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Abstract

Most classical and post-quantum cryptographic assumptions, including integer factorization, discrete logarithms, and
Learning with Errors (LWE), rely on algebraic structures such as rings or vector spaces. While mathematically powerful,
these structures can be exploited by quantum algorithms or advanced algebraic attacks, raising a pressing need for
structure-free alternatives. To address this gap, we introduce the Symbolic Path Inversion Problem (SPIP), a new
computational hardness assumption based on symbolic trajectories generated by contractive affine maps with bounded
noise over Z2. Unlike traditional systems, SPIP is inherently non-algebraic and relies on chaotic symbolic evolution and
rounding-induced non-injectivity to render inversion computationally infeasible. We prove that SPIP is PSPACE-hard
and #P-hard, and demonstrate through empirical simulation that even short symbolic sequences (e.g., n = 3, m = 2)
can produce over 500 valid trajectories for a single endpoint, with exponential growth reaching 2256 paths for moderate
parameters. A quantum security analysis further shows that Grover-style search offers no practical advantage due
to oracle ambiguity and verification instability. These results position SPIP as a viable foundation for post-quantum
cryptography that avoids the vulnerabilities of algebraic symmetry while offering scalability, unpredictability, and
resistance to both classical and quantum inversion.

Keywords: Post-quantum cryptography, Symbolic dynamics, One-way functions, Structure-free cryptography, Chaotic
maps. Fractal trajectories

1 Introduction

Modern public-key cryptography relies heavily on algebraic
hardness assumptions, including problems such as integer fac-
torization, discrete logarithms, and lattice-based constructions
like Learning with Errors (LWE). These assumptions enable
powerful reductions and efficient implementations, but they
also possess mathematical regularity, rings, fields, and struc-
tured polynomials that may ultimately be exploited by advanced
algebraic or quantum algorithms.

The emergence of quantum computing has raised concerns about
the long-term viability of such structured assumptions. Shor’s
algorithm, in particular, renders RSA and ECC insecure by
solving their core problems in polynomial time [1]. While
lattice-based systems currently offer promising post-quantum
resilience, they remain embedded within algebraic frameworks
that could, in principle, be compromised by future quantum
advances or novel cryptanalytic techniques [2]–[4].

These challenges motivate a fundamental question: Can we con-
struct cryptographic hardness assumptions that do not depend
on algebraic structures at all? This paper proposes an affirma-
tive answer, introducing a new class of hardness assumptions
grounded in the dynamics of symbolic chaos. Specifically, we
investigate whether the inversion of symbolic paths, generated
by contractive affine transformations with bounded noise and
discrete rounding, can serve as a foundation for a fundamentally
different form of computational hardness, distinct from classical
algebraic paradigms.

This work does not emerge in isolation, but builds upon a prior
mathematical investigation of chaotic systems in the form of
Random Nonlinear Iterated Function Systems (RNIFS) [5]. That
foundational study rigorously analyzes the properties of sym-
bolic trajectories, bounded noise, and fractal attractors in dis-
crete chaotic maps. It demonstrates how noise-induced per-
turbations and rounding operations create combinatorial ambi-
guity and symbolic unpredictability, leading to complex, non-
invertible systems. In this paper, we leverage those mathe-
matical insights to define the Symbolic Path Inversion Prob-
lem (SPIP) as a cryptographic hardness assumption. Together,
these works form a coherent research thread aimed at exploring
structure-free, chaos-based approaches to post-quantum cryp-
tography.

Our objective here is not to design a full cryptographic scheme,
but rather to define and justify a standalone computational as-
sumption: that inverting symbolic chaotic trajectories is infeasi-
ble for any efficient algorithm. We formally define the symbolic
transformation model, analyze its combinatorial and dynam-
ical properties, and establish hardness results via reductions
from well-known complexity theoretic problems. This theo-
retical foundation is intended to support future research into
cryptographic primitives rooted in symbolic dynamics, offering
a fundamentally different hardness landscape for the quantum
era.

1.1 Positioning SPIP
The SPIP proposed in this paper is intended as a novel com-
putational hardness assumption, conceptually parallel to foun-
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dational problems such as integer factorization (used in RSA)
[6], the discrete logarithm problem (used in ECC) [7], the LWE
problem [8], [9], and multivariate polynomial systems (e.g.,
HFE, Rainbow) [10], [11].

Whereas these traditional assumptions are rooted in algebraic
structures such as finite fields, polynomial rings, or vector
spaces, SPIP is built on symbolic dynamics over the integer
lattice Z2. This difference becomes particularly significant in
the post-quantum setting, where many known quantum algo-
rithms, such as Shor’s, depend on algebraic regularity to achieve
speed-ups.

SPIP instead aligns with a growing class of cryptographic ap-
proaches that draw hardness from combinatorial explosion,
chaotic evolution, and symbolic unpredictability. To the best of
our knowledge, this is the first formalization of SPIP as a cryp-
tographic assumption, marking a new direction in post-quantum
design based on symbolic complexity rather than algebraic struc-
ture.

Conceptual Primer: Symbolic Dynamics and SPIP

Symbolic Dynamics: A mathematical framework
where the state of a system evolves through discrete
symbols (e.g., integers or letters), rather than real-valued
equations. In SPIP, each symbol represents an affine
transformation applied to a point in the grid.
Affine Transformation: A function of the form T (x) =
Ax+b, where A is a matrix and b is a vector. It maps
points to new positions by rotating, scaling, and shifting
them.
Contractive Map: A transformation that brings points
closer together. This ensures trajectories don’t diverge
uncontrollably, but rather cluster.
Rounding (Floor Function): After applying a transfor-
mation, we round the output to the nearest integer point
in Z2. This introduces symbolic ambiguity.
Noise (δ ): A small random vector added to each trans-
formation step, making the system non-deterministic
and amplifying path diversity.
Symbolic Path: A sequence of points {x0,x1, ...,xn}
generated by applying transformations according to a
symbolic code (e.g., σ = (1,2,1)).
SPIP: The challenge of recovering any valid symbolic
path from the start and end points is the basis for our
proposed cryptographic hardness assumption.

2 Mathematical Preliminaries

We begin by formalizing the symbolic dynamical model that
underlies our hardness assumption. The system is defined over
the two-dimensional integer lattice Z2 and evolves through a dis-
crete sequence of contractive affine transformations, perturbed
by bounded random noise. Each transformation step produces
a symbolic trajectory point, forming a path whose inversion
constitutes the core cryptographic challenge.

To more precisely characterize the evolution of symbolic trajec-
tories, we refine the model by constraining the transformation
sequence T = {Ti}n−1

i=0 to be selected from a finite collection
of contractive affine maps, denoted T = {T (1),T (2), ...,T (m)}.
Each T ( j)(x) = ⌊A( j)x+b( j)+δ⌋ is defined by a fixed contrac-
tive matrix A( j) and translation vector b( j), where ∥A( j)∥2 < 1

and b( j) ∈ R2.

The specific transformation Ti applied at step i is determined by
a symbolic code σi ∈ Σ = {1,2, ...,m}, so that:

Ti := T (σi)

This symbolic sequence σ = (σ0, ...,σn−1) ∈ Σn defines the
transformation path, analogous to a control code in Iterated
Function Systems (IFS) or symbolic subshifts. The evolution of
the trajectory thus follows:

xi+1 = T (σi)(xi) = ⌊A(σi)xi +b(σi)+δi⌋

This refinement enables structured modeling of the transforma-
tion process and aligns SPIP with well-established paradigms
in symbolic dynamics. It also ensures sufficient entropy and
branching complexity by allowing m > 1 symbolic options per
step, increasing the combinatorial diversity of feasible paths.

2.1 Contractive Affine Maps over Z2

Let T = {Ti}n−1
i=0 be a finite sequence of affine transformations

acting on Z2, where each map Ti is defined as:

Ti(x) = ⌊Aix+bi +δi⌋

With:

• Ai ∈ R2×2 is a contractive matrix: ∥Ai∥2 < 1.
• bi ∈ R2 is a deterministic translation vector.
• δi ∈ [−ε,ε]2 is a bounded noise vector, sampled indepen-

dently for each i.
• ⌊·⌋ denotes component-wise floor rounding to the nearest

integer coordinate in Z2.

Contractiveness ensures that small variations in the input am-
plify over time into symbolic divergence, while rounding and
noise introduce nonlinearity and symbolic ambiguity.

Given the finite transformation set T = {T (1),T (2), ...,T (m)}
as introduced above, we define a symbolic alphabet Σ =
{1,2, ...,m} representing the indices of available transforma-
tions. Each symbolic trajectory can therefore be described not
only in terms of its state-space path P = {x0,x1, ...,xn}, but
also via its associated symbolic code:

σ = (σ0,σ1, ...,σn−1) ∈ Σ
n

where Ti := T (σi) at step i. This symbolic code serves as a
discrete encoding of the transformation sequence that governs
the trajectory evolution.

Furthermore, while the SPIP model relies on contractive affine
maps of the form T (x) = ⌊Ax + b + δ⌋, this local use of
affine structure does not contradict our broader claim of being
"structure-free" in the cryptographic sense. In traditional cryp-
tography, hardness assumptions often derive from well-behaved
algebraic objects such as groups, rings, or fields, structures that
possess closure, associativity, and invertibility, and are thus
amenable to symbolic manipulations or quantum algorithms
exploiting hidden symmetries (e.g., Shor’s or index calculus
methods).

In contrast, SPIP’s use of affine transformations is severely
disrupted by two critical mechanisms: (1) bounded random
noise δ ∈ [−ε,ε]2, and (2) nonlinear discretization via the floor
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function. These mechanisms introduce non-differentiability,
state-space discontinuities, and path non-uniqueness, which
together obliterate the algebraic tractability of the underlying
affine maps.

More precisely, even though A and b are linearly defined, the
overall transformation x 7→ ⌊Ax+ b+ δ⌋ is not injective, not
continuous, and not reversible, and its composition over multiple
steps amplifies symbolic ambiguity exponentially. Therefore,
the resulting symbolic trajectory space does not admit algebraic
reductions or structured analysis, rendering SPIP fundamentally
non-algebraic in its global behavior, even if affine primitives are
used locally.

This distinction aligns with the goal of constructing post-
quantum assumptions that resist algebraic exploitation, the pres-
ence of localized linear components does not imply that the
system as a whole exhibits algebraic structure exploitable by
adversaries.

2.2 Symbolic Trajectories
Given an initial point x0 ∈ Z2, the symbolic trajectory P of
length n is defined recursively by:

xi+1 = Ti(xi) = ⌊Aixi +bi +δi⌋

for i = 0,1, . . . ,n− 1. The resulting path P = {x0,x1, ...,xn}
evolves deterministically concerning the transformations and
the sampled noise.

Each xi can be seen as a symbol in a trajectory over the space
Z2, and the entire path represents a discrete symbolic encoding
of a chaotic process. The symbolic growth is highly sensitive to
the initial condition x0 and to perturbations introduced at each
step.

2.3 Noise Distribution and Entropy Source
The noise vectors δi are assumed to be drawn from a bounded,
uniform distribution:

δi ∼ U ([−ε,ε]2)

for some small fixed ε > 0.

The noise serves two purposes:

• It breaks determinism and injects entropy into the symbolic
path, increasing the difficulty of inversion.

• It ensures that multiple symbolic paths may lead to the
same endpoint xn, amplifying combinatorial ambiguity.

The combination of contractiveness, rounding, and bounded
noise results in a trajectory space with exponential growth in the
number of valid symbolic paths a key element in establishing
the hardness of the inversion problem in subsequent sections.

3 Symbolic Path Inversion Problem

We now formalize the core inversion problem associated with
symbolic chaotic trajectories. This inversion task constitutes the
basis for our proposed hardness assumption and serves as the
central computational challenge in this paper.

3.1 Problem Definition
Let T = {Ti}n−1

i=0 be a fixed sequence of contractive affine trans-
formations as described in Section 2, and let x0 ∈ Z2 be the

initial point of a symbolic trajectory of length n. The symbolic
path evolves according to:

xi+1 = Ti(xi) = ⌊Aixi +bi +δi⌋ for i = 0,1, . . . ,n−1

Let xn be the endpoint of the trajectory. The inversion problem
is defined as follows:

Definition 1 (SPIP). Given the initial and final points x0,xn ∈
Z2, the transformation sequence T , and the trajectory length
n, find any valid symbolic path P = {x0,x1, . . . ,xn} consistent
with the transformation rules and noise bounds.

This formulation abstracts away any cryptographic hashing or
encoding layers. Our goal is to evaluate the inherent difficulty
of reconstructing a valid symbolic trajectory from its endpoints
and transformation sequence alone.

3.2 Problem Characteristics
The SPIP exhibits several key properties that contribute to its
inversion hardness:

Due to the symbolic rounding and bounded noise introduced
at each step, the number of valid intermediate states xi grows
combinatorially with n. Even under fixed transformations T ,
the symbolic ambiguity induced by δi and discretization leads
to an exponentially large set of feasible trajectories. This yields
a path space of size Ω(mn) for some constant m > 1, which
precludes exhaustive enumeration for moderate n.

Distinct trajectories may converge to the same endpoint xn, a
phenomenon we refer to as symbolic overlap. This many-to-
one mapping arises from the rounding and perturbation noise,
rendering the inversion problem non-injective. In particular,
there may exist exponentially many valid trajectories mapping
(x0,T )→ xn.

Importantly, the difficulty of SPIP does not depend on cryp-
tographic hashing. The hardness is intrinsic to the symbolic
dynamics: recovering even a single valid trajectory from x0,
xn, and T requires navigating a non-deterministic transforma-
tion space whose symbolic ambiguity and path collisions make
deterministic reconstruction computationally infeasible.

These characteristics, taken together, motivate our forthcom-
ing formalization of the SPIP Hardness Assumption as a non-
algebraic foundation for post-quantum cryptography.

3.3 Illustrative Numerical Example
To concretely demonstrate the practical difficulty of inverting
symbolic trajectories in SPIP, we present a simplified numerical
example with minimal parameters. This example highlights
how even short symbolic paths with limited transformations
and small noise can produce significant ambiguity, rendering
inversion computationally infeasible.

Setup: We consider the following configuration:

• Initial point: x0 = (0,0)
• Number of steps: n = 3
• Transformation count: m = 2
• Noise bound: ε = 0.5
• Contractive matrix: A = 0.5 · I2

• Transformations:

T (1)(x) = ⌊Ax+(1,0)+δ⌋

T (2)(x) = ⌊Ax+(0,1)+δ⌋
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The total number of symbolic sequences of length n = 3 from
m = 2 transformations is:

|Σ3|= mn = 23 = 8

Each symbolic sequence σ = (σ0,σ1,σ2) represents a differ-
ent control path over the transformation set. For each σ , the
bounded noise δi ∈ [−0.5,0.5]2 introduces variability in the
trajectory outcome due to rounding.

Let us estimate the number of distinct outcomes from a single
transformation. Assume the perturbed region Ax+b+δ spans
a square of width 1 in R2. The number of integer lattice points
covered by this region, after applying ⌊·⌋, can be up to 4 distinct
integer outputs per transformation (as floor can land on 2 values
per coordinate).

Thus, the effective branching factor per step is at least:

k ≥ 4

This leads to a lower bound on the total number of distinct
possible trajectories of:

|W3| ≥ (m · k)n = (2 ·4)3 = 83 = 512

So, even with only 2 transformations and 3 steps, there can be
at least 512 valid symbolic trajectories, many of which may
collide at the same endpoint x3.

Assume a randomly chosen symbolic sequence σ = (1,2,1) and
sampled noise vectors:

δ1 = (0.3,−0.4), δ2 = (−0.2,0.2), δ3 = (0.1,0.4)

We compute the trajectory:

x1 = ⌊0.5 · (0,0)+(1,0)+(0.3,−0.4)⌋= (1,−1)
x2 = ⌊0.5 · (1,−1)+(0,1)+(−0.2,0.2)⌋= ⌊(0.3,0.7)⌋= (0,0)
x3 = ⌊0.5 · (0,0)+(1,0)+(0.1,0.4)⌋= ⌊(1.1,0.4)⌋= (1,0)

Final output: x3 = (1,0)

An adversary trying to recover the intermediate trajectory from
(x0,x3) and the known transformation set faces:

• |Σ3|= 8 symbolic sequences
• For each, at least 43 = 64 noise-induced discrete paths
• Total symbolic ambiguity: ≥ 8×64 = 512 candidate paths

Many of these 512 paths may lead to the same endpoint x3, due
to rounding and contraction. However, from the final point alone,
the adversary cannot distinguish which symbolic path or noise
realization was taken. Thus, inversion becomes computationally
infeasible, even for this minimal configuration.

4 Complexity Theoretic Analysis

To justify the computational hardness of the SPIP, we now ana-
lyze its complexity from a theoretical standpoint. We establish
its relationship to well-known problems in symbolic dynamics
and formal verification, demonstrating that SPIP is at least as
hard as classic problems in the #P and PSPACE complexity
classes.

4.1 PSPACE-Hardness
We now formally prove that SPIP is PSPACE-hard by reduction
from the Symbolic Reachability problem, which is known to be
PSPACE-complete [12].

Definition 2 (Symbolic Reachability Problem). Given a finite
symbolic transition system Σ = (S,T,s0,st), where:

• S is a finite symbolic state space,
• T ⊆ S×S is a set of transitions,
• s0,st ∈ S are the initial and target states,

decide whether there exists a sequence of transitions s0 → s1 →
·· · → st of length ≤ n such that each (si,si+1) ∈ T .

Theorem 1. The SPIP is PSPACE-hard.

Proof. We reduce from the Symbolic Reachability problem. Let
Σ = (S,T,s0,st) be a symbolic system as defined. We construct
an SPIP instance I such that solving I allows us to solve Σ.

Step 1: Encoding States. For each symbolic state si ∈ S, define
a unique point xi ∈ Z2. This encoding can be achieved by
assigning integer lattice positions using a bijective mapping
φ : S → Z2.

Step 2: Encoding Transitions. For each symbolic transition
(si,s j)∈ T , define a contractive affine transformation T(i, j)(x) =
⌊A(i, j)x+b(i, j)+δ(i, j)⌋, where:

• A(i, j) is a fixed contractive matrix (e.g., 0.5I),
• b(i, j) is chosen such that T(i, j)(φ(si))≈ φ(s j),
• δ(i, j) is bounded noise allowing minor deviation, ensuring

convergence to x j under floor rounding.

Step 3: Constructing Trajectory. Given a path from s0 to st in
Σ, the sequence of symbolic states (s0,s1, . . . ,st) corresponds to
a valid symbolic trajectory (x0,x1, . . . ,xt) in SPIP.

Step 4: Inversion Equivalence. Solving the SPIP instance, i.e.,
recovering a valid path {x0, . . . ,xt} consistent with the affine
maps and noise, allows recovery of the original symbolic path
in Σ. Therefore, solving SPIP solves Symbolic Reachability.

Step 5: Polynomial Reduction. The encoding steps (bijection,
matrix selection, affine setup) are all computable in polynomial
time concerning the size of Σ.

Thus, SPIP is PSPACE-hard under polynomial-time reductions.

4.2 #P-Hardness
We now formally establish that the counting version of SPIP is
#P-hard by reducing from the classical #PATH COUNT problem
[13], [14].

Definition 3 (#PATH COUNT Problem). Given a directed
acyclic graph (DAG) G = (V,E) with distinguished nodes
s, t ∈V , compute the number of distinct paths from s to t.

Theorem 2. The problem of counting valid SPIP trajectories
(SPIP-Count) is #P-hard.

Proof. Let G = (V,E) be an instance of #PATH COUNT. Our
goal is to construct an SPIP instance in which the number of
valid symbolic trajectories from x0 to xn corresponds exactly to
the number of s → t paths in G.
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Step 1: State Encoding. Assign each vertex vi ∈ V a unique
symbolic state xi ∈ Z2 via a bijection φ : V → Z2.

Step 2: Edge Encoding. For each edge (u,v) ∈ E, define a
contractive affine map T(u,v) such that:

T(u,v)(xu) = ⌊Axu +b(u,v)+δ(u,v)⌋ ≈ xv

Where:

• A is a fixed contractive matrix (e.g., 0.5I),
• b(u,v) is chosen so that the unperturbed map lands near xv,

• δ(u,v) is bounded noise (e.g., in [−1,1]2) allowing rounding
to xv.

Step 3: Trajectory Construction. A valid symbolic trajectory
in SPIP corresponds to a valid path in G. Each sequence of
transformations that maps x0 = φ(s) to xn = φ(t) represents a
symbolic realization of a path from s to t.

Step 4: One-to-One Mapping. For each path π = (s → v1 →
·· · → t) in G, there exists a unique (up to bounded noise) sym-
bolic trajectory Pπ in SPIP that applies the corresponding affine
maps.

Step 5: Reduction. Since each valid path in G maps to a distinct
trajectory in SPIP, counting SPIP trajectories from x0 to xn is
equivalent to counting s → t paths in G. The reduction can be
computed in polynomial time.

Hence, SPIP-Count is #P-hard.

4.3 Growth of the Solution Space
These complexity results imply that any polynomial-time inver-
sion algorithm for SPIP would imply breakthroughs in symbolic
reachability and path counting, both long-standing intractable
problems.

In practice, the solution space of SPIP exhibits a rapid combi-
natorial explosion. For example, assume that for each transfor-
mation Ti, the bounded noise δi can cause k distinct rounded
outcomes. Then, the number of possible symbolic trajectories
of length n is at least kn. For modest values of k (e.g., k = 4)
and n = 128, the number of possible paths exceeds 2256, already
infeasible to search or store. This exponential trajectory growth,
combined with symbolic overlap and non-injectivity, reinforces
our position that SPIP constitutes a plausible and practically
hard computational assumption suitable for post-quantum cryp-
tography.

To support the claim of exponential trajectory growth, we now
provide a lower bound analysis based on per-step ambiguity
induced by bounded noise and rounding.

At each step i, the applied transformation is:

xi+1 = ⌊A(σi)xi +b(σi)+δi⌋

Due to bounded noise δi ∈ [−ε,ε]2 and floor rounding, the per-
turbed input region maps to an uncertain discrete neighborhood
in Z2. Let k denote a conservative lower bound on the number
of possible integer lattice outputs (distinct xi+1 values) that can
arise from a single xi under a fixed T ( j) and varying δi:

k := min
x∈Z2, j∈Σ

∣∣∣{⌊A( j)x+b( j)+δ⌋
∣∣∣δ ∈ [−ε,ε]2

}∣∣∣

That is, k quantifies the symbolic branching factor per step due
to noise-induced discretization. Under this model, the number
of distinct symbolic paths of length n is lower bounded by:

|Wn| ≥ kn

This bound holds even when the transformation sequence σ =
(σ0, ...,σn−1) is fixed. When σ itself is variable and sampled
from a symbolic alphabet Σ of size m, the combined path space
expands to:

|Wn| ≥ (k ·m)n

Thus, symbolic path space exhibits exponential growth in n,
stemming from both symbolic control (transformation selec-
tion) and chaotic ambiguity (noise-induced branching). This
formally substantiates the hardness premise of SPIP, as no ef-
ficient algorithm can enumerate or invert exponentially many
ambiguous paths.

4.4 Hardness Assumption

Building on the symbolic model and complexity analysis in-
troduced in previous sections, we now formally state our main
cryptographic assumption. This assumption posits that inverting
symbolic chaotic trajectories, defined by a sequence of affine
transformations with bounded noise, is computationally infeasi-
ble for any probabilistic polynomial, time adversary.

Assumption 1 (Symbolic Path Inversion Hardness (SPIP-H)).
Let T = {Ti}n−1

i=0 be a sequence of contractive affine transfor-
mations on Z2 with bounded perturbation δi ∈ [−ε,ε]2, and let
x0,xn ∈ Z2 be the start and end points of a symbolic trajectory
P = {x0,x1, . . . ,xn}, defined by:

xi+1 = Ti(xi) = ⌊Aixi +bi +δi⌋ for i = 0,1, . . . ,n−1

We assume that no probabilistic polynomial-time (PPT) adver-
sary A , given (x0,xn,T ,n), can recover any valid intermediate
trajectory P ′ such that:

P ′ = {x0,x′1, ...,xn} ∈ Wn(T )

with non-negligible probability in n, where Wn(T ) denotes the
set of all symbolic paths under T .

4.5 Interpretation and Security Implications
The SPIP-H assumption captures the intuition that symbolic
chaotic paths, due to their exponential branching, rounding-
induced non-injectivity, and noise perturbations, are inherently
one-way in nature. This places SPIP-H in the family of hard-
ness assumptions related to inverting structured combinatorial
systems, albeit in a non-algebraic, structure-free setting.

Unlike traditional hardness assumptions based on algebraic
structures (e.g., discrete logs, lattices, multivariate polynomials),
SPIP-H does not rely on any homomorphic property or group-
theoretic symmetry. This makes it naturally resistant to classes
of quantum algorithms that exploit algebraic regularity, such as
Shor’s and certain Grover-optimized search techniques.

SPIP-H serves as a plausible foundation for building one-way
functions, pseudorandom generators, key derivation mecha-
nisms, or even public-key schemes that are entirely structure-
free. In later sections and follow-up work, we outline how
additional layers, such as hash-based masking, can amplify sym-
bolic unpredictability and embed SPIP into real cryptographic
constructions.
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4.6 Quantum Security Considerations

A fundamental motivation behind the SPIP is to construct a
post-quantum hardness assumption that resists quantum adver-
saries not by exploiting algebraic structure, but by avoiding it
altogether. In the following paragraphs, we critically assess
the security of SPIP against quantum algorithms, with a par-
ticular focus on Grover-style unstructured search and hybrid
quantum-classical strategies.

Unlike factoring, discrete logarithms, and lattice-based schemes
which reside in algebraic domains, SPIP does not embed its
structure into groups, rings, or vector spaces. It operates purely
over the symbolic composition of contractive affine maps with
bounded noise and integer rounding. As such, there is no pe-
riodicity, hidden subgroup, or commutative algebra to exploit,
rendering Shor’s algorithm and its variants inapplicable. This
removes the most significant known exponential quantum threat.

Grover’s algorithm can quadratically accelerate brute-force
search in unstructured spaces [15]. In the context of SPIP, a
quantum adversary could, in theory, evaluate candidate symbolic
paths and test whether a given trajectory yields the observed
endpoint xn.

However, several structural barriers limit Grover’s applicability
to SPIP:

• Exponential Search Space: The total number of sym-
bolic trajectories of length n is Ω((m · k)n), where m is the
number of transformations and k the minimum per-step
symbolic branching due to noise. Thus, even with Grover’s
quadratic speedup, the time complexity is Ω(

√
(m · k)n),

which remains exponential in n.
• Non-injective Evaluation: SPIP’s evaluation oracle is not

efficiently reversible. Due to noise-induced overlap, many
trajectories map to the same endpoint xn, and verifying a
candidate trajectory requires simulating stochastic transfor-
mations with bounded perturbation, a process inherently
probabilistic and discretized.

• Oracle Ambiguity: Grover’s algorithm assumes a
Boolean oracle indicating whether a candidate is correct.
For SPIP, even this is ambiguous. Given an endpoint xn,
there may be hundreds of valid symbolic paths leading
to it. Thus, the oracle’s success condition is fuzzy and
non-unique, degrading Grover’s effectiveness.

• Superposition Instability: SPIP evaluation requires floor
functions, discretization, and sampling from continuous
noise. These operations are difficult to model coherently in
a quantum superposition, and no efficient reversible circuit
for SPIP evaluation currently exists. This obstructs the
construction of a Grover-compatible quantum oracle.

Taken together, these characteristics suggest that SPIP behaves
closer to a noisy combinatorial problem than an unstructured
search task, complicating quantum evaluation models.

Furhtermore, SPIP contrasts with lattice-based schemes like
LWE in two key ways: (1) LWE enjoys worst-case hardness
proofs but is still reducible to linear algebraic structure, and
(2) LWE security reductions often rely on hybrid arguments
sensitive to decryption noise magnitude. SPIP, on the other
hand, lacks such algebraic dependence and draws its hardness
from symbolic path explosion, bounded noise, and topological
ambiguity.

While this lack of structure prevents classic reductions, it also
immunizes SPIP against known quantum decompositions. In-
deed, as with certain isogeny-based protocols (e.g., CSIDH),
SPIP’s complexity stems from the difficulty of path enumeration
in highly non-linear, chaotic, and non-commutative systems.

4.7 Parameter Considerations
The hardness and cryptographic utility of SPIP are governed
by three core tunable parameters: path length n, noise bound ε ,
and the size of the symbolic transformation set |Σ|= m. Each
plays a distinct and interdependent role in shaping the sym-
bolic trajectory space Wn, affecting both security guarantees and
implementation costs.

The most direct contributor to hardness is the trajectory length n.
Since the symbolic path space grows approximately as (m · k)n,
where k is the effective branching factor induced by bounded
noise and rounding ambiguity, longer paths yield exponentially
greater inversion difficulty. This growth not only increases
the computational burden on an adversary but also introduces
deeper symbolic collisions and more complex non-injectivity
patterns, key ingredients for post-quantum resistance. However,
increasing n also introduces cost: forward trajectory computa-
tion, storage of intermediate states, and potential communication
overhead in protocol contexts.

The noise parameter ε regulates symbolic branching. When
ε is too small, symbolic ambiguity is limited, and trajectories
become close to deterministic, making them easier to reverse. If
ε becomes too large, the system risks degeneracy trajectory
outputs saturate or lose resolution, diminishing their utility.
There exists a critical range for ε , often problem-dependent,
where symbolic entropy is maximized without collapsing output
variance. Empirically (see Section 5), this range lies roughly
between 0.3 and 0.7, depending on the contraction of the affine
maps.

The number of available affine maps, m, controls the symbolic
alphabet size. A larger m boosts per-step entropy and grows the
path space multiplicatively. However, symbolic freedom (en-
tropy per control bit) tends to decay when m exceeds a threshold,
due to overlapping outputs and map redundancy (see Figure 5).
Thus, while increasing m helps, it must be done with attention to
the geometric separation and contractive behavior of the maps.

The joint effect of n and ε on symbolic space growth is visual-
ized in Figure 1, where the approximate symbolic space size is
shown in base-2 logarithmic scale:

From this surface plot, we observe the following:

• Symbolic space size increases exponentially with n, as
expected.

• Higher ε contributes multiplicatively via the branching
factor k, but its effect saturates near ε = 0.7, consistent
with empirical entropy observations.

• The ridge near the upper-right corner reflects maximal
trajectory ambiguity favorable for one-wayness but chal-
lenging for protocol determinism or symbolic encoding.

In conclusion, these parameters interact non-linearly, and their
tuning determines both theoretical security and practical viabil-
ity. Security grows exponentially in n, modulated by m and ε ,
but stability, efficiency, and symbolic resolution degrade if these
parameters are unbalanced. Therefore, future cryptographic con-
structions based on SPIP must select parameter sets via careful
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Figure 1: Effect of path length n and noise bound ε on symbolic
trajectory space size, assuming fixed m = 10. Growth is estimated as
log2((m · k)n), with k ∼ ⌈ε ·10⌉.

profiling and simulation, possibly incorporating adaptive ranges
or domain-specific calibration.

5 Empirical Simulation

To complement the theoretical complexity analysis of SPIP
presented in Sections 3 and 4, we now turn to an empirical in-
vestigation of symbolic trajectories under controlled parameter
variations. The goal of this simulation study is not to bench-
mark specific cryptographic algorithms, but to probe the internal
structure of the SPIP path space, including entropy growth, end-
point multiplicity, symbolic overlap, and collision patterns, and
validate the assumptions underlying its one-wayness.

We simulate SPIP trajectories across eight experimental configu-
rations, systematically increasing the number of transformation
steps, the size of the symbolic control set, and the magnitude of
the bounded noise. For each configuration, we record symbolic
entropy, the number of unique endpoints, the most frequent end-
point count, symbolic freedom, and average spatial dispersion.
These observables help quantify the trajectory space’s expansion
and ambiguity as a function of system parameters.

The table 1 highlights several empirical phenomena that align
closely with the theoretical model of SPIP:

First, we observe that symbolic entropy increases with trajec-
tory depth, confirming the exponential growth of the trajectory
space Wn outlined in Section 3. However, this growth is not
unbounded, entropy plateaus around 4 bits, suggesting the onset
of symbolic saturation as overlapping trajectories collapse to
shared endpoints.

Second, the number of unique endpoints rises with the number
of steps, but in a sublinear fashion. This confirms the presence
of symbolic collisions and non, injective mappings, which were
formally established through complexity, theoretic reductions
in Section 4.

Third, symbolic freedom, defined as normalized entropy per
symbolic control choice, declines as the number of transfor-

mations increases. This counterintuitive trend underscores a
core insight: adding symbolic options does not always yield
more effective entropy, especially when contraction and noise
induce trajectory convergence. These findings directly reinforce
the SPIP-H assumption, which posits that symbolic inversion
remains hard despite increasing symbolic flexibility.

To deepen this analysis, we now visualize how specific trajectory
properties evolve across the simulated runs. These plots provide
concrete, interpretable evidence of symbolic complexity growth
and support the core cryptographic intuition behind SPIP.

Figure 2: Unique endpoint growth vs. step count.

In Figure 2, we see that the number of unique endpoints initially
increases rapidly with the number of steps, but begins to plateau
after 800–1000 iterations. This saturation behavior, though
empirically derived, aligns with our theoretical expectations
from bounded rounding and contraction, which inevitably funnel
trajectories into a finite symbolic basin.

Figure 3: Entropy vs. average spatial dispersion.

Figure 3 captures a key post-quantum consideration: as sym-
bolic paths disperse more widely, the entropy of their endpoint
distribution increases. The positive trend observed here suggests
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Table 1: Summary of Simulation Results

Experiment Steps Transforms ε Entropy (bits) Unique Endpoints Collisions Most Frequent Count Avg Distance Symbolic Freedom

Run 1 30 2 0.05 2.71 7 7 250 1.54 2.71
Run 2 60 4 0.10 3.23 12 12 254 1.90 1.62
Run 3 120 6 0.25 3.23 15 14 231 2.18 1.25
Run 4 200 8 0.40 3.47 23 16 179 2.60 1.16
Run 5 300 12 0.50 3.57 23 20 186 2.60 1.00
Run 6 500 20 0.60 3.70 24 21 161 2.62 0.86
Run 7 800 30 0.70 3.85 28 25 170 2.80 0.79
Run 8 1200 40 0.80 3.94 29 26 159 2.87 0.74

that symbolic chaos injects real cryptographic unpredictability,
especially for long paths.

Figure 4: Collision count vs. experiment.

Figure 4 shows a monotonic increase in endpoint collisions,
affirming the many-to-one nature of SPIP mappings. This sym-
bolic overlap is critical: it introduces ambiguity that prevents
efficient inversion, not because of cryptographic hiding, but due
to structural chaos.

Figure 5: Symbolic freedom declines with transformation count.

In Figure 5, the decline in symbolic freedom reflects redundancy
in symbolic control. As more transformations are introduced,
the marginal entropy per transformation shrinks, a phenomenon

that further deepens the inversion difficulty by embedding un-
predictability without pattern regularity.

Figure 6: Entropy increases with symbolic depth.

Entropy growth is further confirmed in Figure 6, where sym-
bolic complexity scales with path length, reinforcing SPIP’s
alignment with the one-wayness intuition: the forward process
expands unpredictably, while the backward recovery becomes
infeasible due to entropy dispersion.

Finally, Figure 7 illustrates the dominance of certain symbolic
endpoints. Despite high entropy, a few attractor endpoints per-
sistently capture many trajectories. This imbalance highlights
the inherent symbolic bias in the system a further challenge to
inversion, as it blurs distinguishability between high-probability
and low-probability symbolic codes.

Taken together, these results provide strong empirical support
for the SPIP-H assumption. They validate the presence of sym-
bolic explosion, nonlinear entropy growth, and endpoint am-
biguity under simple, structure-free dynamics hallmarks of a
one-way system in the information theoretic sense.

6 Discussion and Implications

Having established the SPIP-H assumption and its complexity-
theoretic grounding, we now examine its broader implications
for cryptographic theory. We compare SPIP to existing hard-
ness assumptions, explore its potential as a building block for
cryptographic primitives, and outline possible limitations and
open questions.
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Figure 7: Dominance of most frequent endpoint vs. steps.

6.1 Comparison with Classical Approach
SPIP represents a conceptual departure from traditional hardness
assumptions, which typically rely on algebraic structures such
as finite fields or vector spaces as found in RSA, ECC, LWE,
and multivariate cryptography [1], [8], [16]. These structures,
while enabling efficient constructions and formal reductions,
also introduce symmetries that quantum algorithms like Shor’s
can exploit.

In contrast, SPIP derives its hardness from symbolic chaos
over Z2 via contractive affine maps with bounded noise. It
lacks algebraic symmetry entirely there are no groups, rings, or
fields to invert. The complexity stems from exponential path
growth, non-injective mappings, and symbolic ambiguity, not
from solving structured mathematical problems.

This absence of structure makes SPIP naturally resistant to
known quantum attacks, including Shor’s and more subtly
Grover’s, which faces verification ambiguity and oracle insta-
bility in SPIP’s combinatorial landscape. As such, SPIP opens
the door to a distinct design space in post-quantum cryptogra-
phy: one grounded in symbolic complexity rather than algebraic
hardness.

6.2 SPIP as Cryptographic Primitives?
The SPIP assumption naturally lends itself to the construction of
OWF. Given an initial point x0, a sequence of contractive trans-
formations T , and path length n, the final point xn is computed
via forward symbolic evolution:

f (x0) = xn = Tn−1 ◦ · · · ◦T0(x0)

Due to the symbolic ambiguity and exponential trajectory space,
inverting this process i.e., recovering a valid preimage path from
xn, is assumed to be infeasible under the SPIP-H assumption.

Extending SPIP to PRF may require additional assumptions
or hybrid constructions. One potential direction is to intro-
duce secret keys through the initial seed x0 or through a keyed
transformation sequence Tk. Such designs could define keyed
mappings with high entropy, but without formal proofs of un-
predictability or uniform output distribution, these constructions
remain speculative.

6.3 Limitations and Open Questions
Despite its promise, SPIP raises several important challenges
and open questions:

• Side-channel resilience: If an adversary gains partial
knowledge of internal states or noise vectors (e.g., via side-
channel leakage), the inversion hardness could degrade
significantly.

• Entropy quantification: A deeper statistical understand-
ing of symbolic entropy, path overlap, and endpoint dis-
tributions is needed to support claims of randomness and
unpredictability.

• Symbol-to-bit encoding: Translating symbolic trajec-
tories into binary keys or ciphertexts requires encoding
schemes that preserve one-wayness and avoid leakage or
compression artifacts.

• Quantum adversaries: While SPIP lacks algebraic struc-
ture exploitable by current quantum algorithms, a formal
quantum security model (e.g., under QROM) is still needed
to establish robustness.

Nevertheless, SPIP introduces a new cryptographic design
paradigm based on symbolic dynamics and chaotic evolution.
Its structure-free nature offers inherent post-quantum resistance
and invites exploration of entirely new primitives grounded in
combinatorial complexity rather than algebra.

This is Not a Protocol Design Paper

To avoid misinterpretation, we emphasize that this paper does
not present a cryptographic protocol, scheme, or practical instan-
tiation. Instead, it introduces and analyzes a new computational
hardness assumption the SPIP based on the combinatorial and
dynamical complexity of symbolic chaotic walks over Z2.

we rigorously define SPIP, analyze its complexity-theoretic prop-
erties, and argue for its plausibility as a basis for structure-free,
post-quantum cryptography. The paper does not include algo-
rithmic instantiations, encoding mechanisms, implementation
benchmarks, or security proofs for cryptographic constructions.
These are left as future work.

We make this distinction explicit to ensure that the theoretical
scope of this work is not confused with applied cryptographic
engineering.

7 Conclusion and Future Work

This paper proposes a fundamentally new perspective for
post-quantum cryptography, hardness grounded not in al-
gebraic structures, but in the combinatorial and dynamical
complexity of chaotic symbolic systems. Most existing
hardness assumptions in cryptography, such as those based on
integer factorization, discrete logarithms, and lattices rely on
structured algebraic frameworks that are vulnerable to quantum
algorithms exploiting their inherent symmetries. In contrast,
our approach seeks to construct cryptographic hardness from
the unpredictable evolution of symbolic trajectories generated
by contractive affine maps with bounded noise and rounding, a
system inherently resistant to algebraic reductions and quantum
exploitation.

We introduced the SPIP as a concrete formulation of
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this idea. SPIP formalizes the challenge of recovering symbolic
trajectories over Z2 from endpoints, and we proved that it is
both PSPACE-hard and #P-hard. Empirical simulations further
support these theoretical results, demonstrating exponential
growth in trajectory space and significant endpoint collisions,
even for moderate parameters. These findings suggest that
SPIP provides a plausible, structure-free basis for post-quantum
cryptographic constructions.

This work builds directly on our prior study of RNIFS
[5], which established the mathematical properties of symbolic
chaos, such as entropy growth, fractal attractors, and symbolic
ambiguity, in discrete dynamical systems. While the RNIFS
study focused on the mathematical behavior of symbolic
trajectories, the present work extends these insights into
the cryptographic domain by defining SPIP as a hardness
assumption. Together, these works establish a coherent research
trajectory, from foundational mathematical analysis to the
development of new cryptographic paradigms grounded in
symbolic unpredictability.

Looking forward, our research agenda progresses in
stages. The immediate priority is to instantiate SPIP into
practical cryptographic primitives, including one-way functions,
pseudorandom generators, and key derivation schemes.
Building on this, a critical challenge is designing robust
symbolic-to-binary encoding methods to translate chaotic paths
into usable cryptographic keys. Formalizing the security of
SPIP-based primitives under the Quantum Random Oracle
Model (QROM) will be essential for establishing quantum
resistance. Finally, investigating side-channel resilience, such
as the impact of partial leakage or approximation errors, will be
crucial for real-world deployment.
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