
 1

BPMN Model to Smart Contract by Business Analyst

Christian Gang Liu
Faculty of Computer Science

Dalhousie University
Halifax, Canada

Chris.Liu@dal.ca

Peter Bodorik
Faculty of Computer Science

Dalhousie University
Halifax, Canada

Peter.Bodorik@dal.ca

Dawn Jutla
Sobey School of Business
Saint Mary’s University

Halifax, Canada
Dawn.Jutla@gmail.com

Abstract— This paper addresses the challenge of creating smart
contracts for applications represented using Business Process
Management and Notation (BPMN) models. In our prior work we
presented a methodology that automates the generation of smart
contracts from BPMN models. This approach abstracts the
BPMN flow control, making it independent of the underlying
blockchain infrastructure, with only the BPMN task elements
requiring coding. In subsequent research, we enhanced our
approach by adding support for nested transactions and enabling
a smart contract repair and/or upgrade. To empower Business
Analysts (BAs) to generate smart contracts without relying on
software developers, we tackled the challenge of generating smart
contracts from BPMN models without assistance of a software
developer. We exploit the Decision Model and Notation (DMN)
standard to represent the decisions and the business logic of the
BPMN task elements and amended our methodology for
transformation of BPMN models into smart contracts to support
also the generation script to represent the business logic
represented by the DMN models. To support such
transformation, we describe how the BA documents, using the
BPMN elements, the flow of information along with the flow of
execution. Thus, if the BA is successful in representing the
blockchain application requirements using BPMN and DMN
models, our methodology and the tool, called TABS, that we
developed as a proof of concept, is used to generate the smart
contracts directly from those models without developer
assistance.

Keywords — Automated Generation of Smart Contracts,
Blockchain, Business Process Model and Notation (BPMN),
Decision Model and Notation (DMN), Trade of goods and services

I. INTRODUCTION
The publication of the Bitcoin white paper in 2008 and the
subsequent launch of the Bitcoin blockchain in 2009 sparked
significant interest and research into blockchain technology.
This emerging technology has garnered widespread attention
from businesses, researchers, and the software industry due to
its key attributes, such as trust, immutability, availability, and
transparency. However, as with any new technology,
blockchain and its associated smart contracts pose a range of
challenges, particularly in areas like blockchain infrastructure
and smart contract development.

Ongoing research is tackling several critical issues,
including blockchain scalability, transaction throughput, and
the high costs associated with consensus algorithms. In
addition, smart contract development faces unique obstacles
arising due to the blockchain infrastructure technology, such as
a limited stack space, the oracle problem, data privacy

concerns, support for long-running contracts, and cross-
blockchain interoperability. These challenges have been the
subject of extensive study, with numerous comprehensive
literature reviews available [e.g., 1, 2].

The inherent constraints of blockchain technology
complicate the development of smart contracts, as documented
in several literature surveys [e.g., 3, 4]. Consequently,
developers must not only be proficient in traditional software
development but also possess expertise in smart contract
programming for distributed environments, including the use
of cryptographic techniques integral to blockchain
infrastructure. To address these challenges and simplify smart
contract development, research in [5-8], proposes leveraging
Business Process Model and Notation (BPMN) models [9] as
a foundation for generating smart contracts.

We also use BPMN to represent business application
requirements, however, we take a different approach to
transforming BPMN models into smart contracts. Our method
leverages multi-modal modeling to represent the flow of
business logic in a blockchain-agnostic manner, providing
unique advantages for automated or semi-automated smart
contract creation and deployment. As a proof of concept, we
developed a tool called Transforming Automatically BPMN
model into Smart contracts with Repair Upgrade (TABS+R),
which automates the generation of smart contracts from BPMN
models [10, 11].

It should be noted that the BPMN and DMN are standards
created by the Object Management Group (OMG) [9]. Both are
graphical standards that have been designed to be readily
understandable and used by both non-technical and technical
people and thus form a bridge between the business and IT
personnel. BPMN is used to represent well-defined business
processes, while DMN is used to specify business decisions
and rules. The DMN standards specifies the use of the Friendly
Enough Expression Language (FEEL) that was designed to
write expressions in a way that is easily understood by both
business professionals and developers. FEEL is used to define
expressions in the context of BPMN and DMN diagrams [9].

As DMN and BPMN have been designed to be readily
understood and used by business professionals, such as
Business Analyst (BA), as well as IT personnel, we assume
that a BA, who is responsible for requirements gathering for
the blockchain application, is familiar with BPMN and DMN
modeling. Consequently, as it is the BA who uses BPMN and
DMN modeling to represent the blockchain distributed
application, if we achieve automated transformation of BPMN

 2

models, for which DMN is used to express the business
decision logic, we shall enable the BA to generate smart
contracts without assistance by software developers as long as
they can express the business logic using DMN.

A. Objectives
The main objective of this paper is to show the feasibility of
generating methods of a smart contract from a BPMN model
with business logic represented using DMN. To achieve the
transformation, two separate subproblems must be addressed,
namely (a) representation of the business logic in DMN and
how it is transformed into the code executable by the generated
smart contract, and (b) which information must be available for
the transformation and how such information is represented in
BPMN and DMN models.

B. Contributions
The main contributions of this paper include:

i. Describing how the BA documents the flow of
information along the flow of computation. This
information is by the transformation of BPMN and
DMN models into smart contracts.

ii. Showing how the BPMN models are readily augmented
with DMN modeling to represent the business logic of
the blockchain application.

iii. Proof of concept to show the feasibility of our approach
to automated generation of smart contracts for
applications modeled with BPMN and DMN.

C. Outline
In the second section, we outline our system architecture for
creating smart contracts and for their execution and overview
the significant features of our approach to automated
development of smart contracts from BPMN and DMN
models. The third section describes how the BA uses BPMN
modeling to represent the flow of information to support the
transformation, while the fourth section explains the use of
DMN modeling to represent the business logic. The fifth
section shows the tool in action on a selected use case. The last
two sections provide related work and summary and
conclusions, respectively.

II. USING MULTI-MODAL MODELING FOR SMART CONTRACT
GENERATION

In contrast to the other approaches to transforming BPMN
models into smart contracts, we exploit multi-modal modeling
to represent the flow of computation of the business logic in a
blockchain-agnostic manner [10]. We subsequently extended
our approach and methodology and created a PoC tool, called
TABS+R [11, 12] to support:
• Semi-automated generation of smart contracts from

BPMN models [10,11].
• Support for nested long running and multi-step

transactions [11].
• Repair/upgrade of smart contracts [12].

The overall architecture of our system is illustrated in Fig.
1. It presents a block diagram outlining the key steps involved
in transforming a BPMN model into smart contract methods.
The diagram also includes a set of API methods (denoted as
DAppAPI in Fig. 1) that facilitate interaction between a
Distributed Application (DApp) and the smart contract
methods. This architecture is typical of most approaches that
generate smart contract methods from BPMN models [4-7]. In
this setup, the DApp does not directly invoke the smart contract
methods. Instead, it calls API methods provided by the API-
SCmethods component in Fig. 1), which marshals the
necessary parameters and then triggers the corresponding
smart contract methods.

During the design phase, activities of actors involved in the
smart contract are represented using multi-modal modeling.
Concurrency is modeled using Discrete Event (DE) modeling,
while functionality is represented with concurrent Finite State
Machines (FSMs), forming a DE-FSM model. A key feature of
this model is its blockchain-agnostic nature, meaning that the
coordination of collaborative activities is described using DE
modeling. Only the code for the BPMN task elements is
blockchain-dependent, i.e., it needs to be written in a
programming language that is supported by the target
blockchain. For example, Ethereum-based blockchains
typically use languages that produce code executed by the
Ethereum Virtual Machine (EVM), whereas JavaScript or
other languages may be used for scripting task elements in
Hyperledger Fabric (HLF) blockchains.

Scripting the code for the BPMN task elements is relatively
straightforward compared to scripting synchronization of
collaboration of activities that is orchestrated through the
transformation of BPMN models, with business logic
represented using DMN modeling, into smart contracts. The
code implementing a BPMN task is self-contained: In BPMN
modeling, once the flow of computation enters a task element
and its execution begins, the task completes its computation
without interruption. Furthermore, the task code (i) can read
information flowing into the task, (ii) read/write the blockchain
state variables; and produce output information that flows out
of the task when its computation finishes. Thus, the task code
is self-contained in a smart contract method accessing only the
state variables and the method’s inputs and outputs, as
represented by BA using the flow of information in a BPMN
model as will be described in a following section.
Consequently, the approach also leads to a modular design.

In summary, the flow of collaborative activities is modeled
using DE-FSM modeling. The functionality of task elements is
achieved by invoking methods that implement the business
logic of each task. To coordinate these collaborative activities,
a run-time monitor, implemented as a smart contract method
deployed on the target blockchain, ensures the correct
sequencing and execution of the activities. This monitor uses
DE modeling to manage the invocation of individual activities,
which are represented as methods within the monitor. Thus, if
the target blockchain for the smart contract deployment has a
monitor smart-contract deployed, the synchronization of the

 3

collaborative activities is blockchain agnostic. Furthermore,
our approach deploys a monitor smart contract on the target
blockchain automatically. In our proof of concept (PoC), the
TABS+R tool, we implemented the monitor smart contract to
be deployed on the Hyperledger Fabric (HLF) blockchain as
well as on blockchains supporting the EVM [10-12].

III. BPMN MODELING BY BA
Before we describe BPMN modeling by the BA, we briefly
overview information on storage of large files and

communication between a smart contract and its external
environment.

A. Preliminaries
As is the usual practice for blockchains, large document

files or objects are not stored on the blockchain itself but are
stored off-chain. For the storage of document files or large
objects, we currently utilize the InterPlanetary File System
(IPFS) [13] for its reliability and availability supported through
replication.

Fig. 1. System architecture for the design phase and for the execution phase (adopted from [10])

When a document is created and uploaded to IPFS, a new

Content-addressed hash code IDentifier (CID) is generated.
This CID is then signed and stored by the smart contract,
providing a method to verify the document's authenticity,
including confirming (i) authorship and (ii) immutability to
ensure that the document has not been altered since its creation.

One of the key features that supports trust in smart contracts
is that the methods within a smart contract do not have access
to external resources, such as file systems or communication
subsystems. Smart contract code can only access the state
variables stored on the blockchain and the parameters passed
to smart contract methods when they are invoked. Therefore,
beyond the state variables, any additional information required

 4

by a smart contract must be marshaled by the API-SCmethods
component before the smart contract method is invoked. The
marshalled data is then passed as input parameters when
invoking the smart contract methods.

Additionally, a smart contract must communicate the
progress of its execution to the Distributed Application
program (DApp) that invokes its methods. This is
accomplished by emitting events from the smart contract
methods, which are captured by the API-SCmethods
component (as shown in Fig. 1) and relayed to the DApp.

B. Exposition Use Case
For explanatory purposes, we will use a simple BPMN

model, shown in Fig. 2, that represents a sale of a large product,
such as a combine harvester. The model shows that an
agreement on the sale of the product is reached first, followed
by arrangements for transporting the product. These transport
arrangements include determining the requirements for
transporting the product, such as safety measures for hazardous
materials. Once the transport requirements are established,
insurance and transport are arranged, and the product is
shipped. After transportation, the product reception by the
client is reviewed, and the payment is finalized.

Modeling is carried out by a Business Analyst (BA) who is
assumed to be proficient in BPMN and DMN modeling,
including the use of the FEEL language for decision logic.
Additionally, we assume that the BA is familiar with
JavaScript Object Notation (JSON), which is used to describe
the flow of information throughout the computation process, as
will be detailed later.

In Fig. 2, the first task, RecAgr, involves receiving a
purchase offer document from an external source. Once
accepted, the purchase agreement (i.e., a sales agreement) is
passed to the next task, GetTrReq, for further processing. The
sales agreement is represented by an associated data element,
SalesAgr. The GetTrReq task determines the transport
requirements for the product and stores them in a newly
generated IPFS document, TrRequirements. This document is
then passed to the subsequent processing step.

The transport requirements are forwarded to the GetIns and
GetTransp tasks to secure insurance and a transporter,
respectively. These tasks can be executed concurrently, as
indicated by the fork gateway (diamond shape with a plus
sign). The GetIns task generates the insurance contract, labeled
Insurance, while the GetTransp task produces the Transport
document.

Fig. 2. BPMN model

Once both the insurance and transport contracts are obtained

and provided to the transporter, the product is delivered to its
destination, represented by the DoTransp task. Once the product
is received by the purchaser, the reception of the product is
recorded in the Delivery document that is forwarded to the final
task, RevAndFin, that reviews and finalizes the contract.

Please note that the flow of activities shown in Fig. 2 is
executed by a single actor, represented within one, in BPMN
terminology, swimlane. This model is suitable for scenarios
within organizations that lack sophisticated IT infrastructure,
such as Small to Medium-sized Enterprises (SMEs). The simple
use case is designed to demonstrate how the BA uses BPMN to
document the flow of information along the computation
process and how the BA applies DMN modeling to define the
business logic.

In the following, we describe how a BA, working within the
context of an SME, creates a BPMN model to track activities,

document flows, and express the business logic decisions of
BPMN task elements using DMN modeling.

C. Documenting Flow of Information by BA
The previous discussion, of the BPMN model in Fig. 2,
illustrates the flow of computation, which is forked by a fork-
gate, enabling the concurrent execution of the GetIns and
GetTransp tasks. The figure also shows how the BA represents
information as it flows along with the flow of computation. This
is achieved by the BA documenting the transfer of information
between tasks using an association object. In Fig. 2, the dotted
arrows, from the RecAgr task to the SalesAgr association object
and then from the SalesAgr to the GetTrReq task, indicate the
transfer of the sales agreement information (SalesAgr) from the
RecAgr task to the GetTrReq task.

We first describe how JSON is used to model the flow of
information and then provide simple examples to clarify. To

 5

provide more details on the content of the SalesAgr document,
the BA clicks on the SalesAgr icon to provide annotation about
its contents.

Information flowing along the computation process flow
may contain multiple items, each of which is described by an
array of key-value pairs. For this purpose, the BA uses JSON to
represent the information flowing along the computation
process. Items, such as item1 and item2, are represented as an
array of JSON elements.

The first element in the array has the form: { "source":
"string1" }. The value of "string1" can only be "file" or "http",
denoting whether the information is sourced from a file or an
HTTP service. If the value of string1, representing the value for
the key “source”, is "file", the next item in the array specifies
the CID (Content Identifier) of the file from which the
information is retrieved. This file is assumed to be in JSON
format. The subsequent items in the array identify the fields (or
components) within the file that need to be retrieved and passed
as parameters to a smart contract method invoked by the API-
SCmethods component.

If the value of string1 is "http", then there is an array of
elements that contain information on (i) HTTP address of the
service, (ii) input parameters, and (iii) output parameters
containing the results of the service execution. The HTTP
service is invoked with input parameters described, wherein the
service returns information in its output parameters. Both the
input and output parameters are described using the array
elements. The HTTP service is invoked to implement the task
and return the produced results in its output parameters that are
recorded in the smart contract. For brevity, we will focus on
describing how JSON is used to represent the content of files
that provide information flowing along the computation
process.

In Fig. 3, the file containing the relevant information is
named SalesAgr.json, and its CID is provided. The array of
elements within the JSON structure identify which components
of the SalesAgr.json file are to be retrieved and passed as
parameters to the smart contract method. In our simple use case,
the JSON components to be retrieved and passed to the smart
contract method include only the product ID, which is supplied
to both GetTrReq and GetIns tasks. These tasks then use the
product ID to retrieve further details about the product to be
transported and then the requirements for its transport, if any.

This approach allows the BA to clearly define the flow of
data in the smart contract system, ensuring smooth interaction
between the BPMN and DMN models and the smart contract
that is generated, and providing transparency and traceability in
the overall process.

Information flowing into a task, as a result of invocation of
a smart contract method, is prepared by the API-SCmethods
component. It retrieves the information described by the JSON
annotation of the SalesAgr association object, marshals it into

the appropriate format, and passes it as input parameters to the
smart contract method that implements the GetTrReq task.

Fig. 3. Annotation to describe information flowing between tasks

For the subsequent sections, we assume that the monitor
smart contract, required by the smart contracts generated by the
TABS+R tool, has already been deployed on the target
blockchain. We support currently either HLF blockchain or a
blockchain that uses EVM.

IV. DMN MODELING
We will use our simple example use case, represented by the

BPMN model of Fig. 2. Assuming, for simplicity, that if the
quoted price for the insurance is 15% or more of the product
price, then the whole contract should be aborted due to the high
cost. To make such a decision, the price of the product and the
insurance cost need to be available.

To express the constraints on the insurance cost, we use the
business-rule task element of BPMN. Functionally, the
business-rule task first produces a value that is then forwarded
to an exclusive gateway. The gateway uses the value, produced
by the business rule task, to choose one of its forks for the
outgoing flow of computation.

For our simple case, the business decision logic can be
represented using a simple decision table as is shown in Fig. 4.
Our tool invokes the graphical editor provided by Camunda (at
Camunda.com) and available from BPMN.io. The decision
table is created to check that the insurance quote, as a
percentage of the price, is less than 15, in which case the next
task to be executed is DoTransp to transport the product to its
destination. The smart contract fails if the insurance quote, as a
percentage of the price, is higher than 15%.

Once the decision table is completed, the business-rule task
is represented by a rectangular icon with rounded corners that
has a picture of a small table of rows and columns in the left top
corner, as is shown in Fig. 5. From the business rule task there
is an outgoing flow that contains the result of the business rule
evaluation that is then used by the following exclusive fork gate
to take one of the outgoing paths, one for the when the
percentage is less than or equal to 15% that continues to the
DoTransp task, while if the percentage is greater than 15%, the
contract fails, resulting in automatic execution of recovery
procedures as described in [11]

 6

Fig. 4. Creating the decision table for a business-rule task

Fig. 5. BPMN model with the business-rule task

In addition to the simple decision tables, DMN modeling
also incorporates the use of the Friedly Enough Expression
Language (FEEL). FEEL was created by OMG as a part of
DML using the following design principles with the aim to be
a readable language for programmers and business analysts
[ref to OMG doc or Camnuda tutorial]:

• Side-effect free
• Simple data model with numbers, dates, strings, lists,

and contexts
• Simple syntax designed for a broad audience
• Three-valued logic (true, false, null)

• Control statements including assignment, conditional,
looping, and range statements.

• Functions for string, numbers, data and time, and lists.
We acknowledge that currently we only support simple

decision tables. However, FEEL has been implemented in
BPMN modeling used for process orchestration, for instance
by Camunda as described in BPMN.io, and we do not foresee
design challenges.

V. GENERATING SMART CONTRACTS BY BA IN SME
We analyzed a variety of use cases from the literature that

focuses on transformation of BPMN models into smart

 7

contracts, such as use cases for Order-supply, Supply chains,
Parts Order, Sales and Shipment, and Ordering Medications.

In each case, the creation, review, or amendment of these
documents occurs off-chain. In such cases, the exchanged data
between actors consists primarily of QR codes that identify the
document files being shared, wherein the QR code is used as
the documents unique ID that is analogous to the CID
generated by the IPFS. The smart contract interactions among
the partners are limited to the exchange of these documents,
rather than directly handling the creation or modification of
them.

Thus, when task executions can be performed off-chain, the
task script code does not need to be provided on-chain, as long
as the generation of the smart contracts from the BPMN model
ensures a certified exchange of documents between on-chain
and off-chain computations, which is readily supported by our
approach as only CIDs are passed to the smart contract
methods.

Operationally, in the absence of the IT support, the BA, or
an operator trained by the BA, performs the actual activities
represented by some of the tasks, while the smart contract
records the result of the BA’s activities. For instance, it is the
BA who needs to execute the GetTrReq task. The BA needs the
product description that is communicated by the BA to an
insurance provider. The insurance provider communicates the
insurance document to the BA who needs to store it in the file
system to be accessible by the API-SCmethods component of
the architecture shown in Fig. 1.

VI. RELATED WORK
Several approaches to transforming BPMN models into

smart contracts have been explored. The Lorikeet project
focuses on transforming BPMN models into smart contracts to
facilitate blockchain-based business process execution and
asset management [5, 16]. The project employs a model-driven
engineering approach, where BPMN models are analyzed and
converted into smart contract methods that can be deployed on
blockchain platforms, particularly Ethereum. An off-chain
component is used to manage interactions between process
participants and the blockchain, ensuring the execution of
processes follows the predefined message exchanges in the
BPMN model.

Additionally, Lorikeet supports asset control, enabling the
management of both fungible and non-fungible assets, such as
token registries and transfer methods, which are essential for
business processes requiring asset handling. This approach
allows for rapid prototyping, testing, and deployment of smart
contracts based on BPMN models, enhancing flexibility and
efficiency in blockchain-based business process automation [5,
16].

The Caterpillar project focuses on transforming Business
Process Model and Notation (BPMN) models into smart
contracts, providing a comprehensive architecture for
executing business processes on the Ethereum blockchain [6,
7]. It adopts a three-layer architecture that includes a web
portal, an off-chain runtime, and an on-chain runtime. The on-

chain runtime layer is responsible for managing the execution
of smart contracts that control workflow, interaction
management, and process configurations based on the BPMN
model. This approach ensures that business processes are
executed transparently, securely, and efficiently within a
blockchain environment.

The Caterpillar project emphasizes recording all business
processes in a single pool, facilitating the management of
interactions and ensuring the consistency of the process
execution across multiple actors. By leveraging Ethereum as
the blockchain platform, Caterpillar enables the seamless
integration of BPMN models with decentralized applications,
supporting the automation of business workflows through
blockchain-based smart contracts [6, 7, 17].

The Collaborative Business Process Execution on
Blockchain (CoBuP) project explores the transformation of
BPMN models into smart contracts, offering a unique approach
compared to traditional methods. CoBuP does not directly
compile BPMN models into smart contracts [15]. Instead, it
deploys a generic smart contract that invokes predefined
functions based on the BPMN model, making it more flexible
and adaptable to various process executions.

The CoBuP architecture is based on three layers:
conceptual, data, and flow layers. BPMN models are first
transformed into a JSON-based workflow model, which
governs the execution of business processes by interacting with
data structures on the blockchain. This allows for a
decentralized, secure execution of business processes while
maintaining the flexibility needed for collaborative
environments. The project approach highlights the potential for
blockchain to support complex business processes that require
a high degree of collaboration, adaptability, and trust among
participants.

VII. SUMMARY AND CONCLUSIONS
In this paper, we first reviewed the progress on our project

to transform the BPMN models into a smart contract. We then
described our approach to augmenting the approach to allow
modeling of business logic using DMN. We described how the
BA annotates the BPMN model with information on the flow
of data along the line of computation. This is required so that
the business logic expressed using DMN can be mapped to the
data/objects that are passed amongst the tasks of the BPMN
model. We showed the use of DMN modeling to describe a
simple example of expressing business logic using a decision
table. Once the BA develops the BPMN and DMN models for
the distributed applications, the BA uses our tool, TABS+R
that we developed as a proof of concept, to transform the
BPMN models, for which the simple business logic was
expressed using DMN modeling, into a smart contract that is
deployed on a target blockchain. Thus, we demonstrated that a
BA uses the BPMN and DMN modeling to create models that
are transformed into smart contracts without the assistance of
a software developer. Of course, this is only for the case when
the BA manages to express the business logic using DMN
modeling.

 8

It should be noted that DMN modeling is quite
sophisticated as, in addition to the simple concept of the
decision tables, it also includes the Friedly Enough Expression
Language (FEEL) for representing the business
rules/expressions with a simple data model and simple control
constructs for conditionals, looping, and ranges. The language
was designed to be understood by business professionals and
IT personnel and thus should be friendly enough to be used by
BAs.

Although the business-rule task is being proposed for
BPMN and has already been used in software products, such
as in modeling graphical editors presented in BPMN.io that we
exploit in our proof of concept, it has not been yet officially
approved. As a consequence, the current implementations of
the models in engines powering the orchestration of the
business processes may differ [18].

Although research progress is being made automated
transformation of BPMN models into smart contracts, much
work is needed before it can be applied to software product
supporting the concept of Smart Contract as a Service (SCaaS),
or more precisely (BPMN to Smart Contract) as a Service
((BPMNtoSC)aaS). Input to the service is the description of
the BPMN and DMN models expressed in XML, and
information on the target blockchain. Output from the
transformation includes the methods of the smart contract
deployed on the target blockchain. In addition, also output is
the monitor smart contract, deployed on the target blockchain,
that required for the coordination of the task activities.

As our TABS+R tool is only a proof of concept, we are
focusing on verifying and validating the security of the smart
contract methods generated by our approach. Although we use
standard techniques to secure individual smart contract
methods, the concept of a long-running transaction enforced by
an automatically generated transaction mechanism [11]
requires protection from the man-in-the-middle attacks.

In addition, for any transformation generating the smart
contracts to be useful in production environment, appropriate
plugins are required. We are currently augmenting our PoC
tool to invoke HTTP services to automatically execute tasks,
which would be useful for deployment of the smart contracts
generated in organization supporting the use of HTTP services
in their business processes.

REFERENCES
[1] D. Yang, C. Long, H. Xu, S. Peng, 2020. A Review on Scalability of

Blockchain. 2nd ACM Int. Conf. on Blockchain Technology
(ICBCT'20), pp 1–6. DOI:https://doi.org/10.1145/3390566.3391665

[2] P. J. Taylor, T. Dargahi, Dehghantanha, R. M. Parizi, 2019. A
Systematic Lit. Review Of Blockchain Cyber Security – Science Direct.
https://www.sciencedirect.com/science/article/pii/S2352864818301536.

[3] S. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, A. Bani-Hani,
2021. Blockchain smart contracts: Applications, challenges, and future
trends. Peer Peer Netw Appl. 2021 Apr 18:1-25. doi: 10.1007/s12083-
021-01127-0.

[4] O. Levasseur, M. Iqbal, and R. Matulevičius, 2021. “Survey of Model-
Driven Engineering Techniques for Blockchain-Based Applications”.
PoEM’21 Forum: 14th IFIP WG 8.1 Working Conference on the Practice
of Enterprise Modelling.

[5] Tran, Q. Lu, and I. Weber, “Lorikeet: A Model-Driven Engineering Tool
for Blockchain-Based Business Process Execution and Asset
Management,” in Proc. 2018 Int. Conf. on Business Process
Management, 1–5; https://api.semanticscholar.org/CorpusID:52195200

[6] O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber, and A.
Ponomarev, “CATERPILLAR: A Business Process Execution Engine on
the Ethereum Blockchain,” Software Practice and Experience, 49(1).
2019, arXiv: arXiv:1808.03517. doi: 10.48550/arXiv.1808.03517.

[7] O. López-Pintado, M. Dumas, L. García-Bañuelos, and I. Weber,
“Controlled flexibility in blockchain-based collaborative business
processes,” Information Systems, vol. 104, p. 101622, Feb. 2022, doi:
10.1016/j.is.2020.101622.

[8] F. Loukil, K. Boukadi, M. Abed, and C. Ghedira-Guegan. Decentralized
collaborative business process execution using blockchain. World Wide
Web, vol. 24, no. 5, pp. 1645–1663, Sep. 2021, doi: 10.1007/s11280-
021-00901-7.

[9] BPMN, CMMN, and DMN Specifications at OMG.
https://www.omg.org/intro/TripleCrown.pdf

[10] P. Bodorik, C. G. Liu, D. Jutla. 2022. TABS: Transforming
Automatically BPMN Models into Smart Contracts. Blockchain:
Research and Applications (Elsevier journal), 100115.
https://doi.org/10.1016/j.bcra.2022.100115.

[11] C. Liu, P. Bodorik, D. Jutla. 2024. Tabs+: Transforming Automatically
BPMN Models To Smart Contracts with Nested Collaborative
Transactions. ACM journal on Distributed Ledger Technologies:
Research and Practice (DLT) https://doi.org/10.1145/3654802.

[12] C. Liu, P. Bodorik, and D. Jutla. Automated Mechanism to Support Trade
Transactions in Smart Contracts with Upgrade and Repair. Pre-accepted
for publicatoin in Blockchain: Research and Applications (Elsevier
journal); https://blockchain.cs.dal.ca/papers/BCRAj2-3rd-Submission-
2nd-revision-2024-12-02-REPAIR.pdf

[13] J. Benet. “IPFS - Content Addressed, Versioned, P2P File System.” In
https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-
system.pdf

[14] F. Loukil, K. Boukadi, M. Abed, and C. Ghedira-Guegan, “Decentralized
collaborative business process execution using blockchain,” World Wide
Web, vol. 24, no. 5, pp. 1645–1663, Sep. 2021, doi: 10.1007/s11280-
021-00901-7.

[15] Bagozi, D. Bianchini, V. De Antonellis, M. Garda, and M. Melchiori, “A
Three-Layered Approach for Designing Smart Contracts. OTM 2019
Conf., Springer Int Publ, 440–457. doi: 10.1007/978-3-030-33246-4_28.

[16] Qinghua Lu, An Binh Tran, Ingo Weber, Hugo O’Connor, Paul Rimba,
Xiwei Xu, Mark Staples, Liming Zhu, and Ross Jeffery. Integrated
model‐driven engineering of blockchain applications for business
processes and asset management. Software: Practice and Experience 51,
no. 5 (2021): 1059-1079.

[17] O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber.
Caterpillar: A Blockchain-Based Business Process Management System.
In Proc. of Business Process Management Workshops: BPM 2017
International Workshops, Barcelona, Spain. https://ceur-ws.org/Vol-
1920/BPM_2017_paper_199.pdf

[18] Camundal. DMN Tutorial. In: https://camunda.com/dmn/

https://www.sciencedirect.com/science/article/pii/S2352864818301536
https://www.omg.org/intro/TripleCrown.pdf
https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://doi.org/10.1002/spe.2931
https://doi.org/10.1002/spe.2931
https://doi.org/10.1002/spe.2931
https://ceur-ws.org/Vol-1920/BPM_2017_paper_199.pdf
https://ceur-ws.org/Vol-1920/BPM_2017_paper_199.pdf

