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Abstract

Many problems in trustworthy ML can be formulated as minimization of the model error under
constraints on the prediction rates of the model for suitably-chosen marginals, including most group
fairness constraints (demographic parity, equality of odds, etc.). In this work, we study such constrained
minimization problems under differential privacy (DP). Standard DP optimization techniques like DP-SGD
rely on the loss function’s decomposability into per-sample contributions. However, rate constraints
introduce inter-sample dependencies, violating the decomposability requirement. To address this, we
develop RaCO-DP, a DP variant of the Stochastic Gradient Descent-Ascent (SGDA) algorithm which
solves the Lagrangian formulation of rate constraint problems. We demonstrate that the additional privacy
cost of incorporating these constraints reduces to privately estimating a histogram over the mini-batch at
each optimization step. We prove the convergence of our algorithm through a novel analysis of SGDA that
leverages the linear structure of the dual parameter. Finally, empirical results on learning under group
fairness constraints demonstrate that our method Pareto-dominates existing private learning approaches
in fairness-utility trade-offs.

1 Introduction
From fair learning [59, 27, 2, 16] to robust optimization [13, 15] and cost-sensitive learning [45, 15], many
Machine Learning (ML) tasks can be formulated as constrained optimization problems. In such problems,
the goal is to minimize the model’s overall error subject to rate constraints, which enforce specific conditions
on prediction rates across subsets of the training data. For instance, ensuring fairness in a resume screening
system might require similar rates of positive outcomes (e.g., resumes selected for human review) across
gender groups, a criterion known as equalized odds [32]. Similarly, in a medical setting with imbalanced
data, a decision-support system may need to strictly limit its false negative rate, e.g., to reduce the risk of
misdiagnosing cancerous tumours as benign.

These learning tasks often require training models on sensitive data, such as employee or patient records in
our previous examples. Publicly releasing these models can expose data owners to privacy attacks [49] and
result in the disclosure of personal data without consent [52]. In the absence of proper safeguards, these risks
can harm individuals, undermine trust in AI systems, and discourage data sharing in critical applications
like medical research. Despite recent advances, differentially private (DP) constrained optimization has
focused almost exclusively on fairness constraints [35, 46, 55, 11, 43]. Methods tailored to fairness do not
extend to the broader family of rate constraints that arise in practice. We bridge this gap with the first
general DP framework for arbitrary rate-constrained problems. Our approach both expands DP’s reach
to previously incompatible applications and pushes the Pareto frontier of utility, privacy, and constraint
satisfaction, including fairness, beyond the current state of the art.

*Equal contribution.
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Differential Privacy (DP) is the standard framework for private data analysis that has been successfully
applied to training and releasing unconstrained models with formal privacy guarantees. A key approach is
the widely used DP-SGD algorithm [50, 9, 1], which ensures DP by clipping per-sample gradients and adding
calibrated noise to the averaged gradient. This process bounds each data sample’s influence. Incorporating
rate constraints presents a challenge, however, because unlike typical training losses, these constraint functions
(or their regularizer counterparts) do not readily decompose into per-sample terms. This fundamental
incompatibility with per-sample processing makes it difficult to integrate them with standard DP-SGD and
its variants. Our key contribution is the introduction of a DP optimization algorithm that bridges this gap,
enabling private optimization subject to rate constraints.

To address the challenge of privately enforcing rate constraints, we propose generalized rate constraints.
Generalized rate constraints allow us to express all rate constraints in a common form based on statistics
(i.e., histograms) on disjoint subgroups within the dataset. This common structure is the key to our privacy
solution: it allows us to efficiently gather all the necessary information to evaluate these constraints under
DP. Beyond its advantages for privacy, our method offers greater flexibility compared to prior work [15] by
extending to scenarios with multiple output classes.

With generalized rate constraints at hand, we introduce RaCO-DP, a framework for optimizing machine learning
models under rate constraints with differential privacy (DP). RaCO-DP is a differentially private variant of
the Stochastic Gradient Descent Ascent (SGDA) algorithm which leverages a Langrangian formulation and
generalized constraints to overcoming the decomposability obstacle. Our core insight leverages the structure
that the generalized rate constraints provide: we can efficiently compute differentially private statistics (e.g.,
histograms) for these subgroups. By privatizing these statistics at each step, we enable private evaluation of
the constraint function, and its per-sample constraint gradients. We provide a formal convergence analysis of
RaCO-DP, proving that even for non-convex optimization problems, our method converges to an approximate
stationarity point (i.e. a local optimum). We introduce a novel approach to analyzing SGDA that accounts for
bias in gradient estimates and exploits the linear structure of the dual update to enhance convergence speed.

As a concrete application, we showcase our algorithm private learning with group fairness constraints,
specifically demographic parity [23], and false negative rate constraints, highlighting the versatility of our
approach. We present new state-of-the-art (SOTA) results on 4 datasets showing RaCO-DP Pareto-dominates
the previous SOTA method [43] in terms of accuracy and fairness trade-off curves and nearly closes the
optimality gap between private and non-private models. Additionally, our method offers two advantages
over existing approaches designed specifically for fairness constraints. First, it provides stronger privacy
guarantees than prior approaches that only consider the privacy of the sensitive label [35, 55, 43] (akin to
label privacy [26]). Second, it allows practitioners to directly specify the maximum allowed disparity, unlike
previous penalization-based methods such as [43] that offer only indirect control and require hyperparameter
tuning to achieve the desired fairness level.

2 Background

2.1 Differential Privacy
Differential Privacy (DP) [22] has become the de-facto standard in privacy-preserving ML thanks to the
robustness of its guarantees, its desirable behaviour under post-processing and composition, and its extensive
algorithmic framework. We recall the definition below and refer to [21] for more details. We denote by D the
space of datasets of some fixed size.

Definition 2.1 (Differential Privacy). A randomized mechanism M is (ε, δ)-DP if for all datasets D,D′ ∈ D
differing in one datapoint and for all events O: P [M(D) ∈ O] ≤ eεP [M(D′) ∈ O] + δ.

In the above definition, δ ∈ (0, 1) can be thought of as a very small failure probability, and ε > 0 is the
privacy loss; smaller ϵ and δ correspond to stronger privacy guarantees.

Differentially Private Stochastic Gradient Descent (DP-SGD) [50, 9, 1] serves as the foundational algorithm
in private ML. Given a training dataset D and model parameters θ ∈ Rd, DP-SGD aims to privately solve the
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empirical risk minimization problem minθ∈Rd ℓ(θ), where ℓ(θ) = 1
|D|
∑

x∈D ℓ(θ;x) and ℓ(θ, ·) is a loss function
differentiable in θ. DP-SGD follows the standard SGD update, but guarantees differential privacy by (i)
capping each data point’s influence on the gradient through gradient clipping, and (ii) injecting Gaussian
noise into the clipped gradients.

Each iteration t ∈ [T ] of DP-SGD incurs a privacy loss (εt, δt). Privacy composition [22, 36] and privacy
accounting [1, 30, 20] are techniques that aggregate these per-step privacy losses into a total privacy guarantee
(ε, δ) that holds for the entire optimization process.

2.2 Constrained Optimization via Lagrangian
In this work, we aim to solve constrained empirical risk minimization problems of the form:

minθ∈Rd

{
ℓ(θ) := 1

|D|
∑

x∈D ℓ(θ;x)
}

s.t. ∀j ∈ [J ], Γj(θ) ≤ γj . (1)

where Γj : Rd 7→ R+ are the constraint functions and γ ∈ (R+)J are slack parameters. We focus on inequality
constraints, as equality constraints are generally infeasible under differential privacy [17].

Due to the difficulty of solving (1) directly, we instead solve an equivalent min-max optimization problem
with respect to the Lagrangian:

min
θ∈Rd

max
λ∈Λ
{L(θ, λ) := ℓ(θ) +R(θ, λ)} , where: R(θ, λ) =

∑J
j=1 λj(Γj(θ)− γj). (2)

Here, λ ∈ Λ ⊆ (R+)J are the Lagrange multipliers, often referred to as the dual parameter, while θ is the
primal parameter. One of the simplest algorithms to solve (2) is the generalization of (S)GD known as
(Stochastic) Gradient Descent-Ascent, (S)GDA [47].

Definition 2.2 (GDA). At each iteration t:

θ(t+1) ← θ(t) − ηθ∇θL(θ(t), λ(t)), and λ(t+1) ← ΠΛ

(
λ(t) + ηλ∇λL(θ(t), λ(t))

)
. (3)

where ηθ and ηλ are step sizes and ΠΛ performs orthogonal projection onto Λ. The stochastic version (SGDA)
replaces exact gradients with stochastic estimates.

2.3 Rate Constraints
In this work, we focus on constraints that relate to prediction behavior over subsets of the dataset. Consider
a model h : X × Rd 7→ RK that maps inputs from feature space X to real-valued prediction scores over
the label set Y = {1, . . . ,K} using parameters θ ∈ Rd. Formally, (hard) prediction rates count the
number of points in a dataset D for which the model predicts a certain label k ∈ Y: P hard

k (D; θ) =
1

|D|
∑

x∈D 1[argmaxk′∈[K]{h(θ;x)k′}=k].

As the indicator function is non-differentiable and thus challenging to optimize, we will use differentiable
versions of these constraints. We rely on the tempered softmax function στ (z)k = exp(−τzk)∑K

l=1 exp(−τzl)
, where the

temperature parameter τ ∈ R+ controls the sharpness of the probability distribution. This allows us to define
soft prediction rates:

Pk(D; θ, τ) = 1
|D|
∑

x∈D στ (h(θ;x))k, for k ∈ Y. (4)

Observe that limτ→∞ Pk(D; θ, τ) = P hard
k (D; θ). For brevity, unless otherwise specified, we drop explicit

mention of temperature and provide more discussion of this hyperparameter experimentally in Appendix E.
Our convergence analysis in Section 5 holds for arbitrary τ .

Rate constraints, as defined by Goh et al. [28] and Cotter et al. [15] for the case of binary classification
(Y = {0, 1}), are linear combinations of a classifier’s prediction rates across different data partitions:∑

q∈[Q] αqP1(Dq, θ) + βqP0(Dq, θ) ≤ γ, (5)
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Q > 0, αq, βq ∈ R are mixing coefficients, D1, ..., DQ ⊆ D and γ is the slack parameter. Examples of rate
constraints in this form include ensuring that the fraction of positive predictions across different demographic
groups stays within a specified threshold, or requiring the model to achieve a minimum level of precision or
recall for both classes [16].

Such constraints are limited to binary classification, and a multiclass generalization is not immediate. More
critically, it is unclear how to evaluate rate constraints in (5) while efficiently preserving privacy.

3 Private Learning with Generalized Rate Constraints
Generalized rate constraints. We propose a generalized form of rate constraints that (i) is applicable
to the multi-class setting, and (ii) exploits a structure shared across constraints that will allow accurate
private estimation.
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Figure 1: Each rate constraint of the
form (6) builds local datasets based on
the global partition. A class-1 (class-
0) prediction is shown with a blue (red)
square. Prediction rates P0, P1 are shown
as fractions. As an example, let D1, D2,
and D3 be the set of Hispanic, Black, and
Caucasian individuals in the dataset, re-
spectively. Constraint Γ1 builds its local
datasets as {{D1}, {D2 ∪ D3}}, i.e. {His-
panic, Non-Hispanic}, from the global par-
tition {D1, D2, D3} using the set of index
subsets I1 = {I1, I2}.

This shared structure is a partition {D1, ..., DQ} of the dataset
D for some Q > 0, which we refer to as the “global” partition.
We then allow each rate constraint to incorporate prediction
rates over any recombination of sub-datasets in the global
partition. This structure is flexible, as it allows each rate
constraint to have its own “local” datasets, provided that each
of these datasets can be formed as a union of sets from the global
partition. For example, in the context of fairness constraints,
the global partition corresponds to the the sensitive groups (e.g.,
Hispanic, Black, Caucasian), and local datasets for one of the
constraint is {Hispanic, Non-Hispanic} where Non-Hispanic =
{Black,Caucasian}. See Figure 1.

Formally, given this global partition, we assume for each j ∈ [J ]
there exists a family of subsets of [Q], denoted Ij ⊆ 2[Q], and
a weight vector αj ∈ R|Ij |·K , such that the constraint Γj can
be written in the following form:1

Γj(θ) =
∑

I∈Ij

∑K
k=1 αj,I,kPk(∪i∈IDi; θ). (6)

Assuming such a global partition is not restrictive, as the trivial
partition Dq = xq (with Q = |D|) can always be used. However,
as Section 4 will show, a smaller partition size Q enables a better
privacy-utility trade-off through more effective noise use.

Remark 1. For common rate constraints, the best global partition will be readily apparent (see the application
to fairness below). The smallest global partition can however be defined explicitly. Let D̄1, ..., D̄Q̄ be the
(possibly non-disjoint) subsets of D over which the functions Γ1, ...,ΓJ compute a prediction rate as per
Eq. (6). Then the smallest global partition assigns any two data points x and x′ in the same Dq if and only if{
∀q̄ ∈ [Q̄], {x, x′} ∩ D̄q ∈ {∅, {x, x′}}

}
.

Note that each rate constraint Γj is uniquely defined by the subset family Ij and vector αj . Both parameters
are public, specifying only the constraint’s structure and containing no sensitive data.

Application to fair learning. Group fairness in machine learning aims to prevent models from making
biased decisions across different sensitive groups. We show below our general form of rate constraints (4)
allows to capture the popular group fairness notion of demographic parity [6]. More generally, all common
group fairness measures can be formulated as rate constraints [15]. We provide details on formulating other
fairness notions in Appendix A.

1With some abuse of notation, we denote by αj,I,k the entry of αj corresponding to subset I and label k.
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Definition 3.1 (Demographic Parity). Assume each feature vector x ∈ X contains a sensitive attribute,
denoted as Z, taking on values in Z ⊂ Z. A classifier h(θ; ·) satisfies demographic parity with respect to
sensitive attribute Z if the probability of predicting any class k is independent of Z:

Pr[Ŷ = k | Z = z] = Pr[Ŷ = k], ∀z ∈ Z,∀k ∈ Y,

where Ŷ = h(θ;X) is the predicted label. In practice, we do not have access to the true probabilities, so it is
common to estimate them by empirical prediction rates Pk. Using a slack parameter γ gives:

Pk(D[Z = z]; θ)− Pk(D[Z ̸= z]; θ) ≤ γ, (7)

for each z ∈ Z and k ∈ Y. Demographic parity thus leads to J = |Z| · |Y| rate constraints of the form
(6). The global partition is of size Q = |Z| with elements Dz = D[Z = z], ∀z ∈ Z, and for the constraint
corresponding to elements z ∈ Z and y ∈ Y, we have I = {{z} , [|Z|] \ z}. The associated vector α has
α{z},y = 1 and α{[|Z|]\z},y = −1, with the rest of the components set to 0.

Objective. With these definitions in place, we can now state our objective: solve problem (2) with
generalized rate constraints of the form (6) under DP.

4 RaCO-DP: Private Rate-Constrained Optimization

Algorithm 1 RaCO-DP

Require: Dataset D, Parameter θ0, learning rates ηθ,
ηλ, Gaussian noise variance σ, Laplace parameter b,
clipping norm C, sampling rate r, slack parameter
vector γ, loss function ℓ(θ; ·)

1: Initialize λ(0) ← [0]
2: for each t ∈ {0, . . . , T − 1} do
3: B(t) ← PoissonSample(D, r)
4: Private Histogram:
5: Ĥ

(t)
q,k ←

∑
x∈Dq∩B(t)

σ(h(θ(t);x))k + Lap( 1
b
)

Primal Update:
6: Z(t) ∼ Gaussian(0, Idσ2)

7: ∀x ∈ B(t) : set g
(t)
x,θ as (see also Eq.(10))

1
r|D|∇θℓ(θ

(t);x)+∇θR̂(θ(t), λ(t); Ĥ(t), x)

8: g
(t)
θ ←

(∑
x∈B(t) clip(g

(t)
x,θ,

C
r|D| )

)
+ Z(t)

9: θ(t+1) ← θ(t) − ηθg
(t)
θ

Dual Update:
10: [g

(t)
λ ]j ← Γpost

j (Ĥ(t))− γj , ∀j ∈ [J ]

11: λ(t+1) ← ΠΛ(λ
(t) + ηλg

(t)
λ ) (see Eqn. (12)

12: end for
13: return θ(T )

We introduce RaCO-DP (Algorithm 1), an algo-
rithm for rate-constrained optimization that extends
SGDA (Definition 2.2) to satisfy DP. Each iteration
t of the algorithm operates on a mini-batch B(t)

and consists of three key components that we will
describe in detail in this section:

1. Private histogram computation: For each
class k ∈ [K] and part q ∈ [Q] of the partition, we
privately estimate the sum of model predictions
σ(h(θt;x))k over the points x in the mini-batch
B(t) that belong to Dq, storing these counts in a
histogram H(t) (Section 4.1).

2. Private primal updates: We derive per-sample
gradients for the primal update of SGDA based
on post-processing the histogram H(t). We then
clip, average and privatize these gradients using
the Gaussian mechanism (Section 4.2).

3. Private dual updates: We compute all con-
straint values by again post-processing the his-
togram H(t), allowing us to perform the dual up-
date at no additional privacy cost (Section 4.3).

4.1 Private Histogram Computation
Our algorithm’s primal and dual updates compute prediction rates across dataset partition parts D1, . . . , DQ

for each class. To track these prediction rates privately, we construct a histogram H(t) ∈ RQ×K that counts
(soft) model predictions for each combination of part q and class k. For a given model parameter θ, each
sample xi in the mini-batch B(t) belongs to exactly one part Dq of the partition but can influence the counts
of all K classes through the softmax probabilities σ(h(θ;x))k. This non-private histogram is constructed by
accumulating these softmax vectors:

H
(t)
q,k =

∑
Dq∩B(t) σ(h(θ;xi))k. (8)
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To make this histogram differentially private, we use the Laplace mechanism [22]. The ℓ1 sensitivity of H(t)

is 1 because each sample belongs to exactly one element of the global partition and its softmax predictions
sum to 1 across classes. Therefore, we can achieve ε-DP by adding independent Laplace noise to each element:

Ĥ
(t)
q,k = H

(t)
q,k + Lap(1/ε), ∀q ∈ [Q], k ∈ Y. (9)

Remark 2. We focus on the Laplace mechanism for simplicity, but we note that our framework can readily
accommodate other differentially private histogram mechanisms that may provide better utility in some regimes,
e.g., when the histogram is high-dimensional and sparse [56].

In the following sections, we will see that Ĥ(t) contains all the necessary information to compute the quantities
related to the rate constraints required for both the primal and dual updates, thereby avoiding additional
privacy costs that would arise from composing multiple queries.

4.2 Privately Computing the Primal Gradient
A key requirement in DP-SGDA is that each sample must have a bounded contribution to the gradient
updates. To satisfy this requirement in RaCO-DP, we need to decompose the Lagrangian into per-sample
terms. While the loss term ℓ(θ) naturally decomposes into per-sample terms as in standard DP-SGD, the
regularizer R is more challenging.

Given a mini-batch B, define B∩I = B ∩ ( ∪
i∈I

Di) and recall that Ij and αj ∈ R|Ij |×K denote the family of

subsets and weight vector associated with constraint Γj . The minibatch-level regularizer is,

R(θ, λ;B)=

J∑
j=1

λj

(( ∑
I∈Ij

K∑
k

αj,I,kPk(B∩I ; θ)
)
−γj

)
=

J∑
j=1

λj

(( ∑
I∈Ij

K∑
k

∑
x∈B∩I

αj,I,k

|B∩I |
σ(h(θ;x)k

)
−γj

)
.

Note that this may be a biased estimate of R(θ, λ) due to the normalization term |B∩I |. We account for this
bias in our convergence analysis (Section 5).

We would like a per-sample decomposition of R(θ, λ;B). The main obstacle in such a decomposition
are the quantities |B∩I |, which depend on the entire mini-batch. We overcome this by first noting that
|B∩I | =

∑
i∈I

∑
k H

(t)
i,k , leading to the following per-sample regularizer estimator at point x ∈ D:

R̂(θ, λ;H,x) =

J∑
j=1

λj

((∑
I∈Ij

∑
k1∈K

αj,I,k1 1[x∈B∩I ]∑
i∈I

∑
k2∈K

H
(t)
i,k2

σ(h(θ;x))k1

)
− γj

)
,

and thus the overall per-sample gradient is given by,

∇θℓ(θ;x)
r|D| +

∑J
j=1

∑
I∈Ij

∑
k1∈[K]

λj αj,I,k1
1[x∈B∩I ]∑

i∈I

∑
k2∈[K]

H
(t)
i,k2

∇θ[σ(h(θ;x))k1 ]. (10)

Then, since H depends on the mini-batch B, we use instead its differentially private version Ĥ. Note that
the normalizing term 1

r|D| is necessary to correctly implement clipping in Line 8 of Algorithm 1.

Remark 3. For specific constraints, the estimation of |B∩I | can be further refined. For example, when each
Ij is itself a partition of [Q], the sensitivity of

∑
i

∑
k2

H
(t)
i,k2

is at most 1, and adding Laplace noise directly
results in a tighter estimate of |B∩I |.

With this per-sample decomposition, we can apply standard DP-SGD techniques: clipping per-sample
gradients, averaging them over the mini-batch, and adding Gaussian noise to preserve privacy.
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4.3 Privately Computing the Constraint Dual Gradient
For each constraint Γj and corresponding slack parameter γj , the gradient of the Lagrangian w.r.t λ is:

∇λL(θ(t), λ(t))j = Γj(θ
(t);B(t))− γj , (11)

The dual update in RaCO-DP thus requires evaluating rate constraints on the current mini-batch B(t), incurring
a privacy cost. To avoid this additional cost, we introduce a post-processing function Γpost

j : RQ×K 7→ R

that operates directly on the private histogram Ĥ(t). This function replaces each sum of model predictions∑
i∈Dq∩B(t) σ(h(θ;xi))k with the corresponding histogram count Ĥ

(t)
q,k:

Γpost
j (Ĥ(t)) =

∑
I∈Ij

∑
k1∈[K]

αj,I,k1

∑
i∈I Ĥ

(t)
i,k1∑

i∈I

∑
k2∈[K] Ĥ

(t)
i,k2

. (12)

Since Ĥ(t) is already differentially private, the post-processing property of DP ensures that this computation
requires no additional privacy budget.

Remark 4. As standard in private optimization, the mini-batches B(t) are constructed through Poisson
sampling (each datapoint is independently included with probability r). This allows us to leverage privacy am-
plification by subsampling [37, 5] for both the Laplace mechanism used in histogram computation (Section 4.1)
and the Gaussian mechanism used for the per-sample gradient (Section 4.2).

RaCO-DP’s efficiency relies on a private histogram H(t) which enables both per-sample gradient computation
and private constraint evaluation, key for handling rate constraints with DP guarantees. One has the following
privacy guarantees for Algorithm 1, which follow from composing the (subsampled) Laplace and Gaussian
mechanisms over the T iterations.

Theorem 4.1. Let b ≥ 2max
{

1
ϵ ,

r
√

T log(T/δ)

ϵ

}
and σ ≥ 10max

{C log(T/δ)
r|D|ϵ , C

√
T log(T/δ)
|D|ϵ

}
, then Algorithm 1

is (ϵ, δ)-DP.

The proof is in Appendix B. We present this result primarily for to provide intuition about parameter scaling.
In our experiments, we use a tighter privacy accountant that improves both constants and logarithmic factors.
Additionally, in our convergence analysis, we offer a more detailed examination when the Lagrangian is
Lipschitz and the algorithm is run without clipping.

5 Convergence and Utility Analysis
Consider the function defined as Φ(θ) = maxλ∈Λ {L(θ, λ)}. Ideally, one would want to show that Algorithm 1
approximately minimizes Φ. However, due to the fact that Φ may be non-convex, finding an approximate
minimizer is intractable in general. In fact, because the constraint functions, {Γj}, may be non-convex in θ,
if Λ = (R+)J then even finding a point where Φ is finite may be intractable. As such, we must make two
standard concessions. First, we will assume Λ is a compact convex set of bounded diameter. Intuitively, this
bounds the penalty applied when the constraints are not satisfied. Further, instead of guaranteeing that
Algorithm 1 finds an approximate minimizer of Φ, we will show the algorithm finds an approximate stationary
point. We note that stationarity is a standard convergence measure in non-convex optimization, and provide
more discussion in Appendix D.1. Our subsequent analysis in fact provides for a slightly stronger, but more
technical, notion of stationarity than we provide here; see Appendix D.6 for more details.

Definition 5.1. ((α, ν)-stationary point) A point θ is an (α, ν)-stationary point if ∃θ′ s.t. ∥θ − θ′∥ ≤ ν and
minv∈∂Φ(θ′) ∥v∥ ≤ α, with ∂Φ the subdifferential of Φ.

When the loss is Lipschitz and smooth, SGDA converges to an approximate stationary point of Φ [41].
Unfortunately, Algorithm 1 may have biased gradients, and the scale of noise present in ĝθ and ĝλ may
vary dramatically depending on d and J . Thus, our main goal in this section is two-fold. First, we aim to
formally show that despite using biased gradients, Algorithm 1 provably finds an approximate stationary
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point. Specifically, when the error in the primal updates (w.r.t. ∥ · ∥2) is at most τθ and the error in the
dual updates is at most τλ (w.r.t. ∥ · ∥∞), we show SGDA on a nonconvex-linear loss finds a stationary point
roughly with α = O(

√
1+τθ
T 1/4 + τθ +

√
τλ + 1√

T
); see Appendix D.6. Second, we characterize the impact of the

noise in ĝθ and ĝλ added due to privacy. This involves correctly balancing the number of iterations T with
the scale of noise needed to ensure privacy, which increases with T . This leads to the following result for
Algorithm 1 run without clipping.

Theorem 5.2 (Informal). Let n = minq∈[Q] {|Dq|}. Assume h(θ;x) and ℓ(θ) are both Lipschitz and smooth.
Then, under appropriate choices of parameters, Algorithm 1 is (ϵ, δ)-DP and with probability at least 1− ρ
there exists t ∈ [T ] s.t. θt is an (α, α)-stationary point of Φ with,

α =O

((√d log(JKn
ρ

) log(n
δ
)

nϵ

) 1
3
+

K
1
4
√

log(n
δ
) log

1
4 (JKn

ρ
)

(nϵ)1/4

)
,

up to dependence on problem constants. We provide a complete statement and full proof in Appendix D.2. In
Appendix D.7, we derive Lipschitz and smoothness constants for L from those of the classifier.

There are several key steps involved in achieving this result. First, we provide a general convergence proof
for SGDA under the assumption that gradients have bounded error (Theorem D.5). Notably, in contrast to
previous analyses, this result 1) allows for biased gradients; 2) depends on the ℓ∞ error in the dual gradient
estimate (rather than the ℓ2 error); and 3) achieves faster convergence (in terms of T ) by leveraging the linear
structure of the dual. To point (3), our analysis shows SGDA in this setting can converge as fast as 1

T 1/4

instead of 1
T 1/6 (shown by [41]), essentially matching the rate observed in comparable minimization (rather

than min-max) settings. See Theorem D.5 for this specific result. The next step in proving Theorem 5.2 is to
control the error of the gradient estimates while balancing the noise necessary for privacy. We show that this

error scales proportional to Õ
(√

dT
nϵ + 1√

n

)
in the primal and Õ

(√
KT log J

nϵ +
√

log J
nϵ

)
in the dual. We defer

the reader to Lemma D.4 in Appendix D for a more detailed accounting of this error.
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Figure 2: (Left) Disparity-Error trade-off curves of DP fair training algorithms on Adult under
demographic parity constraints. RaCO-DP Pareto dominates the SOTA method (DP-FERMI), closing the
optimality gap with non-private (SGDA). (Right) RaCO-DP vs. Non-Private SGDA on ACSEmployment
with 18 constraints, showing that RaCO-DP adapts to multiple sensitive groups.

6 Experimental Results
To demonstrate RaCO-DP’s versatility, we evaluate it on two constraint types: demographic parity (using
four standard fairness benchmarks: Adult [10], Credit-Card [58], Parkinsons [42], and Folkstables [19])
and false negative rate (FNR) constraints (using Adult and heart [3]). Dataset descriptions and prediction
task details are deferred to Appendix E.1.
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Baselines. For demographic parity, RaCO-DP is benchmarked against three competing approaches: DP-
FERMI [43], the framework of Tran, Dinh, and Fioretto [53], and the method of Jagielski et al. [35]. We
report the results of these competing approaches as reported in Lowy, Gupta, and Razaviyayn [43] and
adopt a similar setup for our algorithm to make the results comparable (see below). For FNR constraints
(Appendix A.2), as we are unaware of prior work addressing these under DP, we employ non-private SGDA
as a reference point to quantify DP’s impact.

Experimental setup. We evaluate all algorithms for ε ∈ {1, 3, 9}, and δ = 10−5., using logistic regression
models, consistent with prior work. For all datasets, train-test splits are 75%− 25%. Unlike Lowy, Gupta,
and Razaviyayn [43]’s setup, we reserve 15% of the training set for validation. As in prior work, we do
not account for privacy loss from hyperparameter tuning [48]. Complete training setup details, including
hyperparameter tuning, are in Appendix E.2.
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Figure 3: Satisfiability on Adult.
Trade-off between test error and
constraint violation for different
target values γ (dashed lines), av-
eraged over 20 runs. RaCO-DP
achieves demographic parity con-
straint satisfaction.

We use the numerical accountant from Doroshenko et al. [20] to track
privacy loss during training. Based on hyperparameters affecting privacy
(σ, b, and B) and for each privacy budget (ε, δ), we determine maximum
training steps T ensuring total privacy loss stays within the specified
budget. Recent work by Lebeda et al. [40] and Chua et al. [14] shows
that the common use of shuffled fixed-size mini-batches can violate
guarantees from privacy accountants, which assume Poisson sampling.
Therefore, we use Poisson sampling for the mini-batches.

Fairness results. The results in Figure 2 prove that RaCO-DP achieves
superior performance compared to all other methods, providing SOTA
results for the privacy-utility-fairness tradeoff, approaching the accuracy
of non-private SGDA on the Adult dataset, with additional results
in Appendix E.3.

Computational Performance. We benchmark the average wall-
time per step for SGD, DP-SGD, RaCO-DP, and DP-FERMI using their
public code [31]). On identical hardware, RaCO-DP trains three orders
of magnitude faster than DP-FERMI on Adult, see Appendix E.5.

Constraint satisfaction. The results in Figure 3 demonstrate that RaCO-DP consistently achieves the pre-
specified constraint values γ as measured by the hard rate constraints. This marks a significant improvement
over existing approaches, which typically rely on indirect hyperparameter tuning to influence constraint
satisfaction. Our direct constraint optimization approach through the Lagrangian formulation is simpler
for practitioners and provides reliable performance. Additionally, these results show that tempered-sigmoid
temperature τ = 1 is sufficient to enforce hard-constraints.

FNR results. As shown in Figure 5 of Appendix E, under FNR constraints, we nearly match non-private
SGDA for the regime where γ > 0.1. The regularizer requires large gradients for γ < 0.1, but the clipping
norm C imposes a limit that limits its effectiveness, as discussed below. In Appendix E we also showcase the
performance of RaCO-DP on heart., a medical classification dataset.

Limitations. Koloskova, Hendrikx, and Stich [38] show that gradient clipping biases SGD, persisting even
with vanishing step sizes. In our setting, this bias can push convergence outside the feasible set, making the
clipping norm C a critical hyperparameter.To demonstrate this is a general clipping issue rather than specific
to RaCO-DP, we examine a strict FNR = 0 constraint in logistic regression on Adult, without DP noise (σ = 0,
b =∞). As shown in Figure 6 of Appendix E, using a clipping norm below 12.5 makes RaCO-DP fail to meet
the constraint, though less restrictive constraints allow smaller norms. Another limitation is the usage of
soft constraints for the dual update. Hard constraints can be used in practice for the update step, although
this departs from the theoretical guarantees offered by RaCO-DP. However, as shown in Appendix E.4 this
modification offers limited utility benefits.
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7 Related Work
To the best of our knowledge, private learning under general rate constraints has not been explored in prior
work, except in the specific case of group fairness constraints. Accordingly, we review related work at the
intersection of differential privacy and fairness, a key application area where early research has identified
fundamental trade-offs between these two objectives [17].

Existing work can be grouped into three main categories. A first line of research [4, 25, 51, 53, 39, 24, 54,
44] examines how privacy mechanisms can inadvertently harm fairness. For instance, Esipova et al. [24]
characterizes the disparate impact of DP-SGD due to gradient misalignment caused by clipping. The second
line of work focuses on protecting the privacy of sensitive attributes used to enforce fairness constraints [35,
46, 55]. Unlike standard DP, which protects the entire dataset, privacy for sensitive attributes requires
injecting less noise, leading to improved model performance. However, this approach has significant limitations.
Individuals can still be re-identified through their non-sensitive attributes, and if sensitive and non-sensitive
features are correlated, an adversary may still be able to infer sensitive attributes. Due to these vulnerabilities,
such works are not directly comparable to ours.

The third line of work, closest to ours, seeks to jointly enforce DP and group fairness [11, 43]. Berrada et al.
[11] use DP-SGD without fairness mitigation, finding well-generalized models show no major privacy-fairness
trade-off. However, their notion of fairness is error disparity, arguably measuring subpopulation generalization.
Our work shows that while mitigation is needed for demographic parity, appropriate algorithm design can
surmount the fairness-privacy trade-off. Lowy, Gupta, and Razaviyayn [43] propose a proxy objective for
stochastic optimization of group fairness measures. In contrast, RaCO-DP supports a broad range of rate
constraints that can be freely combined, without needing a task-specific objective. Additionally, Lowy,
Gupta, and Razaviyayn [43] assumes Lipschitz continuity of model parameters—a strong assumption we
relax, instead using clipping for bounded gradients. While its theoretical convergence rate is slower, RaCO-DP
offers greater generality, complicating direct comparisons. Notably, Lowy, Gupta, and Razaviyayn [43]
presents results for both sensitive attribute DP and standard DP (Definition 2.1), but their public code and
evaluations focus on the weaker notion. Despite a stronger privacy guarantee, RaCO-DP achieves superior
privacy-fairness trade-offs.

Fairness aside, SGDA has been extensively studied for minimax optimization [47, 33, 41], with Yang et al.
[57] proposing its first DP analogue. Private minmax optimization has been heavily studied recently [12, 60,
7, 8, 29], although work on non-convex losses is limited to [43].

8 Conclusion
We introduced a DP algorithm using private histograms for training rate-constrained models. RaCO-DP
demonstrates strong performance across various datasets and constraint types, often nearing non-private
baselines while meeting privacy and constraint criteria. Our findings suggest that privacy-fairness trade-offs
may be less significant than previously believed. Future work could explore private learning under individual
fairness constraints, which cannot be formulated as rate constraints.
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A Application to Other Rate Constraints

A.1 Fairness Constraints
Fairness in machine learning aims to prevent models from making biased decisions based on sensitive attributes.
We aim to train a classifier under fairness constraints by formulating a constrained optimization problem.
We consider two popular group fairness [6] metrics: demographic parity and equality of odds. All group
fairness measures can be formulated as rate-constraints [15], for individual fairness [23] it is easier to bound
the per-sample contribution and privatize it with clipping and noising in the style of DP-SGD, thus a
rate-constrained solution is not required, hence we focus on group fairness metrics.

Definition A.1 (Demographic Parity). A classifier h(θ; ·) satisfies demographic parity with respect to sensitive
attribute Z ∈ Z = {1, ..., |Z|} if the probability of predicting any class k is independent of Z:

Pr[Ŷ = k | Z = z] = Pr[Ŷ = k], ∀z ∈ Z,∀k ∈ Y,

where Ŷ = h(θ;x) is the predicted label.

In practice, we do not have access to the true probabilities, so it is common to estimate them by empirical
prediction rates Pk. Using a slack parameter γ, this gives:

Pk(D[Z = z]; θ)− Pk(D[Z ̸= z]; θ) ≤ γ ∀z ∈ Z,∀k ∈ Y (13)

Demographic parity thus leads to J = |Z| · |Y| rate constraints of the form specified in Eqn. (6). The global
partition is of size Q = |Z| with elements Dz = D[Z = z], ∀z ∈ Z, and for the constraint corresponding
to elements z ∈ Z and y ∈ Y, we have I = {{z} , [|Z|] \ z}. The associated vector α has α{z},y = 1 and
α{[|Z|]\z},y = −1, with the rest of the components set to 0.

Definition A.2 (Equality of Odds). A classifier h(θ; ·) satisfies equality of odds if the probability of predicting
any class k is conditionally independent of the sensitive attribute Z given the ground truth:

Pr[Ŷ = k | Y = k′, Z = z] = Pr[Y = k′, Ŷ = k, Z = z′], ∀z′, z ∈ Z,∀k, k′ ∈ Y (14)

We note that the original notion of equalized odds is for binary sensitive attribute. For non-binary sensitive
attributes, we can extend equalized odds to equalize rates between all subpopulations (as above), or we can
consider a counter-factual definition of equalized odds:

Pr[Ŷ = k | Y = k′, Z = z] = Pr[Y = k′, Ŷ = k, Z ̸= z], ∀, z ∈ Z,∀k, k′ ∈ Y (15)

In the above formulation, we seek to achieve equal odds for each subpopulation compared to other sub-
populations combined (e.g. white vs. non-white, etc.). It is clear that in the binary sensitive attribute,
the definitions are the same. Our framework can handle either variant by changing the adjusting the local
partitioning (see Section 3) but we adopt the counter-factual definition.

We observe that the only difference between the equality of odds and demographic parity is the additional
conditioning on the ground truth, which we will reflect as the additional predicate Y = k′ in our base rates
to define the following constraint:

Pk(D[Y = k′, Z = z]; θ)− Pk(D[Y = k′, Z = z′]; θ) ≤ γ ∀z ∈ Z,∀k, k′ ∈ Y (16)

Equality of odds leads to J = |Y|2 × |Z| number of constraints. With regards to implementing Eqn. (6), we
can use a global partition with |Y| × |Z| where each element is the subset of D with some fixed ground truth
label k and class z. The constraint for some k ∈ [K] and z ∈ Z then has I which specifies the local partition
{D[Y = k, Z = z], D[Y = k, Z ̸= z]} with the corresponding vector α having a +1 coefficient corresponding
to a prediction rate of D[Y = k′, Z = z].

Many other group fairness constraints exist but they are all reducible to base rate constraints in a similar
manner. Note the similarity between Equations (7) and (16), where the only difference is the additional
conditioning on ground truth labels Y in equality of odds.
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Objective Formula Number of Constraints

Demographic Parity Pk(D[Z = z]; θ)− Pk(D[Z ̸= z]; θ) ≤ γ
∀k ∈ Y (predicted),
∀z ∈ Z (sens.)

Equality of Odds Pk(D[Y = k′, Z = z]; θ)− Pk(D[Y = k′, Z ̸= z]; θ) ≤ γ
∀k, k′ ∈ Y (predicted

and g.t.) ∀z ∈ Z (sens. attr.)
False Negative Rate Pk(D[Y ̸= k]; θ) ≤ γ ∀k ∈ Y (predicted)

Table 1: Rate Constraints. Given a dataset D, Ck(D) is the prediction counts for class k, and Pk(D) =
Ck(D)/|D| is the prediction rate. D[pred] indicates the subset of D where predicate pred is true, e.g.,
D[Y = y, Z = z] is the subset of D with sensitive attribute (sen. attr.) Z = z and ground truth (g.t.) labels
Y = y.

A.2 False Negative Rate
Definition A.3. (False Negative Rate (FNR)) A classifier’s false negative rate (FNR) measures how often it
incorrectly predicts negative for samples that are actually positive. More formally, a classifier satisfies a false
negative rate constraint if

Pk(D[Y ̸= k]; θ) ≤ γ for k ∈ [|Y|] (17)

Assuming the constraint is well-defined, FNR leads J = |Y| rate constraints of the form in Eqn. (6), with the
global partition of size Q = |Y | with elements Dy = D[Y = y], y ∈ Y. For the constraint corresponding to a
fixed y ∈ Y, we have I = {Y/y} with an associated α{Y/y},y = 1.
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B Proof of Theorem 4.1

Theorem B.1. Let σ ≥ 10max
{

C log(T/δ)
r|D|ϵ , C

√
T log(T/δ)
|D|ϵ

}
and b ≥ 2max

{
1
ϵ ,

r
√

T log(T/δ)

ϵ

}
, then Algorithm

1 is (ϵ, δ)-DP.

Proof. The ℓ2-sensitivity of
(∑

x∈B(t) clip(g
(t)
x,θ,

C
r|D| )

)
is clearly at most C

r|D| . Thus the standard guarantees
of the Gaussian mechanism ensures ( 12ϵ1,

1
2δ1)-DP w.r.t. the minibatch, where ϵ1 ≤ min{1, 1

r
√

8T log(1/δ)
} and

δ1 = δ
2T . Similarly, because {D1, ..., DQ} is a partition, the ℓ1-sensitivity of the histogram is at most 1, and

so the guarantees of the Laplace mechanism ensure ( 12ϵ1, 0)-DP w.r.t. to the minibatch. By composition, the
combined mechanism is (ϵ1, δ1)-DP w.r.t. the minibatch. Since this mechanism acts a Poisson subsampled
portion of the dataset and ϵ′ ≤ 1, the privacy w.r.t. the overall dataset is (ϵ2, 1

2δ2) with ϵ2 = rϵ1 ≤ 1√
8T log(1/δ)

and δ2 ≤ rδ
2T . Now applying advanced composition, the overall privacy of Algorithm 1 over T rounds is

(ϵ3, δ3)-DP with ϵ3 ≤
√
8T log(1/δ)ϵ2 ≤ ϵ and δ3 ≤ (T + 1)δ2 ≤ δ.

C Technical Lemmas
Lemma C.1. Let X and Y be sums of kX and kY zero-centered Laplace random variables with scale parameter
b, respectively, and let µX , µY > 0, µx

µy
≤ 1, kX ≤ kY . For any ρ ∈ (0, 1), if µY ≥ 4kY b ln

(
1
2ρ

)
then it holds

that,

P

[∣∣∣∣µX +X

µY + Y
− µX

µY

∣∣∣∣ < 4kY b

µy
ln

(
8

ρ

)]
≥ 1− ρ. (18)

Proof. We have,

P

[∣∣∣∣µX +X

µY + Y
− µX

µY

∣∣∣∣ < ϵ

]
≥ P

[∣∣∣∣ X

µY + Y

∣∣∣∣+ ∣∣∣∣ µXY

µY (µY + Y )

∣∣∣∣ < ϵ, µY + Y >
µY

2

]
(triangle inequality)

≥ P

[∣∣∣∣2XµY

∣∣∣∣+ ∣∣∣∣2µXY

µ2
Y

∣∣∣∣ < ϵ, µY + Y >
µY

2

]
(conditioning on µY + Y >

µY

2
)

≥ P

[∣∣∣∣2XµY

∣∣∣∣ ≤ ϵ

2
,

∣∣∣∣2YµY

∣∣∣∣ < ϵ

2
, µY + Y >

µY

2

]
(using µx ≤ µy )

≥ 1− P
[
|X| ≥ µY ϵ

4

]
− P

[
|Y | ≥ µY ϵ

4

]
− P

[
Y ≤ −µY

2

]
(Negation & Union Bound)

≥ 1− 2 exp(− µY ϵ

4kY b
)− 2 exp(− µY ϵ

4kXb
)− 1

2
exp(− µY

kY b
) (concentration for Laplace R.Vs & Laplace CDF)

≥ 1− 2 exp(− µY ϵ

4kY b
)− 2 exp(− µY ϵ

4kXb
)− 1

2
exp(− µY

kY b
) (kY ≥ kX)

≥ 1− 4 exp(− µY ϵ

4kY b
)− 1

2
exp(− µY

kY b
)

≥ 1− 4 exp(− µY ϵ

4kY b
)− ρ

2

the last inequality uses that µY ≥ 4kY b ln
(

1
2ρ

)
. Now setting ϵ = 4kY b

µy
ln
(

8
ρ

)
yeilds,

P

[∣∣∣∣µX +X

µY + Y
− µX

µY

∣∣∣∣ < 4kY b ln(8/ρ)

µy

]
≥ 1− ρ. (19)
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Lemma C.2 (Error of sampled rates). Let p =
∑

xi∈X xi

|X| with xi ∈ [0, 1] and pr =

∑
xi∈Xq

xi

r|X| where Xr is
obtained by performing Poisson sampling on X with probability r. If |X| r ≥ log(1/ρ) then (up to an order):

P

[
|p− pr| ≤

√
log(1/ρ)

r|X|

]
≥ 1− ρ (20)

Proof. We have,

P [|p− pr| ≤ ϵ]

= P

[∣∣∣∣
∑

Xi∈X Xi

|X|
−
∑

Xi∈X Bern(r)Xi

r |X|

∣∣∣∣ ≤ ϵ

]
(Xr ∼ Poisson(X, r))

= P

[∣∣∣∣∣r ∑
Xi∈X

Xi −
∑

Xi∈X

Bern(r)Xi

∣∣∣∣∣ ≤ ϵr |X|

]

≥ 1− exp

(
− ϵ2r2 |X|2

2
(
Var(

∑
Xi∈X Bern(r)Xi) + ϵr |X| /3

)) (Bernstein Ineq.)

≥ 1− exp

(
− ϵ2r2 |X|
2 (r(1− r) + ϵr/3)

)
(Xi ∈ [0, 1]; Var(Bern(r)) = r(1− r))

≥ 1− exp

(
− ϵ2r |X|
2 (1/4 + ϵ/3)

)
r(1− r) ≤ 1/4

=⇒ ϵ ≥ 2max

{
log(1/ρ)

r|X|
,

√
log(1/ρ)

r|X|

}

≥ 2

√
log(1/ρ)

r|X|
(using the assumption that |X|r ≥ log(1/ρ))

D Missing Details from Section 5

D.1 Additional Background on Stationary Point Definition
For a smooth function f : θ 7→ R, a standard notion of (first order) stationarity would involve bounding the
norm of the gradient. However, for non-smooth functions, this notion does not accurately capture convergence.
For example, if f(θ) = ∥θ∥, a point may be arbitrarily close to the minimum, but still have gradient norm 1.
To address this discrepancy, alternative notions of stationarity for non-smooth functions have been introduced,
such as Definition 5.1. In the example where f(θ) = ∥θ∥, this relaxation allows points which are close to the
cusp at θ = 0, whereas a bound on the gradient norm would allow only the point θ = 0 for any non-trivial
bound on the gradient. In fact, our convergence proof yields a slightly stronger notion of stationarity known as
proximal near stationarity [18]. We elect to present Definition 5.1 as it requires less background information.

D.2 Proof of Theorem 5.2
In this section we will detail the proof of Theorem 5.2 and provide a more precise theorem statement. Before
doing so, we will introduce some important notation.

For any I ⊆ [Q], let DI = ∪
i∈I

Di. Given a subset B ⊂ D, define B∩I = B ∩ ( ∪
i∈I

Di) and recall that Ij and

αj ∈ R|Ij |×K denote the corresponding family of susbets of [Q] and weight vector associated with constraint
Γj . Let n = minq∈[Q] {|Dq|}.

Let ∥Λ∥1 be the ℓ1 diameter of Λ. Let Gℓ and Gh be the ℓ2 Lipschitz constants w.r.t. θ of h and ℓ respectively.
Similarly, let βℓ and βh be the corresponding ℓ2-smoothness constants. We recall the temperature parameter
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of the softmax is denoted as τ . Let c1 = maxj∈[J] ∥αj∥. Note that many rate constraint only compare
two prediction rates, and so c1 is typically at most 2. Define Φ̂(θ) = minθ′

{
Φ(θ′) + β∥θ − θ′∥2

}
and

Φ̂0 = Φ̂(θ0)−minθ

{
Φ̂(θ)

}
and L0 = L(θ0, λ0)−minλ,θ {L(λ, θ)} (see Section D.6 for more details on these

quantities). We can now present the more complete version of convergence result.

Theorem D.1. Assume n ≥ 1
r max{ln

(
2c1JT

ρ

)
, 8Kb

r ln
(

2T
ρ

)
, 8 log(J |D|TK/ρ}. Then, under appropriate

choices of parameters, Algorithm 1 run without clipping is (ϵ, δ)-DP and with probability at least 1− ρ there
exists t ∈ [T ] s.t. θt is an (α, α/[2β])-stationary point of Φ with

α = O

(((
Φ̂0βG

2
)1/4

+
√

βL0 +G

)((√d log(n/δ)√log(JKn/ρ)

nϵ

)1/3
+

K1/4
√

β∥Λ∥1
√

log(n/δ)(log(JKn/ρ))1/4

(nϵ)1/4

))
,

where G = Gℓ + cτGh∥Λ∥1 and β = βℓ + 2cτ ·max
{
Gh

√
J, ∥Λ∥1(2Gh + τβh)

}
Proving this statement will involve several major steps. First, in Section D.4 we derive the necessary noise
levels needed to ensure that Algorithm 1 is private. Second, in Section D.5 we bound the error in the gradients
at each time step. Next, in Section D.6 we give a general convergence rate for SGDA under the condition
that the gradients have bounded error. Finally, we derive the overall Lipschitz and smoothness constants of
L based on the base smoothness and Lipschitz constants in Section D.7. These results are then combined in
Section D.3 to obtain the final result.

In one final remark, we note the following fact will be used in several places.

Lemma D.2. Let n ≥ 4 log(J |D|/ρ) and t ∈ [T ]. With probability at least 1− ρ it holds for every j ∈ [J ]

and I ∈ Ij that |B(t)
∩I | ≥

1
2r|I|n.

Proof. By Lemma C.2 we have for any j ∈ [J ] and I ∈ Ij ,

P
[
r|DI | − |B(t)

∩I | ≥
√
r|DI | log(1/γ)

]
≤ γ.

Thus since |DI | ≥ n ≥ log(J |D|/ρ), it holds with probability at least 1− ρ, for every j ∈ [J ] and I ∈ Ij that
|B∩I | ≥ r|DI | −

√
r|DI | log(1/ρ) ≥ 0.5r|DI | ≥ 0.5r|I|n.

D.3 Proof of Theorem D.1
With the previously established results, we can now verify a setting of parameters which proves the theorem
statement. Specifically, we set,

T = min

{(
nϵ√
d

)4/3

,
nϵ

K

}
, σ =

G
√
T log(T/δ)

nϵ
, b =

r
√

T log(T/δ)

ϵ
.

Note that by Theorem D.3, this ensures that Algorithm 1 is (ϵ, δ)-DP so long as r ≥ 1√
T

.
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Using Lemma D.4 can now instantiate Theorem D.5. For τθ we have,

τλ = O

c1Kb log(JKn/ρ)

rn
+ c1

√√√√ log
(

JKn
ρ

)
rn



= O

c1K
√
T log(T/δ) log(JKn/ρ)

nϵ
+ c1

√√√√ log
(

JKn
ρ

)
rn

 .

Setting τλ as the quantity above, we can write the bound on τθ as,

τθ = O

(
√
dσ
√
log(4T/ρ) +

4Gℓ

√
log(4/ρ)√
r|D|

+
4Gℓ

√
log(4/ρ)√
r|D|

+ |Λ∥1τGhτθ

)

= O

(
G

(√
dT log(T/ρ) log(T/δ)

nϵ
+

√
log(1/ρ)√
r|D|

)
+ ∥Λ∥1τGhτθ

)
.

Now, in the non-trivial regime where τθ ≤ G, Theorem D.5 implies that for r large enough,

α = O


(
Φ̂0β(G

2 + τ2θ )
)1/4

T 1/4
+ τθ +

√
β∥Λ∥1τλ +

√
βL0√
T


= O

(((
Φ̂0βG

2
)1/4

+
√
βL0 +G

)((√d log(T/δ)√log(JKn/ρ)

nϵ

)1/3
+

K1/4
√
β∥Λ∥1

√
log(T/δ)(log(JKn/ρ))1/4

(nϵ)1/4

))
.

D.4 Privacy of Algorithm 1 under Lipschitzness
Theorem D.3. Assume h and ℓ are Gℓ and Gh Lipschitz. Then for some universal constant c and

σ ≥ c(c1∥Λ∥1τGh +Gℓ)max
{

log(T/δ)
rnϵ , C

√
T log(T/δ)

nϵ

}
and b ≥ 2max

{
1
ϵ ,

r
√

T log(T/δ)

ϵ

}
, then Algorithm 1 is

(ϵ, 3δ)-DP.

Proof. First, by Lemma D.2 and the conditions of Theorem D.1, probability at least 1− δ, for every t ∈ [T ],
j ∈ [J ] and I ∈ [I] it holds that |B∩I | ≥ 0.5r|I| · n. Consequently, the concentration of Laplace noise and the
conditions of Theorem D.1 imply

∑
i∈I

∑
k∈[K] Ĥ

(t)
i,k ≥ 0.25rn with probability at least 1− 2δ. Conditional

on this event, the ℓ2-sensitivity of
(∑

x∈B(t) g
(t)
x,θ

)
is at most Gℓ

r|D| +
c1τGh

0.25rn since then,

∥∇R̂(θ, λ;H,x)∥ ≤
J∑

j=1

∑
I∈Ij

∑
k∈K

λjαj,I,k

0.25rn
∥∇θ[στ (h(θ;x))k]∥ ≤

c1∥Λ∥τGh

0.25rn
.

Thus, the scale of Gaussian noise implies that the releasing the primal gradient is ( 12ϵ1,
1
2δ1)-DP w.r.t. the

minibatch, where ϵ1 ≤ min{1, 1

r
√

T log(1/δ)
} and δ1 = δ

T . From here one can follow the same steps as in the

proof of Theorem 4.1 to obtain an overall privacy of (ϵ, δ)-DP conditional on the previously mentioned event
that each B∩I is large. Since this event happens with probability at least 1− 2δ, we obtain a final overall
privacy guarantee of (ϵ, 3δ)-DP.
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D.5 Bounding Gradient Error

Lemma D.4. Let ρ ∈ [0, 1] and t ∈ [T ]. Under the assumptions of Theorem D.1, conditional on θ(t), λ(t), it
holds with probability at least 1− 2ρ that,

∥g(t)θ −∇θL(θ(t), λ(t))∥2 ≤ σ
√

d log(4/ρ) +
4Gℓ

√
log(4/ρ)√
r|D|

+ ∥Λ∥1τGh

(
8c1Kb log(64JKn/ρ)

rn
+ c1

√√√√ log
(

8JKn
ρ

)
rn

)
,

∥g(t)λ −∇λL(θ(t), λ(t))∥∞ ≤
8c1Kb log(64JKn/ρ)

rn
+ c1

√√√√ log
(

8JKn
ρ

)
rn

.

Proof. We will bound each error term separately.

Error of the Dual Gradient. We start with the following bound,

P
[
∥ĝ(t)λ −∇λL(θ(t), λ(t))∥∞ ≥ ϵ

]
= P

max
j


∣∣∣∣∣∣∣
∑
I∈Jj

K∑
k=1

αj,I,kPk(DI)−
∑
I∈Jj

∑
k1∈K

αj,I,k1

∑
i∈I Ĥ

(t)
i,k∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣
 ≥ ϵ



≤
J∑
j

∑
I∈Jj

K∑
k=1

1 [|αj,I,k ̸= 0|]P


∣∣∣∣∣∣∣Pk(DI)−

∑
i∈I Ĥ

(t)
i,k1∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣ ≥
ϵ

c1

 . (21)

We thus have for any ϵ1 + ϵ2 = ϵ that,

P


∣∣∣∣∣∣∣Pk(DI)−

∑
i∈I Ĥ

(t)
i,k1∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣ ≥
ϵ

c1

 ≤ P

|Pk(DI) + Pk(B∩I)|+

∣∣∣∣∣∣∣Pk(B∩I)−
∑

i∈I Ĥ
(t)
i,k1∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣ ≥
ϵ

c1



≤ 1− P

|Pk(DI) + Pk(B∩I)|+

∣∣∣∣∣∣∣Pk(B∩I)−
∑

i∈I Ĥ
(t)
i,k1∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣ ≤
ϵ

c1



≤ 1− P

|Pk(DI) + Pk(B∩I)| ≤
ϵ1
c1

,

∣∣∣∣∣∣∣Pk(B∩I)−
∑

i∈I Ĥ
(t)
i,k1∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣ ≤
ϵ2
c1



≤ P

[
|Pk(DI) + Pk(B∩I)| ≥

ϵ1
c1

]
+ P


∣∣∣∣∣∣∣Pk(B∩I)−

∑
i∈I Ĥ

(t)
i,k1∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣ ≥
ϵ2
c1

 .

We will start by bounding P
[∣∣∣Pk(B∩I)−

∑
i∈I Ĥ

(t)
i,k∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣ ≥ ϵ1
c1

]
for any fixed I and k. Observe that conditional

on |B∩I |, the sampling process is equivalent to drawing |B∩I | samples uniformly at random from |DI | without
replacement. Therefore by Lemma C.1 we have,

P

∣∣∣Pk(B∩I)−
∑

i∈I Ĥ
(t)
i,k∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣ ≥ 4K|I|b log(16JKn/ρ)

|B∩I |

∣∣∣∣∣|B∩I |

 ≤ ρ

4JKn
.
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Now by Lemma D.2, P
[
|B∩I| ≤ r

2 |I|n
]
≤ ρ

4JKn , and so,

P

∣∣∣Pk(B∩I)−
∑

i∈I Ĥ
(t)
i,k∑

i∈I

∑
k2∈K

Ĥ
(t)
i,k2

∣∣∣ ≥ 8Kb log(16JKn/ρ)

rn

 ≤ ρ

2JKn
.

Thus it suffices to have ϵ1 = 8c1b log(16JKn/ρ)
rn .

Looking now at the statistical error term and applying Lemma C.2 we obtain:

P

|Pk(B∩I)− Pk(DI)| ≥

√√√√ log
(

2JKn
ρ

)
r|DI |

 ≤ ρ

2JKn
. (22)

Observing that

√
log( 2JKn

ρ )
r|DI | ≤

√
log( 2JKn

ρ )
rn , one can see it suffices for ϵ2 = c1

√
log( 2JKn

ρ )
rn .

Plugging ϵ = ϵ1 + ϵ2 back into Eqn. (21) we obtain

P

∥ĝ(t)λ −∇λL(θ(t), λ(t))∥∞ ≥
8c1b log(16JKn/ρ)

rn
+ c1

√√√√ log
(

2JKn
ρ

)
rn


≤

J∑
j

∑
I∈Jj

K∑
k=1

1 [|αj,I,k ̸= 0|] ρ

JKn
≤ ρ.

This proves the claim.

Error in Primal Gradient. First observe that

∥ĝθ −∇θL(θ(t), λ(t))∥ ≤ ∥Z(t)∥+
∥∥∥∇θℓ(θ

(t))− 1

r|D|
∑

x∈B(t)

∇θℓ(θ
(t);x)

∥∥∥
+
∥∥∥∇θR(θ(t), λ(t))−

∑
x∈B(t)

R̂(θ(t), λ(t); Ĥ, x)
∥∥∥

For ĝθ ∈ Rd, using the concentration of Gaussian noise we obtain,

P [∥Z(t)∥ ≥ σ
√
d log(4/ρ)] ≤ ρ

4
.

For the second term, by Bernstein’s inequality we have

P

∥∥∥∥∥∥
 ∑

i∈B(t)

∇θℓ(θ, λ;xi)

− r|D|∇θℓ(θt, λt)

∥∥∥∥∥∥ ≥ α

 ≤ exp

(
− α2/2

αGℓ/3 + |D|G2
ℓ max {r, 1/2}

)
.

Thus with probability at least 1− ρ
4 one has that,∥∥∥∥∥∥

 1

r|D|
∑

i∈B(t)

∇θℓ(θ, λ, xi)

−∇θℓ(θt, λt)

∥∥∥∥∥∥ ≤ 4max

{
Gℓ

√
log(4/ρ)√
r|D|

,
Gℓ log(4/ρ)

r|D|

}
.
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And so if r|D| ≥ log(4/ρ) we have with probability at least 1− ρ/4 that,∥∥∥∇θℓ(θ
(t))− 1

r|D|
∑

x∈B(t)

∇θℓ(θ
(t);x)

∥∥∥ ≤ 4Gℓ

√
log(4/ρ)√
r|D|

.

For the regularizer we have,∥∥∥∇θR(θ(t), λ(t))−
∑

x∈B(t)

R̂(θ(t), λ(t); Ĥ, x)
∥∥∥

≤

∥∥∥∥∥∥∥∥
∑
x∈D

J∑
j=1

∑
I∈Ij

∑
k1∈[K]

λj αj,I,k1 1[x∈DI ]∑
i∈I

∑
k2∈[K]

H
(t)
i,k2

∇θ[στ (h(θ;x))k1 ]−
∑
x∈D

J∑
j=1

∑
I∈Ij

∑
k1∈[K]

λj αj,I,k1 1[x∈B∩I ]∑
i∈I

∑
k2∈[K]

Ĥ
(t)
i,k2

∇θ[στ (h(θ;x))k1 ]

∥∥∥∥∥∥∥∥
≤

∣∣∣∣∣∣∣∣
∑
x∈D

J∑
j=1

∑
I∈Ij

∑
k1∈[K]

λj αj,I,k1 1[x∈DI ]∑
i∈I

∑
k2∈[K]

H
(t)
i,k2

−
∑
x∈D

J∑
j=1

∑
I∈Ij

∑
k1∈[K]

λj αj,I,k1 1[x∈B∩I ]∑
i∈I

∑
k2∈[K]

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣∣ τGh

≤

∣∣∣∣∣∣∣∣
J∑

j=1

λj

∑
I∈Ij

∑
k1∈[K]

αj,I,k1

 |DI |∑
i∈I

∑
k2∈[K]

H
(t)
i,k2

− |B∩I |∑
i∈I

∑
k2∈[K]

Ĥ
(t)
i,k2


∣∣∣∣∣∣∣∣ τGh

≤

 J∑
j=1

λj

∣∣∣∣∣∣∣∣
∑
I∈Ij

∑
k1∈[K]

αj,I,k1 |DI |∑
i∈I

∑
k2∈[K]

H
(t)
i,k2

−
∑
I∈Ij

∑
k1∈[K]

αj,I,k1 |B∩I |∑
i∈I

∑
k2∈[K]

Ĥ
(t)
i,k2

∣∣∣∣∣∣∣∣
 τGh

The term inside the absolute value can be bounded using the same analysis used in bounding the dual gradient
error. Thus we have with probability at least 1− ρ

4 that,

∥∥∥∇θR(θ(t), λ(t))−
∑

x∈B(t)

R̂(θ(t), λ(t); Ĥ, x)
∥∥∥ ≤ ∥Λ∥1τGh

8c1Kb log(64JKn/ρ)

rn
+ c1

√√√√ log
(

8JKn
ρ

)
rn

 .

Combining the above bounds yields the claimed bound on the primal gradient error.

D.6 Convergence of SGDA
The overall structure of our convergence proof is similar to that of [41], but with several significant modifications.
Most significantly, our proof explicitly leverages the linear structure of the dual to improve the convergence
rate for our application. This linear structure also allows our analysis to depend on an ∥ · ∥∞ bound on the
gradient error when Λ has bounded ∥ · ∥1 diameter. This in contrast to previously existing analysis which
depend on the ∥ · ∥2 error of the dual gradient, which could be much worse in our case due to the noise added
for privacy. Separately, our analysis also differs from [41] in that it accounts for potential bias in the gradient
estimates and tracks the disparate impact the scale of noise in gθ and gλ may have on the convergence rate.

In order to present our proof, we start with some necessary preliminaries. Let Φ(θ) = maxλ∈Λ {L(θ, λ)}. Let
Φ̂ denote the Moreau envelope of Φ with parameter 2β. That is, Φ̂(θ) = minθ′

{
Φ(θ′) + β∥θ − θ′∥2

}
. Let

∆(t) = Φ(θ(t))−L(θ(t), λ(t)) for all t ∈ {0, ..., T}. Further, we define λ∗(θ) = argmaxλ∈Λ {L(θ, λ)}. We denote
the proximal operator of a function f as proxf (θ) = argminθ

{
f(θ′) + 1

2∥θ − θ′∥2
}
. It is known that under the

condition that f is β-smooth and Λ is bounded, that Φ̂ is differentiable with ∇Φ̂(θ) = 2β(θ − proxΦ/[2β](θ)),
and that any point θ for which which ∥∇Φ̂(θ)∥ ≤ α is an (α, α/[2/β])-stationary point with respect to
Definition 5.1; see Lin, Jin, and Jordan [41, Lemma 3.8]. Also, under these conditions, Φ is G-Lipschitz. We
defer the reader towards [41] for more details on these statements.
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We present the following statement, which gives a convergence rate for Algorithm 1 in terms of the amount
of noise added.

Theorem D.5. Define Φ̂0 = Φ̂(θ0) −minθ

{
Φ̂(θ)

}
and L0 = L(θ0, λ0) −minλ,θ {L(λ, θ)}. Assume L(·, ·)

is β-smooth, L(·, λ) is G-Lipschitz for all λ ∈ Λ, and L(θ, ·) is linear for all θ ∈ Rd. Conditional on the
event that for all t ∈ {0, ..., T − 1}, ∥gθ,t −∇θL(θ(t), λ(t))∥2 ≤ τθ and ∥g(t)λ −∇λL(θ(t), λ(t))∥∞ ≤ τλ, when

Algorithm 1 is run with ηλ ≥
(

ηθG(G+τθ)
τλ

)
and ηθ =

√
Φ̂0

2Tβ(G2+τ2
θ )

there exists t ∈ {0, ..., T − 1} such that θt
is an (α, α/[2β])-stationary point with

α = O


(
Φ̂0β(G

2 + τ2θ )
)1/4

T 1/4
+ τθ +

√
β∥Λ∥1τλ +

√
βL0√
T

 .

We will prove this statement by showing that Algorithm 1 finds a point where the gradient of Φ̂ is small.
Note this is sufficient as Lin, Jin, and Jordan [41, Lemma 3.8] implies that a point, θ, for which ∥∇Φ̂(θ)∥ ≤ α
is an (α, α/[2β])-stationary point with respect to Definition 5.1.

We will break the majority of the proof into three distinct lemmas. The first lemma gives a bound on the
decrease in Φ̂.

Lemma D.6. Under the assumptions of Theorem D.5, the iterates of Algorithm 1 satisfy for any t ∈ [T − 1],

Φ̂(θ(t))− Φ̂(θ(t−1)) ≤ −ηθ
4
∥∇Φ̂(θ(t−1))∥2 + 2βηθ∆

(t−1) + 2βη2θ(G
2 + τ2θ ) + 2ηθτ

2
θ . (23)

Proof. Let θ̂(t−1) = proxΦ̂(θ
(t−1)). By the definition of the Moreau envelope we have

Φ̂(θ(t)) ≤ Φ(θ̂(t−1)) + β∥θ̂(t−1) + θ(t)∥2. (24)

Using the update rule we have

∥θ̂(t−1) − θ(t)∥2 = ∥θ̂(t−1) − θ(t−1) + ηθg
(t−1)
θ ∥2

= ∥θ̂(t−1) − θ(t−1)∥2 + 2ηθ

〈
θ̂(t−1) − θ(t−1), g

(t−1)
θ

〉
+ η2θ∥g

(t−1)
θ ∥2

≤ ∥θ̂(t−1) − θ(t−1)∥2 + 2ηθ

〈
θ̂(t−1) − θ(t−1),∇θL(θ(t−1), λ(t−1))

〉
+ 2ηθ

〈
θ̂(t−1) − θ(t−1), g

(t−1)
θ −∇θL(θ(t−1), λ(t−1))

〉
+ 2η2θ(G

2 + τ2θ )

Plugging this back into Eqn. (24) and using the definition of the Moreau envelope we obtain,

Φ̂(θ(t)) ≤ Φ̂(θ̂(t−1)) + 2βηθ

〈
θ̂(t−1) − θ(t−1),∇θL(θ(t−1), λ(t−1))

〉
+ 2βηθ

〈
θ̂(t−1) − θ(t−1), g

(t−1)
θ −∇θL(θ(t−1), λ(t−1))

〉
+ 2βη2θ(G

2 + τ2θ ) (25)

By way of bounding the third term on the RHS above, we use Young’s inequality to derive,

2βηθ
〈
θ̂(t−1) − θ(t−1), g

(t−1)
θ −∇θL(θ(t−1), λ(t−1))

〉
≤ β2ηθ

2
∥θ̂(t−1) − θ(t−1)∥2 + 2ηθ∥g(t−1)

θ −∇θL(θ(t−1), λ(t−1))∥2.

23



Plugging this into the above, we now have the following derivation,

Φ̂(θ(t))− Φ̂(θ̂(t−1))

≤ 2βηθ
〈
θ̂(t−1) − θ(t−1),∇θL(θ(t−1), λ(t−1))

〉
+

β2ηθ
2
∥θ̂(t−1) − θ(t−1)∥2 + 2βη2

θ(G
2 + τ2

θ ) + 2ηθτ
2
θ

(i)

≤ 2βηθ

(
L(θ̂(t−1), λ(t−1))− L(θ(t−1), λ(t−1)) +

3β

4
∥θ̂(t−1) − θ(t−1)∥2

)
+ 2βη2

θ(G
2 + τ2

θ ) + 2ηθτ
2
θ

≤ 2βηθ

(
Φ(θ̂(t−1))− L(θ(t−1), λ(t−1)) +

3β

4
∥θ̂(t−1) − θ(t−1)∥2

)
+ 2βη2

θ(G
2 + τ2

θ ) + 2ηθτ
2
θ

= 2βηθ

(
Φ(θ̂(t−1)) + Φ(θ(t−1))− Φ(θ(t−1))− L(θ(t−1), λ(t−1)) +

3β

4
∥θ̂(t−1) − θ(t−1)∥2

)
+ 2βη2

θ(G
2 + τ2

θ ) + 2ηθτ
2
θ

(ii)

≤ 2βηθ

(
−β∥θ̂(t−1) − θ(t−1)∥2 +∆(t−1) +

3β

4
∥θ̂(t−1) − θ(t−1)∥2

)
+ 2βη2

θ(G
2 + τ2

θ ) + 2ηθτ
2
θ

= −ηθβ
2

2
∥θ̂(t−1) − θ(t−1)∥2 + 2βηθ∆

(t−1) + 2βη2
θ(G

2 + τ2
θ ) + 2ηθτ

2
θ

(iii)
= −ηθ

2
∥∇Φ̂((θ(t−1))∥2 + 2βηθ∆

(t−1) + 2βη2
θ(G

2 + τ2
θ ) + 2ηθτ

2
θ

Above, (i) uses the fact that θ̂(t−1) is generated by the proximal operator. Inequality (ii) uses the fact the
definitions of the Moreau envelope and ∆(t−1), i.e. ∥θ̂(t−1) − θ(t−1)∥2 = 1

4β2 ∥∇Φ̂(θ(t−1))∥2. Equality (iii)
uses properties of the Moreau envelope.

The next two lemmas pertain to bounding the ∆(t) terms.

Lemma D.7. Under the conditions of Theorem D.5, for any t ∈ [T ] and s ≤ t− 1 one has,

∆(t−1) ≤ ηθG(G+ τθ)(2t− 2s− 1) +
1

2ηλ
(∥λ∗(θ(s))− λ(t−1)∥2 − ∥λ∗(θ(s))− λ(t)∥2) + 2∥Λ∥1τλ

+ [L(θ(t), λ(t))− L(θ(t−1), λ(t−1))]. (26)

Proof. Let s ≤ t− 1. By adding and subtracting terms we have

∆(t−1) = [L(θ(t−1), λ∗(θ(t−1)))− L(θ(t−1), λ∗(θ(s)))] + [L(θ(t), λ(t))− L(θ(t−1), λ(t−1))]

+ [L(θ(t−1), λ(t))− L(θ(t), λ(t))] + [L(θ(t−1), λ∗(θ(s)))− L(θ(t−1), λ(t)))]

≤ [L(θ(t−1), λ∗(θ(t−1)))− L(θ(t−1), λ∗(θ(t−1))] + [L(θ(t−1), λ∗(θ(s))− L(θ(t−1), λ∗(θ(s)))]

+ [L(θ(t), λ(t))− L(θ(t−1), λ(t−1))] + [L(θ(t−1), λ(t))− L(θ(t), λ(t))] + [L(θ(t−1), λ∗(θ(s)))− L(θ(t−1), λ(t)))]

≤ G(G+ τθ)[2∥θ(t−1) − θ(s)∥+ ∥θ(t−1) − θ(t)∥] + [L(θ(t), λ(t))− L(θ(t−1), λ(t−1))]

+ [L(θ(t−1), λ∗(θ(s)))− L(θ(t−1), λ(t)))]

≤ ηθG(G+ τθ)(2t− 2s− 1) + [L(θ(t), λ(t))− L(θ(t−1), λ(t−1))] + [L(θ(t−1), λ∗(θ(s)))− L(θ(t−1), λ(t)))].

To complete the lemma, we will bound the loss difference L(θ(t−1), λ∗(θ(s)))−L(θ(t−1), λ(t)). Since L(θ(t−1), ·)
is linear we have,

L(θ(t−1), λ(t−1))− L(θ(t−1), λ(t)) =
〈
λ(t−1) − λ(t),∇λL(θ(t−1), λ(t))

〉
≤
〈
λ(t−1) − λ(t), g

(t)
λ

〉
+
〈
λ(t−1) − λ(t),∇λL(θ(t−1), λ(t))− g

(t)
λ )
〉

≤
〈
λ(t−1) − λ(t), g

(t)
λ

〉
+ ∥λ(t−1) − λ(t)∥1 · ∥∇λL(θ(t−1), λ(t))− g

(t)
λ )∥∞

≤
〈
λ(t−1) − λ(t), g

(t)
λ

〉
+ ∥Λ∥1τλ
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Now a standard analysis using the fact that λ(t−1) + g
(t)
λ is projected orthogonaly onto Λ we have

0 ≤ ∥λ(t) − λ(t−1)∥2 ≤ 1

2ηλ
∥λ∗(θ(t−1))− λ(t−1)∥2 − 1

2ηλ
∥λ∗(θ(t−1))− λ(t)∥2 + λ

〈
g
(t)
λ , λ(t) − λ∗

〉
Now by plugging back into the above yields,

L(θ(t−1), λ(t−1))− L(θ(t−1), λ(t))

≤
〈
λ∗(θ(s))− λ(t), g

(t)
λ

〉
+ ∥Λ∥1τλ +

1

2ηλ
∥λ∗(θ(t−1))− λ(t−1)∥2 − 1

2ηλ
∥λ∗(θ(t−1))− λ(t)∥2.

Using concavity we obtain,

L(θ(t−1), λ∗(θ(s)))− L(θ(t−1), λ(t)) ≤
〈
λ∗(θ(s))− λ(t), g

(t)
λ −∇λL(θ(t−1), λ(t))

〉
+ ∥Λ∥1τλ

+
1

2ηλ
∥λ∗(θ(t−1))− λ(t−1)∥2 − 1

2ηλ
∥λ∗(θ(t−1))− λ(t)∥2

≤ 1

2ηλ
∥λ∗(θ(t−1))− λ(t−1)∥2 − 1

2ηλ
∥λ∗(θ(t−1))− λ(t)∥2 + 2∥Λ∥1τλ.

Plugging this back into the starting inequality achieves the claimed bound.

Lemma D.8. Under the conditions of Theorem D.5 it holds that,

1

T

T−1∑
t=0

∆(t) ≤ ∥Λ∥1

√
ηθG(G+ τθ)

ηλ
+ 2∥Λ∥1τλ +

L(θT , λT )− L(θ0, λ0)

T
.

Proof. For any s ∈ [T ] and M ∈ [T ] one has by analyzing the telescoping sum created from Eqn.(26) that

s+M−1∑
t=s

∆(t) ≤ ηθG(G+ τθ)M
2 +

1

2ηλ
(∥λ(s) − λ∗(θ(s))∥2 + ∥λ(s+M) − λ∗(θ(s))∥2) + 2M∥Λ∥1τλ

+ [L(θ(s+M), λ(s+M))− L(θ(s), λ(s))]

≤ ηθG(G+ τθ)M
2 +

1

ηλ
∥Λ∥22 + 2M∥Λ∥1τλ + [L(θ(s+M), λ(s+M))− L(θ(s), λ(s))]

≤ ηθG(G+ τθ)M
2 +

1

ηλ
∥Λ∥21 + 2M∥Λ∥1τλ + [L(θ(s+M), λ(s+M))− L(θ(s), λ(s))].

By applying this inequality over disjoint “blocks” of iterates, of which there are at most T/M , we can use this
to obtain,

1

T

T−1∑
t=0

∆(t) ≤ ηθG(G+ τθ)M +
1

Mηλ
∥Λ∥21 + 2∥Λ∥1τλ +

L0

T
.

We can now set M = ∥Λ∥1√
ηθηλG(G+τθ)

to obtain the desired inequality.

We can now prove the main theorem statement.

25



Proof of Theorem D.5. Recall Φ̂0 = Φ̂(θ0)−minθ

{
Φ̂(θ)

}
and L0 = L(θ0, λ0)−minλ,θ {L(λ, θ)}. Summing

over Eqn. (23) obtains,

Φ̂(θT−1) ≤ Φ̂(θ0) + 2βηθ

(
T−1∑
t=0

∆(t)

)
+ 2T [βη2θ(G

2 + τ2θ ) + ηθτ
2
θ ]−

ηθ
4

(
T−1∑
t=0

∥∇Φ̂(θ(t))∥2
)
.

Which implies for any M ∈ [T ],

1

T

(
T−1∑
t=0

∥∇Φ̂(θ(t))∥2
)
≤ 4Φ̂0

ηθT
+

8β

T

(
T−1∑
t=0

∆(t)

)
+ 4βηθ(G

2 + τ2θ ) + 4τ2θ

(i)

≤ 4Φ̂0

ηθT
+ 8βηθ(G

2 + τ2θ ) + 4τ2θ

+ 8β∥Λ∥1

√
ηθG(G+ τθ)

ηλ
+ 8β∥Λ∥1τλ +

8βL0

T
.

Inequality (i) above uses Eqn. (26). Setting ηλ ≥
(

ηθG(G+τθ)
τλ

)
yields,

1

T

(
T−1∑
t=0

∥∇Φ̂(θ(t))∥2
)
≤ 4Φ̂0

ηθT
+ 8βηθ(G

2 + τ2θ ) + 4τ2θ + 16β∥Λ∥1τλ +
8βL0

T
.

Setting ηθ =
√

Φ̂0

2Tβ(G2+τ2
θ )

yields,

1

T

(
T−1∑
t=0

∥∇Φ̂(θ(t))∥2
)
≤

16
√
Φ̂0β(G2 + τ2θ )√

T
+ 4τ2θ + 16β∥Λ∥1τλ +

16βL0

T
.

Finally, this implies the claimed convergence.

1

T

(
T−1∑
t=0

∥∇Φ̂(θ(t))∥

)
= O


(
Φ̂0β(G

2 + τ2θ )
)1/4

T 1/4
+ τθ +

√
β∥Λ∥1τλ +

√
βL0√
T

 .

D.7 Regularity Properties of Lagrangian
We will use the following standard fact about composing Lipschitz and/or smooth functions.

Lemma D.9. Let h : Rd 7→ Rk be Gh-Lipschitz and βh-smooth and g : Rk 7→ R be Gg-Lipschitz and βg-smooth.
Then g ◦ h is (GhGg)-Lipschitz and (Ghβg +G2

gβh)-smooth.

Proof. Let Jh(θ) denote the Jacobian of h at θ. Since h is Gh Lipschitz, the spectral norm of the Jacobian
is at most Gh, ∥Jh(θ)∥2 ≤ Gh. Observe ∇θg(h(θ)) = ∇g(h(θ))⊤Jh(θ). Thus ∥∇θg(h(θ))∥ ≤ ∥∇g(h(θ))∥ ·
∥Jh(θ)∥2 ≤ GgGh.

For the second part of the claim, observe that,

∥∇θg(h(θ))−∇θg(h(θ
′))∥ ≤ ∥∇g(h(θ))Jh(θ)−∇g(h(θ′))Jh(θ

′)∥
= ∥[∇g(h(θ))−∇g(h(θ′))]Jh(θ

′) +∇g(h(θ))[Jh(θ)− Jh(θ
′)]∥

≤ (G2
hβg +Ggβh)∥θ − θ′∥.
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In the following, we assume the predictor h is Gh-Lipschitz and βh-smooth with respect to h, and similarly
for ℓ with parameters Gℓ and βℓ. Our aim is to derive regularity parameters for the Lagrangian given these
base parameters. Note that the function which outputs one coordinate the tempered soft max is τ -Lipschitz
and τ -smooth.

Lemma D.10. Let Λ ⊂ (R+)K×Q be a bounded set of diameter at most ∥Λ∥1 w.r.t. ∥ · ∥1. Assume
for any j ∈ [J ] that the vector α associated with rate constraint j satisfies ∥α∥1 ≤ c1 for some constant
c. Then L(·, λ) is G-Lipschitz with G = Gℓ + cτGh∥Λ∥1 for any λ ∈ Λ and L is β-smooth with β =

βℓ + 2cτ ·max
{
Gh

√
J, ∥Λ∥1(2Gh + τβh)

}
.

Before presenting the proof, we note that Gℓ and βℓ could also be further decomposed using the Lips-
chitz/smoothness constants of ℓ and h via Lemma D.9. However, as these parameters are not affected by our
approach in the way the regularity parameters of the regularizer are, we omit these more specific details.

Proof. Let for I ⊆ [Q] let DI = ∪q∈IDq. To establish Lipschitzness w.r.t. θ, we have for any θ, λ that

∥∇θL(θ, λ)∥ ≤ ∥∇θℓ(θ)∥+
J∑

j=1

λj

∑
I∈Jj

K∑
k

αj,I,k

∥∥∥∇θPk(DI ; θ)
∥∥∥
2

≤ Gℓ + ∥λ∥1c1 · max
S⊆D,k∈[K]

{∥∇θPk(S; θ)∥}

Note that for any S ⊆ D and k ∈ [K] that ∥∇θPk(S; θ, τ)∥ = ∥ 1
|S|
∑

x∈S ∇θ[στ (h(θ;x))k]∥ ≤ τGh. Plugging
this into the above achieved the claimed Lipschitz parameter.

To prove L is smooth, we have for any θ, θ′ ∈ Rd and λ, λ′ ∈ Λ,

∥∇L(θ, λ)−∇L(θ′, λ′)∥2 ≤ 2∥∇L(θ, λ)−∇L(θ, λ′)∥2 + 2∥∇L(θ, λ′)−∇L(θ′, λ′)∥2

= 2∥∇θL(θ, λ)−∇θL(θ, λ′)∥2 + 2∥∇λL(θ, λ)−∇λL(θ, λ′)∥2

+ 2∥∇θL(θ, λ′)−∇θL(θ′, λ′)∥2 + 2∥∇λL(θ, λ′)−∇λL(θ′, λ′)∥2.
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Bounding each term we have,

∥∇θL(θ, λ)−∇θL(θ, λ′)∥ ≤

∥∥∥∥∥∥
J∑

j=1

(λj − λ′
j)
∑
I∈Jj

K∑
k

αj,I,k∇θPk(DI ; θ)

∥∥∥∥∥∥
2

≤ c1τGh∥λ− λ′∥1
≤ c1τGh

√
J∥λ− λ′∥2.

∥∇λL(θ, λ)−∇λL(θ, λ′)∥ = 0.

∥∇θL(θ, λ′)−∇θL(θ′, λ′)∥ ≤ ∥∇θℓ(θ)−∇θℓ(θ
′)∥+

∥∥∥∥∥∥
J∑

j=1

λ′
j

∑
I∈Jj

K∑
k

αj,I,k(∇θPk(DI ; θ)−∇θPk(DI ; θ
′))

∥∥∥∥∥∥
2

(i)

≤ βℓ∥θ − θ′∥+ ∥Λ∥1c1(Ghτ + τ2βh)∥θ − θ′∥
≤ (βℓ + c1∥Λ∥1τ(Gh + τβh))∥θ − θ′∥

∥∇λL(θ, λ′)−∇λL(θ′, λ′)∥ ≤
∥∥∥ J∑

j=1

λ′
j

∑
I∈Jj

K∑
k=1

αj,q,k (Pk(h(θ;x)− Pk(h(θ
′;x)))

∥∥∥
(ii)

≤ c1τ∥Λ∥1Gh∥θ − θ′∥

Above, in (i) we have used the fact that Pk is the composition of a Gh-Lipschitz and βh-smooth function with
a τ -Lipschitz and τ -smooth function, resulting in a (Ghτ + τ2β)-smooth function. Similarly, in (ii), we have
used the fact that Pk is the composition of two Lipschitz functions, resulting in another Lipschitz function.

Ultimately we obtain that ∥∇L(θ, λ)−∇L(θ′, λ′)∥2 is bounded by,

max
{
(c1τGh

√
J)2, [βℓ + ∥Λ∥1c1(Ghτ + τ2βh)]

2 + [c1τ∥Λ∥1Gh]
2
}
(∥θ − θ′∥2 + ∥λ− λ∥2).

This implies that f is β-smooth with β = βℓ + 2c1τ ·max
{
Gh

√
J, ∥Λ∥1(2Gh + τβh)

}
.

E Additional Experimental Details

E.1 Dataset and Pre-Processing Details
We evaluate RaCO-DP on tabular fairness and privacy benchmark datasets from [43], namely, Adult [10],
German Credit Card [34], and Parkinsons [42]. The classification task for Credit Card and Parkinsons is
“whether the user will default payment the next month”, and “whether the total UPDRS score of the patient
is greater than the median or not,” respectively. For Adult, the task is “whether the individual will make
more than $50K.” In all tasks, the sensitive attribute is gender.

To evaluate on more diverse subgroups, we also evaluate RaCO-DP on folkstables which is the 2018 yearly
American Community Survey. We use the python package ‘folktables‘ [19] to download and process the
data for the Alabama (“AL”) state in the US. We choose a “5”-year horizon and choose survey option to be
‘person.‘ We adopt the experimental setup of Lowy, Gupta, and Razaviyayn [43] (including classification task,
pre-processing, etc.) and report the baselines results directly from the official repository [31].

We also present results on the Heart Disease Health Indicators dataset [3] (21 risk factors).
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Dataset SGD DP-SGD RaCO-DP DP-FERMI

Adult 0.018± 0.001 ms 0.037± 0.001 ms 0.064± 0.010 ms 85± 10 ms
CreditCard 0.020± 0.005 ms 0.035± 0.004 ms 0.055± 0.003 ms 88± 14 ms

Table 2: Computational overhead comparison in terms of wall-time clock.

E.2 Hyperparameter Tuning
Our hyperparameter selection process follows a two-phase approach. In the first phase, we run a hyperparame-
ter search over predefined ranges: Gaussian noise variance σ ∈ [3, 6], Laplace parameter b ∈ [0.1, 0.5], learning
rates ηθ, ηλ ∈ [10−4, 0.1], mini-batch size B ∈ [256, 1256], and softmax temperature τ ∈ [1, 10]. We constrain
the dual variables λ to be non-negative by setting the projection set Λ = (R+)J . For each configuration,
we target a specific constraint value γ and evaluate performance across five different seeds, selecting the
hyperparameters that achieve the best validation accuracy while satisfying the constraint. In the second
phase, we use the best hyperparameters identified through 200 optimization runs to train 20 new models. We
report test accuracy and constraint satisfaction for each model based on the checkpoint that achieved the
highest validation accuracy while satisfying the constraints on the train set.

E.3 Regularization-Privacy-Accuracy Trade-offs
Demographic Parity. In Figure 4 we demonstrate the trade-off curve comparisons with the baseline
methods (as discussed in Section 6) for the Credit-Card and Parkinsons datasets. As with adult., RaCO-DP
closes the optimality gap with non-private models on these datasets, Pareto dominating the baselines.

False negative Rates. In Figure 5 we show the versatility of our framework beyond fairness mitigation
by training models with performance constraints on false negative rate (1-recall). High recall (low FNR) is
critical in medical contexts; XGBoost reaches 90% accuracy but has a 90% FNR. Non-private SGDA lowers
FNR to 58% at 87.5% accuracy, and DP-RaCO nearly matches it at 60% FNR with the same accuracy,
see Figure 5b.

E.4 Hard vs. Soft constraints
Figure 7 compares soft and hard constraints for the dual update. Notably, the soft constraint (with tuned
softmax temperature τ) achieves similar performance compared to its hard constraint counterpart (solid dots)
for most target values while maintaining similar levels of constraint satisfaction. This suggests that using soft
constraints for the dual update does not significantly impact utility or constraint enforcement.

E.5 Compute Performance
We provide a computational comparison between methods in Table 2, where we report the mean time of
computing an SGD step, compared to a DP-SGD step and a RaCO-DP step on a 8 core CPU machine on
Adult and Credit-Card on a batch size of 512. For reference, we also report the mean time of a DP-FERMI
step using the publicly-available implementation.

RaCO-DP is 3 orders of magnitude faster to train than DP-FERMI on the same machine. Our
algorithm builds on DP-SGD with the only additional overhead being computing the dual updates, which
scales linearly in the number of constraints.

We note that our method’s extra cost over standard DP-SGD is computing the dual update, which, if
implemented naively, scales linearly in the number of constraints Q, implying Q extra backward passes to
compute the gradients in the worst case. However, in practice, we can compute the gradient only for the
active constraints (λ(i) > 0), which can significantly reducing the computational costs.
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Figure 4: Demographic Parity Constraint
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Figure 6: False Negative Rate-Constrained Classification on Adult. We show how the clipping norm
C plays a critical role in satisfying a pessimistic constraint (γ = 0), even without noise related to differential
privacy (σ = 0, b =∞).
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E.6 Impact of the clipping norm
Figure 6 shows how the clipping threshold C affects RaCO-DP when we enforce a pessimistic constraint of
FNR < 0 on the Adult dataset, in a non-private setting (σ = 0, b = ∞). With a small clipping norm
(C ≤ 2) the empirical FNR violation is still above 0.6, confirming that the bias introduced by clipping alone
can drive the iterates far outside the feasible set. As the threshold increases, this bias shrinks rapidly; once
C ≥ 12.5, the FNR aligns with the target (red line), and the constraint is consistently satisfied.

These results demonstrate that an obstacle to satisfying the chosen constraints for our RaCO-DP is the bias
from clipping and not the DP noise. Therefore, we stress that tuning C is an important aspect when applying
RaCO-DP in practice.

F Broader Impact
An important takeaway from our work is that privacy and robustness criteria (such as the absence of
performance disparities for underrepresented groups) are not inherently at odds with each other. This
realization calls into question the practice of broadening the concept of privacy-utility trade-offs to include
trade-offs with other robustness criteria. In high-risk decision-making systems that require both privacy and
robustness, the responsibility for achieving such robustness falls on the beneficiaries of automated decision-
making systems (governments and private institutions), as well as algorithm designers. These stakeholders
must take care not to mistakenly attribute a lack of robustness to privacy mitigations, or a lack of privacy to
robustness requirements.

Our work contributes to the existing literature in algorithmic fairness and privacy, and as such, adopts and
further formalizes their computational interpretations of these human values. It is important to note that
these interpretations, while useful in the contexts we have explored, are by no means collectively exhaustive.
Specifically, the use of our algorithm does not ensure privacy in the broad sense, but rather in the limited
sense of differential privacy, which protects the privacy of individuals whose data has been collected for
training. Given the technical complexities of correctly implementing differential privacy, inappropriate tuning
of model parameters or use outside its intended context can lead to a false sense of privacy—and, worse, may
be exploited for privacy-washing by malicious actors in charge.
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