
ar
X

iv
:2

50
5.

22
05

2v
1 

 [
cs

.C
R

] 
 2

8 
M

ay
 2

02
5

A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory

Unsafety in C and C++

KENO HASSLER
∗
and PHILIPP GÖRZ

∗
, CISPA Helmholtz Center for Information Security, Germany

STEPHAN LIPP, Technical University of Munich, Germany

THORSTEN HOLZ, CISPA Helmholtz Center for Information Security, Germany

MARCEL BÖHME,Max Planck Institute for Security and Privacy, Germany

Even today, over 70% of security vulnerabilities in critical software systems result from memory safety violations. To address this
challenge, fuzzing and static analysis are widely used automated methods to discover such vulnerabilities. Fuzzing generates random
program inputs to identify faults, while static analysis examines source code to detect potential vulnerabilities. Although these
techniques share a common goal, they take fundamentally different approaches and have evolved largely independently.

In this paper, we present an empirical analysis of five static analyzers and 13 fuzzers, applied to over 100 known security
vulnerabilities in C/C++ programs. We measure the number of bug reports generated for each vulnerability to evaluate how the
approaches differ and complement each other. Moreover, we randomly sample eight bug-containing functions, manually analyze all
bug reports therein, and quantify false-positive rates. We also assess limits to bug discovery, ease of use, resource requirements, and
integration into the development process. We find that both techniques discover different types of bugs, but there are clear winners for
each. Developers should consider these tools depending on their specific workflow and usability requirements. Based on our findings,
we propose future directions to foster collaboration between these research domains.

1 INTRODUCTION

In recent years, more and more security vulnerabilities have been reported in critical software systems. Today, many of
these vulnerabilities are due to memory unsafety. For instance, a third of all recorded security vulnerabilities (tracked
as CVEs) and seven of the 20 most frequently reported bug classes (tracked as CWEs) are related to memory safety
violations. More than 70% of reported vulnerabilities in the Chrome browser [77] as well as in the iOS, macOS [44], and
Android [80] operating systems [21] are due to memory unsafety. In fact, 80% of vulnerabilities exploited in the wild
are due to memory unsafety [1].

To scale bug finding beyond manual code audits, developers have turned to automated vulnerability discovery tools
based on techniques such as static analysis and fuzz testing (in short fuzzing). For instance, Google considers fuzzing
their first line of defense [78], while Meta reports finding 70% of vulnerabilities using static analysis [67]. Illustrating
the popularity of fuzzing, the OSS-Fuzz project [75] continuously tests more than 1,000 open source software (OSS)
projects, including many popular and security-critical projects. Recently, fuzzing has become a first-class citizen in
the Go programming language [25] and has been integrated into the widely-used Visual Studio Code development
environment [57]. Regarding the popularity of static analysis, Beller et al. [3] found back in 2016 that static analysis
is used in about half of the 122 surveyed OSS projects. Indeed, a static analysis tool, CodeQL is a prominent part of
GitHub’s Security Lab, which has the goal of securing open-source software [23].

∗Both authors contributed equally to this research.

Authors’ addresses: Keno Hassler, keno.hassler@cispa.de; Philipp Görz, CISPA Helmholtz Center for Information Security, Saarbrücken, Germany,
research@philipp-goerz.com; Stephan Lipp, Technical University of Munich, Munich, Germany, stephan.lipp@tum.de; Thorsten Holz, CISPA
Helmholtz Center for Information Security, Saarbrücken, Germany, holz@cispa.de; Marcel Böhme, Max Planck Institute for Security and Privacy,
Bochum, Germany, marcel.boehme@acm.org.

1

HTTPS://ORCID.ORG/0009-0008-9115-2769
HTTPS://ORCID.ORG/0009-0001-0501-1249
HTTPS://ORCID.ORG/0009-0008-4254-9145
HTTPS://ORCID.ORG/0000-0002-2783-1264
HTTPS://ORCID.ORG/0000-0002-4470-1824
https://orcid.org/0009-0008-9115-2769
https://orcid.org/0009-0001-0501-1249
https://orcid.org/0009-0008-4254-9145
https://orcid.org/0000-0002-2783-1264
https://orcid.org/0000-0002-4470-1824
https://arxiv.org/abs/2505.22052v1


2 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

Fuzzing detects bugs by provoking unexpected program executions, while static analysis examines the program’s
source code. In a fuzzing setup, a fuzzer passes automatically generated inputs to the program under test via a harness—a
fuzzer-specific entry point that is usually written manually. During compilation, the harness is linked to the program,
and coverage instrumentation as well as sanitizer instrumentation are added via a custom compiler pass. In a static
analysis setup, only the static analyzer is required, though in some cases the program needs to be compiled. Unlike
fuzzers, static analyzers are known to report false positives, i.e., bugs that do not actually exist. But how do fuzzing and
static analysis compare in their effectiveness at detecting real bugs?

Fuzzing and static analysis share the fundamental goal of finding bugs in programs, yet there has been little research
comparing these two approaches. This can be explained by two factors: first, these tools are developed by largely separate
communities; second, fuzzing and static analysis tools require fundamentally different project integrations, essentially
requiring extra work to integrate the tools. These differences make a systematic comparison of both approaches
particularly interesting. Is it worth the effort to employing both approaches in parallel, and can the approaches benefit
from learning from each other?

In our work, we aim to bring both communities closer together, fostering collaboration to develop improved methods
for finding software faults. In this article, we adopt the perspective of an open-source C/C++ project maintainer who
wants to use a bug-finding tool to discover memory safety vulnerabilities. Currently, there are no clear guidelines for
choosing one approach over the other. There is also no systematic analysis of their relative strengths and weaknesses.
To develop such a systematic analysis, we define clear selection criteria and evaluate over 100 CVEs across seven
open-source projects (using Magma [32]), employing five static analyzers and 13 different fuzzers.
Outline. We start with an overview of the relevant background and related work (Section 2). After defining the scope
of our study (Section 3), we conduct our analysis in two parts. The first part is an empirical evaluation (Section 4) of
freely available fuzzers and static analysis tools focusing on four research questions:

• RQ.1 True Positives. Analyzing the number of CVEs each approach can detect, we found that fuzzers find 43 of the
expected CVEs and static analysis tools find 40. Among the analyzers, the semantic approach found more bugs (true
positives) than the syntactic approach.

• RQ.2 Complementarity. We found that both approaches find different bugs, suggesting that they complement each
other and should be used together. Interestingly, we found that different fuzzers find approximately the same CVEs.
Static analyzer results are dominated by CodeQL, indicating a large divide between tool maturity.

• RQ.3 Bug types. This result is also reflected in our analysis of CVEs detected by types of vulnerability: while fuzzers
perform similarly across all types of CVEs, syntactic analyzers only really work on memory corruption vulnerabilities,
while semantic analyzers perform well on most types of vulnerabilities.

• RQ.4 Overhead. However, when analyzing the manually required overhead, we found that less than 1% of the
generated bug reports were related to the CVEs that we expected to find. Overall, to find all 40 CVEs that static
analysis could successfully detect, one would have to go through a total of 44K bug reports.

In the second part, we conduct a qualitative analysis (Section 5), based on the empirical part. We take the perspective of
a code maintainer who decides on bug finding tooling for their project. Concretely, we assess the following aspects:



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 3

• Manual validation. We conduct a manual analysis of 49 static analysis-generated bug reports in 8 randomly chosen
functions containing known CVEs. Only 8 of these 49 bug reports (16%) actually point to expected vulnerabilities.
The other 41 reports are unrelated or false positives.1

• Limits to Bug Discovery. We examine the limits of both techniques based on concrete examples from the empirical
analysis. We attribute their different limitations to their fundamentally different approaches and highlight that it is
unrealistic to expect one tool that finds all bugs.

• Usability and Cost. Static Analyzers require less effort to set up than writing integration code for fuzzers; furthermore,
they are significantly cheaper per bug found. Both approaches offer opportunities for fine-tuning.

• Integration in the Development Process. We look at different ways to integrate bug finding tools in the development
pipeline and check on their real-world usage. Our analysis indicates that 80% of security-critical OSS projects already
use automated bug finding for security.

We discuss the implications of our analysis for project maintainers and research communities in Section 6 and conclude
the article in Section 7.
Data Availability. To make our findings reproducible and foster further research in this direction, we make our
evaluation scripts and data openly available at doi:10.5281/zenodo.15516474.

2 BACKGROUND

In this section, we explain the types of vulnerabilities we are interested in, before briefly summarizing the state-of-the-art
in bug finding tools and the benchmarks commonly used to evaluate them.

2.1 Memory Unsafety in C/C++

To focus our research, we limit our investigation to one of the most prevalent classes of security vulnerabilities: memory
unsafety in C/C++ programs and related types of vulnerabilities. As discussed in the introduction, more than 70% of the
reported vulnerabilities in Chrome, iOS, macOS, and Android are related to memory unsafety [77, 44, 80]; 80% of the
security vulnerabilities exploited in the wild are due to memory safety violations [1]. Software systems can be subject
to many types of bugs and vulnerabilities. However, memory safety violations are (almost) unique to C/C++ languages.
While many modern languages offer memory safety by default, in C/C++ it is primarily the developer’s responsibility
to uphold the safety contract. In exchange, C/C++ offers more low-level control and (in absence of runtime checkers,
such as a garbage collector) a high performance.2

To be specific, we exclude bugs that are unlikely to be security-critical, such as unused variables found by the
compiler or violations of coding conventions reported by a linter. Furthermore, bugs in other languages, like gadget
chains in Java, are not relevant for our analysis. Finally, security-critical bugs that are not related to memory safety
violations, such as side-channel attacks or information leaks, are also considered out of scope. This means we are
evaluating the bug-finding tools from a security perspective: while we touch upon this aspect in Section 5, we do not

consider bug finding primarily as a tool to improve software quality.

2.2 Bug Finding: Static vs. Dynamic Methods

To focus our discussion, we limit our investigation to two prevalent automated bug-finding approaches, fuzzing and
static analysis.
1We note that our conservative labeling approach employed in the first part would count 36 of these reports as correct.
2Technically, other languages exist that promise a similar level of efficiency while maintaining memory safety guarantees.

https://doi.org/10.5281/zenodo.15516474


4 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

Static Analysis. Static Application Security Testing (SAST) refers to a collection of techniques that examine source
code without actually executing the code. Notably, this always requires some degree of (over-)approximation: At the
coarse end of the spectrum lies syntactic analysis, which is fundamentally pattern matching with known or suspicious
antipatterns. This approach is easy to implement and inexpensive to run. A more sophisticated approach is symbolic
execution, a computationally complex technique that simulates program paths by reasoning about symbolic states. The
trade-off for this approximation is a varying number of false positive reports, i.e., reports that flag a piece of code as
defective although it is in fact correct.
Fuzzing. Fuzzing [58] is a dynamic testing technique. The program under test (PUT) is executed on automatically
generated, concrete test inputs. If an illegal state is reached, the fuzzer is notified (by crashing the PUT) that it has
found a bug and saves the respective input to disk. While it is left to a human analyst to find the root cause of this
bug, all reports did cause a crash and are thus true positives. Detection of illegal states is performed by sanitizers (cf.
Song et al. [76]) that typically under-approximate, and thus, do not produce false positive reports. Since the advent of
AFL [85], greybox fuzzers that use program coverage as inexpensive feedback loop have become state-of-the-art. The
now-deprecated AFL has found large numbers of bugs itself [85], and its descendant AFL++ [20], which incorporates
more recent research ideas, continues on that path.

2.3 Related Work

Both static analysis and fuzzing are active research domains, this includes extensive research on how tools should
be evaluated. However, to the best of our knowledge, no cross-domain comparison has been attempted so far. In the
following, we give an overview of existing work.
Static Analysis. Sadowski et al. [69] report on their experiences with the development of static analysis tools at Google.
They suggest that tool authors should focus on the real needs of developers so that the tool can be integrated directly
into the development workflow to find bugs early. They also suggest that tools should be made open-source so that
they can better keep pace with future bug-finding challenges. Obviously, this also requires constant evaluation of new
and established static analyzers to see how well they actually find (security) bugs.

Johnson et al. [41] find in a small survey that a lack of information in warning messages given to developers inhibits
more wide-spread adoption. Christakis et al. [10] confirm this in a larger study, adding that developers expect a false-
positive rate below 20% and the ability to configure the tool. A data scrape on stackoverflow.com by Imtiaz et al. [36]
supports these results, calling false positives a “dominant issue” for the adoption of static analysis tools. Consequently,
many research papers [47, 52, 45, 68, 2, 82, 60] have attempted to reduce the number of false positive warnings. Besides
the false positive analyses, numerous papers [88, 87, 8, 79, 29, 30, 15, 43] evaluate the effectiveness of such analyzers in
terms of how many bugs were found (true positives) versus how many were missed (false negatives), across different
benchmarks. Closely related to our work, Lipp et al. [50] evaluate SAST tools on memory vulnerabilities, finding that
the majority of bugs in the benchmark remain undetected by state-of-the-art tools. In this study, we go a step further
and compare the bug-finding capabilities of SAST tools with those of fuzzers, aiming to find differences and potential
benefits from combining these tools.
Fuzzing. Fuzzing has been deployed in large-scale evaluations, notably in Google’s OSS-Fuzz [75], an open-source
software fuzzing service that continuously tests hundreds of popular projects. Ding et al. [17] analyze more than
twenty thousand bugs, including thousands of severe bugs, found via OSS-Fuzz, demonstrating its real-world impact.
Furthermore, they underline that effective fuzzing is an iterative process that requires fixing detected bugs, allowing
the campaign to progress. Google’s Fuzzbench [56] framework offers a free benchmark service for fuzzer developers



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 5

running on Google infrastructure. The Magma benchmark [32] hand-picks a set of real-world bugs and provides perfect
oracles for them, aiming to remove inaccuracies in comparisons. Böhme et al. have shown that code coverage is strongly
correlated with the number of bugs found [7], but discovering new bugs becomes exponentially harder [4].

3 SCOPE OF COMPARATIVE STUDY

Our research is motivated by the common situation where a maintainer of a C/C++ project decides to add a bug-finding
tool to discover memory safety vulnerabilities in their project. However, to assess a tool’s performance for this task
systematically, we first need to find a suitable benchmark.
Benchmark selection criteria. To provide a fair comparison between fuzzers and SAST tools, we need a ground-truth
dataset with labeled bugs, including the type of each bug. We require that the bugs are security-critical and found in
C or C++ programs. For generalizability, the bugs should capture different real-world application domains, different
input structures, and a variety of operations and transformations. Finally, and crucially, we want to avoid using one
tool group’s output as “ground truth” for the other, as that would inherently place an upper bound on the other group’s
performance. Consequently, we require a benchmark containing bugs that were found irrespective of the technique (i.e.,
fuzzing or SAST) used to find these bugs.
Benchmark. The Magma benchmark (v1.1) [32] consists of 112 CVEs in seven open-source programs that range from
image parsers and a cryptographic library to database and website engines. The (publicly known) bugs were re-inserted
into a newer version of the respective code base. Most importantly, these bugs were chosen irrespective of the technique
used to find them.3 Thus, Magma fulfills our selection criteria. Note that we are aware of the possibility of an implicit
selection bias in Magma due to the usage of bug-finding tools in the real world that influences the distribution of
known vulnerabilities. But given that it is impossible to reason about the distribution of vulnerabilities that are yet
undiscovered, and that the aforementioned bias would inherently be included in every (even hand-crafted) real-world
dataset, we argue that Magma is the best choice for this purpose.

However, to make our evaluation as comprehensive as possible, we also consider other benchmarks. Unfortunately,
benchmarks with synthetic bugs are not as well-suited for our evaluation, as the bug types are unknown, the bugs
are not necessarily security-critical, or the programs are not realistic. For example, the Juliet benchmark [61] is a
popular benchmark for static analysis tools. However, this benchmark is very artificial and does not resemble realistic
programs, as most examples crash with a simple execution or do not take any input, making them unsuitable for
our evaluation. The only other benchmark that satisfies our necessary selection criteria are the DARPA Cyber Grand
Challenge (CGC) [31] binaries. This benchmark consists of custom-written, small programs containing exploitable
vulnerabilities, however, they are thus less realistic than Magma. Therefore, to expand our evaluation, we also evaluate
a subset of the tools on the CGC binaries. We reflect more on the availability of bug-based benchmarks for SAST tools
in Section 6.2.

3.1 Tool Selection Criteria

To evaluate the discovery of memory safety vulnerabilities in C/C++ programs, we define selection and exclusion
criteria for the tools in our evaluation.

3Regarding the collation of bugs, the Magma authors write: “No specific set of criteria was imposed on the bug selection process. However, throughout
our porting efforts, we often prioritized more recent bug reports, since they correlate most closely to the latest code base, and are thus more likely to
remain valid. Additionally, reports marked ‘critical’ were also given a higher priority than others.” [33]



6 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

Table 1. Vulnerability Type Names and Their Description
∗

Codename Description

Except Improper Check or Handling of Exceptional Conditions
Data Improper Neutralization (of Data)
Bounds Improper Restrictions of Operations to a Memory Buffer
Math Incorrect Calculations
Resource Lifetime (of Memory and other Resources) and Type Errors
Logic Logic Errors
Style† Improper Adherence to Coding Standards
Other† Various Other Errors
* We provide a list of all CWEs for each vulnerability type in Appendix B
(Table 6).

† These vulnerability types are included for completeness, but are not
central to our analysis.

Table 2. Static Analyzers in Our Evaluation

Analyzer Version License Technique � å Vulnerability Classes

Clang SA 12.0.0 Apache2 Control/Data-flow analysis ✗ ✓ Data, Except, Math, Resource, Smell
CodeQL 2.12.0 Proprietary Control/Data-flow analysis ✓ ✓ Bounds, Data, Except, Logic, Math, Other,

Resource, Smell
Flawfinder 2.0.19 GPLv2 Syntactic analysis ✗ ✗ Bounds, Data, Logic, Math, Other, Resource,

Smell
Infer 1.1.0 MIT Formal reasoning ✗ ✓ Bounds, Except, Math, Other, Resource, Smell
SemGrep 1.24.0 LGPLv2.1 Syntactic analysis ✓ ✗ Data, Other, Resource, Smell

� Customizable (decoupled rule set) å Depends on build process

In terms of selection criteria, we are interested in popular, state-of-the-art tools [81, 34] that can find memory safety
violations in C/C++ programs, are open-source (or at least freely available), and cover a wide variety of approaches. We
focus on tools that are widely used in practice, such as those used by large tech companies or having many GitHub
stars. We exclude tools that report code quality issues rather than security-related issues, and tools that only have
experimental support for memory safety issues. Furthermore, we exclude tools that require extra effort to set up (like
grammar specifications for smart fuzzers), that are outdated or lack sufficient documentation for a reasonable setup, or
that are incompatible with our experimental infrastructure (e.g., operating system and hardware).
Static analysis tools. Table 2 shows the analyzers that satisfied our criteria. We distinguish syntactic and semantic
analyzers:

• Syntactic (source code). Flawfinder [83] encodes well-known vulnerability patterns as regular expressions that can
be efficiently and most generally matched on the source code for vulnerability detection. SemGrep [71] additionally
takes the semantics of a programming language into account, thereby reducing the number of false positives while
keeping the analysis independent of the build system. Moreover, SemGrep decouples its rule set [72] from the analysis
engine and provides a simple YAML interface for custom rules.

• Semantic (logic). Infer [18] and CodeQL [23] derive the computational model from the source code by interpreting
the program’s instructions. Infer is developed by Meta and uses separation logic to reason about heap-based pointer



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 7

structures in C/C++ programs. CodeQL is developed by GitHub and uses a deductive database to store program facts.
Vulnerability patterns are encoded as declarative queries to the database. Given these reasoning capabilities, we
expect the lowest false positive rate and the highest analysis time.

• Semantic (symbolic execution). Clang SA [53] follows a symbolic execution-based approach. Code fragments are
symbolically executed to construct a symbolic state. It checks whether there is a satisfiable path to a dangerous state
where security checks are violated. Clang SA aims at undefined behavior and dangerous code constructs, but can be
extended with other types of checkers [11].

Except for Flawfinder and SemGrep, all analyzers need to be integrated into the program’s build process. Apart from
CodeQL and SemGrep, all analyzers have a fixed set of rules that may be enabled or disabled. CodeQL and SemGrep
support the definition and addition of new detection rules.
Fuzzing tools. To get the broadest possible picture, we use all fuzzers available in Magma version 1.1. These are:
AFL [85],AFLFast [6],AFL++ (3.00a) [20], Angora [9], Entropic [5], FairFuzz [48],Honggfuzz [26], LibFuzzer [74],
MOpt-AFL [54], ParmeSan [62] and SymCC-AFL [66]. We use the pre-defined settings for these fuzzers and no external
sanitizers. Additionally, we ported a more recent version of AFL++ [20] (4.08c) and libafl_libfuzzer [14] (version
0.13.1), a libAFL-based replacement for the now-deprecated libFuzzer. For AFL++, we are referencing the more recent
version unless specified otherwise.

4 EMPIRICAL EVALUATION

We begin our evaluation by quantitatively comparing the selected static analysis (SAST) and fuzzing tools in terms
of their bug-finding capabilities, specifically focusing on true positives. More specifically, we address the following
research questions:

RQ.1 True Positives: How many CVEs in the Magma and CGC benchmarks are identified by each bug-finding tool
and approach?

RQ.2 Complementarity: Do static analysis and fuzzing complement each other, both within and across approaches,
or do they essentially identify the same set of bugs?

RQ.3 Bug Types: Are static analysis tools more effective at finding certain types of bugs compared to fuzzers, and
vice versa?

RQ.4 Overhead: How much manual effort does a tool impose on a developer to extract actionable results (e.g., related
to false positives or deduplication of findings)?

4.1 Experimental Design

The Magma benchmark includes canaries, a mechanism to detect if a CVE is triggered during runtime. This enables
fuzzer evaluation without relying on potentially biased assertions or sanitizers. For evaluating static analysis tools, we
restore the vulnerable code to its original state by removing these canaries.

The CGC benchmark does not have canaries, but instead provides vulnerability descriptions that include CWEs and
their specific locations.
SAST Configuration. SAST tools offer a variety of configuration options that enable or disable specific checks, allowing
users to fine-tune the analyzer for particular objectives (e.g., finding vulnerabilities instead of code smells). We configure
each tool to optimize its performance and also enable all security-relevant options. Since code quality measurements



8 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

are outside the scope of this work, we disable code smell reporting where possible. For verifiability, we include this
configuration mapping in our artifact.
Measuring false negatives. In this empirical evaluation, we can rely on automated tooling to evaluate the false
negative rate, i.e., the number of expected CVEs found. However, we cannot reliably evaluate the false positive rate,
i.e., the number of invalid bug reports per tool. To quantify this aspect of effort nevertheless, we empirically study the
number of bug reports generated per every expected CVE (RQ2), and we manually classify all 49 SAST-generated bugs
reported against eight randomly selected functions with known CVEs in Section 5.1.
Identifying whether a CVE is discovered. For fuzzing, we use the benchmark-provided canaries in Magma and
manual crash inspection in CGC, as there are no canaries, to identify discovered CVEs.

For static analysis, we take a different approach since static analyzers may report unrelated bugs in functions
containing known CVEs. For example, a tool might report a null pointer dereference when we expect a buffer overwrite.
Following Lipp et al. [50], we identify detected CVEs by comparing the reported vulnerability type (CWE) with the
expected type. We define expected CWEs based on Magma’s provided data and CGC’s vulnerability descriptions. We
consider a CVE detected if the types match exactly or are sufficiently similar.4 For example, if we expect an improper
validation of array index (CWE-129), we accept reports of improper input validation (CWE-20) or out-of-bound reads
(CWE-125).
Setup and Infrastructure. For fuzzing, we use Magma’s (version 1.1) captain script to run campaigns. We rerun the
Magma experiments instead of using data from the paper [32] since version 1.0 contained unreachable bugs that were
removed in later versions [50]. Following recommendations from Klees et al. [46] and Schloegel et al. [70], each fuzzer
runs for 48 hours with 10 trials. We double the corpus tmpfs size to 100GiB and restrict workers to physical cores to
avoid SMT-related variations. The experiments run on seven identical machines with 52-core Intel Xeon Gold 6230R
CPUs and 188GiB RAM. All machines use Ubuntu 22.04 LTS with kernel version 5.15.

For static analysis, we run the experiments in a container with an Intel Xeon Gold 6248R CPU using 16 cores at
3.0GHz and 128GiB RAM. The container uses Ubuntu 20.04 and Linux kernel version 6.5.

4.2 RQ.1 True Positives

We evaluate each fuzzer using ten 48-hour trials on the seven Magma programs. For CGC, we only evaluate AFL++
(aflpp4) with ten 48-hour trials due to the required manual verification of results. Figure 1a shows the number of bugs
that were Covered, found at least Once, found in at least six trials (Median), or Missed across all runs. We use Once for
RQ2 and RQ3 to assess the tools’ potential performance, while Median is used in RQ4 to evaluate expected real-world
performance.

The results for the five static analyzers are shown in Figure 1b. As described in Section 4.1, we classify detection
accuracy into multiple categories: a vulnerability is considered detected if its vulnerability type (CWE) exactly matches
the expected CWE (strict) or is sufficiently similar (similar), based on our CWE similarity criteria (Table 6). For undetected
bugs, we track whether the analyzer reported any bug in the vulnerable function (function) or missed it entirely (missed).
Fuzzers. Looking at Figure 1, among the 112 bugs in Magma, the fuzzer AFL++ finds 37 bugs while the static analyzer
CodeQL detects 31. This similar performance between the best tools in each category suggests that both fuzzing
and static analysis have similar potential to detect bugs, though there still remains room for improvement for both
techniques.

4We map each expected vulnerability type (CWE) to up to 27 related vulnerability types. A full list is available in Table 6.



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 9

42 42 42 21
219

42 42 42 42 42 42 42 42 42

1
5

1

1
5

1

1 3
2
1

1 2
1 3

1 4
2

1 3
1 2

1 4
2

1 2
2
2

7 1 3
1 2

1 3
1 2

1 4
2

1 2
1 3

4
5

1 3

4
32 4

3 31 6

2 4
7

6
3

4

8
22 1

3 31 6
3 33
4

9
21 1

7
32 1

2 4
1 6

5
3

4
1

2 4
2 5

9
6

2

9
5

3

8
31 5

8
32 4

9
44

9
41 3

9
5

1 2

8
31 5

14

11 1

9
42 2

9
12 5

9
35

9
42 2

10
7

1 3

10
7

4

10
7

4

10
8

3

10
7

4

10
8

2 1

10
7

2 2

10
8

1 2

15

42

10
9

1 1

10
7

4

16

32

10
7

1 3
10
23

10
23

10
21 2

10
31 1

15 12

21

10
32

10
41

11

21 1

12

21

10
23

15 15

5
13
1 3

5
13
4

5
12
5

6
10
3 3

9
10
3

8
10
2 2

6
13
1 2

6
11
2 3

6
13
1 2

9
10
1 2

4
11
2 5

10
10
2

5
13
4

7
7

2 1

6
8

1 2

1 8
4 4

1 7
5
4

11
6

5
9

3

7
8

2

5
9

1 2

1 9
5
2

6
9

2

5
8

1 3

17 8
8

1afl aflfast

aflplusplus

aflpp4

angora

entropic

fairfuzz

honggfuzz

libafl_libfuzzer

libfuzzer

m
optafl

parm
esan

sym
cc_afl

Bu
gs

Ignored

Missed

Covered

Once

Median

(a) Fuzzing

42 19
9

14
41

1

36

14 1

42

7 1 2
3
1

4
12

3
3

1

6

1

13 13 12

1

12

1

13

14

3

7
28

12

5
17 14

3

17

22

6
37
5

14
16

15

42

20

1
15 15 8

25
15 13

2

22 9
6

7
21

1

19

12

22

16

1

17 15

2

17 14

3

cgc
libpng

libtiff
libxm

l2
openssl

php
poppler

sqlite3

clang

codeql

flaw
finder

infer

sem
grep

Missed

Function

Similar

Strict

(b) Static Analysis

Fig. 1. Flags per tool and bug class on Magma and CGC.

For the fuzzers (Figure 1a), the number of covered and found bugs varies strongly by project but only weakly between
fuzzers. In Libxml2, OpenSSL, and PHP, many undiscovered bugs are not even covered by the fuzzer. For Poppler,
SQLite3, and Libpng, many bugs are covered but never triggered, suggesting specific failure conditions that fuzzers
struggle to overcome.
SAST Tools. The static analyzers (Figure 1b) show significant variation in their performance. Their effectiveness differs
based on their semantic reasoning capabilities.CodeQL found themost security bugs, likely due to its extensive reasoning
capabilities. On the Magma dataset, Flawfinder ranks second but with a notable performance gap. Flawfinder detects
potential vulnerabilities by searching for dangerous C standard library functions like malloc, strcpy, or sprintf,
without reasoning if the function arguments are properly validated. This explains Flawfinder’s poor performance on



10 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

the CGC benchmark, which rarely uses standard library functions. Across all analyzers, despite generating 44,332 bug
reports, most functions containing security bugs receive no flags, even for unrelated bug types (see function).

Fuzzers find slightly more Magma bugs than static analyzers. While fuzzers perform similarly to each other, static

analyzers show significant variation. The CGC results confirm our findings from Magma.

1
10

15 1 1

39

2 15 1 1 111 1112 12 11 12 12 15 112 1111 1113 11 11 1

Both: 8.93% (10) Fuzzer: 29.46% (33) Analyzer: 26.79% (30)

0
10
20
30
40

Co
m
m
on

010203040
Set size

Sum_Fuzzers
Sum_Analyzers
Fuzzer_aflpp4

Fuzzer_aflplusplus
Fuzzer_moptafl

Fuzzer_honggfuzz
Fuzzer_symcc_afl

Fuzzer_aflfast
Fuzzer_fairfuzz

Fuzzer_afl
Fuzzer_entropic
Fuzzer_libfuzzer

Fuzzer_libafl_libfuzzer
Fuzzer_angora

Fuzzer_parmesan
Analyzer_codeql

Analyzer_flawfinder
Analyzer_infer
Analyzer_clang

Analyzer_semgrep

Bugs Found

Fig. 2. Intersection plot [49] of Magma CVEs found by each analyzer or fuzzer, as well as by both groups (Sum_*). Every row in the

intersection stands for the set of bugs found by a tool, and every column is a set of bugs commonly detected by a group of tools. A

color-filled circle indicates that a tool is part of a tool group. Bar plots show the respective set sizes for tools and tool groups.

4.3 RQ.2 Complementarity

Figure 2 shows how static analysis and fuzzing complement each other in an UpSet (or intersection) plot [49]. Out
of 112 CVEs in Magma, 39 are not found by any approach, 33 are found only by fuzzers, 30 are found only by static
analyzers, and 10 are found by both approaches. These results indicate that both approaches find different types of
bugs, making them complementary.
Fuzzers. Fuzzers tend to find the same CVEs. 50% of the CVEs are found by at least five fuzzers, and a quarter of those
found by any fuzzer are found by all fuzzers. This homogeneity suggests that using a single well-performing fuzzer like
AFL++, which finds 37/43 CVEs, is sufficient.



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 11

SAST Tools. For static analysis tools, CodeQL discovers most CVEs. Only Flawfinder finds more than one CVEs not
already detected by CodeQL. Since CodeQL significantly outperforms other tools, using CodeQL alone will provide
nearly all findings.

Static analysis tools and fuzzers are complementary approaches that find different CVEs. Fuzzers tend to find similar

CVEs, so using a well-performing fuzzer like AFL++ is sufficient. Similarly, CodeQL covers most static analysis results,

as other tools do not provide comparable results.

4.4 RQ.3 True Positives Across Bug Types

6
31 21 9 4

Total Bugs: 112

3 4
0

4
0

Total Bugs: 20

0
3 3

1 0

Total Bugs: 10

3
19 18

3 4

Total Bugs: 55

0
3

0 1 0

Total Bugs: 12

0 1 0 0 0

Total Bugs: 12

0
1

0 0 0

Total Bugs: 3

21 24 36 37
17 21 23 29 18 18

35
16 24

4 4
8 8

1
4 3 5 6

3
6

2 4

3 3 3 4
2 3 3 3 2 2 3

1 2

13 16 21 18 11 11 16 17
9 10

20
11 14

0 0 0
2

0 0 0 1 0 0
3

0 1

1 1
3 4

2 2 1 2 1 2 2 1 2

0 0
1 1 1 1

0
1

0
1 1 1 1

40 43

5
8

4 4

25 22

4 3

1
5

1 1

Analyzer Fuzzer Sum Com
bined

Except
D
ata

Bounds
M
ath

Resource
Logic

clang
codeql
flaw

finder
infer
sem

grep

afl aflfast
aflplusplus
aflpp4
angora
entropic
fairfuzz
honggfuzz
libafl_libfuzzer
libfuzzer
m
optafl

parm
esan

sym
cc_afl

A
nalyzers

Fuzzers

0
30
60
90

0
5
10
15
20

0
2
5
8
10

0

20

40

0
2
5
8
10
12

0
2
5
8
10
12

0
1
2
3

Tool

Bu
gs

Fo
un

d

Fig. 3. Detected Magma CVEs per tool across bug types. For fuzzers, a bug is found if it is detected once. Bug types (see Table 1) not

covered by Magma are omitted.

Figure 3 shows how many of Magma CVEs are detected across the six top-level vulnerability types (root CWEs).
These vulnerability types are explained in Table 1. Note that we exclude CGC here, since we only have results for



12 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

one fuzzer. A detailed list of CWEs for each code name is available in the Appendix (Table 7). For static analyzers,
we consider a CVE detected if its specific vulnerability type (CWE) is similar to the reported vulnerability type (see
Section 4.1)

The rows in Figure 3 show results for each vulnerability type and their combined total. The columns show results per
tool group and their sum total. Both approaches are moderately successful in detecting Math-, Resource-, and Logic-type
vulnerabilities in Magma. However, we are hesitant to draw general conclusions from these results due to the small
number of CVEs in each category. The Math class consists of division by zero and integer overflow bugs, which often
require specific states to trigger. The Resource class consists of resource exhaustion (DOS) and use-after-free bugs,
requiring specific inputs or understanding of state across function calls. The Logic class consists of infinite loop bugs
and control flow errors. Fuzzers do not detect these bugs, while static analyzers struggle with the required reasoning.
For Math and Resource bug types, fuzzers need to produce specific inputs to trigger the fault, while static analysis tools
may not consider these CWEs within their threat model.
SAST Tools. Static analyzers perform best at detecting Bounds vulnerabilities and show strong results for Data
vulnerabilities, though our data is limited. They achieve moderate success with Except andMath vulnerabilities. Resource
vulnerabilities are challenging for static analyzers to detect, but our dataset for these is sparse. For Logic vulnerabilities,
our data is too limited for meaningful conclusions.

Individual static analyzer tool performance varies significantly across analyzers. CodeQL performs best overall,
though other tools match its performance for specific bug types. Flawfinder ranks second in overall performance
but fails to detect certain bug classes. Clang SA, Infer, and SemGrep perform notably worse than the leading tools,
primarily due to their limited detection of bounds-related vulnerabilities and complete misses of certain bug types.
Fuzzers. Fuzzers are most effective at detecting Except, Data, Bounds, and Resource vulnerabilities. They are less effective
for Math vulnerabilities, though our data in this category is limited. Our dataset for Logic vulnerabilities is too small to
draw meaningful conclusions.

We find that individual fuzzer performance is remarkably similar across different bug classes. The performance of
each fuzzer tends to rise and fall together across bug types, suggesting that their effectiveness is not dependent on
specific vulnerability types, even though overall performance varies between tools.

While fuzzers perform similarly across bug types, static analysis tools vary greatly in their effectiveness for different

kinds of vulnerabilities. Overall performance between fuzzers is relatively consistent, while CodeQL is the clear leader

among static analyzers.

4.5 RQ.4 Overhead

After running automated bug finding tools, developers must investigate the results. Since this investigation cannot be
fully automated, tools should minimize developer overhead. To quantify this overhead, for SAST tools we analyze the
ratio of bug reports (or crashes) to expected bugs in the codebase and for fuzzers we discuss, which normally do not
have false positives, we discuss other factors influencing overhead.
SAST Tools. For static analysis tools, the main overhead is sifting through generated bug reports, as these tools are
known to generate many false positives [3, 28, 36]. In Figure 4a, we report the number of bug reports per expected
CVE across the eight high-level vulnerability types in Magma. While we expect to find 112 CVEs, the five analyzers
generate 44 thousand bug reports. Clang SA generates fewer reports out-of-the-box, while other tools produce an



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 13

3 / 35

0 / 29

3 / 177

—

0 / 9

—

0 / 16

0 / 97

19 / 352

3 / 397

4 / 1827

1 / 9

3 / 7303

0 / 10

1 / 3181

0 / 13

18 / 8747

3 / 15089

0 / 39

0 / 628

0 / 432

0 / 92

0 / 39

0 / 40

3 / 487

1 / 1

4 / 201

—

1 / 1144

0 / 1

0 / 616

0 / 1

4 / 36

0 / 10

0 / 1

—

0 / 1

0 / 2850

0 / 35

0 / 387

Bounds

Data

Except

Logic

Math

Other

Resource

Smell

clang flawfinder semgrep
codeql infer

Analyzer

CW
E

(a) Magma Dataset

13 / 50

0 / 115

0 / 69

0 / 1376

0 / 6

1 / 591

0 / 1

0 / 113

0 / 898

—

0 / 3

0 / 5

—

—

4 / 45

—

0 / 8

0 / 49

0 / 1

1 / 227

0 / 1

—

—

—

—

0 / 5

—

0 / 4

Bounds

Data

Except

Math

Other

Resource

Smell

codeql infer
flawfinder semgrep

Analyzer

CW
E

(b) CGC Dataset

Fig. 4. The number of discovered CVEs / generated SAST bug reports across vulnerability types. The color represents the ratio between

reports and bugs. A reddish color indicates no true positives, while a blueish color indicates that true positives are found, where a

darker blue indicates better ratios. Regarding CGC, Clang SA cannot be used due to the custom standard library, and also, there are

no Logic bugs, hence we omit the corresponding column and row.

impractical number of reports for developers to investigate (at least in our configuration). Most importantly, only
0.23% of bug reports from CodeQL, the best performing tool regarding true positives, correspond to expected Common
Vulnerabilities and Exposuress (CVEs). However, quantifying the exact number of false positives is difficult since we do
not know how many bugs exist in the base Magma subjects beyond the known forward-ported bugs. Some of the 44k
reports may indicate true positives, but analyzing all reports would be infeasible. Managing large numbers of potentially
invalid bug reports remains an active research area in software engineering and programming languages [10, 41, 36, 50,
69]. Looking at Figure 4, we can see that tools generate varying numbers of bug reports across vulnerability types. For
example, CodeQL reports many Math bugs across datasets. Similarly, Flawfinder produces many reports for Data and
Bounds bugs—these include all 21 bugs it finds in Magma, but even with a corresponding high number for CGC no bugs
are found (Figure 4b). This is due to the syntactic nature of the tool: Flawfinder reports usage of a set of dangerous
functions from the standard library. Thereby, it will miss unsafety in non-standard functions and report safe usages of
dangerous functions.
Fuzzers. While fuzzers may miss bugs in individual runs due to their non-deterministic nature, they generally do not
produce false positives (depending on the sanitizer). However, when a fuzzer finds a bug, developers have to manually
identify the root cause of the crash at hand, a potentially time-intensive task. Furthermore, fuzzers often generate
multiple crashing inputs that are caused by the same underlying issue. While these inputs are not false positives,
deduplication remains challenging, though recent research has shown promising results in this area [40, 42]. Our
evaluation relies on Magma’s built-in triggers that simulate a perfect sanitizer, but, in contrast to real sanitizers, do not
induce a crash. Therefore, we cannot realistically quantify the number of duplicated crashes in our dataset. Nevertheless,
from the developer’s perspective, this is no concern: Since all crashes represent true positives, they can arbitrarily
analyze and fix one of them, (programmatically) check which inputs still crash, and proceed to investigate this remaining
subset.



14 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

Static analyzers require significant manual effort to filter false positives. For each CVE in Magma, developers would have

to review about a thousand analyzer-generated reports. Fuzzers depend on the quality of sanitizers and bug deduplication

tools to minimize effort for the user.

4.6 Threats to Validity

In the following, we outline several potential threats to the validity of our quantitative analysis and describe the
measures we take to mitigate them.

External validity refers to the degree to which our results generalize to other programs, analyzers, and fuzzers
outside our study but within the scope of this work. Like any empirical study, our results may not generalize beyond
our evaluated programs, vulnerabilities, and bug-finding tools. However, our evaluation uses an established benchmark
of six real-world programs containing 112 security bugs—the largest benchmark of known vulnerabilities suitable for
our study. We include CGC as a control group for additional validation, though it is less realistic and requires manual
effort. On the static analysis side, evaluate five widely-used analyzers that represent diverse approaches, including
one commercial tool (CodeQL). We study 13 fuzzers, ranging from industry standards to experimental academic
implementations.

Internal validity refers to the degree to which our study minimizes potential methodological mistakes. To mitigate
internal threats, we defined clear selection criteria (Section 3) for choosing bugs and programs for our evaluation. To
mitigate threats of selection and confirmation bias, we required that bugs were collected irrespective of the techniques
used to find them. Magma satisfied these criteria. We triangulated these results using a secondary benchmark (CGC).

Construct validity refers to the degree to which a study measures what it claims to measure. To mitigate experi-
menter bias, we evaluate static analysis in Magma programs by removing all canaries (i.e., Magma-specific preprocessor
directives for each bug), while using the canaries as (sanitizer-independent) CVE detectors for fuzzers. To mitigate
another threat to construct validity, we always err in favor of the static analyzer when automatically identifying detected
CVEs. We verify this aspect in Section 5.1. As with any empirical study, there may be errors in our experimental
infrastructure or analysis scripts. Thus, to enable independent verification, we make all experimental infrastructure,
scripts, and data publicly available.

5 QUALITATIVE EVALUATION

Beyond the quantitative evaluation, we aim to gain a deeper understanding of the utility of static analyzers and fuzzers.
We start by validating the results from our automated evaluation on a sample. Afterwards, we focus on two aspects:
First, we analyze the types of bugs found by both approaches, the complexity of reasoning required, and how bug
detection depends on the execution environment. Second, we evaluate the tools in terms of setup effort, configuration
options, and resource requirements. Finally, we look at integration points into development workflows and examine the
real-world adoption of security tooling.

5.1 Manual validation

We randomly sample eight CVEs from Magma for detailed manual inspection as follows. For a fair comparison, we
require that the root cause and observed crash must be in the same function. This selection criterion simplifies manual
verification and benefits static analyzers (which often only work intra-procedurally). There is no preference for bugs
better found by fuzzing or static analysis. From all bugs that satisfy this criterion, we randomly select eight bugs. For



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 15

Table 3. Number of Analyzer Reports per Function Sampled for Manual Analysis

Manual

Program Function CVE ID CWE Flags Auto1 TP Bug2

SQLite3 tableColumnList 2017-15286 476 1 1 1 1
Poppler Parser::getObj 2018-13988 125 1 0 0 0
OpenSSL X509_NAME_oneline 2016-2176 119 5 4 0 0
Poppler FoFiTrueType::cvtSfnts 2019-12360 125 22 14 5 0
Libxml2 xmlStrncat / xmlStrncatNew 2016-1834 119 8 8 7 7
LibTIFF TIFFWriteDirectoryTagTransferfunction 2019-7663 476 1 0 0 0
OpenSSL ssl3_read_bytes 2016-6305 20 2 2 0 0
Libxml2 xmlStringLenDecodeEntities 2016-4449 20 9 7 2 0
1 Using the conservative Similar approach in our empirical analysis.
2 We consider the CVE discovered after careful manual analysis.

each tool, we are interested whether it found the expected bugs (true/false negatives) and whether the reported bugs
are valid reports (true/false positives), even if not the expected ones. The functions containing these bugs are listed in
Table 3, where each function is associated with a single CVE.

For the selected bugs, we mark source code lines where tools reported bugs based on results from the five static
analyzers in our empirical analysis (report). We also mark lines that caused the actual bug according to Magma (fault)
and how the bug was patched (patch).
Manual Labeling. Three researchers with expertise in automatic bug finding and system building classified (i) bug
reports as true or false positives, reports could be correct even if not identifying the expected bug, and (ii) whether tools
found the expected bug. To mitigate threats to internal validity, we follow the standard coding protocol from grounded
theory [24]. Each researcher independently assigned labels, spending approximately four hours. The researchers then
compared their results and resolved all disagreements during multiple sessions taking another four hours in total. We
publish the meeting protocol to ensure verifiability.
Results. Table 3 shows the results of our manual labeling. Out of 49 static analysis reports, only 8 were manually

confirmed to match the known CVE. For another seven seemingly correct reports, we are uncertain whether they indicate
actual vulnerabilities due to the limited scope of this analysis.5 34 reports were false positives, a rate of at least 69% in
our sample. We also note that our automatic approach (which filters false positives based on similarity to the expected
vulnerability type; cf. Section 4.1) overestimates the number of true positives in favor of static analysis. We refer to
Lipp et al. [50] for a detailed analysis of this challenge in static analysis.

The CWE bucketing approach used in Section 4 to evaluate static analysis tools slightly overestimates their true positive

rate, erring towards the benefit of the tools as intended.

5.2 Limits to Bug Discovery

In this section, we take a qualitative approach to understand the types of bugs that SAST tools and fuzzers can detect.

5CodeQL reports “cpp/missing-negativity-test” for multiple usages of poppler’s seekTable function as array indices. We are not certain whether these
tables are guaranteed to exist; if so, the return value cannot be -1 and the access is safe.



16 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

Types of bugs. Static analysis and fuzzing detect different types of bugs. Bugs found by fuzzing depend on code
coverage and bug oracles (i.e., sanitizers). When a fuzzer generates input that triggers problematic execution, the
sanitizer alerts the fuzzer. While sanitizers can detect memory corruption and other issues in C/C++ programs [73], the
fuzzing community has called for new sanitizers to detect additional bug types [55]. Without appropriate bug oracles,
certain bugs are difficult to detect – particularly logic bugs, which require inferring expected program behavior.

Static analysis uses bug oracles encoded as patterns that are either hard-coded or configurable (as in Flawfinder,
Clang SA, and Infer) or fully customizable via rule databases (as in CodeQL and SemGrep). Users can customize bug
detection by adding, removing, or modifying these patterns. When new bugs appear in production, corresponding
patterns can prevent similar issues in the future. Based on these patterns, static analyzers can detect non-crashing
semantic bugs affecting program correctness, such as SQL injection vulnerabilities, information leaks, and logic bugs –
issues that fuzzing cannot detect without sanitizer support.
Reasoning. While static analysis predicts problematic states without execution, fuzzing can only detect issues in
observed executions. Consequently, fuzzers cannot find bugs in uncovered code. Thus, carefully designed harnesses,
good code coverage, and a meaningful seed corpus are crucial for fuzzing [46]. If, for example, integrity checks like
checksums are hard to satisfy with random mutations, they may need removal in fuzzing builds to reach deeper code
regions.

Static analyzers do not need to execute the program but instead are limited by their reasoning approach. Syntactic
analyzers check syntactic patterns by comparing code fragments. For instance, Flawfinder matches hard-coded
regular expressions to flag problematic function calls (e.g., sprintf). This approach is brittle since different syntactic
representations canmask issues. Semantic analyzers can theoretically reason about program behavior without limitations.
However, they must handle large, multi-language codebases with complex invariants. For example, our benchmark
OpenSSL (626K LoC) is mainly C code, but 30% consists of Perl preprocessing scripts, making analysis challenging for
semantic analyzers.
Environment. Some bugs only manifest in a specific program environment. The program environment is determined
by factors like the machine architecture, system calls, compiler flags, preprocessor directives, and program configuration.
Fuzzing only finds bugs in the active environment. For instance, in our setup, all programs are compiled for x86_64,
preventing fuzzers from detecting bugs that only occur on x86_32. For example, Magma bug MAE004 / PHP002
(Listing 1 shows the relevant code) is caused by overflowing a 32-bit user-controlled integer on a 32-bit system. On
64-bit systems, however, the value is upcast to 64 bits, preventing the overflow and hiding the bug. Consequently, none
of the fuzzers triggered this bug. Static analysis can, in theory, reason about programs under all possible environments
and configurations. Even for functions with unknown implementations, static analysis can model arbitrary return
values. However, this generality leads to more false positives. To increase precision, some static analyzers integrate
into the build process to capture more information. In turn, this makes them susceptible to the same environmental
limitations as fuzzers.

Static analyzers and fuzzers detect different types of bugs due to their distinct approaches: fuzzers execute programs,

while static analyzers reason about them.



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 17

1 static bool exif_process_IFD_in_TIFF_impl(image_info_type *ImageInfo, size_t dir_offset, int section_index)
2 { /* ... */
3 // integer overflow if dir_offset=0xFFFFFFFF
4 if (ImageInfo->FileSize >= dir_offset+2) {
5 int sn = exif_file_sections_add(ImageInfo, M_PSEUDO, 2, NULL);
6

7 // read fails (unchecked) because dir_offset is larger than file size
8 php_stream_seek(ImageInfo->infile, dir_offset, SEEK_SET);
9 php_stream_read(ImageInfo->infile, (char*)ImageInfo->file.list[sn].data, 2);
10

11 // ImageInfo->file.list[sn].data is uninitialized (CWE-908)
12 int num_entries = php_ifd_get16u(ImageInfo->file.list[sn].data, ImageInfo->motorola_intel);
13 /* ... */
14 } else {
15 exif_error_docref(/* ... */);
16 }
17 }

Listing 1. Part of PHP’s EXIF handling code that contains CVE-2019-9641 [16], which only surfaces if size_t is 32 bits.

5.3 Usability and User Considerations

The adoption of bug-finding tools depends not only on their effectiveness, but also on their usability. We discussed the
challenges of bug deduplication for fuzzing and false positive reports for static analysis in Section 4.5. Additionally, our
manual analysis (Section 5.1) shows that most of the 44 thousand bug reports from the SAST tools are false positives. In
this section, we examine three additional qualitative usability factors: (i) setup complexity, (ii) configurability, and (iii)
resource requirements.
(i) Setup. Before using an automatic bug-finding tool, it must be set up for the target program. Static analysis requires
minimal setup effort. Syntactic analysis tools like Flawfinder or SemGrep have no up-front cost and can directly
analyze source code. However, semantic analysis tools like Clang SA, Infer, and CodeQL need integration into the
project’s build process. In our experience, this integration is straightforward, requiring only the build command to be
passed to the static analyzers.

Fuzzing has higher upfront costs. The fuzzer’s compiler must be integrated into the build process to add coverage
instrumentation and possibly sanitizer instrumentation. Additionally, fuzzing requires a fuzz harness, which is often
time-consuming and requires project-specific knowledge. The OSS-Fuzz project [75] scales fuzzing across over 1,000
projects, made possible only by maintainers providing fuzz harnesses for their projects. Reducing this effort through
automatic harness generation (e.g., using recent advances in code generation models) is a topic of ongoing research [86,
84].
(ii) Tuning. Developers may want to fine-tune bug-finding tools for their specific projects. While tools usually aim to
be general-purpose, projects often have differing requirements. Static analysis tools are usually highly configurable
to support tuning for specific codebases. This configurability helps manage their high false positive rate by allowing
developers to disable certain analyses or ignore parts of the codebase. Additionally, tools that decouple their rule set
from the analysis engine allow developers to encode custom bug patterns, enabling analysis specific to the codebase. To
assess the effort required and flexibility we performed a case study, which we present in the appendix due to its length
Appendix A. We extend a CodeQL query to detect a previously undetectable security vulnerability, demonstrating the
advantages of this decoupled design.



18 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

Similarly, for fuzzing, which requires more initial effort to produce first results, due to build integration and harnesses.
Fuzzers can be tuned further through dictionaries [20], grammars [64], protocol awareness [65], improved seed corpora,
and better fuzz harnesses [74].
(iii) Hardware Resources. Hardware resources are an important consideration when adopting automatic bug-finding
tools. Fuzzers are known to require lots of hardware resources, indeed, a typical fuzzer could be run forever since there
is no inherent stopping rule. In contrast, static analysis terminates once analysis results are generated. To compare
these differences concretely, we calculate the approximate cost per bug found for each tool on the Magma bugs. Note
that this is a coarse approximation given that many factors need to be taken into account, as our results show, the cost
can heavily vary depending on the analyzed subject.

Assuming energy costs of 40 ¢/kWh, we calculate the cost per core hour. The fuzzing CPUs (26 cores/socket, TDP
150W [37]) cost 0.23 ¢/h/core. The static analysis CPUs (24 cores/socket, TDP 205W [38]) cost 0.35 ¢/h/core. We
estimate the cost per bug by multiplying these rates with the tool runtime and number of harnesses for fuzzing, then
dividing by bugs found. We recorded runtimes for each static analyzer and subject (see Table 4). For this calculation,
we count analyzer flags using the similar matching described in Section 4.1 for static analysis and the median run
for fuzzers. This results in the following costs: Flawfinder is cheapest at 0.0003 ¢/bug, followed by SemGrep at
0.005 ¢/bug. Semantic analysis tools require more power: Clang SA costs 0.09 ¢/bug, while CodeQL (0.4 ¢/bug) and
Infer (1.9 ¢/bug) are the most expensive SAST tools. Fuzzing is even more expensive, with the best performer (AFL++)
costing 58.5 ¢/bug. Note that fuzzing costs are expected to grow exponentially for a linear increase in found bugs [4].
Which we can also confirm, for example, the first bug found after 15 s costs much less than the last one found after
32.5 h.

Note that these calculations depend on our evaluation parameters and may not reflect typical usage. Practitioners
might terminate SAST tools early when they appear stuck rather than waiting 24 hours. They may also run fewer parallel
fuzzing campaigns or extend campaigns beyond 48 hours. Moreover, the results can vary wildly between subjects,
though, this variation also depends on the used tool. Nevertheless, these numbers illustrate the relative resource usage
differences between tools.

Static analysis tools require less initial effort to set up than fuzzing. However, both tool groups can be extensively tuned

to improve their performance. The hardware cost per bug found is approximately two orders of magnitude lower for

static analysis tools than for fuzzing.

5.4 Automatic Bug Finding in the Development Process

Bugs are cheaper to fix when caught early in development process, so OWASP recommends applying security tooling
early (“shift left” paradigm) [63]. In the following, we examine where fuzzers and SAST tools fit in the development
pipeline and investigate how they are used in practice.

Due to its high runtime cost (discussed in the previous section), fuzz testing is typically deployed late in development,
typically on already released software. For example, OSS-Fuzz [75] mostly tests the public main branches of popular
open-source software [27]. Fortunately, our study suggests significant overlap between different fuzzers, making it less
important to use multiple fuzzers.

In contrast, static analysis tools can be used earlier in the development pipeline and can easily be integrated into
continuous integration on popular code sharing platforms [35]. As discussed in Section 5.3, tools can be fine-tuned or



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 19

Table 4. CPU Core Time [hh:mm:ss] for SAST Tools

Subject LoC semgrep clang-scan codeql infer flawfinder

libtiff 80K 09 04:07 09:46 09:53 02
libxml2 201K 22 14:37 01:20:54 42:28:181 05
libpng 63K 06 01:42 06:33 09:31 02
php 865K 01:02 09:00 30:22:222 04:56:371 36
sqlite3 445K 01:03 16:43 24 28 12
poppler 290K 02 01:273 31:29 20:21 06
openssl 626K 35 26:49 05:27:30 58:16 07

Total 03:19 01:14:25 37:58:58 49:03:24 01:10
1 killed out-of-memory
2 timeout after 24 hours real time
3 failed to capture build system

limited to recently changed code to reduce reports while still improving code quality incrementally. However, our
results presented in Section 4.5 suggests that SAST tools are not utilized in Magma projects, given the large number of
reports generated.

Taking a broader perspective, the results from fuzzers and SAST tools hint at a fundamental limitation of memory-
unsafe languages like C and C++. These tools are essentially trying to detect bugs that the language itself would be best
equipped to prevent. In the case of memory errors, for instance, C and C++ rely heavily on the programmer’s diligence,
as ownership cannot be checked at compile time for these languages [39]. In contrast, modern systems programming
languages address this issue directly through their design: languages like Go use automatic memory management,
while Rust enforces explicit ownership checking at compile time. Although these approaches involve trade-offs, they
effectively eliminate memory safety violations through language design rather than relying on external tools to catch
such errors after the fact.

However, even in C/C++, some bugs can still be caught at compile time. Using a current language version and enabling
compiler warnings6 is an important first step to detect issues early—for example, the Linux kernel team upgraded from
C89 to C11 in 2022 to support block-level variable declarations after a vulnerability [13]. Addressing compiler warnings
also reduces noise from subsequent SAST analysis. Our analysis found SAST flags for unused variables, indicating these
basic steps are sometimes skipped even in popular open-source projects.
CI Pipeline Analysis. Motivated by the insight that (at time of inclusion into Magma), some of the projects had
apparently not used bug-finding tools as part of the development process, we want to quantify the in-practice usage of
such tools. Notably, Beller et al. [3] found in 2016 that almost half of the open source projects they surveyed used static
analysis, but only sporadically. To get a sense of how commonly fuzzers and SAST tools are used in the most critical
100 OSS projects today (as per OpenSSF), we manually analyzed all 57 OSS projects that are hosted on GitHub (to focus
on one CI pipeline). A project is counted as using fuzzing if the word “fuzz” is mentioned in the GitHub repository’s CI
configuration or a corresponding entry in OSS-Fuzz exists. Similarly, usage of SAST tools is counted if the name of a
SAST tool is mentioned in the CI configuration. Both of these occurrences are manually double-checked. As shown in
Figure 5, we empirically found that 21 of the 57 analyzed projects use both fuzzing and SAST tools, 8 use only fuzzing,

6In GCC and Clang, developers can set the language version to C11 (-std=c11), enable warnings with -Wall -Wextra and optionally, request strict ISO
C checking with -Wpedantic [22].



20 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

Fuzzing SAST

8
(14.0%)

15
(26.3%)

21
(36.8%)

13
(22.8%)

Fig. 5. Projects using Fuzzing or SAST tools during CI.

15 use only SAST tools, and 13 projects use neither of the two methods. Our complete analysis results are available in
the paper’s code repository.

Static analysis tools can be used as part of the continuous integration pipeline, while fuzzers are typically used later in

the development process. Of the most security-critical OSS projects, nearly 80% use a fuzzer or SAST tool as part of their

continuous integration pipeline.

6 DISCUSSION

Based on our qualitative and quantitative analyses, we provide advice for software project maintainers looking to
improve security, and discuss potential improvements for fuzzing and static analysis research.

6.1 Recommendations for Project Maintainers

To minimize security flaws in deployed code, OWASP [63] recommends“shifting left”, i.e., applying security tooling
early in the development cycle. The tools we study can be integrated either directly after running tests (syntactic
SAST tools) or as longer-running asynchronous checks (fuzzing tools and semantic SAST tools). We can confirm that
running SAST tools early in the pipeline before fuzzing is more economical given the estimated cost per bug. Even
though fuzzers are generally more computationally expensive, tools in both groups can be used as part of continuous
integration [12]. However, for C/C++ projects specifically, SAST tools can produce too many false positives to be
practical. One mitigation is to analyze only newly added or modified code to avoid being overwhelmed. Additionally,
most tools allow for customization which can be used to disable or adapt bug reports. This customization is especially
important for classes of reports that have too much noise to provide value for the user. For example, the largest number
of reports for CodeQL stem from checks for Math bugs, disabling these reports would more than halve the number of
total reports while only minimally affecting true positives. Even though a single tool (CodeQL) provides nearly all true
positives among the tested tools, without any mitigation, the number of bug reports would make its use impractical.



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 21

In contrast, fuzzers only produce true positive results but need more computational resources and require a more
elaborate initial setup such as writing harnesses and build integration. Again, a single tool (AFL++) will find nearly all
bugs that fuzzers would find.

Since SAST tools and fuzzers find different types of bugs with minimal overlap, they complement each other. While
fuzzers are generally recommended if computational resources are available, combining them with SAST tools can be
beneficial despite the additional manual effort required.

6.2 Future Directions for Research Communities

Based on the quantitative results (Section 4) and our case studies (Section 5), we see several opportunities for future
improvements for both research communities.

Comparing SAST tools and fuzzers, the found bugs are quite disjunct. While not entirely surprising, this is an
interesting finding, that should motivate future work to combine the two approaches (e.g., guiding the fuzzing process
with information obtained during static analysis). Thus, we challenge both research communities to find ways to
combine the two approaches. While fuzzing has already been combined with symbolic execution [66], we believe there
is still potential for other innovative combinations. For example, there already is work on reducing false positive reports
of SAST tools by using fuzzing to double-check the results [59]. It might also be feasible to use the extensive number of
rules available in SAST tools to guide fuzzing (explored in [51]) or to create new sanitizers.

Regarding SAST tools, in line with previous research, we see a vast amount of false positives, which will pose a
serious hurdle to adoption of SAST tools in practice. Regarding fuzzers, we see the required computational resources
and the manual effort to write harnesses as the main hurdles to adoption in practice. However, since compute power is
relatively cheap compared to developer hours and the setup is a one-time effort, compared to SAST tools, fuzzing seems
to be more reasonable to get actionable results on vulnerable C/C++ code.
Benchmarks for Static Analysis. We find that a fundamental problem for static analysis research is the lack of
real-world benchmarks. The fuzzing community has Magma [32] and Fuzzbench [56], which provide benchmarks based
on real-world programs. While not perfect, as manual bug selection can introduce bias, these benchmarks contain
realistic targets. However, to our knowledge, no equivalent exists for SAST tools, which are typically evaluated on
small artificial code snippets like Juliet [61]. Such a benchmark does not represent realistic programs, which can have
deeply nested code, as well as complex and stateful bugs.

To create an effective benchmark, we suggest developing a programmatically accessible bug reporting format
first. This format should include ways to classify bugs, possibly with different accuracy levels for more accurate tool
assessment, and to specify bug locality, possibly across multiple locations. Without such a format, a benchmark for
SAST tools would be impractical, as only programmatic evaluation enables automated and reproducible assessment.

For bug classification, the tools in our study support Static Analysis Results Interchange Format (SARIF) [19] reports.
However, this format allows custom strings with bug descriptions that require manual mapping to CWEs. An adapted
SARIF format facilitating programmatic evaluation could be a viable approach. However, CWEs have limitations: it is
often unclear which CWE to assign to a bug, since CWEs overlap and can be very generic. This requires clustering to
group similar CWEs. While CWEs are hierarchically organized, the resulting clusters are too coarse, which required us
to develop a stricter relatedness clustering for our study (see Appendix B, Table 6).

For bug location, tools report line numbers, which we mapped to functions for coarse-grained analysis. Information
on a level of affected variables would provide better precision. Complex bugs may appear in multiple code locations,



22 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

potentially far from their root cause, and a fair benchmark should handle these cases. The benchmark design must also
prevent gaming the system—a tool that flags every line or variable provides no value.

7 CONCLUSION

In this work, we present the first systematic comparison of static analysis and fuzzing for addressing typical C/C++
security weaknesses in real-world scenarios. Quantitatively, we find that fuzzers detect slightly more vulnerabilities,
with relatively little variation between tools. This consistency is expected, as most modern fuzzers are derivatives
of AFL. Notably, fuzzers with sophisticated techniques, such as Angora or SymCC-AFL, often perform worse than
conceptually simpler approaches. In contrast, static analyzers show greater performance variation. Notably, CodeQL
detects more true positives than other tools, likely due to its extensive library of security analysis queries and the
resources behind its commercial development. An unexpected finding is that fuzzing and SAST tools find mostly disjoint
sets of bugs. This suggests that, to maximize true positive results, developers should use both types of tools in tandem
for a more comprehensive bug detection strategy.

While CodeQL leads the SAST field in true positive reports, these come at the cost of many false positives. Indeed,
both leading tools, CodeQL and Flawfinder, generate an overwhelming number of false positives. Worryingly, all
static analysis tools suffer from a very high false positive rate, well above the 15–20% threshold considered acceptable
by developers [10]. While customizing static analysis tools for specific projects can improve precision (e.g., by disabling
Math and Resource checks in CodeQL), our data suggests the resulting rates would still exceed this threshold. Note
that we focus on C/C++ code in this work, which is particularly challenging for static analysis. In contrast, fuzzers
demonstrate more practical utility despite requiring greater computational resources and initial effort for writing fuzzing
harnesses. This can be attributed to their dynamic nature—unlike static analyzers, they do not reason about a program
but only observe execution side effects, namely crashes, which prevents false positive reports. Given that developers
prefer investing more analysis time for more precise results [10], fuzzing seems to be a more suitable approach in
practice.

We also investigated the adoption of SAST tools and fuzzers in security-critical open-source projects and found that
most projects use at least one of these approaches. However, our findings reveal a limitation: neither static analysis nor
fuzzing can prove the absence of memory vulnerabilities, as shown by the high number of false negatives observed in
our study. To address this fundamental issue, transitioning to safer programming languages and adopting robust design
principles would provide a more reliable way to prevent these vulnerabilities by construction.

ACKNOWLEDGMENTS

This work was funded by the European Research Council (ERC) under the consolidator grant RS3, no. 101045669
(https://doi.org/10.3030/101045669).

REFERENCES

[1] @LazyFishBarrel. 2019. #Memoryunsafety. Twitter. Retrieved Feb. 2, 2025 from https://twitter.com/LazyFishBarrel/status/11290009657

41404160.
[2] Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler, and John Penix. 2008. Using Static Analysis to Find Bugs. IEEE

Software, 25, 5, 22–29. doi: 10.1109/MS.2008.130.
[3] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016. Analyzing the State of Static Analysis: A Large-Scale Evaluation

in Open Source Software. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), 470–481. doi:
10.1109/SANER.2016.105.

https://doi.org/10.3030/101045669
https://twitter.com/LazyFishBarrel/status/1129000965741404160
https://twitter.com/LazyFishBarrel/status/1129000965741404160
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/SANER.2016.105


A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 23

[4] Marcel Böhme and Brandon Falk. 2020. Fuzzing: on the exponential cost of vulnerability discovery. In ESEC/FSE ’20: 28th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering, 713–724. doi: 10.1145/3368089.3409729.
[5] Marcel Böhme, Valentin J. M. Manès, and Sang Kil Cha. 2020. Boosting fuzzer efficiency: an information theoretic perspective. In Proceedings of

the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 678–689. doi:
10.1145/3368089.3409748.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, 1032–1043. doi: 10.1145/2976749.2978428.
[7] Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the reliability of coverage-based fuzzer benchmarking. In Proceedings of the 44th

International Conference on Software Engineering, 1621–1633. doi: 10.1145/3510003.3510230.
[8] George Chatzieleftheriou and Panagiotis Katsaros. 2011. Test-Driving Static Analysis Tools in Search of C Code Vulnerabilities. In 2011 IEEE 35th

Annual Computer Software and Applications Conference Workshops, 96–103. doi: 10.1109/COMPSACW.2011.26.
[9] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search. In 2018 IEEE Symposium on Security and Privacy (SP), 711–725.

doi: 10.1109/SP.2018.00046.
[10] Maria Christakis and Christian Bird. 2016. What developers want and need from program analysis: an empirical study. In Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering, 332–343. doi: 10.1145/2970276.2970347.
[11] Clang. 2023. Clang Analyzer: Checker Developer Manual. Retrieved Feb. 2, 2025 from https://clang-analyzer.llvm.org/checker_dev_manu

al.html.
[12] ClusterFuzzLite Contributors. 2024. Clusterfuzzlite - simple continuous fuzzing that runs in ci. Retrieved Feb. 2, 2025 from https://github.com

/google/clusterfuzzlite.
[13] Jonathan Corbet. 2022. Moving the kernel to modern C. LWN.net. Retrieved Feb. 2, 2025 from https://lwn.net/Articles/885941/.
[14] Addison Crump, Andrea Fioraldi, Dominik Maier, and Dongjia Zhang. 2023. LIBAFL LIBFUZZER: LIBFUZZER on Top of LIBAFL. In 2023 IEEE/ACM

International Workshop on Search-Based and Fuzz Testing (SBFT), 70–72. doi: 10.1109/SBFT59156.2023.00021.
[15] Jose D’Abruzzo Pereira and Marco Vieira. 2020. On the Use of Open-Source C/C++ Static Analysis Tools in Large Projects. In 2020 16th European

Dependable Computing Conference (EDCC), 97–102. doi: 10.1109/EDCC51268.2020.00025.
[16] Chamal Desilva. 2019. Sec Bug #77509: Uninitialized read in exif_process_IFD_in_TIFF. Retrieved Feb. 2, 2025 from https://bugs.php.net/bug

.php?id=77509.
[17] Zhen Yu Ding and Claire Le Goues. 2021. An Empirical Study of OSS-Fuzz Bugs. In 2021 IEEE/ACM 18th International Conference on Mining

Software Repositories (MSR), 131–142. doi: 10.1109/MSR52588.2021.00026.
[18] Facebook. 2022. Infer. Retrieved Feb. 2, 2025 from https://fbinfer.com.
[19] Michael Fanning and Laurence J. Golding. 2018. Static Analysis Results Interchange Format (SARIF) Version 2.0. Retrieved Feb. 2, 2025 from

https://docs.oasis-open.org/sarif/sarif/v2.0/csprd01/sarif-v2.0-csprd01.html.
[20] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++ : Combining Incremental Steps of Fuzzing Research. In 14th

USENIX Workshop on Offensive Technologies (WOOT 20).
[21] Alex Gaynor. 2019. Introduction to Memory Unsafety for VPs of Engineering. alexgaynor.net. Retrieved Feb. 2, 2025 from https://alexgaynor

.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/.
[22] GCC team. 2024. Options to Request or Suppress Warnings. GCC online documentation. Retrieved Feb. 2, 2025 from https://gcc.gnu.org/onl

inedocs/gcc/Warning-Options.html.
[23] GitHub. 2021. CodeQL. Retrieved Feb. 2, 2025 from https://codeql.github.com.
[24] Barney G. Glaser and Anselm L. Strauss. 2017. The Discovery of Grounded Theory: Strategies for Qualitative Research. (1st ed.). doi: 10.4324/97802

03793206.
[25] Google. 2022. Go Fuzzing. GO. Retrieved Feb. 2, 2025 from https://go.dev/security/fuzz/.
[26] Google. 2010. Honggfuzz. Retrieved Feb. 2, 2025 from https://github.com/google/honggfuzz.
[27] Google. 2024. OSS-Fuzz. Retrieved Feb. 2, 2025 from https://github.com/google/oss-fuzz.
[28] Anjana Gosain and Ganga Sharma. 2015. Static Analysis: A Survey of Techniques and Tools. In Intelligent Computing and Applications. Vol. 343.

Durbadal Mandal, Rajib Kar, Swagatam Das, and Bijaya Ketan Panigrahi, (Eds.), 581–591. doi: 10.1007/978-81-322-2268-2_59.
[29] Katerina Goseva-Popstojanova and Andrei Perhinschi. 2015. On the capability of static code analysis to detect security vulnerabilities. Information

and Software Technology, 68, 18–33. doi: 10.1016/j.infsof.2015.08.002.
[30] Andrew Habib and Michael Pradel. 2018. How many of all bugs do we find? a study of static bug detectors. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering, 317–328. doi: 10.1145/3238147.3238213.
[31] Rowan Hart. 2023. CGC Challenges. Retrieved Feb. 2, 2025 from https://github.com/novafacing/cgc-challenges.
[32] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-Truth Fuzzing Benchmark. Proceedings of the ACM on Measurement

and Analysis of Computing Systems, 4, 3, 1–29. doi: 10.1145/3428334.
[33] HexHive. 2020. Frequently Asked Questions | magma. Retrieved Feb. 2, 2025 from https://hexhive.epfl.ch/magma/docs/faq.html.
[34] HexHive. 2023. MAGMA: Survival Report. Retrieved Feb. 2, 2025 from https://hexhive.epfl.ch/magma/reports/sample_2/.
[35] Justin Hutchings. 2020. Code scanning is now available! GitHub Blog. Retrieved Feb. 2, 2025 from https://github.blog/news-insights/prod

uct-news/code-scanning-is-now-available/.

https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1109/COMPSACW.2011.26
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/2970276.2970347
https://clang-analyzer.llvm.org/checker_dev_manual.html
https://clang-analyzer.llvm.org/checker_dev_manual.html
https://github.com/google/clusterfuzzlite
https://github.com/google/clusterfuzzlite
https://lwn.net/Articles/885941/
https://doi.org/10.1109/SBFT59156.2023.00021
https://doi.org/10.1109/EDCC51268.2020.00025
https://bugs.php.net/bug.php?id=77509
https://bugs.php.net/bug.php?id=77509
https://doi.org/10.1109/MSR52588.2021.00026
https://fbinfer.com
https://docs.oasis-open.org/sarif/sarif/v2.0/csprd01/sarif-v2.0-csprd01.html
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://codeql.github.com
https://doi.org/10.4324/9780203793206
https://doi.org/10.4324/9780203793206
https://go.dev/security/fuzz/
https://github.com/google/honggfuzz
https://github.com/google/oss-fuzz
https://doi.org/10.1007/978-81-322-2268-2_59
https://doi.org/10.1016/j.infsof.2015.08.002
https://doi.org/10.1145/3238147.3238213
https://github.com/novafacing/cgc-challenges
https://doi.org/10.1145/3428334
https://hexhive.epfl.ch/magma/docs/faq.html
https://hexhive.epfl.ch/magma/reports/sample_2/
https://github.blog/news-insights/product-news/code-scanning-is-now-available/
https://github.blog/news-insights/product-news/code-scanning-is-now-available/


24 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

[36] Nasif Imtiaz, Akond Rahman, Effat Farhana, and Laurie Williams. 2019. Challenges with Responding to Static Analysis Tool Alerts. In 2019

IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), 245–249. doi: 10.1109/MSR.2019.00049.
[37] Intel Corporation. 2020. Intel Xeon Gold 6230R Processor. Intel Product Specifications. Retrieved Feb. 2, 2025 from https://ark.intel.com/con

tent/www/us/en/ark/products/199346/intel-xeon-gold-6230r-processor-35-75m-cache-2-10-ghz.html.
[38] Intel Corporation. 2020. Intel Xeon Gold 6248R Processor. Intel Product Specifications. Retrieved Feb. 2, 2025 from https://ark.intel.com/con

tent/www/us/en/ark/products/199351/intel-xeon-gold-6248r-processor-35-75m-cache-3-00-ghz.html.
[39] Jansens, Dana and Anforowicz, Lukasz and Palmer, Chris. 2021. Borrowing Trouble: The Difficulties Of A C++ Borrow-Checker. Retrieved Feb. 2,

2025 from https://docs.google.com/document/d/e/2PACX-1vSt2VB1zQAJ6JDMaIA9PlmEgBxz2K5Tx6w2JqJNeYCy0gU4aoubdTxlENSKNSrQ2

TXqPWcuwtXe6PlO/pub.
[40] Zhiyuan Jiang, Xiyue Jiang, Ahmad Hazimeh, Chaojing Tang, Chao Zhang, and Mathias Payer. 2021. Igor: Crash Deduplication Through Root-

Cause Clustering. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 3318–3336. doi: 10.1145/34601
20.3485364.

[41] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. 2013. Why don’t software developers use static analysis tools to find
bugs? In 2013 35th International Conference on Software Engineering (ICSE), 672–681. doi: 10.1109/ICSE.2013.6606613.

[42] Ashwin Kallingal Joshy and Wei Le. 2022. FuzzerAid: Grouping Fuzzed Crashes Based On Fault Signatures. In Proceedings of the 37th IEEE/ACM

International Conference on Automated Software Engineering, 1–12. doi: 10.1145/3551349.3556959.
[43] Arvinder Kaur and Ruchikaa Nayyar. 2020. A Comparative Study of Static Code Analysis tools for Vulnerability Detection in C/C++ and JAVA

Source Code. Procedia Computer Science, 171, 2023–2029. doi: 10.1016/j.procs.2020.04.217.
[44] Paul Kehrer. 2019. Memory Unsafety in Apple’s Operating Systems. Langui.sh. Retrieved Feb. 2, 2025 from https://langui.sh/2019/07/23/ap

ple-memory-safety/.
[45] Sunghun Kim and Michael D. Ernst. 2007. Which warnings should I fix first? In Proceedings of the the 6th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, 45–54. doi: 10.1145/1287624.1287633.
[46] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating Fuzz Testing. In CCS ’18: 2018 ACM SIGSAC Conference

on Computer and Communications Security, 2123–2138. doi: 10.1145/3243734.3243804.
[47] Ted Kremenek and Dawson Engler. 2003. Z-Ranking: Using Statistical Analysis to Counter the Impact of Static Analysis Approximations. In Static

Analysis. Vol. 2694. Gerhard Goos, Juris Hartmanis, Jan Van Leeuwen, and Radhia Cousot, (Eds.), 295–315. doi: 10.1007/3-540-44898-5_16.
[48] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targeted mutation strategy for increasing greybox fuzz testing coverage. In Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineering, 475–485. doi: 10.1145/3238147.3238176.
[49] Alexander Lex, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot, and Hanspeter Pfister. 2014. UpSet: Visualization of Intersecting Sets. IEEE

Transactions on Visualization and Computer Graphics, 20, 12, 1983–1992. doi: 10.1109/TVCG.2014.2346248.
[50] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An empirical study on the effectiveness of static C code analyzers for vulnerability

detection. In ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, 544–555. doi: 10.1145/3533767.3534380.
[51] Stephan Lipp, Severin Kacianka, Alexander Pretschner, and Marcel Böhme. SAST-Guided Grey-Box Fuzzing. (2024).
[52] V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security Vulnerabilities in Java Applications with Static Analysis. In USENIX Security

Symposium. Vol. 14, 271–286.
[53] LLVM. 2020. Clang Static Analyzer. Retrieved Feb. 2, 2025 from https://clang-analyzer.llvm.org.
[54] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for

Fuzzers. In 28th USENIX Security Symposium (USENIX Security 19), 1949–1966.
[55] Jonathan Metzman, Dongge Liu, and Oliver Chang. 2022. Fuzzing beyond memory corruption: Finding broader classes of vulnerabilities

automatically. Google Security Blog. Retrieved Feb. 2, 2025 from https://security.googleblog.com/2022/09/fuzzing-beyond-memory-co

rruption.html.
[56] Jonathan Metzman, László Szekeres, Laurent Simon, Read Sprabery, and Abhishek Arya. 2021. FuzzBench: an open fuzzer benchmarking platform

and service. In ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
1393–1403. doi: 10.1145/3468264.3473932.

[57] Microsoft. 2022. /fsanitize (Enable sanitizers). Microsoft Learn. Retrieved Feb. 2, 2025 from https://learn.microsoft.com/en-us/cpp/build

/reference/fsanitize?view=msvc-170.
[58] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An empirical study of the reliability of UNIX utilities. Communications of the ACM, 33, 12,

32–44. doi: 10.1145/96267.96279.
[59] Aniruddhan Murali, Noble Mathews, Mahmoud Alfadel, Meiyappan Nagappan, and Meng Xu. 2024. FuzzSlice: Pruning False Positives in Static

Analysis Warnings through Function-Level Fuzzing. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, 1–13.
doi: 10.1145/3597503.3623321.

[60] Tukaram Muske, Rohith Talluri, and Alexander Serebrenik. 2018. Repositioning of static analysis alarms. In Proceedings of the 27th ACM SIGSOFT

International Symposium on Software Testing and Analysis, 187–197. doi: 10.1145/3213846.3213850.
[61] NIST. 2017. Juliet C/C++ 1.3. Retrieved Feb. 2, 2025 from https://samate.nist.gov/SARD/test-suites/112.
[62] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020. ParmeSan: Sanitizer-guided Greybox Fuzzing. In 29th USENIX

Security Symposium (USENIX Security 20), 2289–2306.

https://doi.org/10.1109/MSR.2019.00049
https://ark.intel.com/content/www/us/en/ark/products/199346/intel-xeon-gold-6230r-processor-35-75m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/199346/intel-xeon-gold-6230r-processor-35-75m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/199351/intel-xeon-gold-6248r-processor-35-75m-cache-3-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/199351/intel-xeon-gold-6248r-processor-35-75m-cache-3-00-ghz.html
https://docs.google.com/document/d/e/2PACX-1vSt2VB1zQAJ6JDMaIA9PlmEgBxz2K5Tx6w2JqJNeYCy0gU4aoubdTxlENSKNSrQ2TXqPWcuwtXe6PlO/pub
https://docs.google.com/document/d/e/2PACX-1vSt2VB1zQAJ6JDMaIA9PlmEgBxz2K5Tx6w2JqJNeYCy0gU4aoubdTxlENSKNSrQ2TXqPWcuwtXe6PlO/pub
https://doi.org/10.1145/3460120.3485364
https://doi.org/10.1145/3460120.3485364
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/3551349.3556959
https://doi.org/10.1016/j.procs.2020.04.217
https://langui.sh/2019/07/23/apple-memory-safety/
https://langui.sh/2019/07/23/apple-memory-safety/
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1007/3-540-44898-5_16
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.1145/3533767.3534380
https://clang-analyzer.llvm.org
https://security.googleblog.com/2022/09/fuzzing-beyond-memory-corruption.html
https://security.googleblog.com/2022/09/fuzzing-beyond-memory-corruption.html
https://doi.org/10.1145/3468264.3473932
https://learn.microsoft.com/en-us/cpp/build/reference/fsanitize?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/fsanitize?view=msvc-170
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/3597503.3623321
https://doi.org/10.1145/3213846.3213850
https://samate.nist.gov/SARD/test-suites/112


A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 25

[63] OWASP. 2021. Application Security Verification Standard. Retrieved Feb. 2, 2025 from https://github.com/OWASP/ASVS.
[64] Van-Thuan Pham, Marcel Boehme, Andrew Edward Santosa, Alexandru Razvan Caciulescu, and Abhik Roychoudhury. 2020. Smart Greybox

Fuzzing. IEEE Transactions on Software Engineering, 1–1. doi: 10.1109/TSE.2019.2941681.
[65] Van-Thuan Pham, Marcel Bohme, and Abhik Roychoudhury. 2020. AFLNET: A Greybox Fuzzer for Network Protocols. In 2020 IEEE 13th

International Conference on Software Testing, Validation and Verification (ICST), 460–465. doi: 10.1109/ICST46399.2020.00062.
[66] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with SymCC: Don’t interpret, compile! In 29th USENIX Security Symposium

(USENIX Security 20), 181–198.
[67] Clyde Rodriguez and Collin Greene. 2022. How Meta and the security industry collaborate to secure the internet. Engineering at Meta. Retrieved

Feb. 2, 2025 from https://engineering.fb.com/2022/07/20/security/how-meta-and-the-security-industry-collaborate-to-secu

re-the-internet/.
[68] Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebastian Elbaum, and Gregg Rothermel. 2008. Predicting accurate and actionable static

analysis warnings: an experimental approach. In Proceedings of the 13th International Conference on Software Engineering - ICSE ’08, 341. doi:
10.1145/1368088.1368135.

[69] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from building static analysis tools at
Google. Communications of the ACM, 61, 4, 58–66. doi: 10.1145/3188720.

[70] Moritz Schloegel et al. 2024. SoK: Prudent Evaluation Practices for Fuzzing. In 2024 IEEE Symposium on Security and Privacy (SP), 1974–1993. doi:
10.1109/SP54263.2024.00137.

[71] Semgrep. 2020. Semgrep OSS. Retrieved Feb. 2, 2025 from https://github.com/semgrep/semgrep.
[72] Semgrep. 2020. Semgrep rules. Retrieved Feb. 2, 2025 from https://github.com/semgrep/semgrep-rules.
[73] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In

2012 USENIX Annual Technical Conference (USENIX ATC 12), 309–318.
[74] Kosta Serebryany. 2016. Continuous Fuzzing with libFuzzer and AddressSanitizer. In 2016 IEEE Cybersecurity Development (SecDev), 157–157. doi:

10.1109/SecDev.2016.043.
[75] Kostya Serebryany. 2017. OSS-Fuzz - Google’s continuous fuzzing service for open source software. Retrieved Feb. 2, 2025 from https://www.us

enix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany.
[76] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert, Per Larsen, and Michael Franz. 2019. SoK: Sanitizing for Security. In

2019 IEEE Symposium on Security and Privacy (SP), 1275–1295. doi: 10.1109/SP.2019.00010.
[77] Adrian Taylor, Bartek Nowierski, and Kentaro Hara. 2022. Use-after-freedom: MiraclePtr. Google Security Blog. Retrieved Feb. 2, 2025 from

https://security.googleblog.com/2022/09/use-after-freedom-miracleptr.html.
[78] Adrian Taylor, Andrew Whalley, Dana Jansens, and Nasko Oskov. 2021. An update on memory safety in Chrome. Google Security Blog. Retrieved

Feb. 2, 2025 from https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html.
[79] Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rahman, and Premkumar T. Devanbu. 2012. To what extent could we detect field defects?

an empirical study of false negatives in static bug finding tools. In Proceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering, 50–59. doi: 10.1145/2351676.2351685.
[80] Jeff Van der Stoep and Chong Zhang. 2019. Queue the Hardening Enhancements. Google Security Blog. Retrieved Feb. 2, 2025 from https://sec

urity.googleblog.com/2019/05/queue-hardening-enhancements.html.
[81] Various. 2023. Github: analysis-tools-dev/static-analysis. Retrieved Feb. 2, 2025 from https://github.com/analysis-tools-dev/static-ana

lysis#c.
[82] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy Zaidman, and Harald C. Gall. 2018. Context is king: The developer

perspective on the usage of static analysis tools. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering

(SANER), 38–49. doi: 10.1109/SANER.2018.8330195.
[83] David A. Wheeler. 2001. Flawfinder. Retrieved Feb. 2, 2025 from https://dwheeler.com/flawfinder/.
[84] Jiahao Yu, Yangguang Shao, Hanwen Miao, Junzheng Shi, and Xinyu Xing. 2024. PROMPTFUZZ: Harnessing Fuzzing Techniques for Robust

Testing of Prompt Injection in LLMs. arXiv: 2409.14729 [cs].
[85] Michał Zalewski. 2017. American Fuzzy Lop. Technical Whitepaper. Retrieved Feb. 2, 2025 from https://lcamtuf.coredump.cx/afl/technica

l_details.txt.
[86] Cen Zhang, Yaowen Zheng, Mingqiang Bai, Yeting Li, Wei Ma, Xiaofei Xie, Yuekang Li, Limin Sun, and Yang Liu. 2024. How Effective Are They?

Exploring Large Language Model Based Fuzz Driver Generation. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software

Testing and Analysis, 1223–1235. doi: 10.1145/3650212.3680355.
[87] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J.P. Hudepohl, and M.A. Vouk. 2006. On the value of static analysis for fault detection in software.

IEEE Transactions on Software Engineering, 32, 4, 240–253. doi: 10.1109/TSE.2006.38.
[88] Misha Zitser, Richard Lippmann, and Tim Leek. 2004. Testing static analysis tools using exploitable buffer overflows from open source code. In

Proceedings of the 12th ACM SIGSOFT Twelfth International Symposium on Foundations of Software Engineering, 97–106. doi: 10.1145/1029894.10
29911.

https://github.com/OWASP/ASVS
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/ICST46399.2020.00062
https://engineering.fb.com/2022/07/20/security/how-meta-and-the-security-industry-collaborate-to-secure-the-internet/
https://engineering.fb.com/2022/07/20/security/how-meta-and-the-security-industry-collaborate-to-secure-the-internet/
https://doi.org/10.1145/1368088.1368135
https://doi.org/10.1145/3188720
https://doi.org/10.1109/SP54263.2024.00137
https://github.com/semgrep/semgrep
https://github.com/semgrep/semgrep-rules
https://doi.org/10.1109/SecDev.2016.043
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://doi.org/10.1109/SP.2019.00010
https://security.googleblog.com/2022/09/use-after-freedom-miracleptr.html
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://doi.org/10.1145/2351676.2351685
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://github.com/analysis-tools-dev/static-analysis#c
https://github.com/analysis-tools-dev/static-analysis#c
https://doi.org/10.1109/SANER.2018.8330195
https://dwheeler.com/flawfinder/
https://arxiv.org/abs/2409.14729
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://doi.org/10.1145/3650212.3680355
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1145/1029894.1029911
https://doi.org/10.1145/1029894.1029911


26 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

1 idx = (Elf_Internal_Group *) shdr->contents;
2 n_elt = shdr->sh_size / 4;
3

4 while (--n_elt != 0) {
5 if ((++idx)->shdr == hdr) {...}
6 }

Listing 2. NULL pointer dereference vulnerability (CVE-2017-13710) in Binutils.

1 from VariableAccess va
2 where
3 maybeNull(va) and
4 dereferenced(va)
5 select va, "Value may be null; it should be checked before dereferencing."

Listing 3. Default CodeQL rule to detect NULL pointer dereference vulnerabilities.

A CASE STUDY: FINE-TUNING CODEQL

CodeQL is a powerful tool that allows developers to add custom queries to find new kinds of bugs. In this section,
we explore what it takes to add a missed CVEs into search space of CodeQL by designing a custom query, and what
exactly is the cost (in terms of new false positives). But first we find out why this CVE was missed in the first place.
Vulnerability. Listing 2 shows the vulnerability we seek to investigate: a NULL pointer dereference in the Binutils
(version 2.29) function setup_group that is publicly reported as CVE-2017-13710. Specifically, the root cause of this
vulnerability is the assignment in Line 2 where— depending on the program execution— the field shdr->sh_size and
thus the value of n_elt can be 0. As a result, due to the prefix decrement operation performed on n_elt within the
loop condition in Line 4, the condition always holds true. This results in infinitely many iterations of the loop body.
Eventually, we exceed the bounds of the allocated memory for the header contents (i.e., idx in Line 1) when iterating
over the contents in line 5. This results in a NULL pointer dereference (and likely a program crash) when trying to
access the member variable shdr.

While this vulnerability is fairly easy to understand for a human, it is very difficult to find by a static analyzer. This
is because the manifestation of the vulnerability depends on the interplay of two different variables, n_elt and idx,
which is difficult to find out unless the concrete program semantics are properly interpreted (without executing the
program).
Existing bug pattern. To detect NULL pointer dereferences, CodeQL provides the query shown in Listing 3. In general,
the static analysis engine in CodeQL is decoupled from the actual rules. For this, CodeQL first generates an abstract
code model of the target program while attaching to the build process. Once this code abstraction is fully built, queries
can be run against this model, searching for different code properties, including security vulnerabilities, depending on
the rule. These rules are written in CodeQL’s specific query language, which resembles Structured Query Language
(SQL) (except the reversed query order).

Line 1 in Listing 3 specifies the source data of this query, namely all variable accesses in the analyzed program.
Similar to SQL, the where clause allows filtering the sourced data points based on the predicates specified. In our
example, maybeNull (provided by CodeQL’s standard library) in line 3 filters for all variables access where the value of
the (pointer) variable may be NULL, using a simple data-flow analysis. The second predicate, dereferenced in line 4,
further filters the results of the previous step to only return variable accesses that perform dereferencing operations.



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 27

1 from
2 PointerFieldAccess fa, /* v->f */
3 PrefixCrementOperation co,
4 PointerArithmeticOperation ao
5 where
6 fa.getAChild() = co or /* v = --/++p */
7 fa.getAChild() = ao /* v = p ⊗ n */
8 select fa.getAChild(), "Field access involving pointer arithmetic; potential NULL pointer dereference"

Listing 4. Our new query to detect CVE-2017-13710.

The select statement in line 5 selects certain properties of the result set; here, it outputs the name and location of the
respective variables for which a NULL check is missing along with an error message.
Same bug. Different structure.When running this query on the vulnerable Binutils version, CodeQL reports 414
findings. Yet, the NULL pointer dereference does not appear among those findings. We found that neither maybeNull
nor dereferenced when used alone, flagged this vulnerable code location. For the latter, the default data-flow analysis
provides only limited support, or rather it becomes inaccurate for more complex data structures like nested C structs.
Even more interesting, the dereference (++idx)->shdr was also not detected as such. Digging deeper, we found
that dereferenced works with regular dereference operations like *v and v->f, but not if the dereference is directly
performed after a pointer arithmetic expression as in Listing 3. Accordingly, if the prefix pointer increment plus field
access had been split over two separate statements, dereferenced would have marked the corresponding line. Note
that this difference is only syntactical. The semantic meaning, and thus the vulnerability, is preserved. Also, maybeNull
still misses the line. This example illustrates that the same vulnerability can have multiple different code representations,
where only a subset of those may be supported by the default queries provided by CodeQL.
Successful bug pattern. In order to detect different code variants of the NULL pointer dereference in Binutils, we
need to create another query that identifies field accesses directly succeeding pointer arithmetic. Listing 4 shows an
example of such a query. It queries all pointer field accesses (Line 2) where the pointer variable contains a prefix in- or
decrement operation, or is involved in any other arithmetic computation (Lines 6 & 7).
Extra cost. Extra benefit. Running this query on the Binutils codebase yields 24 additional bug reports, including
CVE-2017-13710 and other possibly dangerous but probably benign pointer dereferences.

Wewere able to extend the default query to match the target bug pattern, which demonstrates a use case for the “shift-left”

approach: Found bugs can be used to improve the bug-finding pipeline.

B DATA ON BUG REPORTS, CWES AND BUCKETING

In this section, we present the total number of SAST reports (Table 5) and our custom CWE bucketing used for automatic
evaluation of these reports (Table 6). Furthermore, we provide an exhaustive list of CWEs in our study and the bug type
we assign to it in Table 7.

Table 7. The CWEs Belonging to Different Bug Types, Closely Modeled After the CWE Hierarchy

Name CWE Description

Except 703 Improper Check or Handling of Exceptional Conditions

Continued on next page



28 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

Table 7. The CWEs Belonging to Different Bug Types, Closely Modeled After the CWE Hierarchy (Continued)

Name CWE Description

Except 754 Improper Check for Unusual or Exceptional Conditions
Except 755 Improper Handling of Exceptional Conditions
Except 252 Unchecked Return Value
Except 476 NULL Pointer Dereference
Data 707 Improper Neutralization
Data 20 Improper Input Validation
Data 129 Improper Validation of Array Index
Data 134 Use of Externally-Controlled Format String
Data 73 External Control of File Name or Path
Data 807 Reliance on Untrusted Inputs in a Security Decision
Data 643 Improper Neutralization of Data within XPath Expressions (’XPath Injection’)
Data 170 Improper Null Termination
Data 233 Improper Handling of Parameters
Data 466 Return of Pointer Value Outside of Expected Range
Data 99 Improper Control of Resource Identifiers (’Resource Injection’)
Data 117 Improper Output Neutralization for Logs
Bounds 119 Improper Restriction of Operations within the Bounds of a Memory Buffer
Bounds 125 Out-of-bounds Read
Bounds 126 Buffer Over-read
Bounds 787 Out-of-bounds Write
Bounds 120 Buffer Copy without Checking Size of Input (’Classic Buffer Overflow’)
Bounds 823 Use of Out-of-range Pointer Offset
Bounds 805 Buffer Access with Incorrect Length Value
Bounds 788 Access of Memory Location After End of Buffer
Bounds 786 Access of Memory Location Before Start of Buffer
Bounds 121 Stack-based Buffer Overflow
Math 682 Incorrect Calculation
Math 131 Incorrect Calculation of Buffer Size
Math 369 Divide By Zero
Math 190 Integer Overflow or Wraparound
Math 191 Integer Underflow (Wrap or Wraparound)
Math 193 Off-by-one Error
Math 1077 Floating Point Comparison with Incorrect Operator
Math 468 Incorrect Pointer Scaling
Math 467 Use of sizeof() on a Pointer Type
Math 189 Numeric Errors

Continued on next page



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 29

Table 7. The CWEs Belonging to Different Bug Types, Closely Modeled After the CWE Hierarchy (Continued)

Name CWE Description

Math 195 Signed to Unsigned Conversion Error
Math 196 Unsigned to Signed Conversion Error
Resource 664 Improper Control of a Resource Through its Lifetime
Resource 401 Missing Release of Memory after Effective Lifetime
Resource 415 Double Free
Resource 416 Use After Free
Resource 681 Incorrect Conversion between Numeric Types
Resource 770 Allocation of Resources Without Limits or Throttling
Resource 772 Missing Release of Resource after Effective Lifetime
Resource 399 Resource Management Errors
Resource 457 Use of Uninitialized Variable
Resource 244 Improper Clearing of Heap Memory Before Release (’Heap Inspection’)
Resource 665 Improper Initialization
Resource 22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)
Resource 789 Memory Allocation with Excessive Size Value
Resource 775 Missing Release of File Descriptor or Handle after Effective Lifetime
Resource 732 Incorrect Permission Assignment for Critical Resource
Resource 843 Access of Resource Using Incompatible Type (’Type Confusion’)
Resource 771 Missing Reference to Active Allocated Resource
Resource 377 Insecure Temporary File
Resource 590 Free of Memory not on the Heap
Resource 908 Use of Uninitialized Resource
Resource 826 Premature Release of Resource During Expected Lifetime
Resource 704 Incorrect Type Conversion or Cast
Resource 456 Missing Initialization of a Variable
Resource 672 Operation on a Resource after Expiration or Release
Resource 570 Expression is Always False
Resource 824 Access of Uninitialized Pointer
Resource 822 Untrusted Pointer Dereference
Smell 710 Improper Adherence to Coding Standards
Smell 561 Dead Code
Smell 563 Assignment to Variable without Use
Smell 685 Function Call With Incorrect Number of Arguments
Smell 676 Use of Potentially Dangerous Function
Smell 686 Function Call With Incorrect Argument Type
Smell 690 Unchecked Return Value to NULL Pointer Dereference

Continued on next page



30 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

Table 7. The CWEs Belonging to Different Bug Types, Closely Modeled After the CWE Hierarchy (Continued)

Name CWE Description

Smell 628 Function Call with Incorrectly Specified Arguments
Smell 398 Code Quality
Smell 758 Reliance on Undefined, Unspecified, or Implementation-Defined Behavior
Smell 571 Expression is Always True
Smell 562 Return of Stack Variable Address
Smell 587 Assignment of a Fixed Address to a Pointer
Smell 242 Use of Inherently Dangerous Function
Logic 691 Insufficient Control Flow Management
Logic 670 Always-Incorrect Control Flow Implementation
Logic 835 Loop with Unreachable Exit Condition (’Infinite Loop’)
Logic 362 Concurrent Execution using Shared Resource with Improper Synchronization (’Race Condition’)
Logic 367 Time-of-check Time-of-use (TOCTOU) Race Condition
Logic 768 Incorrect Short Circuit Evaluation
Logic 364 Signal Handler Race Condition
Logic 611 Improper Restriction of XML External Entity Reference
Other 290 Authentication Bypass by Spoofing
Other 494 Download of Code Without Integrity Check
Other 327 Use of a Broken or Risky Cryptographic Algorithm
Other 497 Exposure of Sensitive System Information to an Unauthorized Control Sphere
Other 402 Transmission of Private Resources into a New Sphere (’Resource Leak’)
Other 78 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’)
Other 780 Use of RSA Algorithm without OAEP
Other 328 Use of Weak Hash
Other 829 Inclusion of Functionality from Untrusted Control Sphere
Other 560 Use of umask() with chmod-style Argument
Other 760 Use of a One-Way Hash with a Predictable Salt
Other 297 Improper Validation of Certificate with Host Mismatch
Other 15 External Control of System or Configuration Setting
Other 250 Execution with Unnecessary Privileges
Other 785 Use of Path Manipulation Function without Maximum-sized Buffer
Other 114 Process Control
Other 272 Least Privilege Violation
Other 89 Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’)
Other 14 Compiler Removal of Code to Clear Buffers
Other 201 Insertion of Sensitive Information Into Sent Data
Other 862 Missing Authorization



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 31

Table 5. The number of reports created by each SAST tool and in total.

Analyzer Magma CGC Total

clang 363 0 363
codeql 13092 2208 15300
flawfinder 25106 1019 26125
infer 2451 331 2782
semgrep 3320 9 3329
Total 44332 3567 47899

Table 6. Custom CWE Bucketing Used in Our Analysis

Expected Similar Vulnerability Types (CWEs)

CWE-20 20, 119, 120, 125, 126, 129, 134, 170, 190, 196, 466, 786, 787, 788, 805, 823
CWE-129 20, 119, 120, 125, 126, 129, 786, 787, 788, 805, 823
CWE-119 119, 120, 125, 126, 190, 196, 676, 788, 805
CWE-120 119, 120, 125, 786, 787, 788, 805, 823
CWE-121 119, 120, 121, 125, 190, 196, 468, 682, 786, 788, 823
CWE-125 119, 120, 125, 126, 190, 196, 468, 786, 787, 788, 805, 823
CWE-126 119, 120, 125, 126, 131, 190, 196, 786, 787, 788, 805, 823
CWE-787 119, 120, 125, 190, 196, 676, 786, 787, 788, 805, 823
CWE-131 119, 120, 125, 126, 131, 467, 468, 682, 786, 787, 788, 805, 823
CWE-369 369, 457, 682
CWE-190 20, 190, 196, 682
CWE-401 401, 404, 772, 775
CWE-415 415, 416, 672
CWE-416 415, 416, 672
CWE-457 457
CWE-681 195, 196, 197, 681, 704, 1077
CWE-770 20, 119, 120, 125, 129, 134, 170, 190, 466, 770, 786, 787, 788, 789, 805, 823
CWE-772 401, 404, 772, 775
CWE-476 457, 476, 690
CWE-835 196, 682, 834, 835
CWE-670 617, 670
CWE-755 703, 755
CWE-754 252, 703, 754
CWE-399 399, 400, 402, 770, 834, 835
CWE-664 399, 400, 402, 664, 770, 834, 835
CWE-189 128, 190, 191, 193, 196, 369, 839, 1335, 1339, 1389
CWE-201 201
CWE-824 457, 824
CWE-822 119, 822
CWE-611 611

C ADDITIONAL FIGURES

In this section, we present alternative versions for the figures from the quantitative evaluation (Section 4). In Figure 6,
we show the distribution of bugs found per bug type for CGC, analogously to Figure 3, where we look at Magma only.



32 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

Figure 7 shows the bug overlap between tools for the Magma and CGC dataset combined, analogously to Figure 2,
which looks at Magma only. Additionally, we provide a CGC-only version in Figure 8.

0

14

0 5 0

Total Bugs: 42

0 0 0 0 0

Total Bugs: 3

0

13

0
4

0

Total Bugs: 33

0 0 0 0 0

Total Bugs: 1

0
1

0
1

0

Total Bugs: 4

0 0 0 0 0

Total Bugs: 1

0 0 0

21

0 0 0 0 0 0 0 0 0

0 0 0

2

0 0 0 0 0 0 0 0 0

0 0 0

16

0 0 0 0 0 0 0 0 0

0 0 0

1

0 0 0 0 0 0 0 0 0

0 0 0

2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

16 21

0

2

14 16

0

1

2 2

0 0

Analyzer Fuzzer Sum

Com
bined

Except
Bounds

M
ath

Resource
O
ther

clang
codeql
flaw

finder
infer
sem

grep

afl aflfast
aflplusplus
aflpp4
angora
entropic
fairfuzz
honggfuzz
libafl_libfuzzer
libfuzzer
m
optafl

parm
esan

sym
cc_afl

A
nalyzers

Fuzzers

0
10
20
30
40

0

1

2

3

0

10

20

30

0
0
0
1
1

0
1
2
3
4

0
0
0
1
1

Tool

Bu
gs

Fo
un

d

Fig. 6. Total bugs found only for CGC.



A Comparative Study of Fuzzers and Static Analysis Tools for Finding Memory Unsafety in C and C++ 33

1
16

15 1 1

53

2 15 1 1 111 1112 12 11 13 12 15 112 1111 1113
13

1 11 15 2 2

Both: 12.34% (19) Fuzzer: 29.22% (45) Analyzer: 24.03% (37)

0

20

40

60

Co
m
m
on

0204060
Set size

Sum_Fuzzers
Sum_Analyzers
Fuzzer_aflpp4

Fuzzer_aflplusplus
Fuzzer_moptafl

Fuzzer_honggfuzz
Fuzzer_symcc_afl

Fuzzer_aflfast
Fuzzer_fairfuzz

Fuzzer_afl
Fuzzer_entropic
Fuzzer_libfuzzer

Fuzzer_libafl_libfuzzer
Fuzzer_angora

Fuzzer_parmesan
Analyzer_codeql

Analyzer_flawfinder
Analyzer_infer
Analyzer_clang

Analyzer_semgrep

Bugs Found

Fig. 7. Upset plot to show overlap of bugs for both Magma and CGC.



34 Keno Hassler, Philipp Görz, Stephan Lipp, Thorsten Holz, and Marcel Böhme

5

1214

1
6

2 2

Both: 21.43% (9) Fuzzer: 28.57% (12) Analyzer: 16.67% (7)

0
5
10
15
20

Co
m
m
on

05101520
Set size

Sum_Fuzzers

Sum_Analyzers

Fuzzer_aflpp4

Analyzer_codeql

Analyzer_infer

Analyzer_semgrep

Analyzer_clang

Analyzer_flawfinder

Bugs Found

Fig. 8. Upset plot to show overlap of bugs for CGC.


	Abstract
	1 Introduction
	2 Background
	2.1 Memory Unsafety in C/C++
	2.2 Bug Finding: Static vs. Dynamic Methods
	2.3 Related Work

	3 Scope of Comparative Study
	3.1 Tool Selection Criteria

	4 Empirical Evaluation
	4.1 Experimental Design
	4.2 RQ.1 True Positives
	4.3 RQ.2 Complementarity
	4.4 RQ.3 True Positives Across Bug Types
	4.5 RQ.4 Overhead
	4.6 Threats to Validity

	5 Qualitative Evaluation
	5.1 Manual validation
	5.2 Limits to Bug Discovery
	5.3 Usability and User Considerations
	5.4 Automatic Bug Finding in the Development Process

	6 Discussion
	6.1 Recommendations for Project Maintainers
	6.2 Future Directions for Research Communities

	7 Conclusion
	Acknowledgments
	A Case Study: Fine-tuning CodeQL
	B Data on Bug Reports, CWEs and Bucketing
	C Additional Figures

