacy-preserving Remote Deep-learning Inference Using SGX. In The 25th An-
nual International Conference on Mobile Computing and Networking (MobiCom’19).
1–17.

[35] Duo Li, Junxiang Bai, and Wenling Li. 2022. Multi-sensor Data Consistency

and Fusion Based on Jensen-Shannon Divergence. In International Conference on
Guidance, Navigation and Control. Springer, 5595–5605.

[36] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. 2021.

CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the

Ciphertext Side Channel. In 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, 717–732.

[37] Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang, Michael Backes,

Emiliano De Cristofaro, Mario Fritz, and Yang Zhang. 2022. ML-Doctor: Holistic

Risk Assessment of Inference Attacks against Machine Learning Models. In 31st
USENIX Security Symposium (USENIX Security’22). 4525–4542.

[38] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias

Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. DarkneTZ: Towards

Model Privacy at the Edge using Trusted Execution Environments. In Proceedings
of the 18th International Conference on Mobile Systems, Applications, and Services
(MobiSys’20). 161–174.

[39] Fan Mo, Zahra Tarkhani, and Hamed Haddadi. 2024. Machine learning with

confidential computing: A systematization of knowledge. ACM computing surveys
(CSUR) 56, 11 (2024), 1–40.

[40] NVIDIA. 2022. NVIDIA CONFIDENTIAL COMPUTING. https://www.nvidia.

com/en-us/data-center/solutions/confidential-computing.

[41] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2019. Knockoff nets:

Stealing functionality of black-box models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition (CVPR’19). 4954–4963.

[42] Heejin Park and Felix Xiaozhu Lin. 2023. Safe and Practical GPU Computation

in TrustZone. In Proceedings of the Eighteenth European Conference on Computer
Systems (EuroSys’23). 505–520.

13

https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://www.96boards.org/product/hikey960/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.delitoolsglobal.com/Power-Monitor-DL333501.html
https://www.delitoolsglobal.com/Power-Monitor-DL333501.html
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing

Tong Sun1 , Bowen Jiang1 , Hailong Lin1 , Borui Li2 , Yixiao Teng1 , Yi Gao1 , and Wei Dong1

[43] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A Compre-

hensive Survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1–36.
[44] Keegan Ryan. 2019. Hardware-backed heist: Extracting ECDSA keys from qual-

comm’s trustzone. In Proceedings of the 2019 ACM SIGSACConference on Computer
and Communications Security (CCS’19). 181–194.

[45] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz,

and Michael Backes. 2020. Ml-leaks: Model and data independent membership

inference attacks and defenses on machine learning models. In Proc. of 26th
Annual Network and Distributed System Security Symposium (NDSS’19). 1345–
1362.

[46] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR’18). 4510–4520.

[47] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from

deep networks via gradient-based localization. In Proceedings of the IEEE inter-
national conference on computer vision (CVPR’17). 618–626.

[48] Tianxiang Shen, Ji Qi, Jianyu Jiang, Xian Wang, Siyuan Wen, Xusheng Chen,

Shixiong Zhao, Sen Wang, Li Chen, Xiapu Luo, et al. 2022. SOTER: Guarding

Black-box Inference for General Neural Networks at the Edge. In 2022 USENIX
Annual Technical Conference (ATC’22). 723–738.

[49] Yun Shen, Xinlei He, Yufei Han, and Yang Zhang. 2022. Model stealing attacks

against inductive graph neural networks. In 2022 IEEE Symposium on Security
and Privacy (S&P’22). IEEE, 1175–1192.

[50] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-

works for Large-scale Image Recognition. In Proc. of 3rd International Conference
on Learning Representations (ICLR’15).

[51] Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-Chiang, Yehuda Dar,

Richard Baraniuk, Micah Goldblum, and Tom Goldstein. 2022. Can neural nets

learn the same model twice? investigating reproducibility and double descent

from the decision boundary perspective. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR’22). 13699–13708.

[52] Yu Sun, Gaojian Xiong, Jianhua Liu, Zheng Liu, and Jian Cui. 2024. TSQP:

Safeguarding Real-Time Inference for Quantization Neural Networks on Edge

Devices. In 2025 IEEE Symposium on Security and Privacy (S&P’25). IEEE Com-

puter Society, 1–1.

[53] Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Long Lu,

and Somesh Jha. 2023. ShadowNet: A Secure and Efficient On-Device Model

Inference System for Convolutional Neural Networks. In 2023 IEEE Symposium
on Security and Privacy (S&P’23).

[54] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. 2021. Mind your weight

(s): A large-scale study on insufficient machine learning model protection in

mobile apps. In 30th USENIX security symposium (USENIX security 21). 1955–1972.
[55] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution

for deep networks. In International Conference on Machine Learning (ICML’17).
PMLR, 3319–3328.

[56] Xinyu Tang, Saeed Mahloujifar, Liwei Song, Virat Shejwalkar, Milad Nasr, Amir

Houmansadr, and Prateek Mittal. 2022. Mitigating membership inference attacks

by {Self-Distillation} through a novel ensemble architecture. In 31st USENIX
Security Symposium (USENIX Security 22). 1433–1450.

[57] Florian Tramer and Dan Boneh. 2019. Slalom: Fast, Verifiable and Private Execu-

tion of Neural Networks in Trusted Hardware. In Proc. of International Conference
on Learning Representations (ICLR’19).

[58] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted Exe-

cution Environments on GPUs. In Proc. of 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’18). 681–696.

[59] ChenxuWang, Fengwei Zhang, Yunjie Deng, Kevin Leach, Jiannong Cao, Zhenyu

Ning, Shoumeng Yan, and Zhengyu He. 2024. CAGE: Complementing Arm CCA

with GPU Extensions. In Network and Distributed System Security Symposium
(NDSS’24).

[60] Jinwen Wang, Yujie Wang, and Ning Zhang. 2023. Secure and timely gpu execu-

tion in cyber-physical systems. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security (CCS’23). 2591–2605.

[61] Manni Wang, Shaohua Ding, Ting Cao, Yunxin Liu, and Fengyuan Xu. 2021.

Asymo: scalable and efficient deep-learning inference on asymmetric mobile cpus.

In Proceedings of the 27th Annual International Conference on Mobile Computing
and Networking (MobiCom’21). 215–228.

[62] Wenxuan Wang and Zhaopeng Tu. 2020. Rethinking the Value of Transformer

Components. In Proceedings of the 28th International Conference on Computational
Linguistics (COLING’20). 6019–6029.

[63] Huizi Xiao, Qingyang Zhang, Qingqi Pei, and Weisong Shi. 2021. Privacy-

preserving neural network inference framework via homomorphic encryption

and sgx. In 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS’21). IEEE, 751–761.

[64] Xueshuo Xie, Haoxu Wang, Zhaolong Jian, Tao Li, Wei Wang, Zhiwei Xu, and

Guiling Wang. 2024. Memory-Efficient and Secure DNN Inference on TrustZone-

enabled Consumer IoT Devices. In Proc. of IEEE International Conference on

Computer Communications (INFOCOM’24).
[65] Guoliang Xing, TianWang, Zhihui Xie, andWeijia Jia. 2008. Rendezvous planning

in wireless sensor networks with mobile elements. IEEE Transactions on Mobile
Computing 7, 12 (2008), 1430–1443.

[66] Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang. 2024.

FwdLLM: Efficient Federated Finetuning of Large Language Models with Per-

turbed Inferences. In 2024 USENIX Annual Technical Conference (USENIX ATC’24).
579–596.

[67] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and

Xuanzhe Liu. 2019. A first look at deep learning apps on smartphones. In The
World Wide Web Conference (WWW’19). 2125–2136.

[68] Zhenliang Xue, Yixin Song, Zeyu Mi, Le Chen, Yubin Xia, and Haibo Chen. 2024.

PowerInfer-2: Fast Large Language Model Inference on a Smartphone. arXiv
preprint arXiv:2406.06282 (2024).

[69] Wangsong Yin, Mengwei Xu, Yuanchun Li, and Xuanzhe Liu. 2024. Llm as a

system service on mobile devices. arXiv preprint arXiv:2403.11805 (2024).
[70] Mu Yuan, Lan Zhang, Fengxiang He, Xueting Tong, and Xiang-Yang Li. 2022. Infi:

end-to-end learnable input filter for resource-efficient mobile-centric inference.

In Proceedings of the 28th Annual International Conference on Mobile Computing
And Networking (MobiCom’22). 228–241.

[71] Yuanyuan Yuan, Zhibo Liu, Sen Deng, Yanzuo Chen, Shuai Wang, Yinqian Zhang,

and Zhendong Su. 2024. CipherSteal: Stealing Input Data from TEE-Shielded

Neural Networks with Ciphertext Side Channels. In 2025 IEEE Symposium on
Security and Privacy (S&P’25). 79–79.

[72] Yuanyuan Yuan, Zhibo Liu, Sen Deng, Yanzuo Chen, Shuai Wang, Yinqian Zhang,

and Zhendong Su. 2024. HyperTheft: ThievingModelWeights from TEE-Shielded

Neural Networks via Ciphertext Side Channels. In Proceedings of the 2024 on
ACM SIGSAC Conference on Computer and Communications Security (CCS’24).
4346–4360.

[73] Chiyuan Zhang, Samy Bengio, and Yoram Singer. 2022. Are all layers created

equal? Journal of Machine Learning Research 23, 67 (2022), 1–28.

[74] Qiyang Zhang, Xiangying Che, Yijie Chen, Xiao Ma, Mengwei Xu, Schahram

Dustdar, Xuanzhe Liu, and Shangguang Wang. 2023. A comprehensive deep

learning library benchmark and optimal library selection. IEEE Transactions on
Mobile Computing (2023).

[75] Ziqi Zhang, Chen Gong, Yifeng Cai, Yuanyuan Yuan, Bingyan Liu, Ding Li, Yao

Guo, and Xiangqun Chen. 2024. No Privacy Left Outside: On the (In-) Security

of TEE-Shielded DNN Partition for On-Device ML. In 2024 IEEE Symposium on
Security and Privacy (S&P’24). 52–52.

[76] Zheng Zhang, Na Wang, Ziqi Zhang, Yao Zhang, Tianyi Zhang, Jianwei Liu, and

Ye Wu. 2024. GroupCover: A Secure, Efficient and Scalable Inference Frame-

work for On-device Model Protection based on TEEs. In Forty-first International
Conference on Machine Learning (ICML’24).

14

	Abstract
	1 Introduction
	2 Background and Threat Model
	2.1 Background
	2.2 Threat Model

	3 System Overview
	4 XAI-based Critical Tensor Identification
	4.1 Criticality Value Evaluation
	4.2 Critical Tensor Selection

	5 Critical Feature Identification
	6 Latency-aware Placement
	7 Implementation
	8 Evaluation
	8.1 Experimental Setup
	8.2 Overall performance
	8.3 Efficacy of Critical Tensor Identification
	8.4 Runtime Performance
	8.5 Energy Consumption
	8.6 Overhead

	9 Discussion
	10 Related Work
	11 Conclusion
	References

