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Abstract. This work addresses JavaScript malware detection to en-
hance client-side web application security with a behavior-based system.
The ability to detect malicious JavaScript execution sequences is a criti-
cal problem in modern web security as attack techniques become more so-
phisticated. This study introduces a new system for detecting JavaScript
malware using a Deterministic Finite Automaton (DFA) along with a
weighted-behavior system, which we call behavior DFA. This system cap-
tures malicious patterns and provides a dynamic mechanism to classify
new sequences that exhibit partial similarity to known attacks, differ-
entiating them between benign, partially malicious, and fully malicious
behaviors. Experimental evaluation on a dataset of 1,058 sequences cap-
tured in a real-world environment demonstrates the capability of the
system to detect and classify threats effectively, with the behavior DFA
successfully identifying exact matches and partial similarities to known
malicious behaviors. The results highlight the adaptability of the system
in detecting emerging threats while maintaining transparency in decision
making.

Keywords: JavaScript malware detection · Deterministic finite automata
(DFA) · Behavior-based classification · Partial match detection.

1 Introduction

Nowadays, ensuring client-side security is a critical challenge [2], as attackers
increasingly exploit vulnerabilities to manipulate, inject, or alter script’s execu-
tion [22]. Web scripts execute a range of actions, from simple tasks like locating
and changing document object model (DOM) elements to harmful tasks such
as injecting dynamic code or stealing sensitive user data [10,23]. With the in-
creasing complexity of today’s web applications and the development of sophis-
ticated evasion techniques, conventional detection methods are not enough [25].
Signature-based detection and anomaly-based detection with machine learning
(ML) classifiers are the conventional approaches which are usually not feasible
when large datasets are not available, requiring better interpretable and adapt-
able classification techniques [6].

https://arxiv.org/abs/2505.21406v1
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In order to address these challenges, this paper presents an automaton-based
classification framework for analyzing script behaviors. Script behaviors refer
to the observable actions performed by JavaScript code during its execution,
which collectively reveal the script’s functionality and potential for malicious
activity. The classification of script behavior is a fundamental step in improv-
ing web security, as it allows a deeper understanding of how attacks work [19].
Understanding attack behavior supports the detection of new versions or vari-
ances of malware scripts, facilitating the development of generalized defenses
[12]. Analyzing malicious scripts through behavior modeling makes it possible
to find common patterns that all variants of each attack type share [8]. Then,
the script’s maliciousness can be determined by comparing its execution trace
to established behavior models of known attacks.

The developed system uses scripts to model execution behaviors through
sequences that demonstrate particular activities, such as DOM element genera-
tion, storage operations or dynamic code injection. By analyzing these sequences,
it is possible to assess the degree to which the observed behaviors are aligned
with a set of known malicious patterns. This is performed with a Deterministic
Finite Automaton (DFA) system that tracks state transitions by monitoring ob-
served script behaviors is constructed. This system provides a deterministic way
to display action sequences so that it can identify whether scripts are benign,
malicious, or partially malicious.

A key innovation of the system is the use of behavior weights, which assign
significance to each script action based on its importance in an attack context.
This weighting system ensures a finer-grained risk assessment by recognizing
that certain individual behaviors inherently carry more risk than others. For ex-
ample, actions like accessing cookies or interacting with the DOM may typically
be benign, while behaviors such as injecting dynamic code or sending data are
probably more suspicious due to their potential use in malicious activities. This
weighting system has been developed in close collaboration with JavaScript ex-
perts, ensuring that the assigned weights accurately reflect the real-world threat
dynamics. By assigning higher weights to high-risk behaviors, the system pri-
oritizes their significance in the classification process, enabling a more accurate
evaluation of scripts with potential threats.

Therefore, this work proposes a novel classification system that combines
automata theory and behavior weighting. Unlike traditional classifiers, the pro-
posed method offers structured and interpretable decision making, increasing
transparency in script behavior analysis. Experimental evaluation shows that
this method is effective in distinguishing benign from malicious scripts, opening
a promising path to improve automated threat detection systems. Through this
work, our goal is to complement existing solutions by offering a behavior-based
classification system that enhances web application security against evolving
threats.

This paper is divided into several sections that provide details that could help
researchers replicate the baseline and compare it with their findings. Section 2
presents related works. Section 3 details the preparation steps and the methodol-
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ogy used to implement our system. Section 4 provides an in-depth analysis of the
results obtained in a proprietary dataset. Finally, Section 5 reviews the primary
conclusions reached and suggests potential directions for future research.

2 Related Work

The detection of JavaScript malware has relied on static, dynamic, and hybrid
analysis techniques, each with inherent limitations. Static analysis approaches
such as ZOZZLE [4] and PROPHILER [1] seek to predict maliciousness from
syntactic and lexical features extracted from JavaScript code. For example, ZOZ-
ZLE detects obfuscated malware by using statistical models over Abstract Syn-
tax Trees, while PROPHILER uses lightweight static features to classify scripts.
However, these methods often fail at highly obfuscated or dynamically generated
scripts which do not present themselves as obvious static patterns [4,1,3].

Dynamic analysis tools, such as JSAND [3], execute JavaScript in controlled
environments to extract behavioral features like re-directions, de-obfuscation,
and exploit attempts. This method detects unseen threats through runtime be-
havioral analyzes, as seen in the work of Gorji et al. [5] who clustered predictive
function calls to create behavioral signatures. However, this analysis technique
is not only computationally expensive, but also vulnerable to evasive malware
that can detect and escape sandbox testing environments. Tools like FV8 [14]
have been built to detect evasive actions in malicious scripts. FV8 changes the V8
JavaScript runtime in order to force code execution on API’s that inject dynamic
code, increasing the code coverage and visibility of malicious behaviors.

Hybrid analysis methods, such as CUJO [17] employ static and dynamic
features, but still face scalability issues and difficulties in modeling sophisti-
cated behavioral sequences. He et al. [7] developed a combined static and dy-
namic analysis system that uses Random Forest classifier to analyze feature-rich
datasets achieving high detection accuracy. The context-sensitive characteristics
of JavaScript malware remain a challenge for hybrid analysis approaches despite
recent improvements.

The integration of ML techniques within JavaScript malware detection has
significantly improved the detection process, showing superior results compared
to traditional methods [21]. A systematic review of the literature on studies from
2009 to 2019 reveals that ML-based detection models achieve greater precision
in detecting malicious JavaScript code [21], underscoring the growing reliance
on ML for malware detection. For example, Jodavi et al. [9] utilized ensemble
of support vector machine classifiers with a binary particle swarm optimization
algorithm to identify vulnerable JavaScript code, reporting f-measure over 86%.
However, despite these promising results, ML-based approaches have several
inherent limitations. Successful operation of these models depends on extensive
datasets and faces challenges when addressing new attacking methods [21]. The
black-box operational nature of numerous ML algorithms leads to complicated
understanding of detection decision [16] by analysts who need to interpret the
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rationale supporting classification results, thus diminishing practical usability in
dynamic security environments.

In contrast, automata-based models offer a structured and transparent al-
ternative by explicitly modeling the sequence of actions performed by scripts
during execution. Automata-based models have been recently explored as ways
to represent the malware’s behavior. Previous studies have used Finite State
Automaton (FSA) to represent the behavior of processes based on system calls
sequences [11,13]. For example, Sekar et al. [20] used heuristic-based methods to
describe normal behavior using FSAs, but the approach is limited to heuristics
that are predefined. Xue et al. [26] introduced a DFA to abstract and summarize
common behaviors of malicious JavaScript associated with specific attack types,
effectively identifying variants of known malware through behavioral patterns
rather than static signatures. This makes them particularly useful for detect-
ing obfuscated or polymorphic malware. The results of these studies indicate a
shift towards modeling the dynamic execution patterns of malware in order to
improve detection capabilities. Lemberger et al. [24] explored the use of register
automata and pushdown systems to describe malware specifications, in order
to capture more complex and context sensitive interactions in execution traces.
These models extend beyond DFA’s by incorporating program stack and register
values, though they still face limitations in addressing the dynamic and adaptive
nature of JavaScript malware.

Therefore, to overcome the limitations of current detection methods in han-
dling context-based behaviors and the dynamic nature of JavaScript malware,
this work introduces a novel approach focused on enhancing script behavior anal-
ysis. Although AI techniques have shown some advantages in certain cases, their
practical application in this project is not the most appropriate. In addition to
requiring a large amount of data, these methods act as ’black boxes, making
their decision-making processes opaque and difficult to interpret. In environ-
ments where transparent and timely analysis is key, lack of clarity in AI results
can impede rapid response and expert assessment. This work enhances script
behavior analysis by investigating sequential and contextual behavior patterns
during execution, aiming to identify characteristics that distinguish benign from
malicious JavaScript activities, thereby providing enhanced adaptability, robust-
ness to emerging risks, and clarity in how decisions are made.

3 Methodology

To effectively detect malicious JavaScript sequences, we begin by analyzing the
behaviors that scripts exhibit during execution. Our research started by ana-
lyzing a proprietary dataset which represents JavaScript execution details using
structured attributes including behavior identifiers alongside timestamps and ex-
ecution contexts and DOM interactions. The records include information about
the invoked methods, their associated behaviors (e.g. "Add DOM Element(s)",
"Access Cookies") and metadata about the element and script involved, labeled
as malicious or benign. From this comprehensive dataset, we extract sequences
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of behaviors, which are organized into a relational database for further analy-
sis and DFA construction. It should be noted that this research relies on our
unique dataset because no existing public dataset provides equivalent dynamic
execution details, making our proprietary dataset essential for this study.

Each sequence in the dataset is identified by a unique ID and is represented as
an ordered list of behaviors. These behaviors capture key execution events, such
as DOM manipulations ("Find DOM Element(s)", "Update DOM Element",
"Inject Code Dynamically"), storage access ("Access Browser Storage", "Access
Cookies", "Change Cookies"), and network interactions ("Send Data"). Each
script behavior receives a weight value that determines how important it is to
detect benign and malicious behaviors. The weight system assigns "Find DOM
Element(s)" and similar behaviors lower values because their occurrence is harm-
less, typically doesn’t exhibiting malicious behavior. On the other hand, the
system assigns elevated weights to dangerous behaviors such as "Inject Code
Dynamically" or "Send Data" because they act as important elements for car-
rying out malicious activity. This assignment reduces the influence of low-risk
behaviors while amplifying high-risk behaviors to create sophisticated risk as-
sessments through action weights in the evaluation process. The label of each
sequence, indicating whether it is malicious or benign, is derived directly from
the dataset.

To illustrate how the behavior weighting system works, let’s consider two
examples, one representing a benign script behavior and another demonstrating
a malicious behavior. For a benign example, let’s consider a script that performs
routine DOM manipulations to dynamically update a webpage. The sequence
of actions begins with locating a DOM element, such as a button or a div,
represented by the behavior "Find DOM Element(s)" that has a weight of 2.
The script then modifies element attributes through "Update DOM Element"
which has a weight value of 3. To conclude, the script introduces fresh DOM
content through element additions like banners or notifications which receive a
weight value of 1. In our dataset this sequence will be represented as ["Find DOM
Element(s)","Update DOM Element","Add DOM Element(s)" ]. This sequence
has the associated behavior weights of 2, 3 and 1 respectively. These standard
activities have received low weight values because they maintain typical behavior
patterns without creating significant risk.

For a malicious example inspired by a Magecart-style attack, we usually
have behaviors associated with credit card skimming and data theft [18]. At
the start of this sequence, the script normally adds harmful code to the web-
page, represented by the "Inject Code Dynamically" behavior with a weight of
4. The injected code performs searches for sensitive form fields through "Find
DOM Element(s)", associated with a weight value of 2. Once these elements are
identified, the script captures user data through the behavior "Access Input",
assigned a weight of 4, and subsequently sends the stolen data to an external
server using "Send Data" with a weight of 5. The sequence ["Inject Code Dy-
namically", "Find DOM Element(s)", "Access Input", "Send Data" ], associated
with the weights of 4, 2, 4 and 5 respectively, demonstrates a systematic progres-
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sion from start to finish of malicious activities. The sequences risk level increases
through weight assignments that focus on actions such as code injection and data
exfiltration, which distinguish it from routine system behaviors.

To model the behavior of malicious JavaScript scripts, a DFA, called behav-
ior DFA is built. Formally, a DFA is defined as a 5-tuple (Q,Σ, δ, q0, F ) where
Q is the set of states, Σ is the input alphabet, δ is the transition function from
Q × Σ to Q, q0 is the initial state and F is the set of final (accepting) states.
In the context of malicious JavaScript modeling, the state space Q represents
the distinct states that a script can transition through during execution. These
states encode significant intermediate conditions of the execution sequence, such
as DOM manipulation, data exfiltration, or script injection. The input alphabet
Σ consists of the possible execution behaviors, such as "Find DOM Element(s)",
"Inject Code Dynamically", and "Send Data". Transitions between states, gov-
erned by δ, occur based on the sequence of observed script behaviors.

The construction of the behavior DFA starts with an analysis of existing
malicious JavaScript behavioral sequences. Identified sequences serve as basic
elements in creating state transition definitions that help to recognize states
with malicious behavior characteristics. Each execution behavior corresponds
to a transition between states, where the path through the behavior DFA cap-
tures the sequence of actions. Any sequence that reaches a final state F, where
malicious execution occurs, is flagged as a potential threat. Fig. 1 present a vi-
sual representation of the proposed behavior DFA system constructed using two
JavaScript behavior sequences:

["Add Event Handler", "Set Callback", "Find DOM Element(s)", "Find DOM
Element(s)", "Find DOM Element(s)", "Add Event Handler", "Add Event Han-
dler", "Set Callback", "Find DOM Element(s)", "Find DOM Element(s)", "Find
DOM Element(s)" ] and

["Set Callback", "Find DOM Element(s)", "Find DOM Element(s)", "Find
DOM Element(s)", "Set Callback", "Find DOM Element(s)", "Find DOM Ele-
ment(s)", "Find DOM Element(s)", "Find DOM Element(s)" ].

These encoded sequences will result in [7, 5, 1, 1, 1, 1, 7, 7, 5, 1, 1, 1] and
[5, 1, 1, 1, 5, 1, 1, 1, 1], respectively. Each transition in the behavior DFA is
labeled with a behavior represented by an identifier, 7 for example corresponds
to "Add Event Handler". The state space Q consists of labeled states q0, q1,
..., q10, representing progression through the execution sequence. The behavior
DFA starts in the initial state q0, and transitions between states occur based on
the detected behavior having two final states q6 and q10.
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Fig. 1. Behavior DFA example.

To classify a new set of behaviors, the behavior DFA evaluates the sequence of
actions performed during the JavaScript execution. The behavior DFA receives
sequences of states as transitions that begin from its initial state q0. During
sequence processing, the behavior DFA advances through states according to
input behaviors which follow the behavior DFA defined transitions. The behavior
DFA detects potential maliciousness whenever a sequence reaches a final state
and results in a partially malign behavior when it ends in a non-final state.

As it is essential to identify not only exact matches to known malicious
patterns but also taking into account sequences that may share similar behaviors,
we further refine the classification process using a distance to the nearest final
state. We compute the distance to the closest final state using breadth-first search
(BFS) when a sequence does not perfectly match any known malicious pattern.
This approach calculates the shortest path from the sequence’s last state to a
confirmed malicious state, with each transition accumulating a cost based on
behavior weights. Lower distances indicate that a sequence is more similar to
a known malicious pattern, while higher distances suggest that the sequence is
less likely to be malicious. For instance let’s consider a sequence [7, 5]. Using
the behavior DFA from Fig. 1 we can see that this sequence ends in a state that
does not directly reach a confirmed malicious state. Using BFS, we calculate the
cost of the shortest path from the sequence’s last state, in this case q2, to all
malicious state. In this case, the closest final state is q6.

Then the classification algorithm will give us the probability of a given se-
quence being malicious. To do that, we calculate the match percentage, which
is the ratio of how well the sequence matches known malicious patterns. The
formula for match percentage is:

Match Percentage =

(
Total Matched Behavior Weight

Total Weight to Nearest Final State

)
× 100

In this formula, the "Total Matched Behavior Weight" represents the sum of
transition weights that lead to the current state. The "Total Weight to Nearest
Final State" represents the sum of transition weights which directly lead to the
nearest known malicious state, starting on the initial state. For example let´s
consider the sequence [7, 5], knowing that behaviors 7 and 5 have a weight of 3.
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Comparing the sequence with the behavior DFA in Fig. 1 we can see that this
sequence matches the behavior DFA, ending in state q2. The sum of behaviors
weight matched, 7 and 5, will be the "Total Matched Behavior Weight", in this
case 3 + 3, that is, 6. From this state the nearest final state is q6, thus the "Total
Weight to Nearest Final State" in this case will be the sum of all behaviors weight
from state q0 to q6 [7, 5, 1, 7, 5, 1]. Assuming that behavior 1 has a weight of
2, this results in the following sum, 3 + 3 + 2 + 3 + 3 + 2 = 16. Applying the
formula, we have 6 / 16 * 100, which will give us the results of 37.5%.

We classify a sequence as malicious if it matches a known attack pattern
perfectly, partially malicious if the sequence matches some behaviors associated
with malicious activity, or benign if there is no strong similarity. For partially
malicious sequences, the classification includes a match percentage, reflecting
the degree of similarity to known malicious patterns. In this case, the sequence
is classified as partially malicious with a match percentage of 37.5%. This result
indicates that the script exhibits some suspicious behaviors but has not yet fully
demonstrated malicious intent. It is necessary to perform additional behavioral
analysis and monitoring to assess any potential threat from the script.

The proposed approach employs known attack patterns to construct itself,
but its ability to classify behaviors partially enables it to detect unknown ma-
licious actions that are similar to existing attacks, since diverse attacks use
similar behavioral sequences. This is consistent with behavior-based detection
frameworks as demonstrated by Ravi et al. [15], where partial behavioral over-
laps, common in adversarial campaigns due to shared tactics such as privilege
escalation and code injection allowed one to generalize novel threats. The be-
havior DFA benefits from this shared behavior pattern between known attacks
to detect malicious actions that are similar from recognized patterns, thereby
strengthening its detection efficiency. Moreover, the proposed approach provides
straightforward mechanisms for adding newly discovered malicious sequences.
Through its adaptable design, the model maintains operational effectiveness by
easily updating its threat detection capabilities without necessitating a complete
redesign.

4 Results and Evaluation

The evaluation criteria for this work focus on classifying sequences based on
their match percentage, which reflects how closely a sequence aligns with the
defined malicious patterns within the behavior DFA, using the formula shown in
Section 3. A sequence is classified as malign if it exhibits a perfect match with a
known malicious pattern, as partially malign if it shows partial alignment, or as
benign if no significant alignment is observed. The behavior DFA was initially
built using known malicious sequences and subsequently tested on a proprietary
dataset. The evaluation methodology combines real-world data assessment with
a solid system to detect benign from malicious activities.

The system evaluated 1058 sequences, classifying 10 as malign, 288 as par-
tially malign and 760 as benign. The results are consistent with expectations,
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since the behavior DFA was built from 10 malicious sequences. This design guar-
antees that the behavior DFA can detect known malicious patterns with high
precision and can discriminate sequences that have partial similarities. Further
categorization of the partially malign sequences found match percentages of
18.75% (165 sequences), 30% (73 sequences), 37.5% (25 sequences) and 50%
(25 sequences) in the proprietary dataset. These variations show how closely
aligned sequences are to different malicious patterns, demonstrating that the
system can capture partial matches, demonstrating the importance of analyz-
ing sequences that share sufficient similarities with existing patterns. Attack se-
quences frequently display shared behaviors including like event handler addition
and DOM element interaction, but its important to note that these behaviors
can also exist within benign sequences.

To demonstrate the functionality of the classification approach, we present
a case study for the sequence ID 1058 containing the next sequence of behav-
iors: [7, 11, 3, 7, 11, 3]. Each number in the sequence represents an identifier
for a behavior, where, for example, 7 represents "Add Event Handler", 11 rep-
resents "Send Data", and 3 represents "Update DOM Element". This sequence
indicates that a script has implemented actions to maintain continuous commu-
nication and data extraction methods. The initial stage involves the addition
of event handlers that could serve either for user monitoring or interaction re-
sponse purposes. The script follows these actions with data transmission and
DOM element modifications, which indicates potential information exfiltration
or preparation for extra malicious activity like dynamic injections or deceptive
content display. Each of these script actions keeps repeating, which strengthens
the hypothesis that the script attempts to sustain ongoing communication and
repeated user interface modifications for interaction manipulation. However, this
sequence is classified as benign on our dataset, the repetition of adding event
handlers and subsequent interactions with the DOM suggests that the script can
also be used to perform legitimate actions, such as dynamically updating page
content or enabling user interactions. The inclusion of "Send Data" may cor-
respond to benign functionalities, such as analytics tracking or communicating
with a server for non-malicious purposes. So, it can be interesting to test this
sequence on our behavior DFA.

When processed by the behavior DFA, the match percentage was calculated
as 18.75%, classifying the sequence as partially malign. The sequence 1058,
matched the behavior DFA only on the first behavior (7). The nearest final
state found was the state q25, with the sequence [7, 5, 1, 7, 5, 1,] representing
the path from the state q0 to this state, q25. Knowing that behavior 7 and be-
haviors 5 had weights of 3 and behavior 1 has a weight of 2 we can calculate the
final match percentage. The total matched behavior weight is 3 representing the
matched behavior 7 and the total weight to the nearest final state is the sum of
the weights for the sequence leading to state q25, 3 + 3 + 2 + 3 + 3 + 2 = 16.
The final match percentage is then calculated as:

Total Matched Behavior Weight
Total Weight to Nearest Final State

× 100 =
3

16
× 100 = 18.75%.



10 P. Pereira et al.

The partial match outcomes demonstrate the behavior DFA’s capability to
analyze sequences, offering nuanced insights into their alignment with known
malicious patterns. The behavior DFA produces partial matches that measure
the varying degrees of similarity to known attack sequences. The partially malign
sequences were further analyzed based on their match percentages, revealing
different degrees of alignment with malicious behaviors and the importance of
analyzing them thoroughly:

– 18.75% (165 sequences): 165 sequences of the dataset were classified as par-
tially malign with a match percentage of 18.75%. They matched the behavior
DFA on behavior 7 ("Add Event Handler", weight: 3) with a total weight to
the nearest final state of 16. The presence of this behavior points to script a
functionality that mostly serve as standard user interface interactive mech-
anisms. However in malign scenarios its appearance may also represent a
preparatory step in a broader malicious strategy if followed by more critical
actions. The sequences show relatively low match percentage with estab-
lished malicious patterns, but suggest a monitoring need for this emerging
suspicious activity.

– 30% (73 sequences): In the entire dataset 73 sequences were classified as par-
tially malign with a match percentage of 30%. These sequences matched the
behavior DFA on behavior 5 ("Set Callback", weight: 3) with a total weight
to the nearest final state of 10. This indicates a script executing activities
which can range from harmless preparation steps to benign tasks that con-
nect event with callbacks for user interaction management or functionality
activation on web pages. However, setting a callback can also be exploited
in malicious contexts, where it serves as a step in executing further harmful
actions, such as tracking user input or hijacking event-driven functionality.
The absence of others high-risk behaviors in this sequence leans toward a be-
nign classification, though the potential for future malicious activity justify
a detailed analysis.

– 37.5% (25 sequences): A total of 25 sequences in the dataset were identified as
partially malign, exhibiting a 37.5% similarity threshold to known malicious
patterns. In these sequences the behaviors matched were 7 and 5 ("Add Event
Handler" and "Set Callback", weights: 3 each) with a total weight to the
nearest final state of 16. The addition of an event handler suggests the script
is interacting more closely with the user or the DOM. This could be entirely
benign, such as enabling custom events to improve user experience or monitor
page functionality. On the other hand, in a malign scenario, adding event
handlers may be used to monitor sensitive user inputs or trigger harmful
actions dynamically in response to user interactions. The sequence’s match
percentage reflects its potential to be either benign or malicious, depending
on its broader execution context.

– 50% (25 sequences): Of the total dataset, 25 sequences were classified as
partially malign with a match percentage of 50%. From these sequences
19 matched behaviors 5 and 1 ("Set Callback" and "Find DOM Element",
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weights: 3 and 2, respectively) with a total weight to the nearest final state of
10. These behaviors are often benign, as scripts frequently search for DOM
elements and set callbacks for event-driven programming. For example, they
might be part of a legitimate script dynamically loading content or enhancing
interactivity. However, the relatively high match percentage with malicious
patterns signals caution, as these same actions could also be used to locate
elements for data exfiltration or as part of a setup to inject harmful code.
The classification as partially malign highlights its dual potential. Other 6
sequences matched behaviors 7, 5 and 1 ("Add Event Handler", "Set Call-
back" and "Find DOM Element", weights: 3, 3 and 2, respectively) with a
total weight to the nearest final state of 16. For benign activity, these ac-
tions might represent routine DOM manipulation and event management to
enable dynamic functionality. For instance, adding event handlers and set-
ting callbacks could be part of a framework managing user inputs. The same
sequence of actions can lead to severe attacks in malign situations because it
indicates vulnerabilities exploitation and targeted payload delivery against
specific DOM elements. The 50% match rate indicates that script behavior
analysis is essential to distinguish between attacks with benign intent and
those with malicious objectives.

Overall, the system successfully shows its ability to detect different malicious
pattern alignments, measuring effectively diverse threat levels from partially
matching behaviors. Using the partial match functionality as its key strength,
the system is able to identify exact and similar patterns from known attacks,
remaining effective against evolving attack approaches. Application match per-
centage calculations from the system provide essential security information re-
garding partly suspicious sequences, supporting early threat detection without
unnecessary false alarms. The findings align with the behavior DFA’s design,
based on 10 malicious sequences, ensuring the identification of attack compo-
nents while retaining sensitivity to partial overlaps. This enables operators to
flag suspicious activities even when attacks exhibit only partial similarity to
known threats to known threats, as reviewed and validated by domain experts.

5 Conclusion

This study presents a behavior-based approach to detect malicious JavaScript
through a behavior DFA combined with behavior weighting. By modeling script
execution as sequences of weighted actions, the system detects both exact and
partial matches based on known malicious patterns, identifying evolving threats.
The weighting system ensures that high-risk behaviors, such as code injection or
data exfiltration, have greater impact on the classification process. Even though
typical benign actions are also taken into account, they have less impact on the
final classification.

The evaluation process demonstrated the system’s ability to generalize be-
yond its known malicious pattern, classifying sequences as benign, partially ma-
licious, or fully malicious based on a match percentage that represents their
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similarity to known malicious states. This capability highlights the adaptability
of the system, as it can recognize new threats that share behavioral similarities
with known attacks. Compared to traditional AI techniques, this approach of-
fers greater flexibility, resilience against new threats, and transparency in the
decision-making process. The modular design structure of the behavior DFA
enables the improvement of its set of known attacks with new attack patterns,
preserving its ongoing utility against new malware approaches, without requiring
complete retraining.

The next steps to improve over this work are focused on the implementa-
tion of subpattern detection in the behavior DFAs to enhance it’s capabilities.
By identifying malicious subquences embedded within larger, seemingly benign
workflows, the system’s granularity and sensitivity will be improved. This will
involve redesigning the automaton along with matching logic reset functionality
at each input step, letting the system identify modular attacks wherever they
occur in the sequence. Future development will also include the implementation
of external elements which use ML models or API’s to examine scripts’ vis-
ited URLs and resources. The integrated system will enhance threat detection
capabilities through its ability to identify malicious redirects or compromised ex-
ternal resources. These improvements will further contribute to the security and
robustness of web applications against the evolving JavaScript-based threats.
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