
ar
X

iv
:2

50
5.

22
63

8v
1

 [
cs

.C
R

]
 2

8
M

ay
 2

02
5

SimProcess: High Fidelity Simulation of Noisy
ICS Physical Processes

Denis Donadel
denis.donadel@univr.it
University of Verona

Verona, Italy

Gabriele Crestanello
gabriele.crestanello@studenti.unipd.it

University of Padua
Padova, Italy

Giulio Morandini
giulio.morandini@studenti.unipd.it

University of Padua
Padova, Italy

Daniele Antonioli
daniele.antonioli@eurecom.fr

EURECOM
Sophia Antipolis, France

Mauro Conti
mauro.conti@unipd.it
University of Padua

Padova, Italy

Massimo Merro
massimo.merro@univr.it
University of Verona

Verona, Italy

ABSTRACT
Industrial Control Systems (ICS) manage critical infrastructures like
power grids and water treatment plants. Cyberattacks on ICSs can
disrupt operations, causing severe economic, environmental, and
safety issues. For example, undetected pollution in a water plant can
put the lives of thousands at stake. ICS researchers have increasingly
turned to honeypots—decoy systems designed to attract attackers,
study their behaviors, and eventually improve defensive mecha-
nisms. However, existing ICS honeypots struggle to replicate the
ICS physical process, making them susceptible to detection. Accu-
rately simulating the noise in ICS physical processes is challenging
because different factors produce it, including sensor imperfections
and external interferences.

In this paper, we propose SimProcess, a novel framework to rank
the fidelity of ICS simulations by evaluating how closely they re-
semble real-world and noisy physical processes. It measures the
simulation distance from a target system by estimating the noise
distribution with machine learning models like Random Forest. Un-
like existing solutions that require detailed mathematical models
or are limited to simple systems, SimProcess operates with only a
timeseries of measurements from the real system, making it appli-
cable to a broader range of complex dynamic systems. We demon-
strate the framework’s effectiveness through a case study using
real-world power grid data from the EPIC testbed. We compare
the performance of various simulation methods, including static
and generative noise techniques. Our model correctly classifies real
samples with a recall of up to 1.0. It also identifies Gaussian and
Gaussian Mixture as the best distribution to simulate our power
systems, together with a generative solution provided by an au-
toencoder, thereby helping developers to improve honeypot fidelity.
Additionally, we make our code, dataset, and experimental results
publicly available to foster research and collaboration.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPSS ’25, August 25–29, 2025, Hanoi, Vietnam
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1413-9/2025/08. . . $15.00
https://doi.org/10.1145/3709017.3737711

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems.

KEYWORDS
Industrial Control System, Honeypot, Simulation, Physical Process,
Noise, Power Grid, EPIC.
ACM Reference Format:
Denis Donadel, Gabriele Crestanello, Giulio Morandini, Daniele Antonioli,
Mauro Conti, and Massimo Merro. 2025. SimProcess: High Fidelity Simula-
tion of Noisy ICS Physical Processes . In 11th ACM Cyber-Physical System
Security Workshop (CPSS ’25), August 25–29, 2025, Hanoi, Vietnam. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3709017.3737711

1 INTRODUCTION
Industrial Control Systems (ICSs) are crucial for managing and
automating critical infrastructure, including power grids, water
treatment facilities, and manufacturing plants. These systems inte-
grate hardware and software components to monitor and control
physical processes, ensuring efficiency and safety. ICS interact di-
rectly with the physical world, making their security essential to
prevent operational disruptions that could lead to economic losses,
environmental damage, or safety hazards [28].

The importance of ICS security has been highlighted by real-
world attacks. A notable example is Stuxnet [20], a sophisticated
malware that targeted nuclear centrifuges by subtly altering their
behavior while remaining undetected by monitoring systems. Other
attacks followed, demonstrating how adversaries could exploit ICSs
vulnerabilities to manipulate physical processes, causing physical
damage [51]. This made the research community develop security
solutions, such as Machine Learning (ML) based anomaly-detection
systems [24, 40], to identify a wide range of attacks.

Recently, ICS researchers and industries have started to deploy
decoy systems to attract attackers and learn about their behav-
ior, the so-called ICS honeypots. Low-interaction honeypots are
designed to simulate only a limited set of services or behaviors,
typically fooling attackers with minimal interaction to gather data
on their tactics [25, 43]. High-interaction ICS honeypots emulate a
full range of services and behaviors, allowing attackers to engage
deeply with the system.

High interaction honepots can provide comprehensive insights
about attacking methods and motivations, but at the cost of greater

https://orcid.org/0000-0002-7050-9369
https://orcid.org/0009-0006-1518-4465
https://orcid.org/0009-0006-3200-5334
https://orcid.org/0000-0002-9342-3920
https://orcid.org/0000-0002-3612-1934
https://orcid.org/0000-0002-1712-7492
https://doi.org/10.1145/3709017.3737711
https://doi.org/10.1145/3709017.3737711
https://arxiv.org/abs/2505.22638v1

CPSS ’25, August 25–29, 2025, Hanoi, Vietnam Donadel et al.

resource investment and potential risk [30, 31, 61]. Building a high-
interaction honeypot is challenging because it must emulate, among
others, industrial control devices, industrial protocols, sensors, actu-
ators, and the underlying physical process. For example, an attacker
could spot a honeypot by looking at its software details [53].

Motivation. A honeypot developer needs to understand the fi-
delity that their honeypot can achieve. Fidelity can be increased
in every component of the decoy system. For instance, industrial
device functionalities can be emulated through high-level computer
software, or their firmware can be fully emulated to expose the
correct architectures and all the bugs specific to it [27]. Another
important step toward a realistic honeypot is related to the physical
process that needs to replicate a real scenario.

A realistic physical process simulation is essential to prevent at-
tackers from understanding that they are dealing with an ICS hon-
eypot. In fact, attackers, aware of the presence of honeypots, have
started to develop solutions to identify simulated environments.
Various techniques have been presented over the years [52], but
only a few investigated ICS specific techniques looking at changes
in the device registers [64] or by employing fuzzy testing [53]. To
our knowledge, the fidelity of industrial physical process simula-
tions has never been investigated thoughtfully.

A central issue with ICS physical process simulation is reproduc-
ing a noise consistent with the actual process’s characteristics. Such
noise may be intrinsic to the physical process because it is generated
by its components, including industrial sensors [19, 35], or it may
be due to external factors, like weather conditions, electromagnetic
interference, or people working on the industrial plant [2].

However, to our knowledge, no framework exists to assess if
a simulated physical process includes realistic noise components.
Such a framework would be essential for defenders to build effective
ICS honeypots, even without disclosing the details of the protected
physical process. In this scenario, the attacker would hardly detect
being in a honeypot and infer information about the real physical
process.

Contribution. We present SimProcess, a framework for bench-
marking ICS physical process simulations and identifying the one
that resembles with the highest fidelity a real (noisy) physical pro-
cess. Unlike prior works, our framework only employs a collection
of measurements from the real system and does not require the
mathematical model (i.e., differential equations) that govern the un-
derlying physical process, allowing us to deal with complex systems,
including nonlinear time-invariant (NLTI) ones, and to reproduce
variations of the real system. SimProcess extracts selected features
from the original signal that are related to the noise, in addition to
features extracted from a noise estimation.

We implemented and evaluated SimProcess framework on EPIC [1],
a power grid testbed. Our empirical results demonstrate its capabil-
ities in identifying the best simulation. In particular, our classifica-
tion models exhibit a recall of up to 1.0 in determining the actual
process from various simulations. SimProcess identified Gaussian,
Gaussian Mixture Model (GMM), and the autoencoder solutions as
the best ways to add noise to resemble the real system and increase
the fidelity of the power grid simulation.

We summarize our contributions as follows:

• We introduce SimProcess, the first framework designed to
identify simulations that most accurately replicate an ICS
physical process by focusing on the characterizing noise.

• We implement and evaluate SimProcess on real-world power
grid data coming from EPIC, a state-of-the-art power grid
testbed, and derive simulations of the physical process em-
ploying both static additions of noises and generative solu-
tions.

• We show that our models can correctly classify the real phys-
ical process with a recall up to 1.0 in a binary classification
scenario. Moreover, we evaluate the capabilities of SimPro-
cess of classifying different noises and its ability to preserve
the ranking even when dynamic changes are added to the
underlying process, making SimProcess applicable in high-
interaction simulations.

• Wemade our code, dataset, and experimental results publicly
available: https://github.com/donadelden/SimProcess

Organization. Section 2 briefly introduces important background
knowledge, while the system and threat model are presented in
Section 3. Section 4 introduces the SimProcess framework, while
Section 5 presents our case study, the fine-tuning experiments, and
final results. Related works are discussed in Section 6 and Section 7
concludes this work.

2 BACKGROUND
Industrial Control Systems. An Industrial Control System (ICS)

is a system in which industrial operations are supervised, coordi-
nated, controlled, and unified by a computing and communication
core [44]. These systems constitute a vital element of critical in-
frastructures that deliver essential services, including water supply,
electricity generation and distribution, and nuclear power genera-
tion. They combine industrial hardware and software.

Industrial processes can be modeled linearly or nonlinearly. With
a linear time-invariant (LTI) process, there is a linear relation be-
tween an input and the output that does not depend on time. More
complex models involve nonlinear terms, time, and (partial) differ-
ential equations.

ICSs are highly interconnected. An ICS network is composed of
an enterprise zone containing general purpose Information Tech-
nology (IT) systems, connected through a demilitarized zone to a
Operational Technology (OT) control zone. The OT network oper-
ates with the physical process through intelligent devices such as
Programmable Logic Controllers (PLCs) connected to I/O devices
such as sensors and actuators. Operators can supervise and act
on the physical process through control systems such as Human
Machine Interfaces (HMIs) [16].

ICS are subject to impactful and large-scale attacks. A notable
attack target example is the power grid, where ICS controls elec-
tricity transmission. The high number of cyberattacks in Ukraine
since 2015 [45, 49], highlighted the vulnerability of these systems
and introduced the need for specific security strategies to protect
power systems from cyberattacks [12].

ICS Testbeds and Simulations. ICS testbeds are experimental en-
vironments designed to test and validate technologies, security
systems, and protocols in realistic but controlled conditions. They

https://github.com/donadelden/SimProcess

SimProcess: High Fidelity Simulation of Noisy ICS Physical Processes CPSS ’25, August 25–29, 2025, Hanoi, Vietnam

combine physical simulations with real network traffic to assess
the security and reliability of critical infrastructures. They could
be physical, hybrid, or virtualized [16]. While physical testbeds
provide high fidelity to the researchers, they are more complex
and expensive to develop and maintain. Conversely, a virtualized
testbed can also be employed as a decoy system to study attacker’s
behaviors [30, 31, 46].

There are several tools to create virtual ICS testbed and simulate
ICS physical processes. MiniCPS [4] or Factory I/O1 are designed
for generic Cyber-Physical System (CPS) simulation and emula-
tion. Others investigate specific sectors. NEFICS [45], ICSNet [46],
and Mashima et al. [37] provide simple power grid simulations
but are focused on the emulation of the device more than on the
physical process, which usually result in static measurements. Pan-
dapower [56] is a Python-based open-source library designed to
enable electric power systems modeling, simulation, and analy-
sis. Key components of the power grid, like buses, power lines,
transformers, generators, and loads, are represented as data ta-
bles, enabling easy manipulation and customization of network
parameters. It provides an element-based modeling approach that
allows us to define an electrical network by using nameplate pa-
rameters. Mosaik [47] is another popular open-source simulation
framework designed for modular and distributed simulations of
electrical systems. It enables the coupling and orchestration of di-
verse simulators, allowing for the coordinated execution and data
exchange. Mosaik provides a modular architecture with a central
scheduler synchronizing simulators while supporting various APIs
and adapters, including Python and Java.

Noise in ICSs. In a real system, physical process measurements
are subjected to noise, an unwanted random variation generated
by the system implementation itself, or from interferences with
external factors. Different forms of noise impact both the physi-
cal process [19] and the sensors employed to collect the measure-
ments [2, 3]. Examples of noise sources include thermal fluctuations,
electromagnetic interference, mechanical vibrations, and intrinsic
limitations of electronic components or sensors, and are also influ-
enced by the generation source [19].

Measurements of electric voltage could be usually characterized
as white noise [59], even though some research works proposed
other noise models [18]. Different solutions have been proposed
to filter noise [33] or reduce its impact in the real system [29].
Such forms of errors and variations should be integrated into ICS
simulations to reduce the probability of being detected as a decoy
system.

3 SYSTEM AND ATTACKER MODEL
System Model. We assume a scenario where a developer (de-

fender) builds a high-interaction honeypot for an ICS. The devel-
oper is challenged to create a realistic physical process simulation
for the honeypot. The developer does not want to employ a complex
model based on differential equations for the ICS physical process
as it is unreliable. This is common in complex dynamic systems
such as power grids, where many events can impact the process
and cannot be reliably described by a system of equations [34].

1Factory I/O - Next-Gen PLC Training (https://factoryio.com/)

Internet

HMIPLC

1

2

Actuator Sensor

IT Network

OT Network

I/O Devices

Adv.

Figure 1: Threat model. ① represents passive collection of
data, while ② requires the attacker to request values to a PLC.

The developer can access a timeseries of physical process mea-
surements from the ICS PLC or HMI. Such timeseries could be
obtained from one-time access to the plant or by employing a pub-
lic measurement dataset. However, the developer is not required to
access the ICS plant after the data collection, which can happen at
different times.

The developer creates a simulation of the real system in its en-
tirety or replicates a small part of it. Small architectural differences
are acceptable since the final target does not aim at having a replica
of the system but a simulation to be employed in a high-interaction
honeypot. Moreover, an attacker without access to the real system
cannot employ this kind of imperfections to detect the simulations.
The developer may start from digital twins [38] or simulators in the
literature [4, 21, 30, 31, 46] and adapt them to resemble the target
system.

To prevent identification, the developer follows honeypot anti-
fingerprinting best practices, such as the ones proposed by Tay et
al. [55]. They ensure that the honeypot network resembles the real
one. For example, the attacker can identify industrial devices with
valid MAC addresses and see network packets utilizing industrial
protocols.

However, the developer is conscious that an attacker may try to
detect the simulation using advanced techniques that investigate
the physical process’s consistency. Therefore, s/he takes additional
design steps to enhance the fidelity of the physical process by
adding an appropriate form of noise to the simulated plant.

Attacker Model. We assume a remote attacker with network ac-
cess to the OT network of an ICS honeypot. As shown in Figure 1,
the attacker can passively collect data or actively interact with the
honeypot devices, including its virtual PLC and HMI and collect
sensor reading from the virtual physical process.

The attacker, who cannot access data from the real system, gets
sensor measurements from the defender honeypot as timeseries
that contain various noises, including the inherent system noise,

https://factoryio.com/

CPSS ’25, August 25–29, 2025, Hanoi, Vietnam Donadel et al.

the sensor measurement noise, and external noise. The attacker
uses such timeseries as a data source to fingerprint the honeypot
and categorizes it as a decoy or a real system.

This is a realistic threat model since many ICS devices are ex-
posed on the Internet and exhibit none to low-security measures [7,
39]. Moreover, industrial honeypots generally employ few to no
defenses in the external perimeter to get more interactions from
attackers [21].

4 SIMPROCESS
We present the design (Section 4.1) and the implementation (Sec-
tion 4.2) of SimProcess, a novel framework that allows identifying
the simulations with the best fidelity to replicate a real-world phys-
ical process. Our system do not require any differential equation,
but only a timeseries of measurements from the real process.

4.1 Design
As shown in Figure 2, SimProcess has a seven-stage pipeline. The raw
signals are collected (Section 4.1.1) and noise estimation is computed
from each timeseries (Section 4.1.2). Then, a windowing approach
is taken to prepare the data for classification (Section 4.1.3) with an
integrated filtering mechanism to maintain only relevant windows
(Section 4.1.4). Then, features are extracted from each window (Sec-
tion 4.1.5), which are used in the classification phase (Section 4.1.6)
which is used to generate the final scores (Section 4.1.7). Next, we
describe each pipeline stage.

4.1.1 Signal. The framework collects timeseries from the real phys-
ical process and the simulated one the developer wants to bench-
mark. The timeseries contains measurements from real and virtual
sensors connected to real or virtual PLCs or HMIs. Data are col-
lected using a sampling rate of 1 Hz (i.e., one sample per second).

A timeseries is defined as: 𝑥 (𝑡) = 𝑥 (𝑡) +𝑛(𝑡), for a certain period
of time 𝑡 ∈ (𝑡0, 𝑡𝑛). 𝑥 (𝑡) represents the values that, in a theoretical
scenario, will be obtained by sampling the process at a specific time
𝑡 , and it follows the equations that regulate the system. However,
real physical processes are subject to noises, modeled by 𝑛(𝑡), that
sum with 𝑥 (𝑡). In our scenario, only 𝑥 (𝑡) is available because the
honeypot developer neither knows the equations that regulate the
system 𝑥 (𝑡), nor the noise 𝑛(𝑡), and it is the only signal used as
input for SimProcess.

4.1.2 Noise Estimation. SimProcess is based on a profilation of the
noise, but due to the absence of ground truth theoretical process
𝑥 (𝑡), it relies on a noise estimation �̃�(𝑡). Since the developer has
some high-level knowledge about the target physical process s/he is
replicating (e.g., s/he knows whether the process is a power system,
a water treatment, or a manufacturing process), s/he can choose the
most suited filter 𝑓 (·) to be applied on the collected noisy signal
𝑥 (𝑡) to estimate the signal without noise. Then, SimProcess estimate
the real noise as the difference between the noisy and the filtered
signal, as follows:

�̃�(𝑡) = 𝑥 (𝑡) − 𝑓 (𝑥 (𝑡)). (1)

4.1.3 Windows Extraction. At this point, each timeseries 𝑥 (𝑡) is
paired with its noisy estimation �̃�(𝑡). Then, the preprocessing logic
applies a sliding window to split the original signal 𝑥 (𝑡) into chunks

of size 𝑁 that overlap by 80% with each other. Dividing signals into
windows allows for managing signals with different lengths and
prevents the dynamics of the system from being preponderant in
the classification.

4.1.4 Windows Filtering. Next, SimProcess prunes the generated
windows by removing the ones containing peaks and big variations
in the signal. This allows for more precise extraction of character-
izing features, limiting external influences from automated (e.g., a
valve opening because a tank is full) or manual (e.g., a user opening
an electric switch to turn on a machine) actions on the physical
process. This is an essential step to ensure that only real noise is
extracted from the original signal and that events happening to the
system are not considered.

The framework performs the pruning by considering the win-
dows𝑊 containing values such that:

𝑊 = {𝑤1, . . . ,𝑤𝑁 }, 𝑠 .𝑡 . 𝑤𝑖 ∈ [𝜇 (1−𝜖), 𝜇 (1+𝜖)] ∀𝑖 ∈ [1, 𝑛] (2)

where 𝜇 is the mean value of the window and 𝜖 ∈ (0, 1) represents
a tradeoff between the natural variation allowed and the removal
of potential outliers. High 𝜖 alleviates the filter effect and reduces
the amount of deleted data. While a low 𝜖 removes many samples
containing variations with respect to the mean. The correct value of
𝜖 should be chosen based on the variability of the physical process
and the length of the data collection.

For every window obtained from the signal 𝑥 (𝑡) which has not
been pruned by the filtering in Equation 2, SimProcess also collects
the corresponding window from the paired noise estimation �̃�(𝑡).
At the end of this preprocessing, the system ends up with a set of
windows containing both the raw signal and its corresponding noise
estimation, which are the inputs for the feature extraction phase.

4.1.5 Feature Extraction. To feed the classification stage, SimPro-
cess extract features from each window that are relevant to the
variations of the signal due to the presence of the noise, without in-
cluding features that profile the underlying process. This allows the
freedom in choosing features extracted from windows belonging to
the noise estimation �̃�(𝑡) since the decoupling from the underlying
process signal has been done with Equation 1. Instead, when dealing
with windows generated from the raw timeseries 𝑥 (𝑡), SimProcess
takes extra care to avoid generating biases related to the physical
process in our system.

For instance, the system avoids features such as the mean, which
is strictly related to the underlying physical process. Instead, it
considers features such as the approximate entropy, which mea-
sures the complexity or regularity of a time series, and Lempel-Ziv
Complexity, which characterizes variations of the system and, in
a short period without significant changes in our window, is a
good estimation of the noise. Moreover, SimProcess considers the
standard deviation ratio 𝑠𝑡𝑑_𝑚𝑒𝑎𝑛_𝑟𝑎𝑡𝑖𝑜 and the variance ratio
𝑣𝑎𝑟_𝑚𝑒𝑎𝑛_𝑟𝑎𝑡𝑖𝑜 , defined as:

𝑠𝑡𝑑_𝑚𝑒𝑎𝑛_𝑟𝑎𝑡𝑖𝑜 = (𝜎/𝜇),

𝑣𝑎𝑟_𝑚𝑒𝑎𝑛_𝑟𝑎𝑡𝑖𝑜 = (𝜎2/𝜇),
where 𝜎 and 𝜇 represent the window standard deviation and mean,
respectively. These features allow the signal to be decoupled from
superimposed noise generated by physical components as much
as possible.

SimProcess: High Fidelity Simulation of Noisy ICS Physical Processes CPSS ’25, August 25–29, 2025, Hanoi, Vietnam

Signal Windows ExtractionNoise Estimation Classification ScoresWindows Filtering Features Extraction

Figure 2: SimProcess seven-stage pipeline.

4.1.6 Classification. The features extracted in this pipeline are
then fed to aMLmodel trained to differentiate between real physical
processes and simulations. The task can be formulated as a binary
classification problem, where data are labeled as real or simulated
based on their origin. The models take into account a feature set
related to a single window and output a prediction. Various ML
models are suitable for the purpose and may be chosen based on
recall scores but also on the final model complexity [8].

4.1.7 Scores. Having a good-performing model is essential to en-
sure a solid benchmarking process. However, in this case, the frame-
work aims at maximizing the true positives (i.e., real samples cor-
rectly classified as real) possibly at the cost of misclassifying some
fake system. When this happens it is a suggestion that such a sam-
ple is similar enough to the real process that it can be passed as
a real system. To enhance this effect, our system is designed to
output the probability for each sample to be classified as real instead
of thresholding the output model probability and directly predict-
ing the class. This allows for the generation of a fidelity score for
every window provided to the model. The final score for each data
source (and, therefore, on each noise) is computed by averaging
the probabilities on every window associated with it.

4.2 Implementation
We implemented SimProcess using Python. Datasets are saved as
CSV files to be easily imported into the code. Noise is estimated
by employing a filter that can be easily changed to best suit each
scenario. Then, the windowing approach is applied to extract win-
dows of a predefined size. Every window is checked on a simple
implementation of Equation 2 and windows not satisfying the equa-
tion are dropped, taking care of keeping the sync between different
measurements.

To extract relevant features from the windows, we employed the
tsfresh Python package [13]. The package automatically computes
statistical and mathematical characteristics from time series data
and selects the most relevant ones for regression or classification
tasks. The extracted features include, among others, statistical mea-
sures (e.g., mean, variance, skewness, kurtosis), frequency-domain
features (e.g., Fourier coefficients, spectral entropy), and time-series
properties (e.g., autocorrelation, trend strength, peaks, crossings).

We let tsfresh identify the most suitable features for the noise
estimations �̃�(𝑡), selecting a set of features we employed for all sub-
sequent extractions. Instead, wemanually limit the possible features
extracted from the noisy signal 𝑥 (𝑡). We carefully choose 9 features
(described in Appendix A.1) that profile the signal variations due
to the noise without taking into account the underlying signal, in
addition to the two new features introduced in Section 4.1.5.

Finally, we employed Scikit learn [42] to perform the classifica-
tion step. It is a well-known Python implementation of different
ML models and support functions. Moreover, it allows for the ex-
traction of class probabilities instead of classification outputs from
the models. We employed this strategy to compute the final score
of our benchmarking systems.

5 SIMPROCESS ATWORK: THE EPIC CASE
STUDY

We evaluated SimProcess on EPIC [1], a state-of-the-art power grid
testbed. We chose a power grid because it is widely employed in
security research in ICS [12]. Moreover, we also needed ground
truth data from a real plant; this requirement reduced the possible
scenario to consider since datasets coming from real ICS are still
scarce in the literature [16]. We note that our framework can also
be used in other ICS domains.

For our case study, we use the methodology and seven-stage
pipeline introduced in Figure 2. Section 5.1 describes the dataset
we use to test SimProcess (first pipeline stage). Then, Section 5.2
shows some insight into the fine-tuning of SimProcess to provide
the best results on this scenario (second to sixth pipeline stages).
Next, Section 5.3 tests the overall framework and discusses the
results (last pipeline stage).

5.1 Dataset Generation
This section describes the EPIC ground-truth dataset (Section 5.1.1),
howwe replicate in different simulators a portion of the real testbed
(Section 5.1.2), and how we augmented the fidelity by adding noise
to our simulations (Section 5.1.3). A summary of the different time-
series that compose our dataset is summarized in Table 1. The
dataset is then used as input signals in our pipeline.

5.1.1 Ground-Truth Datasets. Weneeded a dataset containing phys-
ical process measurements from a real-world industrial plant or
testbed. We found an adequate dataset from a paper on EPIC pre-
sented in 2019 [1]. The EPIC datasets include eight scenarios in
which the system runs under different conditions, such as different
numbers of active generators and loads. The dataset time series are
recorded from sensors and actuators, capturing 30 minutes of oper-
ation per scenario. For each case, network traffic data is preserved
in packet capture files, while system readings are stored in CSV
files, offering a view of the physical process behavior.

EPIC is a sophisticated platform designed to emulate real-world
power grid operations. Developed by iTrust, the testbed includes
four interconnected stages, as summarized in Figure 3: Generation,
Transmission, Microgrid, and Smart Home, providing a comprehen-
sive environment for studying smart grid dynamics [50].

CPSS ’25, August 25–29, 2025, Hanoi, Vietnam Donadel et al.

Table 1: Summary of the employed datasets. Each noise has
been applied to both simulators (Sim.), namely Pandapower
and Mosaik.

Source Real Noise Parameters

EPIC [1] ✓ ✓ -
Plain Simulation p p -
Sim. + uniform p ✓ 𝜎𝑢=0.01
Sim. + gaussian1 p ✓ 𝜎𝑔=0.01
Sim. + gaussian2 p ✓ 𝜎𝑔=0.05
Sim. + poisson p ✓ 𝜎𝑝=0.01, 𝜆𝑝=1.5
Sim. + laplace p ✓ 𝜎𝑙=0.01
Sim. + pink p ✓ 𝜎𝑝=0.01
Sim. + GMM p ✓ 𝜎𝑔=0.02
Sim. + gaussian + uniform p ✓ 𝜎𝑔=0.01, 𝜎𝑢=0.01
Sim. + laplace + uniform p ✓ 𝜎𝑙=0.01, 𝜎𝑢=0.01
Sim. + laplace + poisson p ✓ 𝜎𝑙=0.01, 𝜎𝑢=0.01, 𝜆𝑝=1.5
Sim. + VRAE p ✓ 𝑖𝑛𝑝𝑢𝑡_𝑤𝑒𝑖𝑔ℎ𝑡 = 0.99

Micro grid
stage

Generation stage

SUTD grid

Transmission
stage

Smart home
stage

Data
collection

GeneratorGenerator

Photovoltaic cells and batteries

Discrete load

Discrete load

Electronic load

SWaT and WaDi
testbeds

TransmissionAutotransformer

Figure 3: EPIC testbed visual description.

EPIC enables testing of various operational conditions, such as
synchronization of generators, integration of renewable energy
sources, and dynamic load management. It utilizes PLCs for control
and supervision, while a SCADA system ensures centralized mon-
itoring. This characterizes flexibility, making it a realistic system
for analysis and comparison. Among the many case studies, EPIC
has been used to study the impacts of power supply interruption
and cyberattacks [26].

Since the EPIC dataset contains a small number of samples with
respect to the ones we can generate with the simulators, we decided
to increase, when needed, the number of samples by performing a
data augmentation preprocessing on the final generated features
by using SMOTE [10]. In addition to increasing the real sample size
in the dataset, this step helps prevent overfitting and enhance the
generalizability of our model. However, we employed these samples

for training, keeping the testing phase clean from these artificial
samples.

5.1.2 Simulations. We decided to simulate the underlying physical
process of the EPIC testbed using two popular tools for power grid
simulations, Pandapower [56] and Mosaik [47]. Both tools rely on
rule-based and physics-based modeling rather than data-driven or
statistical approaches. This ensures the generated data reflects real-
istic operational behavior and allows an attacker to interact with the
system. We extracted information on its architecture (e.g., number
of generators) from documentation describing the system [1, 54].
Since the available references do not mention the base values em-
ployed in EPIC, we extracted a rough estimation from the EPIC
dataset. In particular, we set a base current of 20𝐴, a base voltage
of 240𝑉 , and a base frequency of 50𝐻𝑧. We do not need to precisely
match EPIC values since SimProcess focuses on the noise applied
on top of the physical process and not on the exact values of the
process itself. Pandapower and Mosaik do not generate process
noise, so the output 𝑥 ∗ (𝑡) is a theoretical simulation of 𝑥 (𝑡).

The data generated from the simulation, to be as coherent as
possible with EPIC dataset, contains direct measures of Voltage
(𝑉 1,𝑉 2,𝑉 3), Current (𝐼1, 𝐼2, 𝐼3), and Frequency. Moreover, we com-
pute the Reactive power as 𝑆 =

√
3𝑉 𝐼 (𝑉 𝐼 ∈ {𝑉 1,𝑉 2,𝑉 3}), the Real

power as 𝑃 = 𝑆 cos(𝜙), and the Apparent power as 𝑄 = 𝑆 sin(𝜙),
where 𝜙 = 120◦ represents the phase of the EPIC testbed, while
𝑉 and 𝐼 represent respectively the average values over the three
phases for voltage (𝑉 1,𝑉 2,𝑉 3) and for current (𝐼1, 𝐼2, 𝐼3).

5.1.3 Noise Simulation. We introduced different approaches for
adding various noises 𝑛𝑖 (𝑡) to the underlying simulations, to gener-
ate a signal 𝑥∗ (𝑡) = 𝑥∗ (𝑡)+𝑛𝑖 (𝑡) that reproduces as close as possible
the genuine signals 𝑥 (𝑡). Then, we use SimProcess to rank the pos-
sible noises 𝑛𝑖 (𝑡) and select the ones that make the simulated data
look closer to the real 𝑥 (𝑡).

We select the noise candidates by looking at papers discussing
noise in power systems. Characterizing noise from a power grid
is complicated since many factors can interfere with the desired
signal, depending on internal and external conditions, as described
in Section 2.

We started by adding normal (Gaussian) noise to the simulated
data, which is known to represent simple random deviations intro-
duced by thermal noise [29]. There is no clear definition of the cor-
rect standard deviation value for such a noise distribution on electric
power systems. As discussed in the literature [9, 23, 48, 57, 62], stan-
dard deviations range between 0.002 and 0.15 pu. We choose two
values in the middle to model our zero-mean Gaussian noises (0.05
and 0.01).

However, Gaussian noise alone cannot model an electric power
system [11, 58, 63]. Actuators, sensors, transmission lines, and exter-
nal factors generate additional noise that does not follow a Gaussian
distribution. Following research in the literature [6, 18, 36] and our
intuition, we tested other noise distributions, such as Laplace and
uniform noise distribution.

The Laplace noise represents impulse noise generated by electro-
magnetic interferences andmay represent external noise sources [15].
Uniform noise may be present in power systems, due, for instance,

SimProcess: High Fidelity Simulation of Noisy ICS Physical Processes CPSS ’25, August 25–29, 2025, Hanoi, Vietnam

0 200 400 600 800 1000
timestamp

220

230

240

250

260

270

V1

Mosaik
Mosaik GMM
Mosaik gaussian 2
Pandapower
Pandapower GMM
Pandapower gaussian 2
EPIC

Figure 4: Example of real (EPIC) and simulated (Mosaik, Pan-
dapower) power grid timeseries with some sample noises.
Simulations without noise are almost flat and, for the most
part, superimposed by others.

to quantization noise [6]. We also considered other noises gener-
ated from Poisson and Pink distributions, which may represent
the various noise sources of a real power system. Moreover, we
employed a GMM which can be regarded as a linear combination
of 𝑘 independent Gaussian models and, in theory, can fit any dis-
tribution [18]. We extract their parameters from an unprocessed
EPIC trace and use it as an additional noise source.

The approaches considered up to now sample the noise errors
from the same distribution throughout the process. While this
may be the case for certain power grids, external interferences
may change over time and based on external factors. A dynamic
approach involves using generative methods. An autoencoder can
be trained on real data and employed to make simulation data closer
to the real process in real-time.

We test this strategy by employing a Variational Recurrent Auto
Encoder (VRAE) thanks to its causality that allows the generating
samples temporarily dependent on previous elements in the time
series. We trained our VRAE employing the same architecture of
Chung et al. [14] on the noise estimation generated as depicted in
Section 4.1.2. During generation, the VRAE gets as input a clean
signal (i.e., without any noise) coming from one of the two simula-
tors.

The output is a new signal resembling the one provided as input,
but with additional noise. Since the VRAE only manages noise, we
set the input weight to a high value (0.99) to ensure the output
is mainly controlled by the signal in input. Our VRAE has been
trained for 11 epochs. We refer the reader to the original paper for
more details on the model architecture [14].

Figure 4 shows an example of different noises applied to our
simulation for the voltage V1, together with the real data from the
EPIC dataset.

5.2 SimProcess Fine-Tuning
We fine-tune the parameters of SimProcess on the EPIC power grid
employing the dataset we built as discussed in Section 5.1. We an-
alyze the system parameters, such as the balancing ratio between
real and fake data in the training set (Section 5.2.1), the window

length (Section 5.2.2), the selection of the number of features to be
used for classification (Section 5.2.3), and the ML model to be used
(Section 5.2.4).

As a filter 𝑓 (·) to estimate the noise, we employed a Kalman
filter [33]. Based on our tests, we applied two different 𝜖 values to
the window pruning (Equation 2): 𝜖 = 0.1 for filtering individual
values, 𝜖 = 0.3 for filtering all values simultaneously. This adaptive
choice of 𝜖 provides a trade-off between filtering capabilities and
data retention.

A lower 𝜖 resulted in a more stringent filter, reducing the amount
of available data, while a higher 𝜖 made the filter more permissive,
potentially retaining outlier values. The higher 𝜖 value was chosen
for the case where the filter is applied to all values simultaneously
since, in this case, a window is retained only if all values within it
satisfy the pruning criterion (Equation 2). Thus, a more permissive
threshold was necessary to maintain sufficient data for further
processing of values.

For the evaluation, we employed the recall metric, which is de-
fined as 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), where True Positive (TP) counts
real samples correctly identified as real, while False Negative (FN)
identifies real samples classified as simulated. Recall measures the
TP rate, indicating the rate of real samples classified as real. We per-
form the experiments on everymeasure in our dataset, in addition to
collecting all the measures together (allvalues). For clartity, in most
plots we show only results on some representative measurements.

5.2.1 Dataset Balancing. Because the EPIC dataset contains little
real data compared to the large amount of data generated from
the different simulations, we tried various levels of balancing the
dataset. We employed 90% of the real data for training and 10% for
testing. Since we can benefit from a huge dataset of simulations,
we extract 30% of the data for training and 35% for testing, using
stratification to ensure that every noise appears equally.

Then, we selected different balancing levels and trained a Ran-
dom Forest (RF) classifier on sample settings to monitor the perfor-
mances. When needed, we employed SMOTE [10] to perform data
augmentation on the training data belonging to the real class.

We can see from Figure 5 that the recall increases with the
balancing ratio, suggesting, as expected, that increasing the ratio of
real samples in the training data allows for a better TPs rate. This
is the desired goal of our framework since we want to measure the
distance of simulated samples from the real ones that need to be
classified correctly as much as possible.

5.2.2 Window Length Analysis. As discussed in Section 4.1.3, the
window length is the number of samples used to compute the
features given to the models as input. Therefore, it represents the
minimum duration of the data collection to get the first decision on
the physical process under test. Moreover, different window sizes
capture different behaviors in the data distributions and provide
different samples for training and testing. Each window is classified
alone for SimProcess, and then all the scores are averaged to obtain
the final noise ranking.

We identify the window length by experimenting on the RF
classifier with the best results obtained up to now. Results are shown
in Figure 6. The recall does not change much while increasing
the window size, except for I1, which shows fluctuating values.
However, we can see a convergence of high recall for every value

CPSS ’25, August 25–29, 2025, Hanoi, Vietnam Donadel et al.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Balancing Ratio

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

re
ca

ll

Value
I1 V1 frequency allvalues

Figure 5: Recall while varying the balance ratio. A higher
balancing ratio indicates a more balanced dataset. I1 is the
first current phase, while V1 is the first voltage phase.

5 10 15 20 30 40 50
Window Size

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

Value
I1 V1 frequency allvalues

Figure 6: Recall when changing the window size.

1 2 3 4 5 6 7 8 9 10 11
Features Length

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

Value
I1
V1

frequency
allvalues

Figure 7: Recall when adding one feature at a time ordered
by importance.

considered with a window size of 20, which has been chosen as the
default value in our evaluation.

5.2.3 Feature Reduction. Based on the most features classification
provided by tsfresh [13], we tested their importance by training
the model adding one feature at a time, from the most important
to the least important, up to 15 features. We tested it for V1, I1,
frequency, and all the values together. Results are shown in Figure 7.

I1 I2 I3 V1 V2 V3

fre
qu
en
cy

po
we
r_a
pp
are
nt

po
we
r_r
ea
cti
ve

po
we
r_r
ea
l

allv
alu
es

Value

0.0

0.2

0.4

0.6

0.8

1.0

re
ca
ll

Model
AB KNN LR RF DT NN

Figure 8: Recall employing different models.

The first few features influence the measures, while additional fea-
tures only refine the classification. We see an increase in the recall
score, which is particularly pronounced in the first five features.
However, the first peak for all the tested features is reached with
eleven features, which represents the best number of features for
our study.

5.2.4 Model Selection. Next in our case study, we merged the re-
sults of all the above experiments to identify the most suited model
for our task. We formulate the task as a binary classification prob-
lem, where training data comes from real and simulated systems.
The model is asked to identify between real and simulated data.

We compare different lightweight ML models such as Decision
Tree (DT), Logistic Regression (LR), k-Nearest Neighbors (kNN), RF
and AdaBoost (AB). We also employ a deep learning approach with
a simple Neural Network (NN). For consistency, the NN has been
trained on the same set of features. For every model, we fine-tuned
the hyperparameters using grid search to maximize the recall.

Figure 8 summarizes the performances of the various models. As
explained in Section 4.1.6, we want to reach high recall to ensure
a good representation of all the EPIC samples as real. We can see
how different models performed quite well, except LR, which failed
to identify most of the EPIC sample as real. AB, NN, DT, and RF are
the best-performing models, with some differences. For instance,
the NN performs well in the current I3, while RF is the best model
for the first phase of the current I1. We prefer AB and RF to deep
architectures such as the NN that may lead to overfitting, but all of
them could be considered as good candidate models for SimProcess.

5.3 Results
This section presents the results of our EPIC case study. We show
the capabilities of SimProcess to provide a fidelity score value to
each simulation and for each measure and discuss its strengths and
limitations. We analyze the relevance of the employed features in
Section 5.3.1, the fidelity scores in Section 5.3.2, and discuss the
applicability in a dynamic system in Section 5.3.3.

5.3.1 Features Analysis. Understanding which are the features that
impact the most in the classification is essential to comprehend

SimProcess: High Fidelity Simulation of Noisy ICS Physical Processes CPSS ’25, August 25–29, 2025, Hanoi, Vietnam

no
ise
_V1

_m
ea
n_c
ha
ng
e

no
ise
_V1

_m
ea
n

no
ise
_V1

_pe
rm
uta
tio
n_e

ntr
op
y

no
ise
_V1

_tim
e_r
ev
ers
al_
asy

mm
etr
y

no
ise
_V1

_nu
mb
er_
pe
aks

no
ise
_V1

_ad
f_p
va
lue

no
ise
_V1

_co
un
t_b
elo
w_
me
an

no
ise
_V1

_co
un
t_a
bo
ve
_m
ea
n

V1
_lo
ng
est
_be

low
_m
ea
n

no
ise
_V1

_lo
ng
est
_st
rik
e_b

elo
w_
me
an

no
ise
_V1

_m
ed
ian

Feature

0.0

0.2

0.4

0.6

0.8
Im

po
rta

nc
e

Figure 9: Most important features for V1. Features beginning
with “noise” point to features extracted from the noise esti-
mation.

the capabilities of the system. Figure 9 shows the most important
features we isolate based on p-values for the voltage V1 case. We
can see how the noise mean (i.e., the mean of the estimated noise
within each window) is the most important feature, followed by the
permutation entropy of the noise. Five more features extracted from
the noise estimate follow suggesting that the noise estimation is
practical and its features are meaningful for the classification. Then,
the longest above mean feature extracted from the original signal
suggests that, even to a smaller extent, meaningful information is
extracted from the original signal as well. Similar graphs for the
other measurements are available in our GitHub repository.

5.3.2 Simulations Fidelity Scores. Figure 10 shows each window’s
mean probability of being classified as a real sample (blue bars).
High values represent noise that may easily resemble the real data,
while low values indicate high chances for the system to recognize
the samples as a simulation. In particular, Figure 10a shows the
probabilities related to the first voltage phase V1. The graph sug-
gested that GMM is the most well-performing noise for these kinds
of measurements with a score of 0.267, even if the autoencoder
noise follows with almost the same score (0.265).

Figure 10b represents a different situation for the first current
phase I1. Here we can see a high peak of the Gaussian noise with
high standard deviation, representing the optimal noise for current
values. Then, it is interesting to see that uniform noise follows
obtaining good results, and it may indicate errors introduced by
the analog-to-digital converters in the PLC.

We cannot plot the graphs for all the measurements for space
reasons (the reader will find it in the GitHub repository), but Table 2
summarizes the best noise for each value, indicating the probability
for such a sample to be categorized as real. We can see how similar
measures share the same noise. The Gaussian distribution well
represents current noise, while the voltages are well represented

M+au
toe

nco
de

r

P+
au

toe
nco

de
r

M+gm
m

P+
gm

m

P+
un

ifo
rm

M+un
ifo

rm

M+ga
uss

ian
+un

ifo
rm

M+po
iss

on

P+
ga

uss
ian

1

M+ga
uss

ian
1

P+
po

iss
on

P+
ga

uss
ian

+un
ifo

rm
P+

pin
k

Source

0.00

0.25

0.50

0.75

1.00

M
ea

n
Pr

ob
ab

ilit
y Normal

Dynamic

(a) Voltage V1.

P+
ga

uss
ian

2

M+ga
uss

ian
2

P+
lap

lac
e+

un
ifo

rm

M+lap
lac

e+
un

ifo
rm

P+
lap

lac
e+

po
iss

on

M+lap
lac

e+
po

iss
on

M+lap
lac

e

P+
lap

lac
e

M+pin
k

P+
ga

uss
ian

+un
ifo

rm

M+ga
uss

ian
+un

ifo
rm

P+
pin

k

M+ga
uss

ian
1

Source

0.00

0.25

0.50

0.75

1.00

M
ea

n
Pr

ob
ab

ilit
y Normal

Dynamic

(b) Current I1.

Figure 10: Resemblance of a real system of each simulation
(M: Mosaik, P: Pandapower) with different noises applied.
Blue scores represent normal samples (used for training) dis-
cussed in Section 5.3.2, while orange represents the dynamic
scenario (not used in training) discussed in Subsection 5.3.3.
Error bars indicates the standard error.

by GMM and autoencoders. In particular, similarly to Figure 10a,
V2 and V3 show scores for GMM that are close to the autoencoder.

Our autoencoder also represents frequency noise, while powers
followGaussian noises, which are probably derived from the current
measurements. Interestingly, the power reactive follows a Laplace
+ Uniform noise, even though other noises such as Poisson and
Uniform reach similar probabilities. When considering all values,
the GMM is the best distribution to replicate the noise.

Similar measures (e.g., current) share similar noise distributions
(e.g., Gaussian), which is at least partially related to the type of
sensors employed to collect the measurements. While it is possible
to identify the swapping of a sensor with another identical replica
through a difference in the generated noise [2, 3], the difference
magnitude is more significant when considering different categories
of sensors. Still, similar patterns may be observed for probes mea-
suring the same quantity. These considerations suggest that the
better strategy for a developer is to take a selective approach and
employ different noises for each signal s/he needs to simulate.

CPSS ’25, August 25–29, 2025, Hanoi, Vietnam Donadel et al.

Table 2: Summary of the best noises for every measurement.
Prob. Indicates the associated probability of misclassification
as real, while Delta is the difference in probability in the case
of dynamic samples.

Value Best Noise Prob. Delta

voltage V1 GMM 0.267 0.064
voltage V2 Autoencoder 0.397 0.078
voltage V3 Autoencoder 0.356 0.076
current I1 Gaussian2 0.688 0.052
current I2 Gaussian2 0.365 0.074
current I3 Gaussian2 0.525 0.065
frequency GMM 0.331 0.233
power_apparent Gaussian2 0.605 0.039
power_reactive Laplace+Uniform 0.133 0.045
power_real Gaussian2 0.707 0.073
all values GMM 0.418 0.119

5.3.3 Applicability To Dynamic Systems. All the noises discussed
in our system have been applied to the plain simulated timeseries
𝑥∗ (𝑡) as an additional value 𝑛𝑖 (𝑡) to generate a signal 𝑥∗ (𝑡) that ap-
proximate the real process 𝑥 (𝑡), as discussed in Section 5. However,
the mechanisms we employed to add the noise are applicable in real-
time and therefore could be used in dynamic simulators that support
user interaction and consequent change in the simulated process.

For instance, a developer may allow the attacker to modify the
value of a coil in a power grid to open or close a switch. This
will disconnect or connect, respectively, a load that has an impact
on the simulated process—it will require additional current or re-
lease the used current, respectively. This dynamic behavior is a key
concept of a high-interaction honeypot, and the SimProcess works
adequately even in these conditions as shown by the results of the
experiment described next.

We modified the developed simulations discussed in Section 5.1.2
to include the effect of opening or closing a switch. We connected
a load requesting 4𝐴 or disconnected a load absorbing 3𝐴. This
does not directly impact the voltage but has a proportional effect
on the powers. Then, we employed this new data for testing on our
previously trained model (i.e., without including these new signals
in the training set) and measured how effective the noises were in
these new conditions.

Results are shown in Figure 10 for V1 and I1 (orange bars). I1 is
the most influenced measure in this scenario since it is the variable
directly influenced by the load change. We see how the Gaussian
noise performs better, indicating that our framework can success-
fully classify the noise instead of the underlying physical process.
We also note how probabilities are higher with the fluctuation sce-
nario, but the order is kept almost unchanged. In the case of V1,
GMM remains a good representation of the noise with similar prob-
abilities. However, the high increase in the autoencoder suggests
that such a generative approach is best suited for dynamic solutions
that require more adaptability.

We summarized the probability difference between each noise
applied to the normal system and the dynamic scenario in Table 2

in the Delta column. We can see the low probability changes, es-
pecially for the voltage and current cases. These results show how
SimProcess is robust to dynamic changes in the system, making it
applicable in high-interaction honeypots.

6 RELATEDWORK
After the infamous Stuxnet attack in 2010 [20], awareness of ICS
security started to rise, and academia and industry began develop-
ing and deploying decoy systems to trick the attacker into reveal-
ing their attack techniques without compromising the real target.
These systems, called ICS honeypots, exhibit different capabilities,
from low interaction honeypots [43] to more advanced architec-
tures [17, 30, 31, 46]. While low interaction honeypots are easy
to identify [61], researchers also propose solutions to detect high
interaction ones [52].

An interesting approach has been taken by HoneyJudge [64].
This framework considers six different parameters to identify real or
simulated PLCs. They relate to memory handling, logic execution,
and the behavior of the physical process. In particular, the authors
propose collecting data from the I/O memory of PLCs to extract
features such as sensor noise distributions and process dynamics.
HoneyJudge employs physical equations to identify the right time
for the data collection from the PLC under test. which needs to
be accessible during the profiling. Our solution, instead, does not
require equations of the physical process and works on systems
that could be slightly different from the real one.

In [2], the authors propose a defensive mechanism against ICS
physical attacks. The system can detect swapping or replacement
of sensors by extracting a fingerprint from each sensor noise. It
extracts the noise by modeling a simple water tank as an LTI system
and using the model to extract the noise from the measurements.
A similar solution has been proposed by Ahmed et al. [3]. They
presented a way to fingerprint sensors based on imperfections and
noise. The authors proposed to use this information to detect sensor
spoofing attacks. The system works by employing subspace system
identification techniques to identify the physical equations govern-
ing the system from a dataset of measurements from all the sensors.
However, that methodology is suited for LTI systems such as the
water treatment system employed in the paper. Still, it does not
work properly on dynamic (non-LTI) systems such as a power grid.
Other defensive mechanisms have been proposed, alleviating the
requirements for differential equations of the system [5, 32]. How-
ever, no one ever used noise as a source to benchmark simulation
fidelity in the ICS context.

Fuzzy testing has been proposed to identify honeypots [53]. It
collects device behaviors through a series of packets used as probes
and feeds their responses to a deep learning classifier to detect
simulated environments. While this system seems compelling, it
represents an orthogonal research line to ours. The authors’ solution
fingerprints a lack of emulation of industrial devices and their
protocols but does not consider the underlying physical process.
Moreover, solutions exist to prevent the fuzzy identification of
honeypots [60].

Differentworks discussed the characterization of the noise present
in a physical process, particularly in power systems [19]. Many pa-
pers characterize the measurement noise as a Gaussian noise [9].

SimProcess: High Fidelity Simulation of Noisy ICS Physical Processes CPSS ’25, August 25–29, 2025, Hanoi, Vietnam

However, other research investigates the presence of other non-
Gaussian noises, such as the Laplacian and Gaussian Mixture noise
discussed in [18, 36].

7 CONCLUSION
In this paper, we introduced SimProcess, a novel framework to as-
sess the physical process fidelity of an ICS simulation based on
the underlying noise of the system and its components. The frame-
work is general purpose and can be adapted to different scenarios,
without any assumption on the system to simulate (e.g., no mathe-
matical equations describing the system are needed). We propose
a case study based on the EPIC testbed and derive different sim-
ulations of its physical process, characterized by the presence of
different kinds of noise. After a fine-tuning of the framework on
our dataset, we employ SimProcess and find out that the simulations
employing noise from Gaussian and GMM distributions were the
most similar to the real scenario, together with the noise generated
by the autoencoder. Moreover, we show how different measures
could be characterized by different noises, and our system allows
benchmarking different noises to select the most realistic one to be
employed in the simulated scenario under development. Finally, we
show how SimProcess is resistant to process variations and keeps its
capabilities of identifying the most suited noise even in the presence
of dynamic systems.

Limitations. Despite a quite good amount of ICS datasets avail-
able in the literature [16], only a few consist of power grid simu-
lations providing physical measurements [1, 41], while others only
contain network traffic [22]. Moreover, not all the testbeds have
sufficient documentation allowing for the generation of realistic
replicas [41]. In other scenarios, such as water treatment, the sit-
uation is not much better. In general, while simulators are more
widely used, data from real systems is still scarce. Additionally, our
simulations do not perfectly reflect the entire EPIC testbed in all its
components. This limitation arises from the complexity of power
grids and cyber-physical systems in general, as well as the limited
number of tools available to efficiently simulate a real-world sce-
nario. Furthermore, details regarding testbeds and datasets [16] are
often lacking, making it difficult to accurately emulate a real system.

Future Work. Testing our SimProcess on new datasets shared by
the community in the coming years is an interesting path for future
research. We also invite researchers who are building testbeds and
datasets to share simulations and detailed descriptions of their sys-
tems, as this will enable the community to perform research similar
to this one. Another promising direction for future work involves
exploring the problem from an attacker’s point of view. Develop-
ing noise fingerprinting systems could allow for the identification
of simulations. This would pave the way for the development of
anti-honeypot fingerprinting techniques, which may enhance the
current state of the art in the field [52]. Finally, new and more
complex generative solutions to add noise to simulations can be in-
vestigated, even employing physics-aware generative models [65].

ACKNOWLEDGMENTS
Work partially funded by the European Union under grant agree-
ment no. 101070008 (ORSHIN project). Views and opinions ex-
pressed are however those of the author(s) only and do not neces-
sarily reflect those of the European Union. Neither the European
Union nor the granting authority can be held responsible for them.
Daniele Antonioli has been partially supported by the French Na-
tional Research Agency under the France 2030 label (NF-HiSec
ANR-22-PEFT-0009). Massimo Merro has been partially supported
by the SERICS project (PE00000014) under the MUR National Re-
covery and Resilience Plan, funded by the EU - NextGenerationEU.

REFERENCES
[1] Sridhar Adepu, Nandha Kumar Kandasamy, and Aditya Mathur. 2019. Epic:

An electric power testbed for research and training in cyber physical systems
security. In Computer Security: ESORICS 2018 International Workshops, CyberICPS
2018 and SECPRE 2018, Barcelona, Spain, September 6–7, 2018, Revised Selected
Papers 2. Springer, 37–52.

[2] Chuadhry Mujeeb Ahmed and Aditya P Mathur. 2017. Hardware identification
via sensor fingerprinting in a cyber physical system. In 2017 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE,
517–524.

[3] Chuadhry Mujeeb Ahmed, Jianying Zhou, and Aditya P Mathur. 2018. Noise
matters: Using sensor and process noise fingerprint to detect stealthy cyber at-
tacks and authenticate sensors in cps. In Proceedings of the 34th Annual Computer
Security Applications Conference. 566–581.

[4] Daniele Antonioli and Nils Ole Tippenhauer. 2015. MiniCPS: A toolkit for security
research on CPS networks. In Proceedings of the First ACM workshop on cyber-
physical systems-security and/or privacy. 91–100.

[5] Wissam Aoudi, Mikel Iturbe, and Magnus Almgren. 2018. Truth will out:
Departure-based process-level detection of stealthy attacks on control systems. In
Proceedings of the 2018 ACM SIGSAC conference on computer and communications
security. 817–831.

[6] R Baldick, KA Clements, Z Pinjo-Dzigal, and PW Davis. 1997. Implementing
nonquadratic objective functions for state estimation and bad data rejection. IEEE
Transactions on Power Systems 12, 1 (1997), 376–382.

[7] Giovanni Barbieri, Mauro Conti, Nils Ole Tippenhauer, and Federico Turrin. 2021.
Assessing the use of insecure ics protocols via ixp network traffic analysis. In
2021 international conference on computer communications and networks (icccn).
IEEE, 1–9.

[8] Giuseppe Bernieri, Mauro Conti, and Federico Turrin. 2019. Evaluation ofmachine
learning algorithms for anomaly detection in industrial networks. In 2019 IEEE
International Symposium on Measurements & Networking (M&N). IEEE, 1–6.

[9] Michael Brown, Milan Biswal, Sukumar Brahma, Satish J Ranade, and Huiping
Cao. 2016. Characterizing and quantifying noise in PMU data. In 2016 IEEE Power
and Energy Society General Meeting (PESGM). IEEE, 1–5.

[10] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[11] Tengpeng Chen, Lu Sun, Keck-Voon Ling, and Weng Khuen Ho. 2019. Robust
power system state estimation using t-distribution noise model. IEEE Systems
Journal 14, 1 (2019), 771–781.

[12] Chen-Ching Liu Chih-Che Sun, Adam Hahn. 2018. Cyber security of a power
grid: State-of-the-art. International Journal of Electrical Power & Energy Systems
99 (2018), 45–56.

[13] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-Liehr. 2018.
Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A
Python package). Neurocomputing 307 (2018), 72–77. doi:10.1016/j.neucom.2018.
03.067

[14] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville,
and Yoshua Bengio. 2015. A recurrent latent variable model for sequential data.
Advances in neural information processing systems 28 (2015).

[15] Tommaso Coletta, Bassam Bamieh, and Ph Jacquod. 2018. Transient performance
of electric power networks under colored noise. In 2018 IEEE Conference on
Decision and Control (CDC). IEEE, 6163–6167.

[16] Mauro Conti, Denis Donadel, and Federico Turrin. 2021. A survey on industrial
control system testbeds and datasets for security research. IEEE Communications
Surveys & Tutorials 23, 4 (2021), 2248–2294.

[17] Mauro Conti, Francesco Trolese, and Federico Turrin. 2022. Icspot: A high-
interaction honeypot for industrial control systems. In 2022 International Sympo-
sium on Networks, Computers and Communications (ISNCC). IEEE, 1–4.

https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1016/j.neucom.2018.03.067

CPSS ’25, August 25–29, 2025, Hanoi, Vietnam Donadel et al.

[18] Stefan Čubonović, Dragan Ćetenović, and Aleksandar Ranković. 2024. Impact
of the non-Gaussian measurement noise on the performance of state-of-the-art
state estimators for distribution systems. Serbian Journal of Electrical Engineering
21, 1 (2024), 113–133.

[19] Himanshu Dehra. 2018. Characterization of noise in power systems. In 2018
International Conference on Power Energy, Environment and Intelligent Control
(PEEIC). IEEE, 320–329.

[20] Nicolas Falliere, Liam O Murchu, Eric Chien, et al. 2011. W32. stuxnet dossier.
White paper, symantec corp., security response 5, 6 (2011), 29.

[21] Javier Franco, Ahmet Aris, Berk Canberk, and A Selcuk Uluagac. 2021. A survey
of honeypots and honeynets for internet of things, industrial internet of things,
and cyber-physical systems. IEEE Communications Surveys & Tutorials 23, 4
(2021), 2351–2383.

[22] Ángel Luis Perales Gómez, Lorenzo Fernández Maimó, Alberto Huertas Celdrán,
Félix J García Clemente, Cristian Cadenas Sarmiento, Carlos Javier Del Canto
Masa, and Rubén Méndez Nistal. 2019. On the generation of anomaly detection
datasets in industrial control systems. IEEE Access 7 (2019), 177460–177473.

[23] Qingqing Huang, Leilai Shao, and Na Li. 2015. Dynamic detection of transmission
line outages using hidden Markov models. IEEE Transactions on power systems
31, 3 (2015), 2026–2033.

[24] Alshaibi Ahmed Jamal, Al-Ani Mustafa Majid, Anton Konev, Tatiana Kosachenko,
and Alexander Shelupanov. 2023. A review on security analysis of cyber physical
systems using Machine learning. Materials today: proceedings 80 (2023), 2302–
2306.

[25] Arthur Jicha, Mark Patton, and Hsinchun Chen. 2016. SCADA honeypots: An
in-depth analysis of Conpot. In 2016 IEEE conference on intelligence and security
informatics (ISI). IEEE, 196–198.

[26] Nandha Kumar Kandasamy. 2019. An investigation on feasibility and security
for cyberattacks on generator synchronization process. IEEE Transactions on
Industrial Informatics 16, 9 (2019), 5825–5834.

[27] Petar Kovač, Ardian Pantina, Stjepan Groš, and Damir Sumina. 2023. Develop-
ment of Programmable Logic Controller Emulator With QEMU. In IEEE EURO-
CON 2023-20th International Conference on Smart Technologies. IEEE, 770–775.

[28] Maryna Krotofil and Dieter Gollmann. 2013. Industrial control systems security:
What is happening?. In 2013 11th IEEE International Conference on Industrial
Informatics (INDIN). IEEE, 670–675.

[29] Paula Lamo, Gustavo A Ruiz, Francisco J Azcondo, Alberto Pigazo, and Christian
Brañas. 2023. Impact of the noise on the emulated grid voltage signal in hardware-
in-the-loop used in power converters. Electronics 12, 4 (2023), 787.

[30] Efrén López-Morales, Carlos Rubio-Medrano, Adam Doupé, Yan Shoshitaishvili,
RuoyuWang, Tiffany Bao, and Gail-Joon Ahn. 2020. Honeyplc: A next-generation
honeypot for industrial control systems. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 279–291.

[31] Marco Lucchese, Francesco Lupia, MassimoMerro, Federica Paci, Nicola Zannone,
and Angelo Furfaro. 2023. Honeyics: A high-interaction physics-aware honeynet
for industrial control systems. In Proceedings of the 18th International Conference
on Availability, Reliability and Security. 1–10.

[32] Yuan Luo, Long Cheng, Yu Liang, Jianming Fu, and Guojun Peng. 2021. Deepnoise:
Learning sensor and process noise to detect data integrity attacks in CPS. China
Communications 18, 9 (2021), 192–209.

[33] Alfian Ma’arif, Iswanto Iswanto, Aninditya Anggari Nuryono, and Rio Ikhsan
Alfian. 2019. Kalman filter for noise reducer on sensor readings. Signal and Image
Processing Letters 1, 2 (2019), 50–61.

[34] Jan Machowski, Zbigniew Lubosny, Janusz W Bialek, and James R Bumby. 2020.
Power system dynamics: stability and control. John Wiley & Sons.

[35] David Makovoz. 2006. Noise variance estimation in signal processing. In 2006
IEEE International Symposium on Signal Processing and Information Technology.
IEEE, 364–369.

[36] R Martínez-Parrales, CR Fuerte-Esquivel, and BA Alcaide-Moreno. 2020. Analysis
of bad data in power system state estimation under non-Gaussian measurement
noise. Electric Power Systems Research 186 (2020), 106424.

[37] Daisuke Mashima, Muhammad M Roomi, Bennet Ng, Zbigniew Kalberczyk,
SM Suhail Hussain, and Ee-chien Chang. 2023. Towards automated generation of
smart grid cyber range for cybersecurity experiments and training. In 2023 53rd
Annual IEEE/IFIP International Conference on Dependable Systems and Networks-
Supplemental Volume (DSN-S). IEEE, 49–55.

[38] Tsega Y Melesse, Valentina Di Pasquale, and Stefano Riemma. 2020. Digital
twin models in industrial operations: a systematic literature review. Procedia
Manufacturing 42 (2020), 267–272.

[39] Ariana Mirian, Zane Ma, David Adrian, Matthew Tischer, Thasphon Chuenchujit,
Tim Yardley, Robin Berthier, Joshua Mason, Zakir Durumeric, J Alex Halderman,
et al. 2016. An internet-wide view of ICS devices. In 2016 14th Annual Conference
on Privacy, Security and Trust (PST). IEEE, 96–103.

[40] Sinil Mubarak, Mohamed Hadi Habaebi, Md Rafiqul Islam, Farah Diyana Abdul
Rahman, and Mohammad Tahir. 2021. Anomaly Detection in ICS Datasets with
Machine Learning Algorithms. Computer Systems Science & Engineering 37, 1
(2021).

[41] Shengyi Pan, Thomas Morris, and Uttam Adhikari. 2015. Developing a hybrid in-
trusion detection system using data mining for power systems. IEEE Transactions
on Smart Grid 6, 6 (2015), 3104–3113.

[42] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[43] Niels Provos. 2003. Honeyd-a virtual honeypot daemon. In 10th dfn-cert workshop,
hamburg, germany, Vol. 2. 4.

[44] R. Rajkumar, L. Lee, I. Sha, and J. A. Stankovic. 2010. Cyber-physical systems:
the next computing revolution. In DAC. ACM, 731–736.

[45] Luis Salazar, Sebastián R Castro, Juan Lozano, Keerthi Koneru, Emmanuele Zam-
bon, Bing Huang, Ross Baldick, Marina Krotofil, Alonso Rojas, and Alvaro A
Cardenas. 2024. A tale of two Industroyers: It was the season of darkness. In 2024
IEEE Symposium on Security and Privacy (SP). IEEE, 312–330.

[46] Luis Salazar, Efren López-Morales, Juan Lozano, Carlos Rubio-Medrano, and
Alvaro A Cardenas. 2024. ICSNet: A Hybrid-Interaction Honeynet for Industrial
Control Systems. In Proceedings of the Sixth Workshop on CPS&IoT Security and
Privacy. 68–79.

[47] Steffen Schütte, Stefan Scherfke, andMartin Tröschel. 2011. Mosaik: A framework
for modular simulation of active components in smart grids. In 2011 IEEE First
International Workshop on Smart Grid Modeling and Simulation (SGMS). IEEE,
55–60.

[48] Di Shi, Daniel J Tylavsky, and Naim Logic. 2012. An adaptive method for detection
and correction of errors in PMU measurements. IEEE Transactions on Smart Grid
3, 4 (2012), 1575–1583.

[49] Siddhant Shrivastava. 2016. Blackenergy-malware for cyber-physical attacks.
Singapore 74 (2016), 115.

[50] Ahnaf Siddiqi, Nils Ole Tippenhauer, Daisuke Mashima, and Binbin Chen. 2018.
On Practical Threat Scenario Testing in an Electric Power ICS Testbed. In Pro-
ceedings of the 4th ACM Workshop on Cyber-Physical System Security (CPSS ’18).
Association for Computing Machinery, 15–21.

[51] Joseph Slowik. 2019. Evolution of ICS attacks and the prospects for future
disruptive events. Threat Intelligence Centre Dragos Inc (2019).

[52] Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis. 2023.
Gotta catch’em all: a multistage framework for honeypot fingerprinting. Digital
Threats: Research and Practice 4, 3 (2023), 1–28.

[53] Yanbin Sun, Xiaojun Pan, Chao Xu, Penggang Sun, Quanlong Guan, Mohan Li,
and Men Han. 2020. Identifying Honeypots from ICS Devices Using Lightweight
Fuzzy Testing. Computers, Materials & Continua 65, 2 (2020).

[54] Heng Chuan Tan, Md Adeeb Hossain, Daisuke Mashima, and Zbigniew Kalbar-
czyk. 2024. High-fidelity Intrusion Detection Datasets for Smart Grid Cybersecu-
rity Research. In 2024 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm). IEEE, 340–346.

[55] Vanessa Tay, Xinran Li, Daisuke Mashima, Bennet Ng, Phuong Cao, Zbigniew
Kalbarczyk, and Ravishankar K Iyer. 2023. Taxonomy of fingerprinting tech-
niques for evaluation of smart grid honeypot realism. In 2023 IEEE International
Conference on Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm). IEEE, 1–7.

[56] Leon Thurner, Alexander Scheidler, Florian Schäfer, Jan-Hendrik Menke, Julian
Dollichon, Friederike Meier, Steffen Meinecke, and Martin Braun. 2018. pan-
dapower—an open-source python tool for convenient modeling, analysis, and
optimization of electric power systems. IEEE Transactions on Power Systems 33, 6
(2018), 6510–6521.

[57] Praveen Tripathy, Suresh C Srivastava, and Sri Niwas Singh. 2009. A divide-by-
difference-filter based algorithm for estimation of generator rotor angle utilizing
synchrophasor measurements. IEEE Transactions on Instrumentation and Mea-
surement 59, 6 (2009), 1562–1570.

[58] Shaobu Wang, Junbo Zhao, Zhenyu Huang, and Ruisheng Diao. 2017. Assess-
ing Gaussian assumption of PMU measurement error using field data. IEEE
Transactions on Power Delivery 33, 6 (2017), 3233–3236.

[59] Thomas J Witt and Yi-hua Tang. 2005. Investigations of noise in measurements
of electronic voltage standards. IEEE transactions on instrumentation and mea-
surement 54, 2 (2005), 567–570.

[60] Yunhao Xu, Chao Li, Daiqi Gu, Zhewei Zhang, Zhe Sun, and Yanfei Song. 2024.
A Novel Method for Honeypot Anti-Identification against Modbus Fuzz Testing
in Industrial Control Systems. In 2024 IEEE 9th International Conference on Data
Science in Cyberspace (DSC). IEEE, 599–606.

[61] Mohammad-Reza Zamiri-Gourabi, Ali Razmjoo Qalaei, and Babak Amin Azad.
2019. Gas what? I can see your GasPots. Studying the fingerprintability of ICS
honeypots in the wild. In Proceedings of the fifth annual industrial control system
security (icss) workshop. 30–37.

[62] Jinghe Zhang, Greg Welch, Gary Bishop, and Zhenyu Huang. 2013. A two-stage
Kalman filter approach for robust and real-time power system state estimation.
IEEE Transactions on Sustainable Energy 5, 2 (2013), 629–636.

[63] Ning Zhou, Zhenyu Huang, Da Meng, Stephen T Elbert, Shaobu Wang, and
Ruisheng Diao. 2014. Capturing dynamics in the power grid: Formulation of
dynamic state estimation through data assimilation. Technical Report. Pacific

SimProcess: High Fidelity Simulation of Noisy ICS Physical Processes CPSS ’25, August 25–29, 2025, Hanoi, Vietnam

Northwest National Lab.(PNNL), Richland, WA (United States).
[64] Hengye Zhu, Mengxiang Liu, Binbin Chen, Xin Che, Peng Cheng, and Ruilong

Deng. 2024. HoneyJudge: A PLC Honeypot Identification Framework Based on
Device Memory Testing. IEEE Transactions on Information Forensics and Security
(2024).

[65] Tetiana Zubatiuk andOlexandr Isayev. 2021. Development ofmultimodalmachine
learning potentials: toward a physics-aware artificial intelligence. Accounts of
Chemical Research 54, 7 (2021), 1575–1585.

A APPENDIX
A.1 tsfresh Relevant Features
In this section, we list the features from tsfresh [13] we kept while
extracting features from the original signal that extract information
from the noise variation and not from the underlying process.

• 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑥,𝑚, 𝑟). Implements a vectorized Ap-
proximate entropy algorithm.

• 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝑥). Returns kurtosis of 𝑥 calculated with the ad-
justed Fisher-Pearson standardized moment coefficient 𝐺2.

• 𝑙𝑒𝑚𝑝𝑒𝑙_𝑧𝑖𝑣_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑥, 𝑏𝑖𝑛𝑠). Calculate a complexity es-
timate based on the Lempel-Ziv compression algorithm.

• 𝑙𝑜𝑛𝑔𝑒𝑠𝑡_𝑠𝑡𝑟𝑖𝑘𝑒_𝑎𝑏𝑜𝑣𝑒_𝑚𝑒𝑎𝑛(𝑥). Returns the length of the
longest consecutive subsequence in x that is bigger than the
mean of x.

• 𝑙𝑜𝑛𝑔𝑒𝑠𝑡_𝑠𝑡𝑟𝑖𝑘𝑒_𝑏𝑒𝑙𝑜𝑤_𝑚𝑒𝑎𝑛(𝑥). Returns the length of the
longest consecutive subsequence in x that is smaller than
the mean of x.

• 𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑒𝑎𝑘𝑠 (𝑥, 𝑛). Calculates the number of peaks of at
least support n in the time series x.

• 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑥, 𝑡𝑎𝑢, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛). Calculate the per-
mutation entropy.

• 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 (𝑥). Returns the sample skewness of 𝑥 calculated
with the adjusted Fisher-Pearson standardized moment coef-
ficient 𝐺1.

• 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥, 𝑙𝑎𝑔). Calculates the autocorrelation of
the specified lag.

	Abstract
	1 Introduction
	2 Background
	3 System and Attacker Model
	4 SimProcess
	4.1 Design
	4.2 Implementation

	5 SimProcess at work: the EPIC case study
	5.1 Dataset Generation
	5.2 SimProcess Fine-Tuning
	5.3 Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 tsfresh Relevant Features

