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Abstract. In recent years, malware with tunneling (or: covert channel)
capabilities is on the rise. While malware research led to several meth-
ods and innovations, the detection and differentiation of malware solely
based on its DNS tunneling features is still in its infancy. Moreover, no
work so far has used the DNS tunneling traffic to gain knowledge over
the current actions taken by the malware.
In this paper, we present Domainator, an approach to detect and differ-
entiate state-of-the-art malware and DNS tunneling tools without relying
on trivial (but quickly altered) features such as “magic bytes” that are
embedded into subdomains. Instead, we apply an analysis of sequential
patterns to identify specific types of malware. We evaluate our approach
with 7 different malware samples and tunneling tools and can identify the
particular malware based on its DNS traffic. We further infer the rough
behavior of the particular malware through its DNS tunneling artifacts.
Finally, we compare our Domainator with related methods.

Keywords: Covert Channels · DNS · Malware · Tunneling.

This is a pre-print. The final version of this paper will be pub-
lished in the proceedings of the 20th International Conference
on Availability, Reliability and Security (ARES’25).

1 Introduction

Tunneling data through a protocol that is otherwise not meant for such activities
provides malware authors with the capabilities of transporting stolen data and
subsequent command and control messages to and from a C2 server in a hidden
manner. Their focus on evading traditional detection methods allows the mal-
ware and its communication channel(s) to remain undiscovered. As such tunnels
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break the security policy of their environments in a stealthy manner, literature
refers to these channels as covert channels [24]. More than 100 recent cases of
malware employing covert channels have been summarized by Strachanski et al.
[22] (2024), Knöchel and Karius [13] (2024) as well as Caviglione and Mazurczyk
[5] (2022).

Network tunneling exploits features of common Internet protocols [5], with
DNS being the most frequently used protocol for this purpose [22]. While the
detection of network-specific covert channels was studied for years, there is still
a lack regarding the differentiation – or: identification – of malware. Moreover,
studies on detecting or identifying network covert channels usually target purely
academic implementations.

This paper aims to address this gap by showing that we can not only detect
but identify (i.e., separate) real-world DNS-based malware, and also understand
its behavior. In particular, our contributions are the following:

1. We introduce a methodology for the identification of real-world malware
samples on the network-level;

2. Targeting DNS-based tunneling, we are able to differentiate multiple mal-
ware samples solely based on statistical features of their subdomain utiliza-
tion, that we feed into a Random Forest classifier;

3. We show that our classification approach can be used to detect malware
behavior, i.e., we can tell which action a malware performs;

4. We further show that we can identify malware samples even when their
communication pattern is slightly modified;

5. We provide our dataset to the scientific community.

The remainder of the paper is structured as follows. We cover fundamentals
and related work in Sect. 2 and present our methodology in Sect. 3. We evaluate
our approach in Sect. 4, which also introduces the analyzed malware samples.
Sect. 5 discusses our methodology while Sect. 6 concludes.

2 Related Work and Fundamentals

2.1 Related Work

Establishment of DNS Tunnels A plethora of methods exist to embed covert mes-
sages into network traffic, see, e.g., the following survey publications [23,24,17].
Recent findings unveiled that the predominant protocol utilized by malware is
DNS [22]. Summarized, to hide secret information in DNS traffic, attackers ex-
ploit the header fields of the DNS protocol and the values of the DNS entries
that are attached to the header (these are called resource records).

Detection of DNS Tunnels Several papers study the detection of network covert
channels, including DNS-based ones, see, e.g., [23,16] for comprehensive overviews.
The related work on detecting DNS-based covert channels and tunneling barely
addresses real-world malware traffic and almost exclusively focuses on academic
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tools and methods. Moreover, it targets the detection (and not the identifica-
tion) of these tools. Known approaches for detecting DNS-based covert channels
and tunneling are the following: Gao et al. [9] aims to detect DNS-based tunnels
using a framework called GraphTunnel, which leverages graph neural networks
to model DNS recursive resolution processes as graphs. By aggregating node and
edge features with the GraphSage framework, GraphTunnel achieves 100% ac-
curacy in detecting both known and unknown DNS tunnels, even in challenging
environments with wildcard DNS where it maintains an F1-score of 99.78%. In
addition to detecting tunnels, GraphTunnel accurately identifies DNS tunneling
tools with a success rate of more than 98.57%. In contrast, Born and Gustafson
focus on character frequency analysis to detect DNS tunnels [3]. Their approach
uses unigram, bigram, and trigram models to detect anomalies in the frequency
patterns, based on the observation that domain names typically follow Zipf’s
law. This method effectively identifies DNS tunnels by highlighting deviations
from expected character frequency distributions. With a focus on machine learn-
ing, Buczak et al. [4] develop a method for detecting DNS tunnels by applying
Random Forest classifiers to analyze features extracted from PCAP data. The
authors curated a dataset by extracting relevant features from DNS traffic, such
as domain name length, query types, and packet length, enabling them to ef-
fectively distinguish between normal DNS activity and tunneling activity. Their
approach achieved a detection accuracy of over 95%, demonstrating the effec-
tiveness of Random Forest models in identifying DNS tunnels. Similarly, in the
work of Alkasassbeh and Almseidin [1], the detection of DNS tunneling using
machine learning techniques is explored, with a particular focus on evaluating
the effectiveness of different classifiers. In their experiments, Random Forest clas-
sifiers again produced the best results, achieving a precision of 98% in detecting
DNS tunneling traffic. Žiža et al. have also shown an approach based on Ran-
dom Forests that has an accuracy of 99.7%. Another recent study has outlined
detection approaches for both network-based malware communication and other
forms of media, summarizing them in a comprehensive overview [2]. While these
works target the bare detection of DNS tunnels, our work additionally aims to
identify the particular malware that generated the observed DNS traffic. More-
over, we attempt to determine the behavior of the malware solely by analyzing
its network communication, in regards to which we found no related works.

Anomaly Detection Using Sequences Chandola et al. provide a comprehensive
survey on anomaly detection in discrete sequences [6]. The authors categorize
existing research into three main approaches: sequence-based anomaly detec-
tion, which focuses on identifying entire sequences that deviate from the norm;
subsequence-based anomaly detection, which involves detecting anomalous sub-
sequences within longer sequences; and pattern frequency-based anomaly de-
tection, which identifies anomalies based on unusual frequency patterns of spe-
cific sequences. The survey provides a detailed review of techniques for each of
these formulations, offering insights into how different approaches can be ap-
plied across various domains. In [14], Loganathan et al. introduce a sequence-to-
sequence (Seq2Seq) pattern learning algorithm for real-time anomaly detection
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in network traffic. The authors propose a multi-attribute model that predicts
sequences of TCP packets based on prior sequences using a Seq2Seq encoder-
decoder architecture. The model effectively learns the expected order of packets,
allowing it to identify deviations that signal potential anomalies or intrusions,
achieving an accuracy of 97% for detecting anomalous TCP packets.

2.2 Fundamentals on DNS-utilization by Malware

Due to the crucial nature of DNS for a successful communication on the Internet,
it is also an attractive target for threat groups and their malware, with the aim
of keeping their communication inconspicuous.

As DNS does not support arbitrary payload transfer natively, malicious actors
utilize its request and response structure by having a malware issue DNS queries
for a domain registered and controlled by them. The data transferred by the
client-side of the communication channel is inserted as a subdomain string, which
can then be read and interpreted by a remote C2 server. Such communication is
indirect, with a DNS resolver standing between the client and the server, with
the communication loop being visualized in Fig. 1. When the length of the data,
which the malware attempts to exfiltrate, exceeds either a pre-defined value
or the maximum allowed size for a DNS packet, it is split into multiple smaller
chunks that are sent individually, usually coupled with an offset value to indicate
which part of the message is transferred. In order to keep the domains valid and
the requests less suspicious, the plain-text data often has undergone some form of
encoding or encryption. Depending on the malware implementation, the record
types chosen for the DNS queries may vary. On the C2 server, the request is
processed, a fitting response is created and again encoded into a meaningful
string for the resource record type used. This may be an IP address in the case
of record types A and AAAA, or another subdomain for CNAME.
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Fig. 1: A visualization of the malware instance communicating with its C2 server

3 Framework and Dataset

3.1 The Domainator DNS Covert Channel Detection Framework

To gather the data necessary for our evaluation, we have constructed an isolated
physical testbed environment on which we can observe the analyzed malware
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samples. The testbed consists of a Windows- and Linux-based computer where
the malware is executed, a Linux-based computer that acts as a DNS resolver, as
well as the host for the respective C2 server in a separate module, and a router
connecting the computers into a local network.

For the execution of each malware sample, the client-side device was reset
to the initial state it had before any malware infection took place. In addition
to that, no debugging or malware analysis tools were present on the system at
the same time as the malware to prevent any external influences. Since our goal
is to analyze the original network traffic generated by the malware, we made
sure that it was not recognized or influenced by any local antivirus and mal-
ware detection tools. To this end, we deactivated the in-built antivirus software
(e.g., Windows Defender), since some of the used samples were easily detected.
This enables an unobstructed communication that we can build our DNS-based
malware identification upon.

On the server-side, an instance of the open-source tool DNSChef [12] was uti-
lized as a DNS resolver. Based on the domain name in the DNS query, DNSChef
has been configured to either respond with a dummy IP address or to forward
the packet to an address the C2 server can listen on. When a packet is captured
by the server, it interprets the request and returns an appropriate answer, which
is also handled by the resolver. The list of domains to be forwarded is compiled
from domains we have observed during the operation of the malware samples in
Sect. 3.2. This allows the simulation of an authentic network communication for
both malicious and non-malicious requests.

A limiting factor for the reproduction of the malicious communication is the
lack of knowledge regarding the hardware or software, as well as their exact im-
plementation, that the threat group used originally with the associated sample.
In order to replicate this command and control setup, we have either recreated
the C2 server by examining the malware and its traffic, and determining the ex-
pected responses, or have used already available C2 server implementations. One
such implementation we leveraged is Saitama, which was publicly available for
our analysis [8]. Every C2 server listens for traffic coming from the DNS resolver
with a destination port 53 and parses for the domains utilized by the respective
malware instance. The network packets are then processed by filtering the sub-
domains, based on the record type and the current malware requirements. Due
to the distinctive nature of each malware, the procedures of the server in this
step are highly individual. Following, a fitting reply is constructed and sent to
the client as a DNS response.

3.2 Selection and Description of DNS Malware and Tunneling Tools

To cover various DNS data exfiltration methods and their use in malicious sce-
narios, we have chosen a list of seven tools: five DNS-utilizing malwares, including
two different implementations of the same malware, as well as two open-source
tools, at least one of which has been utilized in malicious campaigns:

RogueRobin is a malware created by the Iranian-linked DarkHydrus threat
group [18], targeting government figures within the Middle East. There are two
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known versions of the malware, the main differences between being the deliv-
ered payload: either a PowerShell-based script or a C# executable [20]. They
also differ in the approach used for encoding the data that is sent through the
DNS communication channel. We have analyzed both versions of the malware
and created a C2 server for each so that we can explore their capabilities.
Initially, the PowerShell version runs various checks to test whether it is being
run within a virtual environment or a debugger [20]. If those tests are passed,
it begins rotating between the DNS record types stored in a hard-coded list
and sends a DNS query for each one, in an attempt to find out which records
can be used successfully for communication. The very first request is also uti-
lized by the malware as a way to register itself with the C2 server. It inserts
the process ID as a base64 encoded string into the subdomain of the query,
and expects to get an integer value back, that is used as a unique ID [20]. If
the response to any of the requests was not successful or valid, the malware
would repeat the query, before moving to the next record. After each resource
type has been tested, an evaluation string is sent back to the server [10], in-
dicating which records were successful. The complete transfer of this string is
considered by the malware as a job and is designated with an ID, that is sent
alongside the encoded data. Longer data strings are split into chunks that are
sent separately, in which case the job ID aids to rebuild the original full mes-
sage. A sample DNS request, which transfers data, has the following structure:
uniqueID |-|jobID |-|dataOffset |isMoreFlag|-|encodedData.example.com. The mal-
ware also gathers and transfers information about the victim system and the
user, before querying the C2 server for any available jobs.
The .NET version executes a similar initial sequence utilizing a round-robin
resource record rotation, with the list of record types having a different order
[10]. The data in this version uses a hexadecimal encoding, which is then fully
converted into letters through a simple, hard-coded substitution alphabet. The
malware also includes a character at the beginning of each covert message, in-
dicating the current mode, i.e., data transfer. When sending data back to the
server, .NET RogueRobin separates the hidden data into two parts, one contain-
ing meta information about the data and the other being the data itself. To dis-
tinguish between each part, a single character from a pre-defined list is inserted.
An example packet that sends data from the victim would have the form of
mode|uniqueID |jobID |dataOffset |isMoreFlag |sepChar |encodedData.example.com.
For non-data transferring queries, the covert message would also include a single
hard-coded character either at the end or behind the jobID position.

Saitama is a malware that was targeted towards Jordanian government offi-
cials. It was first analyzed by Malwarebytes [15], which is the main source for our
initial analysis. On the command and control side, we have employed a publicly
available C2 server implementation [8]. In comparison to RogueRobin, Saitama
establishes longer pauses between each sent packet and utilizes a form of base36
encoding with a mixed character positions to introduce randomness in the re-
sulting string. An additional preventative measure to reduce the similarity of
each malware run is the internal counter that chooses a random number upon
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execution, and is then utilized in the data encoding. The initial request Saitama
makes is a registration query that requests an ID it can be identified by later.
The ID itself is sent back as the last octet of an IPv4 address, while other re-
sponses use each octet to encode the covert response. Subsequently, the malware
retrieves a job from the C2 server, which can either be from a list of pre-defined
commands or a custom one that will take more DNS queries to be acquired. Once
the job is complete, the sample sends the result back to the server in chunks. In
the case of no available jobs, it initiates a form of a keep-alive connection which
sends a burst of packets in an interval of six to eight hours.

Symbiote is a type of malware that specifically targets Linux-based systems
and was first analyzed by Intezer, which our description is mainly based on [11].
Its main target has been the infiltration of banks in Latin America. Unlike other
typical malware, Symbiote is not a standalone executable, instead, being a shared
object file that inserts itself into running processes. To achieve this, it uses the
LD PRELOAD environment variable to ensure that it is loaded first in every
new process [19]. There are five known versions of Symbiote, with only two
implementing their own DNS covert communication protocol. A later version
of the malware uses a modified version of the DNS tunneling tool DNSCat2,
which we will discuss later. The primary objective of Symbiote is providing
remote access to the compromised system and stealing credentials by captur-
ing them from SSH or SCP processes. It uses two different communication ap-
proaches. For exfiltration, the data is encrypted, encoded into hexadecimal for-
mat and embedded into DNS A-record queries using the following format: packet-
Number|.|machineID|.|hexEncPayload.example.com. The packet number begins
at 11111 and is incremented for each sent chunk. The machine ID, made up of
data from the uname syscall, helps to differentiate between infected systems.
The second communication method is used to download scripts from its C2
server for further attacks. To accomplish this, it uses a similar approach, with the
utilized resource record being changed to TXT. It uses the following query for-
mat: packetNumber|.|machineID.example.com. For this mode, the packet number
starts at 0, which indicates that the malware requests the ED25519 signature
of the script. This is later used to verify the downloaded data and prevent the
malware from executing scripts from other sources. The packet number is then
incremented, signaling the actual start of the download. As the size of DNS pack-
ets is limited, the script must be split into chunks and transmitted individually.
The server can determine the respective chunk through the packet number in
the requests. The selected chunk is encrypted and sent in the DNS response.

DNSCat2 is an open-source remote control tool, which utilizes DNS tunnel-
ing [21]. It strongly focuses on command and control functionality like file upload
or download and tunneling shell sessions. DNSCat2 offers two operation modes,
a “typical” connection through a local DNS Server and a direct connection. The
direct connection uses UDP on port 53 and mimics DNS traffic to some extent
but will not hold up against a proper inspection. The “typical” mode uses actual
DNS requests that are sent through a local DNS server. Similar to other tools,
DNSCat2 offers various configuration options to tailor the behavior to differ-
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ent networking environments. By default, it uses encrypted connections between
client and server, and a single server can interface with multiple client simul-
taneously. The complexity of DNSCat2 is also observed in the communication
protocol itself, which possesses TCP-like components, e.g., sequence numbers
and acknowledgments. Internal commands of DNSCat2 follow another proto-
col that works on top of the low-level protocol. The binary data is transported
through the DNS requests/responses as a hex-encoded string.

Symbiote DNSCat2 [11] is a modified DNSCat2 version of Symbiote, pre-
sumably customized by the same attack group. The changes mainly concern
how the tool can be started. The reverse-engineered binary revealed that the
attackers removed the argument parameters of the main function and created
a custom argv variable with the following fixed parameters: --no-encryption
--dns domain=git.bancodobrasil.dev,type=TXT. These are used to initialize
the tool and set up a connection to the C2 server through TXT record messages.
The transferred data is not being encrypted, instead applying a base64 encoding.

Iodine [7] is a general-purpose tunneling tool that can transport IPv4 traffic
through the DNS protocol, offering a vast and versatile set of parameters and
settings. The main use case is to gain Internet access in a network where general
Internet access is blocked, but DNS traffic is still allowed through the firewall.
This could be used to circumvent captive portals in public Wi-Fi networks or to
exfiltrate information from corporate networks. As it is a tunneling software, it
focuses on bidirectional communication, session stability and throughput. The
general concept of the tunneling is similar to the samples mentioned above.

3.3 Generation of Data for the Evaluation

In a real attack scenario, the DNS communication would be hidden within a
multitude of non-malicious traffic. When evaluating our malware identification
framework, we must take that into consideration. However, due to the testbed
having no Internet access, it is not possible to have ordinary, user-generated
traffic directly mixed with the malware traffic. We resolve this by expanding the
dataset with legitimate traffic, as described in Sect. 3.4.

We have chosen a total of seven “scenarios” where the malware samples are
executed and the traffic produced by them is recorded. The scenarios are meant
to cover different aspects of the communication and to gain an ample overview
of the malware behavior. Every possible combination of a malware and scenario
has been created (as long as the feature covered by the scenario is part of the
capabilities of the malware). To have a consistent and comparable dataset across
all of our malware samples, some of the recordings were conducted with a set
time limit that is based on the recorded scenario. The scenarios are:

1. Handshake (HS) - observes the start-up sequences initiated by the malware.
In this mode the custom-made C2 server is available and ready to respond
to any requests, thus the malware can register and display its behavior in
a realistic infection scenario. Due to each malware having a unique initial
chain of requests, we have designated all traffic produced up to the first
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Idle/Keep Alive request, as the Handshake of the malware. For that reason,
the recordings have contrasting lengths and sizes, as well as no fixed duration.

2. Handshake with Fake Internet (HS Fakenet) - inspects the traffic generated
by the malware when the C2 server is unavailable or unreachable. The mode
intends to mimic a realistic infection scenario, and therefore a fake Internet
connection was established between the victim and our uplink server. While
the malware will be unable to register with a legitimate C2 server, we are
interested in the behavior and frequency of the requests sent by the infected
device. The recordings are limited to 30 minutes.

3. Handshake Offline (HS Offline) - a scenario similar to the Handshake with
Fake Internet, where no network connection is simulated, therefore none of
the requests sent by the victim device are answered. While there is no change
in the C2 server accessibility from the previous mode, this scenario allows
us to observe whether the behavior of the malware undergoes any changes
when a system is completely offline. Equivalent to the Handshake with Fake
Internet, the recordings were done over a 30 minutes time period.

4. Idle/Keep Alive - a mode that enables the C2 server and observes the com-
munication after the initial Handshake. This means a connection with the
malware has been established but no jobs will be sent to the sample once the
handshake is complete. Due to some malware samples implementing pause
intervals to make their traffic less recognizable, we have decided each record-
ing of this mode to have a 12 hours length.

5. Steal SSH key through upload (UL SSH) - a plausible infection scenario for
a job which utilizes the malware to upload the contents of a file from the
victim machine to the C2 server. To have a more representative set of data,
we have decided to record this scenario with both a 4096 bit RSA and an
ED25519 private keys. For consistency, we have used the exact same keys
for each malware sample. There is no set time limit for the recordings of this
scenario, instead storing all of the sent packets from the job acquisition to
the last packet of the job.

6. Steal Large File (UL File) - a scenario that utilizes the same malware ca-
pabilities as the Steal SSH one. The goal is to see how each sample handles
a larger file, i.e., a Microsoft Office Word document. To do that, we first
encode the document into base64, and then proceed with the upload. We
used the same file for each sample, and the recording length varies between
them.

7. Download of a File (DL File) - the last scenario transfers a file from the
C2 server to the infected device. Contrasting the previous upload modes,
the malware sends requests which may contain metadata, rather than stolen
information, so that the commanding server can interpret it and respond
with segments of the file. In real infection circumstances, this file could be
additional instructions, another stage of the malware, or a new malware
altogether. We have chosen to use a network scanner tool, as it fits the use-
case while being relatively light in size. Nevertheless, due to the limited space
and frequencies of the requests, sending the full file may take extremely long
time, so we limited the recordings to a maximum of 12 hours.
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Tab. 1 shows all the combinations of malware and scenarios that we recorded.
As the SSH scenario uploads two separate files, each has been stored in its own
recording, making a total of 8 possible recordings for each tool or malware.

Table 1: Malware and open-source tools, and the scenario combinations for our
traffic recordings. *Dnscat2 has been used in a malware campaign

Malware and Tools Handshake HS Fakenet HS Offline Keep Alive UL SSH UL File DL File

RogueRobin PS

RogueRobin .NET

Saitama

Symbiote - - - -

Symbiote DNSCat2

DNSCat2*

Iodine

3.4 Expanding the Collected Dataset

While the recorded network traffic covers a broad range of the potential tunneling
usage, taking each recording as a single sample is not sufficient for a meaningful
analysis. This is due to the low total number of samples available to training
and testing our methodology, as we would be grouping all requests from the
same domain. In addition, it is not an efficient approach that can be applied
to a live-environment as the full recording may take a long period of time to
be captured. For this reason, we have taken an approach that combines all of
the recordings into a single set of data and then processes n packets under the
same domain in a sliding window. The packets in this combined dataset follow
a consistent scenario sequence and have the same order as they have been sent
in. Likewise, the packet order in each window follows the original order of the
traffic recording. This also leads to some windows containing traffic from two
scenarios, which would mirror an authentic classification attempt in the wild.

We have analyzed various window size configurations and did not notice a
major difference in the results. For this reason, we have chosen a size of 10 packets
per window, as this allows Domainator to not only be used post factum, but also
in a live setting with a manageable number of requests that are necessary to
do the identification. As there may not always be a full window of 10 requests,
especially in the case of legitimate domains, we have set a minimum of 3 requests
per window that are necessary for the calculation of the statistical features.

Although the order of the scenarios does not influence our results, we have
built a plausible attack configuration which takes the following arrangement:

Handshake Offline → Handshake Fakenet → Handshake →
Download → Idle → Steal RSA → Steal ED25519 → Steal File
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The recordings done with the live malware contain all the additional legit-
imate packets that were sent by other services during the execution. However,
the malware produces a much higher amount of traffic in comparison to the
rest of the applications, thus building an imbalanced ratio of malicious and non-
malicious traffic.

To have more equal proportions between these, we have added legitimate,
non-malicious DNS requests from a dataset recorded in the span of a day on a
DNS resolver managed by an Internet service provider [25]. The authors have
anonymized the timestamps and the true user IP addresses, but have kept the
adjustments consistent to the real traffic, i.e., all requests from a single user
are mapped to the same new address. Additionally, two exfiltration tools were
executed during the recorded period – Iodine and DNSExfiltrator. The dataset
also recognizes the presence of benign data exfiltration performed by two distinct
antivirus tools, namely Eset and McAfee. All exfiltration requests have been
marked as such, so that they can be separated from the rest of the data, and
were used by us as part of the validation in Sect. 4.4.

In addition to that, we have created a validation set consisting of recordings
of our malware samples that were not utilized in the training. These recordings
follow a similar malware-scenario pairing, but for each one of them a different
parameter was changed or the code itself was modified to simulate possible
adjustments an adversary could undertake to evade a detection algorithm. These
changes include new files being uploaded or downloaded, the removal of used
domain names, changes in the used resource records, changes in the encoding
algorithm and alphabet, and reduction or increase of the communication capacity
per DNS request. The goal of this set is to validate the identification process and
its robustness to distortions in the traffic.

3.5 Feature Selection

When analyzing any of the given malware samples, a fairly simple approach
would be to search for re-occurring fixed strings which uniquely identify the
sample (e.g., subdomains which always begin with a certain substring). We call
such values magic bytes and consider their utilization an insufficient solution
because they could be changed by the malware authors by adjusting a single
variable. Doing detection over specific anomalies can also lead to the incorrect
classification of anomalous-looking traffic originating from legitimate sources,
e.g., antivirus software. Moreover, it is not possible to reliably identify such
magic bytes in most cases.

We decided to work independent of such magic bytes and have concentrated
our efforts on creating a set of statistical values which capture the overall char-
acteristics of the traffic generated by the malware, instead of the individual
requests. When detecting tunneling presence in network flows, the metrics used
by the papers described in Sect. 2 have already shown to be effective, as they
search for anomalies not usually present in legitimate traffic. However, when
attempting to do identification, there is an overlap of the anomalous character-
istics, as each sample is malicious. Using our windowing approach, we analyze
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a snippet of the traffic and build all pair combinations within an individual
window. Following, various string metrics are calculated for every combination,
resulting in a subdomain similarity score for each metric. We take the scores
on a per metric basis, and determine the mean value, thus assigning similarity
scores to the window itself, which act as the input features to our detection and
identification classifiers. The string metric features are listed on the right side
of Fig. 2. Our approach has also been visualized in Fig. 2, with the possible
combinations of DNS requests being shown on the left side of the graphic, and
the calculated mean scores resulting in the features on the right side.

The Levenshtein distance, as well as the Jaro and Jaro-Winkler similarities,
provide data on the number of edits it takes to get from one string to the
other. As each malware has a different implementation of its communication
protocol, there is a contrast between the order of occurring changes and their
execution in consecutive requests sent to the C2 server. It is also not unusual
for the communication protocol to include a form of a victim ID, a job ID or
a counter, which add some repetitiveness to the requests. The Jaro-Winkler
similarity considers such reoccurring elements at the beginning of the strings by
having a scaling component that results in a higher similarity score. To cover
a broader comparison, we also calculate the Jaro and Jaro-Winkler scores for
the reversed strings, so that subdomains ending in the same suffix can also be
weighted correspondingly. Furthermore, it is possible that static patterns within
the strings are separated by a chunk of dynamic data. The longest common
subsequence covers such cases by matching two strings and finding equivalent
segments, even with gaps of variable length. In contrast, the longest common
substring searches for an uninterrupted pattern of matching characters, and
in the case of multiple separated sequences, it considers only the longest one.
The combination of these features results in traffic windows exhibiting similar
subdomain patterns to be grouped together. These clusters are distinguishable
from one another, which allows a classifier to correctly identify a future window
without relaying on specific spatial and temporal variables, e.g., the timestamp
or the timings between the packets.

Using the combination of the scenario recordings and the legitimate traffic, we
built a dataset containing 43, 212 windows, with the total number of windows
for each malware being presented in Tab. 2. The data was split into a train
part and a test part, with a proportion of 80% to 20%, which were subsequently
passed to a simple classifier. Although we have analyzed various classification and
regression methods, our approach showed the greatest potential with a Random
Forest classification, due to its overall score and efficiency. In our final approach,
we have trained multiple such classifiers, with all of them utilizing the same
input features. The evaluation is split into several stages, which can either work
separately or be put together into a pipeline. For all results, we have listed the
scores of the Random Forest classifiers.
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Fig. 2: A single window of three requests and their combination into the statis-
tical metrics. Each metric consists of the mean value for the window.

4 Results and Evaluation

4.1 Malware Detection

Our initial step was to conduct a binary classification, where all non-legitimate
traffic was labeled as malicious. The goal of this was to examine whether we
can create a detection algorithm that can differentiate between the malicious
and non-malicious windows using the described features. The classifier had an
overall accuracy (F1-Score) of 0.966, with a macro average precision of 0.958
and recall of 0.970. The false-positive rate lies at 1.2%. The distribution of the
predicted labels is shown in Tab. 3, together with the associated ROC curve in
Fig. 3.

4.2 Malware Identification

The next step was to increase the granularity of the classification by having each
malicious window be labeled as the malware that it originates from. This creates
the broader task of not only detecting the presence of malicious DNS requests,
but also separating and identifying each sample. The classifier achieved an F1-
score of 0.964, similar to the accuracy of the previous binary approach, with the
more precise scores being shown in Fig. 4a. The macro precision of the classifier
is 0.982, while its recall is 0.911. Fig. 4b presents the ROC curves.

In both of these cases, there appears to be an outlier scenario that the clas-
sifier is not able to correctly detect and identify. The Idle traffic produced by
PowerShell RogueRobin continuously sends the exact same packet requesting a
new job ID to be provided by the server. This leads to a statistical uniformity that
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Table 2: Number of windows in the full dataset, together with their distribution
per action

Type of Traffic Total Handshake Keep Alive Upload Download

Legitimate 15,914 - - - -

RogueRobin PS 3,005 24 1,106 114 1,761
RogueRobin .NET 3,043 23 930 524 1,566

Saitama 242 8 6 158 70
Symbiote 697 - - 23 674

Symbiote DNSCat2 7,331 7 4,319 21 2,984

DNSCat2 8,054 8 4,269 23 3,754
Iodine 4,926 9 4,297 14 606

Table 3: Classification results for the
malware detection

Predicted

Actual Malic. Legitim. F1-Score

Malicious 5,201 259 0.955

Legitimate 38 3,145 0.972

0.966

Fig. 3: ROC curve: malware detection

is consistent with the behavior observed by a big portion of the non-malicious
traffic. For the detection of the 259 windows falsely identified as legitimate in
Tab. 3, 221 (85%) can be attributed to this scenario. Although not impactful
to our classifiers, due to the smaller number of windows, the Idle windows of
Saitama have the same communication pattern and are incorrectly identified as
legitimate traffic.

4.3 Scenario Identification

Subsequently, we implement identification of the behavior and actions the tools
have undertaken. An action is defined as the function currently executed by the
tool and correlates to the scenarios in Sect. 3.3. The traffic within our dataset can
be categorized into four such actions: performing the initial handshake, being
idle, downloading a file, and uploading a file. Although some of our designed



Domainator: Detecting and Identifying DNS-Tunneling Malware 15

(a) Confusion matrix (b) ROC curve

Fig. 4: Malware identification results

scenarios cover the same action (e.g., multiple Uploads), these can be joined into
a singular group and therefore pose no obstruction to the classification. Non-
malicious traffic performs none of these actions. The distribution of windows for
each action has been described in Tab. 2.

An imbalance between the number of DNS requests for the actions can be
observed, as it is ordinary that the malware sends more packets during the more
data transfer intensive actions. While it can skew the score of the classifier, it
is more authentic to a real infection scenario. However, a limitation resulting
directly from this design choice is the very small number of DNS requests within
the handshake action, due to the tools requiring to do it only once at the begin-
ning of their interaction with the C2 server. As a result of this, we have decided
to exclude this action from the scenario identification.

There are two approaches that can be used for the training of the classifier.
The first one attempts to identify the window directly, without any previous
steps being taken, while the second one assumes that the window has already
been identified as malicious and removes the legitimate traffic from the dataset.
While both approaches led to a similar accuracy of 0.857 and 0.876, the inclusion
of the legitimate traffic in the first approach skews the results as the precision
and recall of the respective classifier are 0.832 and 0.804, in comparison to 0.892
and 0.881 for the second one. The main difference between the two is caused by
PowerShell RogueRobin and Saitama traffic being identified as non-malicious,
similarly to the malware identification.

The results of the identification done by the approach without legitimate
traffic, as visualized in Fig. 5, show that the classifier is struggling with two
of the actions recorded with DNSCat2. The cause for this is the usage of the
same patterns during the download of a file and idle operation which our sta-
tistical features cannot differentiate. Although the approach with no legitimate
traffic correctly classifies the idle traffic of RogueRobin, a different malware sam-
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Fig. 5: Confusion matrix with the scores of the scenario identification classifier
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ple (e.g., Saitama) producing the same unchanged DNS requests would lead to
identical inaccuracies. A further refinement of the method could have the identi-
fication task be performed in two separate stages – the first identifies the specific
malware, and the second classifies the action.

(a) Confusion matrix (b) ROC curve

Fig. 6: Generalized scenario identification results

We have also evaluated a more generalized scenario classification in which the
malware is not taken into account but the classifier has to identify what action
is being performed. As the training dataset mixes windows from different tools
for the same actions, which means the used patterns are not complimentary to
one another, it is performing worse than the more precise approaches. However,
the goal of this form of classification would be to attempt identifying malicious
actions taken by malware which is not in the dataset, but has a similar commu-
nication protocol. The results of this method are visualized in Fig. 6, and the
overall accuracy is 0.878, with macro precision of 0.889 and recall of 0.878.

4.4 Validation

In addition to the classification of the initial dataset, we wanted to analyze how
well the classifiers can manage traffic produced by the same malware and tools,
but with adapted settings. These adapted settings are: different files being up-
loaded, altered domains and resource records, a modified set of used encoding
characters, and a modified size of the data that is sent with each request. Al-
though we have not crossed each tool with each setting variation, we have built
an ample validation dataset which we passed to our trained classifiers.

The evaluation of this dataset was done by taking each PCAP file and com-
puting the statistical windows, then letting the classifier make its prediction.
Subsequently, an average score is calculated for the whole file. Tab. 4 shows



18 D. Petrov et al.

most of the entries of this dataset, together with the averaged F1-scores for the
malware and scenario classifiers. As the validation dataset contains overlaps of
malware-scenario pairings with similar changes (e.g., Iodine Upload with multi-
ple different files being uploaded), the repetitions have been omitted from the
table, unless there is a stark discrepancy in the prediction accuracy. Although
not written explicitly under the changes, for every download and upload sce-
nario, the file sent through the channel was different from the ones utilized in
the training set. We observe the lowest results in cases where the encoding was
fully changed, or the length of the tunneled subdomains has been starkly in-
creased or decreased. We also recognize that the versatility of the open-source
tools leads to lower results, due to the vast number of adjustable parameters,
which can produce widely different traffic.

Table 4: Classification results of the validation dataset

Changes F1-Score

Malware Scenario Malware Scenario

Symbiote Upload 1.0 1.0
Symbiote Download 0.99 0.99
Saitama Upload 0.6 0.8
RR-PS Upload Data transfer length 0.17 0.46
RR-PS Idle 0.0 0.0
RR-PS Download 0.88 0.88
RR-PS Download Removed used RRs 0.88 1.0

RR-NET Upload 0.94 0.90
RR-NET Upload Data transfer length 0.74 0.72
RR-NET Upload Removed used domains 0.94 0.83
RR-NET Upload Encoding character set 0.90 0.84
RR-NET Idle Encoding character set 0.95 0.93
RR-NET Download 0.91 0.84

Iodine Upload Length to 200 chars 0.90 0.95
Iodine Upload Length to 100 chars 0.04 0.0
Iodine Idle Used encoding chars 0.98 0.98
Iodine Idle Utilised resource record to TXT 0.94 0.94
Iodine Idle Utilised resource record to A 0.99 0.99
Iodine Download Transfer length to 200 chars 0.75 0.75
Iodine Download Transfer length to 150 chars 0.54 0.50

DNSCat2 Upload 0.94 0.91
DNSCat2 Upload Data encoding method 0.03 0.02
DNSCat2 Idle Utilised resource record to CNAME 1.0 0.65
DNSCat2 Idle Encoding method and resource record 0.0 0.0
DNSCat2 Download 1.0 0.4
DNSCat2 Download Data encoding method 0.0 0.0

We have also validated the process on the exfiltration requests present in
the [25] dataset with real traffic. These can be put into two categories based
on their intentions, with the antivirus data being considered non-malicious, and
the requests initialized by the authors to transfer files as malicious. Although
the whitelisting of non-malicious domains that utilize DNS tunneling is possible
and would prevent them from being detected as malicious, our goal is to test
whether the granularity of our features can lead to them not being detected as
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malicious in the first place. In addition to that, the inclusion of a tunneling tool
outside the ones in our training dataset allows us to examine how the classifiers
handle the detection and identification of an unknown malware.

The results for both classifications are presented in Tab. 5. For the iden-
tification portion of the table, only labels that were predicted more than 10
times are listed, in order to keep the visualization compact. In the case of non-
malicious tunneling, we observe high accuracy in the detection classifier, with
an F1-score of 0.951. A similar F1-score is shown by the identification predic-
tions, with most of the misidentifications being attributed to the two open-source
tools in our training dataset. For the McAfee tunneling channel, there were also
4 incorrect identifications as the Symbiote Dnscat2 implementation and a single
misclassification as RogueRobin-Net. Additionally, the Eset exfiltration showed
1 identification as Symbiote Dnscat2.

Although the classifiers have no concept of how to categorize the DNSEx-
filtrator traffic, it is correctly detected as malicious in just over 75% of the
cases. However, the identification shows a much higher rate of uncertainty, with
a mostly even split between the window being designated as legitimate traffic,
or as being produced by Saitama, Dnscat2 or Iodine. The variance in which
malware or tool the DNSExfiltrator is associated with, can be explained by the
usage of different parameters (i.e., maximum domain name length and encoding)
by the authors. As the true label of these requests is not within the classes of the
classifier, all of these predictions considered “incorrect”, and thus significantly
reduce the overall F1-score of the identification validation.

The Iodine traffic generated by the authors is in much smaller quantities
compared to the other tools. A more in-depth analysis of the requests also showed
that most of these are part of the handshake routine, separated by sporadic
idle traffic. This mixture and alternation of non-exfiltration activities causes
the detection classifier to have a very low success rate at predicting whether the
traffic is malicious. The proportions of irregular traffic have an even starker effect
on the tool identification, with none of the elements being correctly classified.
Beside the identification as legitimate traffic, there are also 3 classifications as
RogueRobin-Net and 1 as RogueRobin-PS.

Table 5: Classification results for the validation of third-party traffic.

Predicted Detection Predicted Identification

Tool Actual Malic. Non-malic. Saitama Dnscat2 Iodine Legitim. Others

Eset Non-malic. 149 11,627 0 52 73 11,650 1
McAfee Non-malic. 48 880 0 2 14 907 5
Iodine Malic. 4 25 0 0 0 25 4

DNSExfilt. Malic. 3,661 1,065 997 1,101 1,554 1,074 0

While there is no full overlap of the investigated tools, we have also eval-
uated our approach on the dataset provided by the authors of the GraphTun-
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nel [9] framework. The dataset contains multiple recordings of both Iodine and
dnscat2 traffic, with the Iodine file names suggesting alternation between the
used resource records. However, no specifications are given for any of the other
parameters. The captured dnscat2 traffic was detected and identified correctly
by our classifiers with an accuracy of 0.9. Although the performed actions are
not given, our behavior classifier overwhelmingly suggests the presence of a file
upload, together with idle traffic. The Iodine traffic identification was less suc-
cessful, as the classifier recognized the tool about half the time in the files des-
ignated as NULL and TXT resource records, as well as the recording named
private. The rest of the recordings, indicated as A, MX, CNAME and SRV had
a prediction rate of less than 0.05. According to our behavior classifier, the tool
provides download functionality. Manual inspection of the recordings shows the
main difference between them appears to be in what actions were performed,
with the NULL, TXT and private recordings exhibiting traffic very similar to
our Iodine-Download scenario, and the remainder being of unclear behavior. The
provided normal traffic was correctly detected as non-malicious with a rate of
0.96, ascertaining a low false-positive rate on previously unseen traffic.

4.5 Result Comparison

Although in Sect. 2 we have listed multiple other tools that cover tunneling
detection as their main goal, none of them have made their models and feature
extraction partially or fully available. For this reason, we cannot fairly evaluate
their approaches on the dataset containing real malware samples provided by
us, and therefore have chosen to compare the results to the ones that have been
provided in each work. Tab. 6 compares the results of our approach with the
related work.

Table 6: Result comparison with other similar tools

Tool
Malware Open-Source Tunnel Tunnel Behavior
Count Count Detection Identification Identification

Domainator (our approach) 5 2 0.966 0.964 0.857
GraphTunnel (2024) [9] 0 7 1.000 0.986 n/a

Žiža et al. (2023) [25] 0 2 0.998 n/a n/a
Alkasassbeh et al. (2023) [1] 0 1 0.97 n/a n/a

Buczak et al. (2016) [4] 0 4 0.95 n/a n/a

While our detection approach achieves a slightly lower detection score, none
of the other tools have attempted to detect real malware, i.e., they solely covered
open source DNS tunneling tools. Further, our approach is the first to perform
an identification of real-world malware tool that produced the detected traf-
fic (GraphTunnel also identified tools but did not cover real-world malware).
Given this more challenging task, our detection score of 0.964 can be considered
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promising. Furthermore, Domainator is the first attempt to identify specific ac-
tions taken by the malware based on its DNS tunneling activities, and thus no
comparison can be drawn to other tools. The achieved score of 0.857 is acceptable
for this specific task.

5 Discussion

Domainator differentiates between certain malware samples and their actions,
based on DNS tunneling behavior.

Our method solely relies on the metadata analysis of subdomain strings, i.e.,
it works independently of other DNS characteristics that are utilized by malware,
such as the transferring of commands and payloads in TXT answer records, which
provides a high embedding capacity.

Domainator is tailored to aid the classification and attribution of upcoming
malware families. Therefore, DNS traffic of new malware must be recorded, e.g.,
in our testbed. If the traffic matches certain sequential patterns identified by our
research, it might be linked to the specific type of malware that we associate with
the particular pattern. As discussed in Sect. 4.3, we are unable to successfully
identify some idle scenarios, which is caused by the idle behavior of the malware
continuously sending identical requests and thus closely resembling legitimate
traffic. During our evaluations, we observed only PowerShell RogueRobin and
Saitama being incorrectly classified for those reasons, but future malware with
such idle behavior could result in similar misclassifications. Although the per
window false-positive rate of the non-malicious traffic is already low, adding a
per domain threshold based on malicious window count can further lower the
per domain false-positive-rate.

Limitations We investigated 7 malware samples and tools that exploit subdo-
main strings in the DNS protocol. Other or future malware samples could apply
covert channel techniques for DNS in alternative ways, e.g., based on different
hiding patterns [23]. Such malware would most likely require us to adjust the set
of selected DNS features for appropriate detection. Moreover, future versions of
the analyzed malware might change their behavior or encoding strategy for sub-
domains. This could influence detectability and would also require adjustments
of our features. The identification of future malware outside of our current set
would not be possible without retraining the classifier with the traffic from the
new malware, as the classifier would have no knowledge of it. Versatile tools
like Iodine would also benefit from multiple parameter setups being added to
the dataset, due to the vastly different tunneling traffic it can produce based on
those settings, as seen in our validation results. Finally, we experimented solely
with a limited set of simple classifiers and evaluating alternative, more complex
machine learning methods might improve our results.

Provision of Data Our traffic dataset is available for review (it will be released
under a BSD license): https://anonymous.4open.science/r/dataset-7ED5

https://anonymous.4open.science/r/dataset-7ED5
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6 Conclusion

We introduced a sequence-based detection and differentiation approach for mal-
ware using DNS-based covert channel techniques. We utilize only the subdomain
portions of the domains sent in the DNS requests as a vector to calculate statis-
tical metrics. These features were used to train a generic Random Forest classi-
fier, which can be used for both the detection of DNS tunneling traffic and the
identification of the malware. Our approach is even able to identify the action
undertaken by the malware (e.g., file upload or download), utilizing the same
statistical features. In future work, we plan to extend our research to additional
protocols of the TCP/IP protocol suite, especially to HTTP(S).
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