
ar
X

iv
:2

50
5.

21
93

8v
2

 [
cs

.L
G

]
 3

1
M

ay
 2

02
5

Practical Adversarial Attacks on Stochastic Bandits
via Fake Data Injection

Qirun Zeng1 Eric He2 Richard Hoffmann2 Xuchuang Wang3 Jinhang Zuo4
1University of Science and Technology of China 2California Institute of Technology

3University of Massachusetts Amherst 4City University of Hong Kong

Abstract

Adversarial attacks on stochastic bandits have traditionally relied on some un-
realistic assumptions, such as per-round reward manipulation and unbounded
perturbations, limiting their relevance to real-world systems. We propose a more
practical threat model, Fake Data Injection, which reflects realistic adversarial
constraints: the attacker can inject only a limited number of bounded fake feedback
samples into the learner’s history, simulating legitimate interactions. We design
efficient attack strategies under this model, explicitly addressing both magnitude
constraints (on reward values) and temporal constraints (on when and how often
data can be injected). Our theoretical analysis shows that these attacks can mislead
both Upper Confidence Bound (UCB) and Thompson Sampling algorithms into
selecting a target arm in nearly all rounds while incurring only sublinear attack
cost. Experiments on synthetic and real-world datasets validate the effectiveness of
our strategies, revealing significant vulnerabilities in widely used stochastic bandit
algorithms under practical adversarial scenarios.

1 Introduction

Multi-armed bandit (MAB) algorithms are widely used in online decision-making systems for their
ability to balance exploration and exploitation using partial feedback. They form the backbone of
many interactive applications, including personalized recommendation [1], online advertising [2], clin-
ical trials [3], and adaptive routing [4]. As these algorithms are increasingly deployed in high-stakes,
user-facing systems, growing concerns have emerged regarding their vulnerability to adversarial
manipulation. A growing body of work [5, 6, 7, 8] has shown that MAB algorithms are vulnerable to
adversarial attacks on feedback, where an attacker subtly perturbs the observed rewards to mislead
the learning process. Remarkably, even with limited intervention, the attacker can steer the learner
toward repeatedly selecting a targeted but suboptimal arm in the vast majority of rounds.

However, prior works on adversarial attacks against stochastic bandits [5, 6, 8] typically adopt a
feedback-perturbation threat model, where the attacker observes the learner’s chosen arm and the
corresponding environment-generated reward in each round, then arbitrarily modifies that reward
before it is revealed to the learner. While this model offers strong theoretical leverage, the assumption
that an attacker can directly and continuously alter feedback from the environment is often unrealistic
in practice. Consider, for example, a restaurant recommendation platform. An attacker seeking to
promote a specific restaurant cannot alter the actual feedback submitted by real users in every round.
A more feasible strategy is to create fake user accounts that submit biased reviews to influence the
recommendation system. Similarly, in online advertising or click-through rate prediction, attackers
commonly engage in click fraud or inject synthetic interactions to simulate user behavior—effectively
injecting new data rather than modifying genuine observations. These practical scenarios motivate a
shift toward more realistic and constrained threat models.

Preprint.

https://arxiv.org/abs/2505.21938v2

Building on these observations, we propose a more realistic and practically grounded threat model:
the Fake Data Injection model. Instead of modifying genuine feedback, the attacker influences the
learner indirectly by injecting a limited number of fabricated (arm, reward) pairs into its interaction
history. These fake samples must conform to valid feedback ranges (e.g., binary clicks or 1–5 star
ratings), and their injection is subject to constraints such as system-level detection or resource limits.
The learner processes these fake interactions indistinguishably from real ones—updating estimates,
counts, and decision logic accordingly.

This model captures practical attack surfaces overlooked by previous works. It removes the unrealistic
assumption of per-round reward manipulation, enables feedback injection on arbitrary arms, and
respects the bounded nature of real-world feedback. At the same time, it introduces new algorithmic
challenges that cannot be addressed by existing techniques. Unlike the standard model—where the
attacker perturbs rewards in real time—fake data injection raises fundamental questions about when,
how strongly, and how frequently to inject samples to effectively influence the learner. The attacker
must decide: (i) how many fake samples are required to suppress the selections of a non-target arm,
(ii) how to achieve this using only bounded reward values, and (iii) how to distribute injections over
time when batch size or injection frequency is constrained. These challenges call for new analytical
tools and attack strategies that explicitly account for both magnitude constraints (on reward values)
and temporal constraints (on when and how often data can be injected).

Our Contributions. We develop a suite of attack strategies tailored to the fake data injection model,
addressing both theoretical and practical challenges:

• We propose the Least Injection algorithm for the unbounded setting, showing that a single
fake sample per non-target arm suffices to steer the learner toward a target arm with sublinear
cost. A key technical tool is the Exponential Suppression Lemma, which ensures long-term
suppression of non-target arms and guides the design of our subsequent algorithms.

• We extend this to the bounded setting via the Simultaneous Bounded Injection (SBI) algo-
rithm, which replicates the effect of an unbounded sample using a batch of bounded fake
data, while maintaining sublinear cost.

• To address stricter constraints, we propose the Periodic Bounded Injection (PBI) algorithm,
which injects small batches at controlled intervals. We provide a new suppression analysis
to guarantee its effectiveness under temporal and magnitude constraints.

• All attack algorithms are analyzed under both UCB and Thompson Sampling, with theoreti-
cal guarantees that match the standard threat model in terms of cost and effectiveness.

• We validate our methods on the real-world dataset, demonstrating that even sparse, bounded
fake data can significantly bias bandit learners in practice.

Our work bridges the gap between theoretical models of adversarial bandits and practical data-driven
attacks observed in real systems. It introduces new threat models, techniques, and insights that we
hope will inspire more realistic evaluations of online learning algorithms in adversarial environments.

Related Work. Recent years have seen growing interest in understanding the vulnerability of bandit
algorithms under adversarial attacks [5, 6, 9, 10, 11]. Jun et al. [5] initiated this line of work by
designing effective attack strategies against UCB and ϵ-greedy algorithms in the stochastic bandit
setting. Their work showed that an attacker can steer the learner toward a suboptimal arm while
incurring only sublinear cost. Liu and Shroff [6] extended this to settings where the learning algorithm
is unknown, and further to contextual bandits. Subsequent work has explored increasingly general and
complex settings. Garcelon et al. [9] studied attacks on linear contextual bandits, where an adversary
can perturb both the context vectors and rewards. More recently, Zuo [8] developed smoothed attack
strategies that reduce detectability while maintaining effectiveness.

While prior work has shown that bandit algorithms can be manipulated with sublinear cost, most of
these attacks rely on a strong feedback-perturbation threat model, where the attacker modifies the
observed reward of the selected arm in every round—often with unbounded perturbations [5, 6, 8].
Even in more recent studies that consider bounded feedback [12, 13, 7], the attacker is still allowed
to act continuously, and only needs to decide when to attack. In contrast, we introduce the Fake Data
Injection Threat Model, where the attacker indirectly influences the learner by inserting fabricated
(arm, reward) pairs into its history. This model captures realistic constraints found in systems like
recommendation platforms, where attackers can create fake users but cannot modify real feedback. It

2

imposes bounded rewards, supports injection on arbitrary arms, and introduces constraints on both
the number and frequency of injections, necessitating new algorithmic techniques.

2 Preliminaries

2.1 Stochastic Bandits

We consider the standard stochastic multi-armed bandit setting with the arm set [K] := {1, 2, . . . ,K},
where each arm k ∈ [K] is associated with an unknown reward distribution with mean µk. The
reward distributions are assumed to be σ2-sub-Gaussian, with σ2 known. Without loss of generality,
we assume the arms are ordered such that µ1 ≥ µ2 ≥ · · · ≥ µK . In each round t = 1, 2, . . . , T ,
the learner selects an arm at ∈ [K] and receives a stochastic reward rt drawn from the distribution
corresponding to arm at. In this paper, we consider two widely used algorithms for stochastic bandits:
Upper Confidence Bound (UCB) and Thompson Sampling (TS).

Upper Confidence Bound (UCB). We consider the UCB algorithm as specified in Jun et al. [5], Zuo
[8], and the prototype is the (α,ψ) algorithm of Bubeck and Cesa-Bianchi [14, Section 2.2]. In the first
K rounds, the learner pulls each arm once to initialize reward estimates. For subsequent rounds t > K,

the learner selects the arm with the highest UCB index at = argmaxa∈[K]

[
µ̂a(t) + 3σ

√
log t
Na(t)

]
,

where µ̂a(t) is the empirical mean reward of arm a and Na(t) is the number of times arm a has been
selected up to round t.

Thompson Sampling (TS). We consider the Thompson Sampling algorithm specified in Zuo [8], and
the prototype is the (α,ψ) algorithm of Agrawal and Goyal [15]. In the first K rounds, the learner
pulls each arm once. For rounds t > K, a sample νa is drawn independently for each arm a ∈ [K]
from the distribution N (µ̂a(t), 1/Na(t)), and the learner selects the arm with the largest sampled
value at = argmaxa∈[K] νa. In the absence of attacks, both UCB and TS are known to achieve
sublinear regret by selecting suboptimal arms only o(T) times.

2.2 Previous Threat Model and Limitations

We begin by reviewing the standard threat model adopted in prior works on adversarial attacks
against bandit algorithms [5, 6, 7, 8]. In each round t, the learner selects an arm at to play, and the
environment generates a pre-attack reward r0t drawn from the underlying distribution of arm at. The
attacker then observes the tuple (at, r

0
t) and decides an attack value αt. The learner can only receive

the post-attack reward rt = r0t − αt. Define the cumulative attack cost as C(T) =
∑T

t=1 |αt|. The
attacker’s objective is to manipulate the learner into selecting a specific target arm for a linear number
of rounds while incurring only sublinear attack cost. Formally, an attack is considered successful
if the attacker can force the learner to select the target arm T − o(T) times while ensuring that
C(T) = o(T). While many attack strategies have been proposed under the standard threat model, it
exhibits several critical limitations when applied to practical settings.

First, the model assumes that the attacker can perturb the environment-generated reward in every
round. This assumption is often unrealistic in real-world applications such as recommender systems.
For example, consider an app that recommends restaurants to users and collects their feedback to
improve future recommendations. An attacker may wish to bias the system toward recommending a
particular restaurant, but it is infeasible to directly modify the feedback of all real users. In practice,
a more common attack strategy is to create fake users who submit fabricated feedback. However,
even this is constrained by operational or detection limits—adding fake users in every round is highly
impractical. Thus, the assumption of per-round attack capability does not reflect realistic adversarial
power. Second, the model restricts the attacker to modifying only the reward of the chosen arm
in each round. In contrast, fake-user-based attacks offer more flexibility. A fake user can submit
feedback on any item (i.e., any arm), regardless of what the learner selected in that round. This
means fake data injection enables the attacker to fabricate feedback for arbitrary arms, not just the
one currently played by the learner. As a result, the standard model underestimates the attacker’s
flexibility in practice and overestimates their ability to act at every timestep. Third, the threat model
assumes that both the pre-attack reward and the attack values are unbounded. In many systems, user
feedback is naturally bounded — e.g., binary click signals or discrete rating scores (e.g., 1 to 5 stars).
Allowing arbitrarily large attack values could result in out-of-range or clearly invalid feedback, which

3

would either be filtered out by the system or easily flagged as suspicious. Therefore, attacks that rely
on large reward perturbations are incompatible with these bounded-feedback environments.

3 New Threat Model: Fake Data Injection

To address practical limitations of the standard adversarial attack model, we introduce a new and
more realistic threat model, which we call the Fake Data Injection Threat Model. This model captures
how adversaries behave in real-world systems such as recommendation platforms, where direct
manipulation of genuine user feedback is infeasible, and attacks are often carried out by injecting
fabricated interactions (e.g., fake users with fake feedback).

In the Fake Data Injection model, the attacker does not interfere with the feedback received by
the learner during normal interactions. Instead, the attacker is allowed to inject up to NF fake
data samples, denoted by {(aFi , rFi)}N

F

i=1, into the learner’s history. Each fake data point mimics a
legitimate user interaction, where aFi ∈ [K] is the selected arm and rFi ∈ [ã, b̃] is the corresponding
reward for two given bounds ã ≤ b̃. The learner processes these injected samples in the same way as
genuine observations—for example, updating the empirical mean µ̂aF

i
, incrementing the pull count

NaF
i

, and advancing the internal time step t. We define the total attack cost as:

CF (T) :=

NF∑
i=1

|rFi − µaF
i
|,

and consider an attack successful if it can mislead the learner into pulling a target arm for T − o(T)
rounds while ensuring CF (T) = o(T), analogous to prior work.

This new model resolves several key limitations of the previous threat model:

Limited access manipulation. Unlike the standard model—which assumes the attacker can modify
the reward in every round—our model reflects the more plausible scenario where the attacker can
only inject a limited number of fake interactions. For instance, in a restaurant recommendation app,
an attacker cannot tamper with the feedback from real users but can register a finite number of fake
accounts to submit biased reviews. It is unrealistic to assume the attacker can do this in every round
without detection or resource exhaustion.

Flexible feedback across arms. The standard model restricts the attacker to modifying the reward for
the arm chosen by the learner. In contrast, our model allows the attacker to fabricate data for any arm.
This mirrors real-world attacks where fake users can submit reviews or feedback on arbitrary items,
not just those recommended to them. For example, an attacker aiming to boost a target restaurant can
flood the system with positive feedback for that restaurant—regardless of whether it was actually
recommended in a specific round.

Bounded and plausible feedback. In our model, the fake rewards must lie within the valid feedback
range [ã, b̃], consistent with many practical systems that collect binary clicks or scaled ratings (e.g., 1
to 5 stars). This avoids the unrealistic assumption of unbounded reward modifications, where a single
large perturbation could dominate the learner’s behavior. Our bounded injection design ensures the
fake data remains indistinguishable from legitimate interactions.

4 Attack Strategies

In this section, we develop attack strategies specifically designed for the fake data injection threat
model. We begin by studying a simplified setting with unbounded feedback, which serves as a
conceptual bridge from prior threat models: instead of directly altering the learner’s observed rewards,
the attacker injects fake data with unrestricted values. It allows us to highlight the core mechanisms
and intuitions behind effective attack strategies. Building on these, we then consider constrained
injection attacks, where both the magnitude of fake feedback and the injection frequency are limited.
Our goal is to design strategies that balance these two constraints while still steering the learner
toward suboptimal behavior efficiently. Without loss of generality, we assume that the target arm is
arm K which has the lowest expected reward.1

1This represents the most challenging case for the attacker and can be easily extended to target any other arm.

4

4.1 Warm-up: Injection Attacks with Unbounded Feedback

We begin our study of fake data injection attacks by considering a relaxed setting in which the
injected reward values rFi can take arbitrary real values, i.e., the bounded feedback constraint from
Section 3 is removed. This setting closely mirrors the standard threat model, where the attacker can
directly modify the observed reward as rt = r0t − αt, allowing unbounded perturbations αt in each
round. In this unbounded injection setting, we demonstrate that injecting a single fake data point
per non-target arm is sufficient to mislead the learner into favoring the target arm. We formalize this
insight through the Least Injection Algorithm, a simple yet effective one-shot attack strategy against
the UCB algorithm, as shown in Algorithm 1.

Algorithm 1: Least Injection Algorithm on UCB
Input: Attack parameter δ0 > 0

1 for round t = 1, 2, . . . do
2 for each non-target arm i ∈ [K − 1] do
3 if arm i has not been attacked and Ni(t) = ⌈(log T)/δ20⌉ then
4 Inject fake data sample:

5 (aFi , r
F
i) =

(
i,Ni(t) ·

(
ℓ̂K(t)− µ̂i(t)

)
+ ℓ̂K(t)

)
6 t← t+ 1
7 end
8 end
9 end

The attack operates as follows. For each non-target arm i, we wait until it has been pulled Ni(t) =
⌈(log T)/δ20⌉ times. At this point, we inject a single fake sample designed to reduce its empirical
mean below a high-probability lower bound of the target arm. Specifically, we define the empirical
lower confidence bound for target arm K as:

ℓ̂K(t) := µ̂K(t)− 2β(NK(t))− 3σδ0,

where β(N) :=
√

1
2N log

(
π2KN2

3δ

)
, and δ0 > 0 is a tunable attack parameter. The injected sample

on non-target arm i ensures that after the attack, the empirical mean of arm i satisfies:

µ̂i(t+ 1) ≤ ℓ̂K(t), (1)

thus making it unlikely to be selected in future rounds. The total number of injected fake data points
is at most K − 1, one per non-target arm. Define ∆i := µi − µK . We now provide the formal
theoretical guarantee of Algorithm 1.

Theorem 4.1. Suppose T > 2K, δ < 0.5. With probability at least 1 − δ, Algorithm 1 forces the
UCB algorithm to select the target arm in at least

T −O
(
(K − 1)(log T)/δ20

)
rounds, using a cumulative attack cost of at most

CF (T) =

K−1∑
i=1

|rFi − µi| ≤ O

(
K−1∑
i=1

(∆i + 4β(1) + 3σδ0) ·
log T

δ20

)
.

Compared with the attack algorithm under the standard threat model in [5], the Least Injection
Algorithm achieves a similar level of target-arm selection with comparable sublinear attack cost.
Notably, the parameter δ0 controls the trade-off between the number of non-target arm pulls and the
attack cost: increasing δ0 reduces the number of non-target pulls but increases the cost per injection.
However, the marginal benefit diminishes once δ0 >

√
log T , beyond which the cost grows without

improving effectiveness. By selecting δ0 = Θ(
√
log T), the cumulative attack cost is minimized to

Ô(Kσ
√
log T), which matches the lower bound Ω(

√
log T) established in [8].

To prove Theorem 4.1, we introduce the following lemma, which plays a central role in our attack
design and serves as a key building block for subsequent algorithms.

5

Lemma 4.1 (Exponential Suppression of Non-Target Arms). Suppose T > 2K, δ < 0.5. With
probability at least 1− δ, for any non-target arm i ∈ [K − 1] that has been pulled Ni(t) times, if a
fake data point is injected according to Line 5 of Algorithm 1, then arm i will not be selected again
until at least round exp(Ni(t)δ

2
0).

Proof Sketch. After the injection, the empirical mean of arm i is reduced such that its UCB index
becomes significantly lower than that of the target arm. We analyze the evolution of the UCB indices
and show that, unless arm i is pulled again (which it is not), its confidence bound tightens slowly
while its empirical mean remains suppressed. By induction over subsequent rounds, we show that the
UCB index of arm i remains lower than that of the target arm for an exponential number of rounds,
specifically up to round exp(Ni(t)δ

2
0).

Remark. Lemma 4.1 establishes a critical property of our attack strategy: once a non-target arm
i has been pulled sufficiently and a properly chosen fake data point is injected, its UCB index
becomes exponentially suppressed. More precisely, if the following two conditions are satisfied (1)
Ni(t) ≥ (log T)/δ20 and (2) µ̂i(t + 1) ≤ ℓ̂K(t), then arm i will not be selected again until after
round T . This suppression effect is crucial: it guarantees that once the attack is applied to arm i, its
influence on the learning process becomes negligible for the remaining rounds. The attacker can thus
prevent further exploration of non-target arms using only a single injection per arm, ensuring that
the learner increasingly concentrates on the target arm. This mechanism forms the backbone of all
our attack strategies.

In addition to attacking UCB, we extend the Least Injection Algorithm to target the Thompson
Sampling algorithm. Specifically, the attacker injects a single fake data point into each non-target
arm i when Ni(t) = ⌈log T/δ20⌉, using a modified version of Line 5 in Algorithm 1. Due to space
limitations, we defer the full algorithm and details to the appendix. We provide its theoretical
guarantee below.
Theorem 4.2. Suppose T > 2K, δ < 0.5. With probability at least 1 − 2δ, the modi-
fied Least Injection Algorithm forces the Thompson Sampling algorithm to select the target
arm in at least T − O((K − 1) log T/δ20) rounds, using a cumulative attack cost of at most

O
(∑K

i=1

(
∆i + 4β(1) +

√
8 log

(
π2K
3δ

)
+ 4
√
log T

)
log T
δ20

)
.

Compared with the attack algorithm under the standard threat model studied in [8], our approach
achieves a similar level of target-arm selection with matching attack cost. By setting the attack
parameter δ0 = Θ(

√
log T), we obtain a total cost ofO(

√
log T), which aligns with the known lower

bound, demonstrating the near-optimality of our strategy under this relaxed fake data injection model.

4.2 Constrained Injection Attacks

We now turn to more realistic and constrained settings where injected fake data must lie within a
bounded range. This reflects practical scenarios in which user feedback—such as clicks or ratings—is
inherently limited (e.g., binary or on a fixed scale). To address the constraint on individual fake
rewards, we first propose a natural extension of Algorithm 1. In this version, the influence of a single
unbounded fake reward is approximated by injecting a batch of bounded fake samples simultaneously
for each non-target arm.

In practice, however, attackers may face an additional constraint on the number of fake samples that
can be injected at any given time, due to resource limitations or system-level detection thresholds. To
address this more challenging setting, we introduce a periodic injection strategy that operates under
two constraints: (1) each fake reward must be bounded; (2) only a limited number of fake samples
can be injected at once. Our strategy carefully coordinates the frequency and timing of injections to
maintain effective adversarial influence over the learner while satisfying both constraints. Despite
these limitations, we show that the attacker can still successfully manipulate the learner’s behavior
with sublinear cost.

4.2.1 Simultaneous Bounded Injection

To ensure the attack remains realistic and stealthy, we consider a practical setting in which each
injected fake reward must lie within a bounded range [ã, b̃]. Under this constraint, we propose the

6

Simultaneous Bounded Injection (SBI) algorithm, which extends Algorithm 1 by replicating the effect
of a single unbounded fake reward via the injection of multiple bounded fake samples. Specifically,
for each non-target arm, the attacker injects a batch of rewards with the minimum value ã in a single
round to achieve the same suppression of the empirical mean as in the unbounded setting.

Algorithm 2: Simultaneous Bounded Injection on UCB

Input: Attack parameter δ0, bounded reward range [ã, b̃]
1 for round t = 1, 2, . . . do
2 for each non-target arm i ∈ [K − 1] do
3 if arm i has not been attacked and Ni(t) = ⌈(log T)/δ20⌉ then
4 ñ←

⌈
µ̂i(t)−ℓ̂K(t)

ℓ̂K(t)−ã
·
⌈
log T
δ20

⌉⌉
;

5 Inject ñ fake samples (i, ã);
6 t← t+ ñ
7 end
8 end
9 end

As shown in Algorithm 2, once a non-target arm i has been pulled ⌈(log T)/δ20⌉ times, the attacker
computes ñ and injects ñ fake samples with reward ã. We make the following assumption to ensure
that the suppression of arm i’s empirical mean is always feasible:
Assumption 4.1. ã ≤ µK − 3β(1)− 3σδ0.

This assumption guarantees that it is always possible to reduce the empirical means of non-target
arms below the lower confidence bound of the target arm. In practice, it can be relaxed to ã <
µ̂K(t)− 2β(NK(t))− 3σδ0 at the specific round t; we state the worst-case condition for generality.

We now present the theoretical guarantee of the SBI algorithm.
Theorem 4.3. Suppose T > 2K, δ < 0.5 and Assumption 4.1 hold. With probability at least 1− δ,
Algorithm 2 forces the UCB algorithm to select the target arm in at least

T −O

(
K−1∑
i=1

µi + β
(
(log T)/δ20

)
− ã

µK − 3β(1)− 3σδ0 − ã
· log T
δ20

)
rounds, using a cumulative attack cost of at most

O

(
K−1∑
i=1

(µi − ã)
∆i + 4β(1) + 3σδ0

µK − 3β(1)− 3σδ0 − ã
log T

δ20

)
,

Compared with Theorem 4.1, the attacker now injects ñ =
⌈
µ̂i(t)−ℓ̂K(t)

ℓ̂K(t)−ã
·
⌈
log T
δ20

⌉⌉
fake samples for

each non-target arm instead of a single one. While this increases the total number of injected samples,
the order of the attack cost remains O(

√
log T) when the attack parameter is set to δ0 = Θ(

√
log T).

Thus, the SBI algorithm maintains asymptotic optimality under more realistic constraints.

As in Section 4.1, the SBI algorithm can also be extended to attack the Thompson Sampling algorithm.
Due to space constraints, we defer the full algorithm and details to the appendix and present the main
theorem below.
Theorem 4.4. Suppose T > 2K, δ < 0.5. With probability at least 1−2δ, the modified Simultaneous
Bounded Injection forces the Thompson sampling algorithm to select the target arm in at least

T −O

(
K−1∑
i=0

µK − 3β(1)−
√
8 log(π2K/(3δ))− 4

√
log T − ã

µi + β(log T/δ20)− ã
log T

δ20

)
(2)

with the attack cost:

O

(
K−1∑
i=1

(µi − ã)
∆i + 4β(1) +

√
8 log(π2K/(3δ)) + 4

√
log T

µK − 3β(1)−
√
8 log(π2K/(3δ))− 4

√
log T − ã

log T

δ20

)
(3)

7

4.2.2 Periodic Bounded Injection

The SBI algorithm above assumes that the attacker can inject all required fake samples within a
single round. However, this assumption may not hold in practice. For example, in a restaurant
recommendation system, injecting a large batch of fake (e.g., low-rating) reviews at once may trigger
anomaly detection mechanisms, leading the system to filter or ignore the fake data. In contrast,
injecting smaller amounts of fake feedback periodically—at a controlled rate—can be significantly
less suspicious and more effective in practice.

To model this scenario, we introduce a more restrictive and realistic setting where:

1. The attacker can inject at most f fake samples in any single round (batch size constraint);

2. There must be a delay of at least Ri rounds between consecutive injections on the same arm
i (cooldown constraint).

To address this setting, we propose the Periodic Bounded Injection (PBI) algorithm, shown in
Algorithm 3. Given a maximum batch size f , the algorithm adaptively schedules periodic injections
to suppress the empirical mean of non-target arms while respecting both constraints.

Algorithm 3: Periodic Bounded Injection on UCB

Input: Attack parameter δ0, reward bound [ã, b̃], max batch size f
1 for round t = 1, 2, . . . do
2 for each non-target arm i ∈ [K − 1] do
3 if arm i has not been attacked and Ni(t) = ⌈(log T)/δ20⌉ then
4 ñi ←

⌈
µ̂i(t)−ℓ̂K(t)

ℓ̂K(t)−ã
·
⌈
log T
δ20

⌉⌉
;

5 Ri ← min
1≤c≤⌈ ñi

f ⌉
1
c exp

((
µ̂K(t)−2β(NK(t))−µ̃i(ti(c))

3σ

)2
· (Ni(t) + fc)

)
− t−f ;

// µ̃i(ti(c)) represents the estimated cumulative empirical mean
of arm i after the i-th injection

6 nexti ← t;
7 end
8 if ñi > 0 and nexti ≤ t then
9 Inject f fake samples (i, ã);

10 ñi ← ñi − f ;
11 t← t+ f ;
12 nexti ← nexti + f +Ri;
13 end
14 end
15 end

The PBI algorithm distributes the injection of fake samples across multiple rounds rather than injecting
them all at once. Once a non-target arm i reaches the designated pull threshold (⌈(log T)/δ20⌉), the
attacker computes both the total number of fake samples ñi required to suppress the empirical mean
of arm i, and a waiting interval Ri, which ensures that the fake samples can be injected periodically
without allowing arm i to regain a high UCB index. The notation µ̃i(t+ f) represents the estimated
value of µ̂i(t + f) with f fake data injections starting from round t. At each interval of Ri + f
rounds, a batch of f fake samples is injected until the total ñi is exhausted. This strategy effectively
balances stealthiness and attack efficacy, making it robust against detection in practical systems with
bounded feedback and rate-limited injection constraints.

The analysis of cumulative attack cost for PBI is deferred to the appendix, as it is similar to that of
Theorem 4.3: the total number of fake samples injected remains the same. What distinguishes PBI is
how suppression is maintained across time, which is guaranteed by the following lemma.

Lemma 4.2. The choice of Ri in Algorithm 3 ensures that once a batch of f fake data samples is
injected into non-target arm i, the arm will not be selected again for at least the next Ri rounds.

Proof Sketch. This result builds on a modified version of the exponential suppression lemma
(Lemma 4.1). Rather than suppressing a non-target arm with a single large injection, we ana-

8

lyze the suppression effect of a partial injection of f bounded fake samples. We show that the
first batch induces the weakest suppression, so it suffices to compute Ri based on this worst-case
scenario. By ensuring that the UCB index remains below that of the target arm during this interval,
we guarantee that arm i is not selected within the next Ri rounds. After the c-th period of injection,
we have µ̂i ≤ µ̂K−2β(NK(t))−3σ

√
(log(t+ (f +R)c))/Ni(t+ (f +R)c). And its UCB index

will remain lower than arm K’s until at least round t+ (f +R)c.

We also extended the PBI algorithm to attack the Thompson Sampling algorithm. Due to space
limitations, we defer the detailed algorithm and corresponding results to the appendix.

5 Experiments

Figure 1: Attack Costs vs δ0 Figure 2: Attack Costs vs T Figure 3: Target Arm Selec-
tion Ratios

We evaluate our attack strategies in a realistic setting using the MovieLens 25M dataset [16], which
reflects the practical motivations of the Fake Data Injection model. Due to space constraints, we
report results for the SBI and PBI algorithms on the UCB learner; results for other settings are moved
to the appendix. We consider K = 10 arms and simulate user interaction traces with stochastic
rewards derived from movie rating distributions. The time horizon is set to T = 100,000. For PBI,
the per-round injection limit is set to f = 5. We vary the confidence parameter δ0 and the horizon
T to evaluate their effect on attack cost and effectiveness. Figure 1 plots the average attack cost
as a function of δ0. As expected, increasing δ0 reduces the number of required fake samples for
suppressing non-target arms, leading to lower attack costs. PBI consistently incurs lower cost than
SBI for small δ0 due to its more conservative and distributed injection schedule. Figure 2 shows the
total attack cost versus the time horizon T . When T is small, some arms are not pulled often enough
to trigger full injection, resulting in a lower realized cost. As T increases, the cost gradually converges
to the predicted values. Across all settings, PBI performs comparably or better than SBI. Figure 3
tracks the target arm selection ratio over time. Both SBI and PBI are highly effective, with the learner
converging to the target arm in nearly all rounds after early exploration. These results confirm that
fake data injection attacks remain highly effective under realistic constraints. In particular, the PBI
strategy achieves strong empirical performance while often incurring lower attack cost than SBI. This
underscores the practical advantage of temporally distributed attacks.

6 Concluding Remarks

This work introduces a practical and realistic threat model, Fake Data Injection, for adversarial
attacks on stochastic bandits. In contrast to prior models that assume per-round, unbounded reward
perturbations, our framework captures real-world constraints such as bounded feedback, limited
injection capability, and the attacker’s inability to modify genuine user data. Within this model, we
develop a suite of effective attack strategies that successfully manipulate both UCB and TS algorithms
using only sublinear-cost injections. Our theoretical analysis and experimental results demonstrate
that even sparse, bounded fake interactions can significantly bias stochastic bandit algorithms.

Despite these results, several limitations remain and open avenues for future work. We assume
a passive learner that processes all feedback without defense, which may not hold in robust or
adversarial-aware systems. Our work also focuses on stochastic bandits; extending to contextual or re-
inforcement learning settings remains an open challenge. Additionally, real-world attackers may face
detection risks or adaptive filtering by the system—scenarios not captured in our current framework.

9

Future work should explore defense mechanisms such as anomaly detection or arm-level auditing,
and investigate the dynamic interplay between attackers and adaptive learners. Addressing these
limitations will be crucial for building secure online learning systems in adversarial environments.

10

References
[1] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to

personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670, 2010.

[2] Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. Combinatorial multi-armed bandit and
its extension to probabilistically triggered arms. Journal of Machine Learning Research, 17
(50):1–33, 2016.

[3] Sofía S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal
design of clinical trials: benefits and challenges. Statistical science: a review journal of the
Institute of Mathematical Statistics, 30(2):199, 2015.

[4] Shuai Li, Baoxiang Wang, Shengyu Zhang, and Wei Chen. Contextual combinatorial cascading
bandits. In International conference on machine learning, pages 1245–1253. PMLR, 2016.

[5] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. Adversarial attacks on stochastic
bandits. Advances in neural information processing systems, 31, 2018.

[6] Fang Liu and Ness Shroff. Data poisoning attacks on stochastic bandits. In International
Conference on Machine Learning, pages 4042–4050. PMLR, 2019.

[7] Jinhang Zuo, Zhiyao Zhang, Zhiyong Wang, Shuai Li, Mohammad Hajiesmaili, and Adam
Wierman. Adversarial attacks on online learning to rank with click feedback. Advances in
Neural Information Processing Systems, 36:41675–41692, 2023.

[8] Shiliang Zuo. Near optimal adversarial attacks on stochastic bandits and defenses with smoothed
responses. In International Conference on Artificial Intelligence and Statistics, pages 2098–2106.
PMLR, 2024.

[9] Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud,
Alessandro Lazaric, and Matteo Pirotta. Adversarial attacks on linear contextual bandits.
Advances in Neural Information Processing Systems, 33:14362–14373, 2020.

[10] Yuzhe Ma and Zhijin Zhou. Adversarial attacks on adversarial bandits. arXiv preprint
arXiv:2301.12595, 2023.

[11] Huazheng Wang, Haifeng Xu, and Hongning Wang. When are linear stochastic bandits
attackable? In International Conference on Machine Learning, pages 23254–23273. PMLR,
2022.

[12] Yinglun Xu, Bhuvesh Kumar, and Jacob D Abernethy. Observation-free attacks on stochastic
bandits. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 22550–22561.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/be315e7f05e9f13629031915fe87ad44-Paper.pdf.

[13] Zichen Wang, Rishab Balasubramanian, Hui Yuan, Mengdi Wang, Huazheng Wang, et al.
Adversarial attacks on online learning to rank with stochastic click models. Transactions on
Machine Learning Research, 2024.

[14] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems, 2012. URL https://arxiv.org/abs/1204.5721.

[15] Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. J. ACM,
64(5), September 2017. ISSN 0004-5411. doi: 10.1145/3088510. URL https://doi.org/
10.1145/3088510.

[16] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems (TiiS), 5(4):1–19, 2015. doi: 10.1145/2827872.
URL https://doi.org/10.1145/2827872.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/be315e7f05e9f13629031915fe87ad44-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/be315e7f05e9f13629031915fe87ad44-Paper.pdf
https://arxiv.org/abs/1204.5721
https://doi.org/10.1145/3088510
https://doi.org/10.1145/3088510
https://doi.org/10.1145/2827872

Appendix

A Proofs

A.1 Concentration Results

Suppose that the reward distributions of arms are σ2-sub-Gaussian. The following concentration
result will be useful throughout our analysis.

Recall that

β(N) =

√
2σ2

N
log

π2KN2

3δ
. (4)

Then we define event E as:

E := {∀i, t, |µ̂i(t)− µi| < β(Ni(t))} , (5)

where µ̂i(t) is the empirical mean reward of arm i and Ni(t) is the number of times arm i has been
selected up to round t.
Lemma A.1 (Lemma 1 in [5]). For δ ∈ (0, 1), P{E} > 1− δ.

We then define another event F to bound the sampled value νi of arm i in Thompson sampling

F :=

{
∀i, t, |νi(t)− µ̂i(t)| <

γ(t)

Ni(t)

}
, (6)

where γ(t) :=
√

2 log π2Kt2

3δ .

Lemma A.2 (Lemma 3 in [8]). For δ ∈ (0, 1), P{F} > 1− δ.

A.2 Proofs of Injection Attacks with Unbounded Feedback

This section details the proof of Theorem 4.1, Theorem 4.2. First, we present the proof of Lemma 4.1.

A.2.1 Proof of Lemma 4.1

Proof. Under event E (defined in Equation (5)), since Algorithm 1 never attacks the target arm K,
we can establish a lower bound on its estimate. For any two rounds t2 > t1,

µ̂K(t2) ≥ µK − β(NK(t2)) ≥ µK − β(NK(t1)) ≥ µ̂K(t1)− 2β(NK(t1)), (7)

where the second inequality follows from the monotonicity of β(N).

Suppose that at round t1, Algorithm 1 injects fake feedback on arm i such that

µ̂i(t1) ≤ µ̂K(t1)− 2β(NK(t1))− 3σδ0. (8)

This guarantees that in round t1 + 1, the UCB index of arm i satisfies

UCBi(t1 + 1) < UCBK(t1 + 1),

so arm i is not selected at round t1 + 1.

Now consider any subsequent round t2 with t1 < t2 < exp(niδ
2
0), where ni := Ni(t1), and assume

that arm i has not been selected in any round between t1 and t2. Then Ni(t2 + 1) = ni and
µ̂i(t2 + 1) = µ̂i(t1), so the UCB index for arm i at round t2 + 1 is

UCBi(t2 + 1) = µ̂i(t1) + 3σ

√
log(t2 + 1)

ni

≤ µ̂K(t1)− 2β(NK(t1))− 3σδ0 + 3σ

√
log(t2 + 1)

ni

≤ µ̂K(t1)− 2β(NK(t1)) (since t2 < exp(niδ
2
0))

≤ µ̂K(t2 + 1) (by (7))
≤ UCBK(t2 + 1),

12

where the third step uses the bound
√
log t2+1

ni
< δ0. This argument shows that the UCB index of

arm i remains strictly lower than that of the target arm K for all t2 < exp(niδ
2
0). By induction, arm

i will not be selected again until at least exp(niδ20) rounds have passed.

As a direct corollary of Lemma 4.1, if arm i satisfies µ̂i(t) ≤ ℓ̂K(t) for any round t, and has been
pulled more than log T

δ20
times, then arm i will not be selected again before round T .

Meanwhile, we present an analogous result for Thompson sampling in Lemma A.3, which admits a
similar corollary under the same condition. For simplicity, we define ℓ̂

′

K(t) = µ̂K(t)−2β(NK(t))−√
8 log

(
π2K
3δ

)
− 4
√
Ni(t)δ0

Lemma A.3. For each non-target arm i ∈ [K − 1], if µ̂i(t) ≤ ℓ̂′K(t), then with probability at least
1− 2δ, arm i will not be selected again until at least round ⌊exp(Ni(t)δ

2
0)⌋.

Proof. Suppose that at round t1, the following inequality holds:

µ̂i(t1) ≤ µ̂K(t1)− 2β(NK(t1))−

(√
8 log

π2K

3δ
+ 4
√
Ni(t1) δ0

)
. (9)

Let ni := Ni(t1) and consider any round t2 such that t1 < t2 < ⌊exp(niδ20)⌋. Assuming that arm
i is not selected from round t1 to t2, then Ni(t2 + 1) = ni and µ̂i(t2 + 1) = µ̂i(t1). Applying the
concentration bounds from Lemmas A.1 and A.2, the sampled value νi(t2 + 1) for arm i satisfies:

νi(t2 + 1) < µ̂i(t2 + 1) + γ(t2 + 1)

≤ µ̂K(t1)− 2β(NK(t1))−
√

8 log
π2K

3δ
− 4
√
ni δ0 + γ(t2 + 1)

≤ µ̂K(t2 + 1)−
√
8 log

π2K

3δ
− 4
√
ni δ0 + γ(t2 + 1)

≤ µ̂K(t2 + 1)−
√
8 log

π2K

3δ
+ 16niδ20 + γ(t2 + 1)

= µ̂K(t2 + 1)−
√

8 log
π2Kt2

3δ
+ γ(t2 + 1)

≤ µ̂K(t2 + 1)− γ(t2 + 1)

< νK(t2 + 1),

where the last inequality uses the fact that γ(t2 + 1) is an upper confidence width and νK(t2 + 1) >
µ̂K(t2 + 1)− γ(t2 + 1) with high probability.

This chain of inequalities implies that the sampled value νi(t2 + 1) remains lower than νK(t2 + 1)
for all t2 < ⌊exp(niδ20)⌋, with probability at least 1− 2δ. Therefore, arm i will not be selected again
until at least round ⌊exp(niδ20)⌋.

A.2.2 Proof of Theorem 4.1

Proof. Assume event E holds. After a single injection on each non-target arm i ∈ [K−1], Algorithm 1
ensures that

µ̂i(t) ≤ µ̂K(t)− 2β(NK(t))− 3σδ0 and Ni(t) ≥
log T

δ20
.

By Lemma 4.1, this guarantees that arm i will not be selected before round T with high probability.

Define ñi as the total number of injected data samples for arm i. Since Algorithm 1 performs a single
injection per non-target arm, we have ñi = 1 for all i ∈ [K − 1]. We now analyze the total attack

13

cost:
K−1∑
i=1

CF
i (T) =

K−1∑
i=1

(
µ̂i(t)Ni(t) + µiñi − ℓ̂K(t)(Ni(t) + ñi)

)
≤

K−1∑
i=1

((
µi + β(Ni(t))

)
Ni(t) + µi − (µ̂K − 2β(NK(t))− 3σδ0)(Ni(t) + 1)

)
≤

K−1∑
i=1

((
µi + β(Ni(t))

)
Ni(t) + µi − (µK − 3β(1)− 3σδ0)(Ni(t) + 1)

)
≤

K−1∑
i=1

(
µi − µK +

(
β

(⌈
log T

δ20

⌉)
+ 3β(1) + 3σδ0

))(⌈
log T

δ20

⌉
+ 1

)

≤
K−1∑
i=1

(∆i + 4β(1) + 3σδ0)

(⌈
log T

δ20

⌉
+ 1

)

= O

(
K−1∑
i=1

(∆i + 4β(1) + 3σδ0)
log T

δ20

)
.

Therefore, both the cumulative attack cost and the number of non-target arm pulls are sublinear in T ,
completing the proof.

A.2.3 Proof on Theorem 4.2

Proof. Suppose events E and F hold. After a single injection on arm i at round t, we ensure that
Ni(t) ≥ log T

δ20
, µ̂i(t) ≤ ℓ̂′K(t), where ℓ̂′K(t) is the adjusted threshold for suppressing arm i under

Thompson sampling. By Lemma A.3, arm i will not be selected again before round T with high
probability.

Since Algorithm 4 performs a single injection per non-target arm, we have ñi = 1 for all i ∈ [K − 1].
We now analyze the total attack cost:

K−1∑
i=1

CF
i (T) =

K−1∑
i=1

(
µ̂i(t)Ni(t) + µiñi − ℓ̂

′

K(t)(Ni(t) + ñi)
)

≤
K−1∑
i=1

((µi + β(Ni(t)))Ni(t) + µi)

−
K−1∑
i=1

(
µ̂K(t)− 2β(NK(t))−

√
8 log

π2K

3δ
− 4
√
Ni(t)δ0

)(⌈
log T

δ20

⌉
+ 1

)

≤
K−1∑
i=1

((
µi + β

(⌈
log T

δ20

⌉))⌈
log T

δ20

⌉
+ µi

)

−
K−1∑
i=1

(
µK − 3β(1)−

√
8 log

π2K

3δ
− 4

√⌈
log T

δ20

⌉
δ0

)(⌈
log T

δ20

⌉
+ 1

)

≤
K−1∑
i=1

(
µi − µK + 4β(1) +

√
8 log

π2K

3δ
+ 4

√⌈
log T

δ20

⌉
δ0

)(⌈
log T

δ20

⌉
+ 1

)

=O

(
K−1∑
i=1

(
∆i + 4β(1) +

√
8 log

π2K

3δ
+ 4
√

log T

)
log T

δ20

)
.

Therefore, both the cumulative attack cost and the number of non-target arm pulls are sublinear in T ,
completing the proof.

14

Algorithm 4: Least Injection Algorithm on Thompson sampling
Input: Attack parameter δ0 > 0

1 for round t = 1, 2, . . . do
2 for each non-target arm i ∈ [K − 1] do
3 if arm i has not been attacked and Ni(t) =

⌈
log T
δ20

⌉
then

4 Inject fake data sample:

5 (aFi , r
F
i) =

(
i,Ni(t) ·

(
ℓ̂
′

K(t)− µ̂i(t)
)
+ ℓ̂

′

K(t)
)

;

6 t← t+ 1;
7 end
8 end
9 end

A.3 Proofs of Simultaneous Bounded Injection

A.3.1 Proof of Theorem 4.3

Proof. According to Algorithm 2, after injecting ñi samples with value ã into arm i at round t, the
empirical mean at round t+ ñi becomes:

µ̂i(t+ ñi) =
µ̂i(t)Ni(t) + ñi · ã

Ni(t) + ñi

≤
µ̂i(t)Ni(t) +

µ̂i(t)−ℓ̂K(t)

ℓ̂K(t)−ã
Ni(t) · ã

Ni(t) +
µ̂i(t)−ℓ̂K(t)

ℓ̂K(t)−ã
Ni(t)

=
µ̂i(t) +

µ̂i(t)−ℓ̂K(t)

ℓ̂K(t)−ã
ã

1 + µ̂i(t)−ℓ̂K(t)

ℓ̂K(t)−ã

=
µ̂i(t)ℓ̂K(t)− ℓ̂K(t)ã

µ̂i(t)− ã
≤ ℓ̂K(t),

where the last step ensures that after injection, arm i’s empirical mean is suppressed below the target
threshold.

Since event E holds, and by Lemma 4.1, arm i will not be selected after round t + ñi. The total
number of pulls for arm i is therefore:

Ni(t) + ñi ≤
⌈
log T

δ20

⌉
+
µ̂i(t)− ℓ̂K(t)

ℓ̂K(t)− ã
·
⌈
log T

δ20

⌉
=
µ̂i(t)− ã
ℓ̂K(t)− ã

·
⌈
log T

δ20

⌉
≤ µi + β(Ni(t))− ã
µ̂K(t)− 2β(NK(t))− 3σδ0 − ã

·
⌈
log T

δ20

⌉

≤
µi + β

(⌈
log T
δ20

⌉)
− ã

µK − 3β(1)− 3σδ0 − ã
·
⌈
log T

δ20

⌉

= O

 µi + β
(

log T
δ20

)
− ã

µK − 3β(1)− 3σδ0 − ã
· log T
δ20

 ,

where we used concentration bounds for µ̂i(t) and µ̂K(t) under event E and the non-decreasing
property of β(·).

15

The total attack cost can be calculated as:

K−1∑
i=1

CF
i (T) =

K−1∑
i=1

(
µ̂i(t)Ni(t) + µiñi − ℓ̂K(t)(Ni(t) + ñi)

)
≤

K−1∑
i=1

(β(Ni(t))Ni(t) + µi(Ni(t) + ñ))

−
K−1∑
i=1

(µK − 3β(NK(t))− 3σδ0)(Ni(t) + ñ)

=

K−1∑
i=1

(
β

(⌈
log T

δ20

⌉)⌈
log T

δ20

⌉
+ (µi − µK + 3β(1) + 3σδ0)(Ni(t) + ñ)

)

≤
K−1∑
i=1

(
(µi − ã)

∆i + β(⌈(log T)/δ20⌉) + 3β(1) + 3σδ0
µK − 3β(1)− 3σδ0 − ã

)⌈
log T

δ20

⌉

≤
K−1∑
i=1

(
(µi − ã)

∆i + 4β(1) + 3σδ0
µK − 3β(1)− 3σδ0 − ã

)⌈
log T

δ20

⌉

=O

(
K−1∑
i=1

(
(µi − ã)

∆i + 4β(1) + 3σδ0
µK − 3β(1)− 3σδ0 − ã

)
log T

δ20

)
.

Therefore, both the cumulative attack cost and the number of non-target arm pulls are O
(

log T
δ20

)
per

arm, and hence sublinear in T , completing the proof.

A.3.2 Proof of Theorem 4.4

Proof. According to Algorithm 5, after injecting ñi samples with value ã into arm i at round t, the
empirical mean at round t+ ñi becomes:

µ̂i(t+ ñi) =
µ̂i(t)Ni(t) + ñiã

Ni(t) + ñi

≤
µ̂i(t)Ni(t) +

µ̂i(t)−ℓ̂
′
K(t)

ℓ̂
′
K(t)−ã

Ni(t)ã

Ni(t) +
µ̂i(t)−ℓ̂

′
K(t)

ℓ̂
′
K(t)−ã

Ni(t)

=
µ̂i(t) +

µ̂i(t)−ℓ̂
′
K(t)

ℓ̂
′
K(t)−ã

ã

1 +
µ̂i(t)−ℓ̂

′
K(t)

ℓ̂
′
K(t)−ã

=
µ̂i(t)ℓ̂

′

K(t)− ℓ̂′K(t)ã

µ̂i(t)− ã
≤ ℓ̂

′

K(t+ ni),

where the last step ensures that after injection, arm i’s empirical mean is suppressed below the target
threshold.

Since events E and F hold, and by Lemma A.3, arm i will not be selected after round t+ ñi. The
total number of pulls for arm i is therefore:

16

Ni(t) + ñi =

⌈
log T

δ20

⌉
+
µ̂i(t)− ℓ̂

′

K(t)

ℓ̂
′
K(t)− ã

⌈
log T

δ20

⌉
=
µ̂i(t)− ã
ℓ̂
′
K(t)− ã

⌈
log T

δ20

⌉
≤ µi + β(Ni(t))− ã

µ̂K(t)− 2β(NK(t))−
√
8 log π2K

3δ − 4
√
Ni(t)δ0 − ã

⌈
log T

δ20

⌉

≤ µi + β(⌈(log T)/δ20⌉)− ã

µK − 3β(1)−
√
8 log π2K

3δ − 4
√
⌈(log T)/δ20⌉δ0 − ã

⌈
log T

δ20

⌉

= O

 µi + β((log T)/δ20)− ã

µK − 3β(1)−
√
8 log π2K

3δ − 4
√
log T − ã

log T

δ20

 .

Let î = µi + β
(⌈

log T
δ20

⌉)
− ã and k̂ = µK − 3β(1) −

√
8 log π2K

3δ − 4
√
Ni(t)δ0 − ã. The total

attack cost can be calculated as:
K−1∑
i=1

CF
i (T) =

K−1∑
i=1

(
µ̂i(t)Ni(t) + µiñi − ℓ̂

′

K(t)(Ni(t) + ñi)
)

≤
K−1∑
i=1

(µi(Ni(t) + ñ) + β(Ni(t))Ni(t))

−
K−1∑
i=1

(
µ̂K(t)− 2β(NK(t))−

√
8 log

π2K

3δ
− 4
√
Ni(t)δ0

)
(Ni(t) + ñ)

≤
K−1∑
i=1

(
β

(⌈
log T

δ20

⌉)⌈
log T

δ20

⌉
+ µi

(
î

k̃

⌈
log T

δ20

⌉))

−
K−1∑
i=1

(
µK − 3β(1)−

√
8 log

π2K

3δ
− 4
√
Ni(t)δ0 − ã+ ã

)(
ĩ

k̃

⌈
log T

δ20

⌉)

=

K−1∑
i=1

(
β

(⌈
log T

δ20

⌉)⌈
log T

δ20

⌉
+ (µi − ã)

(
ĩ

k̃

⌈
log T

δ20

⌉))
−

K−1∑
i=1

(
ĩ

⌈
log T

δ20

⌉)

=

K−1∑
i=1

(
(µi − ã)

ĩ

k̃
− ĩ+ β

(⌈
log T

δ20

⌉))⌈
log T

δ20

⌉

=

K−1∑
i=1

(
(µi − ã)

ĩ

k̃
− (µi − ã)

)⌈
log T

δ20

⌉

=

K−1∑
i=1

(µi − ã)
∆i + β

(⌈
log T
δ20

⌉)
+ 3β(1) +

√
8 log π2K

3δ + 4
√
Ni(t)δ0

µK − 3β(1)−
√
8 log π2K

3δ − 4
√
Ni(t)δ0 − ã

⌈ log T
δ20

⌉

≤
K−1∑
i=1

(µi − ã)
∆i + 4β(1) +

√
8 log π2K

3δ + 4

√⌈
log T
δ20

⌉
δ0

µK − 3β(1)−
√
8 log π2K

3δ − 4

√⌈
log T
δ20

⌉
δ0 − ã

⌈ log Tδ20
⌉

=O

K−1∑
i=1

(µi − ã)
∆i + 4β(1) +

√
8 log π2K

3δ + 4
√
log T

µK − 3β(1)−
√
8 log π2K

3δ − 4
√
log T − ã

 log T

δ20

 .

17

Therefore, both the cumulative attack cost and the number of non-target arm pulls are O
(

log T
δ20

)
per

arm, and hence sublinear in T , completing the proof.

Algorithm 5: Simultaneous Bounded Injection Attack on Thompson Sampling
Input: Number of real users R, target arm K, parameter δ0, lower bound ã

1 for round t = 1, 2, . . . do
2 for each non-target arm i ∈ [K − 1] do
3 if arm i has not been attacked and Ni(t) =

⌈
log T
δ20

⌉
then

4 ñ←
⌈

µ̂i(t)−ℓ̂
′
K(t)

ℓ̂
′
K(t)−ã

·
⌈
log T
δ20

⌉⌉
;

5 Inject ñ fake samples (i, ã);
6 t← t+ ñ
7 end
8 end
9 end

A.4 Proofs of Periodic Bounded Injection

A.4.1 Proof of Lemma 4.2

Proof. Suppose event E holds. We begin by estimating the total number of fake samples needed to
demote arm i. This quantity is given by

ñi =

⌈
µ̂i(t)− ℓ̂K(t)

ℓ̂K(t)− ã
·
⌈
log T

δ20

⌉⌉
,

where ℓ̂K(t) is a conservative lower bound on arm K’s empirical mean, and ã is the value of each
injected fake sample. Under the batch size constraint f , the attack spans

⌈
ñi

f

⌉
periods, with each

period injecting f fake samples.

Our goal is to choose an appropriate delay parameter Ri such that after each injection, arm i is not
selected again until the next scheduled injection. Specifically, we require that after the c-th batch (for
any c ∈ {1, 2, . . . , ⌈ ñi

f ⌉}), arm i is not selected for at least Ri rounds.

Let ti(c) = t+(f +Ri)c denote the round before the c+1-th injection. We examine the UCB index
of arm i at time ti(c):

UCBi(ti(c)) = µ̂i(ti(c)) + 3σ

√
log ti(c)

Ni(t) + fc

=
Ni(t)µ̂i(t) + fcã

Ni(t) + fc
+ 3σ

√
log ti(c)

Ni(t) + fc
. (10)

To ensure arm i is not selected before round ti(c), we want its UCB index to be no larger than that of
arm K. A sufficient condition is

UCBi(ti(c)) ≤ µ̂K(t)− 2β(NK(t)) ≤ UCBK(ti(c)), (11)

where we use the lower bound µ̂K(t)− 2β(NK(t)) to conservatively approximate arm K’s UCB.

Define µ̃i(ti(c)) as the post-injection empirical mean of arm i:

µ̃i(ti(c)) =
Ni(t)µ̂i(t) + fcã

Ni(t) + fc
.

18

Then, the condition in (11) implies that, for any c, the delay parameter Ri(c) must satisfy:

Ri(c) ≤
exp

((
µ̂K(t)−2β(NK(t))−µ̃i(ti(c))

3σ

)2
· (Ni(t) + fc)

)
− t

c
− f. (12)

Finally, to ensure that this condition holds for every injection period, we define the overall delay
parameter as the minimum over all c:

Ri = min
1≤c≤⌈ ñi

f ⌉

exp

((
µ̂K(t)−2β(NK(t))−µ̃i(ti(c))

3σ

)2
· (Ni(t) + fc)

)
− t

c
− f. (13)

This choice of Ri ensures that after each batch of f fake samples, arm i will not be pulled again until
the next scheduled injection.

Discussion of Algorithm 3.

Based on our experimental observations, we find that c = 1 typically yields the smallest value of
Ri(c) in practice. We provide the following sufficient condition under which Ri(c = 1) is guaranteed
to be the minimizer:

µ̂K(t)− 2β(NK(t))− µ̃i(ti(1))

3σ
> 1.

Proof. We simplify the expression for Ri(c) in (12) as follows:

Ri(c) =
exp

(
h(c)g(c)

)
− t

c
− f,

where

h(c) =

(
µ̂K(t)− 2β(NK(t))− µ̃i(ti(c))

3σ

)2

, g(c) = Ni(t) + fc.

Note that h(c) > 0 and is non-decreasing in c (i.e., h′(c) ≥ 0), while g(c) is clearly increasing in c.

We now examine the derivative of Ri(c):

d

dc
Ri(c) =

d

dc

(
exp(h(c)g(c))− t

c

)
=

exp(h(c)g(c))

c2
[h(c)g(c) (h′(c)g(c) + h(c)g′(c))− 1] +

t

c2
.

Since g′(c) = f and g(c) = Ni(t) + fc, we further bound this as:

d

dc
Ri(c) ≥

exp(h(c)g(c))

c2
[
h2(c)g(c)g′(c)− 1

]
=

exp(h(c)g(c))

c2
[
h2(c)f(Ni(t) + fc)− 1

]
≥ exp(h(c)g(c))

c2
[
h2(1)f(Ni(t) + f)− 1

]
.

Therefore, if h(1) > 1, then h2(1)f(Ni(t) + f) > 1, which ensures that the derivative is strictly
positive for all c ≥ 1. This implies that Ri(c) is strictly increasing in c, and thus Ri(1) is the
minimizer.

19

A.5 Proof of Periodic Bounded Injection on Thompson Sampling

Algorithm 6: Periodic Bounded Injection on Thompson Sampling

Input: Attack parameter δ0, reward bound [ã, b̃], max batch size f
1 for round t = 1, 2, . . . do
2 for each non-target arm i ∈ [K − 1] do
3 if arm i has not been attacked and Ni(t) =

⌈
log T
δ20

⌉
then

4 ñi ←
⌈

µ̂i(t)−ℓ̂
′
K(t)

ℓ̂
′
K(t)−ã

·
⌈
log T
δ20

⌉⌉
;

5 Ri = min
1≤c≤⌈ ñi

f ⌉

{
1
c

(√
3δ

π2K · exp
(

(µ̂K(t)−2β(NK(t))−µ̃i(ti(c)))
2

8

)
− t
)
− f

}
;

6 nexti ← t;
7 end
8 if ñi > 0 and nexti ≤ t then
9 Inject f fake samples (i, ã);

10 ñi ← ñi − f ;
11 t← t+ f ;
12 nexti ← nexti + f +Ri;
13 end
14 end
15 end

Lemma A.4. The choice of Ri in Algorithm 6 ensures that once a batch of f fake data samples is
injected into non-target arm i, the arm will not be selected again for at least the next Ri rounds.

Proof. We aim to guarantee that arm i is not selected between successive fake sample injections. Let
ν̃i and ν̃K denote the Thompson-sampled values of arm i and arm K, respectively, after the c-th
injection. Let ti(c) = t+ (f +Ri)c denote the round before the c+ 1-th injection.

After injecting f fake samples with value ã for c periods, the empirical mean of arm i becomes

µ̃i(ti(c)) =
Ni(t)µ̂i(t) + fcã

Ni(t) + fc
.

We want to ensure that arm i is unlikely to be selected before time ti(c) by ensuring:

ν̃i(ti(c)) ≤ µ̃i(ti(c)) + γ(ti(c))

≤ µ̂K(t)− 2β(NK(t))− γ(ti(c)) ≤ ν̃K(ti(c)), (14)

where γ(t) =
√
8 log

(
π2Kt2

3δ

)
bounds the Thompson sampling deviation under event F .

Rearranging the middle inequality in (14), we require:

γ(ti(c)) ≤ µ̂K(t)− 2β(NK(t))− µ̃i(ti(c)). (15)

Solving (15) for ti(c) gives:

ti(c) ≤

√
3δ

π2K
· exp

(
1

8
(µ̂K(t)− 2β(NK(t))− µ̃i(ti(c)))

2

)
.

Therefore, we define:

Ri = min
1≤c≤⌈ ñi

f ⌉

√
3δ

π2K · exp
(

(µ̂K(t)−2β(NK(t))−µ̃i(ti(c)))
2

8

)
− t

c
− f. (16)

This ensures that after each batch of f fake samples, arm i is suppressed for at least Ri rounds under
events E and F . Hence, the learner will not select arm i between consecutive injections.

20

B Additional Experiments

B.1 Experimental Setup

Our attack strategies were evaluated on both synthetic data and real-world user-item interaction data
derived from the MovieLens dataset [16]. We considered a 10-armed stochastic bandit setup for for
all experiments.

For the synthetic setting, each arm’s reward distribution was modeled as a Gaussian with mean in the
range [0, 1] and fixed standard deviation σ = 1. We designated the arm with the lowest mean as the
target arm to be attacked. Simulations were run for up to 106 rounds using either the UCB algorithm
or Thompson sampling, with our attack strategies applied at predefined intervals.

For the real-world experiments, we used the MovieLens 25M dataset. Ratings were binarized into
a sparse user-item interaction matrix, where each entry indicates whether a user interacted with a
movie. We then extracted a submatrix comprising the 1000 most active users and the 1000 most
interacted-with movies. In each trial, 10 movies were randomly selected as arms, with the movie
having the fewest interactions chosen as the target arm. The reward of each arm was defined as the
average interaction rate (i.e., the mean of the corresponding binary column). This setup provides a
realistic approximation of reward feedback in a recommender system, enabling us to evaluate the
attack algorithms in a practical and data-driven context.

We measured the effectiveness of the attacks by tracking the cumulative pull ratio of the target arm
over T rounds. To assess both robustness and cost-efficiency, we further analyzed how the total attack
cost varies with respect to different values of δ0 and the time horizon T .

B.2 Attacks on Thompson Sampling

Figure 4: Attack Costs vs δ0 Figure 5: Attack Costs vs T Figure 6: Target Arm Selec-
tion Ratios

We evaluate our attack strategies in a simulated environment using synthetic data. Specifically, we
consider a multi-armed bandit setting with K = 10 arms, whose mean rewards follow a descending
sequence {0.9, 0.85, . . . , 0.45} to ensure clear arm differentiation. We compare the performance of
three attack methods—single injection, SBI, and PBI—against a Thompson Sampling learner. The
time horizon is set to T = 100,000 steps, and the per-round injection cap for PBI is fixed at f = 10.
To understand the trade-off between attack cost and effectiveness, we systematically vary both the
confidence parameter δ0 and the time horizon T .

Figure 4 illustrates how the average total attack cost varies with the confidence parameter δ0. As δ0
increases, the statistical threshold for suppressing non-target arms becomes more lenient, resulting
in significantly fewer fake data injections. Consequently, both the SBI and PBI strategies exhibit
a marked reduction in cost, while the Single Injection maintains a consistently low cost due to its
one-shot nature. Figure 5 examines the total attack cost as a function of the time horizon T . The cost
of SBI continues to grow with T , whereas PBI flattens out, highlighting its efficiency in long-term
scenarios. As expected, the Single Injection strategy incurs the lowest cost overall. Figure 6 tracks
the target arm selection ratio over time. All three strategies successfully induce the learner to select
the target arm in over 95% of rounds after approximately 20,000 steps and maintain this dominance
throughout the remaining horizon. These results confirm that all proposed strategies are effective in
attacking Thompson sampling, with PBI offering a favorable balance between cost and control.

21

	Introduction
	Preliminaries
	Stochastic Bandits
	Previous Threat Model and Limitations

	New Threat Model: Fake Data Injection
	Attack Strategies
	Warm-up: Injection Attacks with Unbounded Feedback
	Constrained Injection Attacks
	Simultaneous Bounded Injection
	Periodic Bounded Injection

	Experiments
	Concluding Remarks
	Proofs
	Concentration Results
	Proofs of Injection Attacks with Unbounded Feedback
	Proof of Lemma ??
	Proof of Theorem ??
	Proof on Theorem ??

	Proofs of Simultaneous Bounded Injection
	Proof of Theorem ??
	Proof of Theorem ??

	Proofs of Periodic Bounded Injection
	Proof of Lemma ??

	Proof of Periodic Bounded Injection on Thompson Sampling

	Additional Experiments
	Experimental Setup
	Attacks on Thompson Sampling

