
ar
X

iv
:2

50
5.

21
26

3v
1

 [
cs

.C
R

]
 2

7
M

ay
 2

02
5

JavaSith: A Client-Side Framework for Analyzing
Potentially Malicious Extensions in Browsers, VS Code,

and NPM Packages

Avihay Cohen

May 2025

Abstract

Modern software supply chains face an increasing threat from malicious code hid-
den in trusted components such as browser extensions, IDE extensions, and open-
source packages. This paper introduces JavaSith, a novel client-side framework for
analyzing potentially malicious extensions in web browsers, Visual Studio Code (VS-
Code), and Node’s NPM packages. JavaSith combines a runtime sandbox that emulates
browser/Node.js extension APIs (with a “time machine” to accelerate time-based trig-
gers) with static analysis and a local large language model (LLM) to assess risk from
code and metadata. We present the design and architecture of JavaSith, including
techniques for intercepting extension behavior over simulated time and extracting sus-
picious patterns. Through case studies on real-world attacks (such as a supply-chain
compromise of a Chrome extension and malicious VSCode extensions installing cryp-
tominers), we demonstrate how JavaSith can catch stealthy malicious behaviors that
evade traditional detection. We evaluate the framework’s effectiveness and discuss its
limitations and future enhancements. JavaSith’s client-side approach empowers end-
users/organizations to vet extensions and packages before trustingly integrating them
into their environments.

1 Introduction

Malicious code injection in trusted software components has emerged as a major cyberse-
curity threat. In particular, browser extensions, IDE extensions, and open-source packages
have been weaponized as vectors to infiltrate systems via supply chain attacks. Recent inci-
dents underscore the scale of the problem: in late 2024, a compromised Chrome extension
update injected data-stealing code and affected over 400,000 users[5], as part of a broader
campaign compromising 35 extensions and impacting 2.6 million users[4]. Likewise, in 2025,
researchers discovered ten malicious VS Code extensions (masquerading as popular tools
with hundreds of thousands of installs) that surreptitiously deployed cryptocurrency miners
on developers’ machines[8]. These examples highlight how threat actors leverage the trust
and reach of extensions and packages to compromise large user bases. Alarmingly, such
malicious extensions often evade official store security checks – for example, the malicious

1

https://arxiv.org/abs/2505.21263v1

Chrome extension update in the Cyberhaven incident passed Google’s Web Store review
process.

Traditional defenses struggle against these emerging threats. Signature-based antivirus
rarely flags novel extension malware, and permission-based vetting is insufficient when at-
tackers find creative ways to abuse allowed capabilities. Supply chain attacks via extensions
and packages have surged by 431% in recent years[7], indicating that adversaries are actively
adapting to exploit blind spots. The need for better tooling to analyze and detect malicious
behavior in extensions before damage occurs is evident.

In this paper, we introduce JavaSith[1], a client-side framework that empowers re-
searches/organizations to scrutinize browser extensions[1], VSCode extensions[2], and NPM
packages[3] for malicious intent. Unlike server-side scanning services, JavaSith runs locally in
the user’s browser (for privacy and immediacy), integrating multiple analysis techniques: (1)
a dynamic sandbox entirely in the browser execution context that safely executes extension
code in an instrumented environment, emulating browser extensions api or Node.js APIs
so that all invoked calls and behaviors can be observed; (2) a time machine module that
can fast-forward or simulate time to trigger time-dependent logic (e.g., delayed or periodic
malicious payloads); (3) a code parser module that parsed javascript code and converts it
to AST for further insights (e.g function names , variables, invoked APIs ...) (4) a static
analysis pipeline incorporating tools like Retire.js[14] (to detect known vulnerable libraries)
and custom detectors for obfuscation or suspicious API usage; (5) a lightweight on-device
WebLLM [13] (Web-based Large Language Model) that assesses risk by analyzing the ex-
tension’s source code, metadata, and even privacy policy text to identify potential red flags
in plain language; (6) a user-friendly web-based GUI that presents the comprehensive anal-
ysis results, including raw logs, flagged patterns, and LLM-generated summaries of risky
behavior.

Our aim is to provide a holistic analysis that can catch complex, stealthy malicious be-
haviors that single techniques might miss. For instance, dynamic monitoring can reveal if an
extension tries to exfiltrate data or fetch external payloads at runtime, while static inspec-
tion can identify hidden backdoors or suspicious strings (like hardcoded webhook URLs or
encrypted payloads). The inclusion of an LLM-based analysis offers a higher-level interpre-
tation of the findings, bridging the gap between raw technical signals and an understandable
risk assessment for the user.

We validate JavaSith through case studies of known malicious extensions and packages.
We show that JavaSith would have flagged the malicious Chrome extension involved in the
Cyberhaven breach by detecting its cookie-stealing code and unusual network behavior, even
if it remained dormant until a specific time window. In the case of VSCode cryptominer
extensions, our sandbox observes the download of a PowerShell script and subsequent instal-
lation of a hidden cryptominer, actions that we surface as severe warnings to the user. We
also demonstrate JavaSith on an example malicious NPM package that uses obfuscated in-
stall scripts, illustrating how combining static and dynamic analysis can uncover the hidden
payload.

In summary, the contributions of this work include:

• JavaSith Framework: We design and implement a novel client-side framework to
analyze browser extensions, VSCode extensions, and NPM packages for malicious be-

2

havior. JavaSith combines runtime sandboxing, time acceleration, static analysis, and
LLM-based code understanding in a unified tool that is completely client based.

• Runtime Sandbox with Time/Events Simulation: We introduce a sandbox that
emulates the targeted runtime (browser or Node) and intercepts extension API calls,
DOM manipulations, and network requests. A built-in “time machine” can acceler-
ate timers and simulate future dates to trigger logic bombs or delayed payloads that
would otherwise require long real-time waiting. the sandbox also simulates different
set of events like page navigation to sensitive domains like login.microsoftonline.com or
facebook.com and then monitor the extension code for malicious bahviour like reading
cookies / injecting javascript / ...

• Integrated Static + LLM Analysis: JavaSith integrates static vulnerability scan-
ning (using tools like Retire.js for known vulnerable libraries[14] and custom pattern
matching for suspicious code constructs) with a WebLLM-based analysis that sum-
marizes and highlights risky behavior from the extension’s source code and metadata.
By running the LLM locally in the browser via WebGPU, we ensure privacy while
leveraging advanced reasoning over code.

• Evaluation on Real Attacks: Through detailed case studies (Chrome extension
supply-chain attack, malicious VSCode cryptominer extensions, and others), we demon-
strate that JavaSith can detect malicious behaviors (cookie/session theft, unauthorized
network beaconing, cryptomining installation, credential exfiltration via webhooks,
etc.) that might evade detection by conventional means. We measure JavaSith’s ef-
fectiveness in triggering hidden behaviors and its performance overhead on sample
extensions.

• Tool for the Community: We provide a browser-based graphical interface that
allows users to navigate analysis results, including raw execution traces, flagged security
issues, and explanatory risk reports generated by the LLM. This interface lowers the
barrier for developers and security analysts to vet third-party extensions and packages,
complementing official marketplace security measures.

2 Background and Motivation

Browser extensions and plugin-based software ecosystems greatly expand functionality but
also inherently expand the attack surface. Here we outline how browser and VSCode exten-
sions operate, the current security measures in place, and the ways attackers have exploited
these platforms, motivating the need for JavaSith.

2.1 Extension Architecture and Security Model

Browser Extensions: Modern browsers (Chrome, Firefox, etc.) allow extensions to run
privileged scripts with capabilities beyond normal web pages. Extensions typically consist of
a background script (with persistent privileges), content scripts injected into web pages, and

3

optional UI components. They declare permissions (such as access to network, cookies, tabs,
or specific domains) in a manifest. While browsers enforce some isolations (content scripts
are isolated from page scripts), a granted permission like ‘cookies‘ or ‘¡all urls¿‘ can let an
extension read sensitive user data or modify web content. Security of extensions largely
relies on user trust and store vetting, as once installed, an extension’s code executes with
the user’s privilege and can perform any allowed actions. Notably, extension updates are
automatic, meaning an attacker who gains control of an extension’s distribution (e.g., by
hijacking a developer account) can push malicious code to all users silently.

VS Code Extensions: VSCode extensions run inside an extension host process with
the same privileges as the user running VSCode[9]. This means a VSCode extension can
read/write any file on the machine, make network requests, and run external processes.
VSCode has introduced a few safeguards (for instance, prompting the user to trust the pub-
lisher of an extension on first install[9], and a Workspace Trust feature that can restrict
automatic code execution in untrusted projects). The VS Code Marketplace also performs
automated malware scanning and even dynamic analysis in a sandboxed environment for
submitted extensions[9]. However, as recent incidents show, malicious extensions still slip
through these defenses. Because VSCode extensions are essentially Node.js programs, at-
tackers can leverage Node APIs (child processes, filesystem, etc.) within an extension. This
broad capability makes it challenging to sandbox extensions without breaking functionality.

NPM Packages: The NPM ecosystem for Node.js allows developers to pull in millions
of packages. Malicious actors have published trojan packages (often via typosquatting or
by compromising maintainer accounts) that execute harmful code during installation or
runtime. NPM packages can include install scripts that run upon ‘npm install‘, giving
immediate execution of code on the developer’s machine. There is minimal sandboxing—if
a developer installs a malicious package, it can, for example, read environment variables (to
steal secrets), modify files, or download and execute binaries. While NPM and services like
GitHub have security advisories and automated scans for known malware, novel attacks can
bypass signature checks through obfuscation or multi-stage payloads.

2.2 Threats and Notable Incidents

Supply chain attacks leveraging these extension ecosystems have grown in frequency and
sophistication. Attackers exploit the implicit trust users place in extensions and the difficulty
of manual review at scale.

One prominent example is the Cyberhaven Chrome extension incident in December 2024.
Attackers phished a Chrome Web Store developer credential, allowing them to push a ma-
licious update to a legitimate extension[5]. The malicious version added hidden scripts
(‘worker.js‘ and ‘content.js‘) to exfiltrate cookies, session tokens, and user data, particularly
targeting Facebook accounts[5]. The timing was deliberate—released during a holiday pe-
riod when oversight was low. This single extension compromise affected over 400,000 users
and formed part of a larger campaign across dozens of extensions[4]. Because the malicious
code was blended into an otherwise normal extension and even passed store review, victims’
security tools did not flag it. Traditional network security only noticed anomalies when the
extension began beaconing out to a suspicious domain disguised to look legitimate (e.g.,
“cyberhavenext.pro”).

4

In the VS Code ecosystem, a recent campaign in April 2025 saw multiple malicious exten-
sions uploaded to the Marketplace under guises like “Prettier” or “Golang Compiler.” These
extensions included code that, upon activation, fetched a remote PowerShell script from an
attacker-controlled server and executed it to install a Monero cryptominer[8]. Cleverly, after
running the malicious payload, the extension would install the real legitimate extension it
impersonated, to avoid arousing user suspicion. The PowerShell script took extensive steps
to persist and hide itself: disabling Windows security services, adding scheduled tasks, and
launching the miner with elevated privileges. Investigators found that the attacker’s server
contained hints of a parallel campaign targeting NPM packages as well, illustrating how
attackers reuse tactics across ecosystems.

Another case involved VSCode extensions designed to steal information. ReversingLabs
uncovered several extensions (e.g., ‘clipboard-helper-vscode‘, ‘codegpt-helper‘) that quietly
siphoned off sensitive data via web requests to a hardcoded Discord webhook URL[10]. For
instance, one such extension monitored the user’s clipboard and, whenever text was copied,
sent the clipboard content to the attacker’s Discord channel. In another variant, an extension
targeted credentials by reading an “easycode.openAI ApiKey“ setting (which might store an
API key for a code assistant) and exfiltrated it via Discord as well. Discord webhooks are
a common exfiltration mechanism for malware, since traffic to Discord may appear benign
and can bypass some firewall rules. The presence of a Discord webhook URL in extension
code is therefore a strong indicator of malicious intent.

The NPM package ecosystem has similarly seen sophisticated malware. For example, a
malicious package ‘os-info-checker-es6‘ was discovered in 2025 that used invisible Unicode
characters in its source to hide malicious logic, and it stored its command-and-control URL
in a Google Calendar invite as an obfuscation tactic[11]. Initially, this package was uploaded
as a benign utility, but a later update introduced platform-specific binaries and obfuscated
install scripts that pulled in a final payload from the hidden C2 link[11]. The malware would
collect OS details and likely attempt to download additional components. Such tricks defeat
naive static scans and show why dynamic analysis (executing the package in a safe sandbox)
is invaluable.

These incidents motivate the design of JavaSith. In each case, either dynamic behavior
(network calls, timed triggers, environment changes) or static indicators (suspicious strings,
obfuscated code) were present that could tip off a careful analysis. Official protections (like
Chrome Web Store and VS Code Marketplace scans) were bypassed or not comprehensive
enough. A defense-in-depth approach on the user side, where the extension or package is
vetted in a controlled environment with multiple detection layers, can significantly reduce
the risk of installing such malicious components.

3 Related Work

Prior work on detecting malicious extensions and packages spans both industry tools and
academic research. Browser extension security has been the focus of several static and
dynamic analysis systems. Google’s Chrome Web Store employs automated scanning and
manual review, but as noted, attackers increasingly design malware to evade these. Third-
party tools like CRXcavator have emerged to evaluate Chrome extensions by analyzing their

5

code and metadata for risk factors (e.g., dangerous permissions, suspicious API usage).
Similarly, in the Node ecosystem, package auditing tools (e.g., npm audit) and services like
Socket.dev attempt to flag malicious or vulnerable packages by scanning for known indicators
such as obfuscated code or unusually broad permissions.

Academic research has explored detecting malicious browser extensions using both static
and dynamic techniques. Some approaches analyze the differences between extension versions
(updates) to spot injected malicious code, while others use information flow analysis to
check for suspicious data exfiltration. There have also been machine learning methods using
extension metadata, descriptions, and permission sets to classify likely malware. However,
these methods often suffer from high false positives or can be evaded by clever attackers.

For VS Code extensions, the threat is relatively newer. The VS Code team’s introduction
of publisher trust verification and sandbox tests[9] is a direct response to the possibility of
malicious extensions. Yet, as the April 2025 cryptominer case shows, dynamic detection can
miss payloads that trigger only under certain conditions (e.g., post-install or requiring user
action). ReversingLabs’ research[10], as well as Check Point’s blog posts, have shed light on
early malicious VSCode extensions, primarily by manually analyzing suspicious extensions
found in the wild.

Our work is also related to general malware sandboxes and dynamic analysis environ-
ments commonly utilized for analyzing executables and mobile applications. Existing tools,
such as Cuckoo Sandbox and various mobile app sandboxes, execute code within isolated
environments to detect malicious behaviors. JavaSith adopts a similar methodology but ex-
tends it specifically to the domain of browser extensions and software packages, addressing
unique challenges such as accurately simulating browser or Visual Studio Code (VSCode) en-
vironments within a browser-based analysis setting. A distinguishing aspect of our approach
is the incorporation of recent advancements in machine learning, particularly on-device Large
Language Models (LLMs), to facilitate dynamic analysis. While machine learning-based code
analysis is actively explored in research—with previous works leveraging neural networks for
vulnerability detection or malware classification—our framework introduces a novel applica-
tion by employing a local LLM at runtime. This enables the interpretation of an extension’s
intended functionality and associated risks dynamically. Moreover, the LLM module eval-
uates the extension’s privacy policy and correlates its stated intentions against observed
behaviors. Specifically, if an extension claims in its privacy policy not to transmit sensi-
tive user data but the sandbox detects sensitive data exfiltration, the LLM can explicitly
highlight this contradiction, thus providing a strong indicator of potentially malicious intent.

In summary, JavaSith differentiates itself by unifying multiple analysis techniques tai-
lored to the extension/package context and running entirely client-side. This avoids the
privacy concerns of uploading code to cloud scanners and allows integration directly into
user workflows (e.g., a developer could run JavaSith on a new VSCode extension before
enabling it, or on a library before adding it to a project). Our contributions complement
existing store-level protections by focusing on the end-user’s ability to independently verify
code trustworthiness.

6

4 Design and Architecture of JavaSith

JavaSith comprises several coordinated components that together perform comprehensive
analysis of an extension or package. Figure 1 provides an overview of the architecture. The
core components include: (i) the Emulated Runtime Sandbox, (ii) the Time Machine, (iii)
the Static Analysis Engine, (iv) the WebLLM Risk Analyzer, and (v) the Results Dashboard
GUI. We describe each in detail below.

Figure 1: High-level architecture of JavaSith. The framework ingests extension or package
code, then performs static analysis, dynamic execution in a sandbox (with time simulation),
and LLM-based evaluation. A GUI allows the user to review detailed findings.

4.1 Emulated Runtime Sandbox

At the heart of JavaSith is a sandbox environment that can execute the code of the extension
or package in question, but in an instrumented manner that logs all interesting actions.
Because we target three contexts (browser, VSCode, Node package), the sandbox must
flexibly emulate each environment:

7

Figure 2: High-level architecture of JavaSith Novel Sandbox.

• For browser extensions, JavaSith emulates the Chrome extension runtime. We
provide implementations of the Chrome extension API (such as chrome.runtime,
chrome.storage, chrome.tabs, etc.) in a controlled isolated context. Content scripts
from the extension are loaded into a separated isolated execution context (using, for
example, SES compartment [12]), and background scripts are run in isolated context
that mimics service worker context. We intercept calls like chrome.webRequest or any
network fetches, file access, or cookie access. For each API call, the sandbox logs the
call details (function name, arguments) and can optionally block the real effect (e.g.,
instead of actually deleting a file or exfiltrating data, we record the attempt).

• For VSCode extensions, we create a fake VSCode extension host environment. This
involves providing a stub implementation of the VSCode extension API (the vscode

module) so that when the extension activates, it doesn’t throw errors for missing APIs.
We run the extension’s activation function in a emulated vm context (sandbox) so that
we can monitor its behavior. Any calls to Node built-ins (like fs, child process) are
tracked. The sandbox here closely mirrors an actual VSCode extension host but ensures
no harmful actions escape (e.g., file writes are redirected to a temporary sandbox

8

filesystem, network calls are intercepted and logged or stubbed out, etc.).

• For NPM packages, since these are plain Node.js modules, the sandbox essentially
runs npm install and then imports the package in an isolated environment. We pay
special attention to the install/postinstall scripts: JavaSith will execute those in the
sandbox and monitor their behavior. Similarly, if the package exports functions, we
can optionally exercise some of them if known (though automated function exercising
is limited; we focus on installation and initialization behaviors by default).

To implement the sandbox, we leverage SES Compartments [12]. JavaSith can override
global functions like setTimeout, XMLHttpRequest/fetch (in the browser context), and
child process.exec (in Node) to hook into their behavior. For instance, network requests
are routed through a proxy method that logs request URLs and data. File system calls are
redirected to a in memory sandbox directory.

The sandbox design emphasizes both monitoring and safety. Because our sandbox runs
within a browser context, it benefits from the same robust isolation provided by the browser’s
native sandboxing mechanisms. This ensures that if the code attempts something destructive
(such as wiping the file system or launching ransomware), it cannot affect the host system.
In practice, extensions typically won’t attempt such overt destructive actions—since these
would immediately expose their malicious intent—but they might attempt subtle actions
like quietly exfiltrating data, which we can safely observe and monitor within this isolated
environment.

All events recorded by the sandbox are timestamped and categorized (e.g., “Network
request to X,” “Read file Y,” “Called chrome.tabs.query,” etc.). These events form a timeline
of the extension’s behavior during analysis.

4.2 Time Machine Module

Malicious extensions may deliberately delay their payloads or trigger them only under specific
timing conditions (for example, only after being installed for a week, or on a certain date, or
gradually over time). To catch such logic, JavaSith includes a Time Machine module that
can manipulate the perceived time within the sandbox.

The Time Machine hooks timer functions and date/time APIs. For instance, setTimeout
and setInterval calls are intercepted so that the analysis can fast-forward their execution.
We replace the standard timers with our own that can simulate the passage of time. Similarly,
reads of the system clock (e.g., Date.now()) can be overridden to return a simulated time
if needed.

In practice, the user (or the system automatically) can advance the sandbox clock or
trigger scheduled events. For example, if the extension sets a timeout to execute after 24
hours, our system will not literally wait 24 hours; instead, it will fast-forward the clock and
immediately execute the timeout callback. Listing 1 shows a simplified pseudocode of how
this works.

Listing 1: Simplified Time Machine Hook for Timers

const or ig ina lSetTimeout = g l oba l . setTimeout ;
g l oba l . setTimeout = func t i on (fn , delay , . . . a rgs) {

9

l og (‘ Timer s e t f o r ${delay }ms −> f a s t−forwarded execut ion . ‘) ;
// Immediately (or a f t e r a shortened de lay) execute the ca l l ba ck :
r e turn or ig ina lSe tTimeout (fn , Math . min (delay , MAXWAITMS) , . . . a rgs) ;

} ;

We also handle recurring timers (setInterval) similarly, and allow manual time jumps
(e.g., simulate that one week has passed) which can affect code using Date or new Date().

A special case of time-triggered logic is where malicious code checks the current date
against a threshold (a logic bomb). For instance, “only execute payload if current date ¿
June 1, 2025”. The Time Machine can detect when code is checking the date and optionally
manipulate the returned date. However, identifying such checks reliably via dynamic means
can be tricky unless the code executes that branch; this is where static analysis (scanning for
date references) can complement, or a user can instruct the sandbox to set a custom current
date.

By enabling time control, JavaSith can trigger behaviors that would otherwise require
patience or might never occur during a short dynamic run. We found this particularly useful
in the Chrome extension case study, where the extension only activated data theft when
certain conditions were met (e.g., a specific site was visited during a certain time window).
By simulating those conditions, including the passage of time and triggering of alarm events,
we increase coverage of the extension’s potential behaviors.

4.3 Static Analysis Engine

While dynamic analysis is powerful, it may not execute every code path. Thus, JavaSith per-
forms static analysis on the extension/package code both before and after dynamic execution.
The static analysis engine has several facets:

Dependency and Vulnerability Scanning: Using the Retire.js database, JavaSith iden-
tifies known vulnerable libraries embedded in the code[14]. For example, if an extension
bundles an outdated jQuery version with a known XSS vulnerability, that might not be
malicious per se, but it raises the risk profile. More pertinently, if an extension includes a
library that is known to be commonly used in malware (for instance, a specific cryptominer
WebAssembly module or a credential-stealing snippet), that is a red flag.

Heuristic Pattern Analysis: We scan for patterns like suspicious function names or
usage of dangerous APIs. For browser extensions, usage of eval or dynamic code generation,
heavy obfuscation (e.g., a high ratio of non-alphanumeric characters or long unreadable
variable names), or references to external URLs (especially if hard-coded) are noteworthy.
For VSCode/Node, usage of child process.exec or launching PowerShell, or the presence
of encoded payload strings (like large Base64 blobs) are flagged. For instance, in the malicious
VSCode extensions, the code snippet that fetched a PowerShell script from ‘asdf11.xyz‘ would
be caught by a rule looking for network calls to uncommon domains.

We also check for Discord webhook URLs (‘discord.com/api/webhooks‘) since, as noted,
that is strongly correlated with data-stealing extensions. If found, we mark the extension as
likely exfiltrating data.

10

Privacy Policy and Metadata Check: Many extensions provide a privacy policy or
description. We ingest these (if available in the extension package or store metadata) and
apply NLP (and the onboard LLM) to see if the text aligns with observed behaviors. For
example, an extension claiming to never collect personal data while the code clearly accesses
cookies and sends data out is suspicious. Although this is not purely static code analysis, it
is analysis of static metadata that can reveal inconsistencies or misrepresentations.

The static engine produces a report of findings: e.g., “Found reference to Discord webhook
URL,” “Contains base64-encoded binary of 200KB (possible embedded payload),” “Uses
eval on obfuscated string,” “Bundles jQuery v1.12.0 with known vulnerabilities,” etc. Each
finding is cross-referenced with source file and line if possible.

These static results feed into the next component, the LLM analyzer, and also directly
to the GUI for expert users to inspect.

4.4 WebLLM-Based Risk Analyzer

JavaSith integrates a local large language model to synthesize the findings from dynamic
and static analysis and provide a human-readable assessment of the extension’s risk. This
component leverages WebLLM [13], a framework that allows running moderately large LLMs
(such as a 7B-13B parameter model) directly in the browser via WebGPU acceleration. We
fine-tuned or prompt-engineered the LLM for security analysis tasks, guiding it to output a
structured review of the extension.

The input to the LLM includes:

• A summary of static findings (e.g., “This extension accesses cookies and contacts
cyberhavenext.pro domain”).

• A summary of dynamic findings (e.g., “During execution, the extension made 5 network
requests to suspicious domains and attempted to install an external program.”).

• Possibly snippets of de-obfuscated code or formatted listings of key functions for the
LLM to reason about.

• The extension’s manifest and description, so the LLM knows the purported purpose.

• The extension privacy policy , so the LLM can give a privacy risk score.

Given this context, the LLM is prompted with something like: “Analyze the provided
extension behavior and code for potential malicious intent. Explain what the extension is
doing and why it may be dangerous. Rate the risk level as High, Medium, or Low, with
reasoning.” The model then generates text such as: “This Chrome extension appears to
steal user session cookies and send them to an external server (cyberhavenext.pro) under the
guise of a legitimate domain. It also strips security headers (Content-Security-Policy) from
websites, which is behavior indicative of trying to enable further attacks. This behavior is
highly malicious as it can lead to account takeover. Risk level: High.”

The local LLM approach ensures that even sensitive code (perhaps proprietary) can be
analyzed without sending it to a cloud API, alleviating privacy concerns. The trade-off is
that the model we can run in-browser is smaller than state-of-the-art, but we found that

11

an open-source model fine-tuned for code analysis is effective at summarizing suspicious
behaviors and pointing out dangers that a layperson might not immediately glean from raw
logs.

The LLM’s output is not taken as ground truth but as an aid. It might occasionally
misinterpret code; therefore, we always pair its narrative with the factual raw data from
other modules. Still, it adds significant value in translating technical signals into a summary
(much like an analyst’s report). Users can thus see something like “LLM Analysis: This
extension likely steals your session tokens and data from certain websites” alongside the
concrete evidence.

4.5 Graphical User Interface (GUI)

JavaSith operates within the client environment (web browser) and presents analysis results
through a state-of-the-art graphical user interface (GUI). The GUI is integral for usability,
as it effectively organizes analytical outputs into distinct tabs:

• An Overview tab providing a comprehensive summary of all metadata gathered from
the relevant store or manifest.

Figure 3: Overview Tab

• A Vulnerabilities Summary highlighting detected vulnerabilities within the code.

• A Permissions Summary (if applicable) detailing each permission required by the
extension with extensive descriptions.

• A File Explorer enabling users to view all files along with their complete contents.

• A Code Analysis tab displaying each file alongside detailed Abstract Syntax Tree
(AST) analyses.

12

Figure 4: Vulnerabilities Tab

Figure 5: Permissions Tab

• A Static Analysis tab showcasing all detected code patterns.

• A Sandbox Analysis providing comprehensive insights derived from sandbox execu-
tions.

• An LLM Analysis tab evaluating both risk factors and privacy policies.

The GUI supports interactive analysis, allowing users to toggle specific simulation pa-
rameters and re-execute analyses—for instance, simulating future dates or specific site visits
(e.g., simulating a visit to facebook.com while the extension runs). Such interactions trigger
sandbox re-evaluations under new conditions, thereby dynamically updating results. In our
prototype, these interactive features enable users to explore ”what-if” scenarios, examining
potential behaviors of extensions under varying circumstances.

Designed primarily for developers and security analysts individuals already concerned
with extension security, the interface ensures usability through clear communication. How-

13

Figure 6: File Explorer Tab

Figure 7: Code Analysis Tab

ever, the LLM-generated summaries and explicit labeling of issues (e.g., “Detected data ex-
filtration” or “Uses high-risk API: child process”) also facilitate informed decision-making
among less experienced users.

Furthermore, JavaSith is structured to support workflow integration. Potential imple-
mentations include a meta browser extension capable of scanning other extensions or a
Visual Studio Code (VSCode) extension performing installation-time scans to notify users
promptly. While complete workflow integration remains reserved for future research, the
underlying architecture readily supports these capabilities.

5 Technical Implementation

JavaSith is implemented using a combination of TypeScript, JavaScript, and WebAssembly
to achieve optimal performance and security. The sandbox environment leverages Secure
ECMAScript (SES) [12], a hardened subset of JavaScript designed to facilitate secure isola-
tion by enforcing strict confinement and capability-based security models. Specifically, SES
allows JavaSith to accurately emulate and isolate browser and Visual Studio Code (VSCode)
contexts within a robust and controlled execution environment. Key technical challenges and

14

Figure 8: Static Analysis Tab

how we addressed them are discussed below.

5.1 Sandboxing and API Hooking

To intercept extension API calls, we created wrappers for Chrome’s extension APIs. For
example, the extension might call chrome.storage.local.get; our wrapper intercepts this,
logs it, possibly feeds it predefined dummy data (since in the sandbox there is no real
prior storage unless we set some), and then returns a promise/result as expected. This
required implementing enough of the Chrome API surface to satisfy typical extensions. We
focused on APIs commonly used by malicious extensions in past cases: chrome.storage,
chrome.cookies, chrome.declarativeNetRequest (which was used in the Nimble Capture
case to strip CSP), and basic chrome.tabs/chrome.runtime messaging.

For VSCode, we created a mock vscode module that has stubs for the key VSCode API
objects (like window, workspace, commands). If an extension tried to register a command or
read the active text editor, we either emulate it or log the access. We allowed certain benign
calls to go through (like writing to an output channel just writes to a buffer we capture).

Network requests were captured by setting a global XMLHttpRequest and fetch in the
sandbox (for browser context) that intercepts the URL. In Node context, we monkey-patched
http.request and related methods. All captured network traffic is recorded, and by default
we allow it to complete (so that if an extension downloads a payload, we fetch it into the
sandbox) but with options to block (to avoid possibly contacting a live malicious server if
not desired—though our execution is in a isolated container, contacting the real server could
alert the attacker or cause unintended effects. We often use a setting to redirect such calls
to a dummy local server or record them without actually fetching).

15

Figure 9: Sandbox Analysis Tab

5.2 Time Control Mechanism

The Time Machine required control over JavaScript’s event loop. We used Node’s ability
to manipulate the event loop with libraries and a custom scheduler for timers. In practice,
we intercept setTimeout/setInterval as shown earlier, and maintain a priority queue of
scheduled tasks. If the user chooses to fast-forward time, we immediately execute all tasks in
the queue. When the sandbox is running normally, we by default fast-forward any timer with
delay beyond a threshold (say 1 second) to not slow analysis. However, we also incorporate
a pseudo-real-time mode for observing behavior that is time-sensitive (like short intervals or
animations, though those are rare in malicious code).

One tricky scenario was recursive scheduling: some malware might schedule a short timer
repeatedly to create a long delay (like schedule a 1-minute timer 60 times to wait an hour).
Our time acceleration can handle this by jumping in increments.

We tested the time machine on benign extensions that use alarms (Chrome’s chrome.alarms
API) and confirmed we can trigger those immediately as well by hooking the alarm creation
and triggering the callback.

5.3 LLM Integration Details

We integrated WebLLM by loading a model (in our test, a 8B parameter variant of LLaMA
fine-tuned on code explanations) in the browser. The model runs at a few tokens per second
on a modern GPU; generating a full analysis (300 tokens) takes under a minute, which is
acceptable post-analysis. Because loading such a model can be heavy, we make the LLM
step optional or on-demand. In a headless mode (no GUI), JavaSith can output a textual
report including the LLM’s summary, and this can be skipped for quick runs.

We faced some token limit issues with the LLM context; to handle large code input, we do
not feed the entire codebase. Instead, we feed summary info and only relevant code excerpts

16

Figure 10: LLM Analysis Tab

(the ones with findings or suspicious patterns). This keeps the prompt size manageable.
Improving the prompt engineering and possibly fine-tuning specifically for extension analysis
is future work.

5.4 Performance Considerations

Running full dynamic analysis on an extension can range from a few seconds to a few minutes,
depending on complexity. We instrumented the sandbox to track performance overhead.
For example, a simple extension that just adds a button to Gmail was analyzed in under
5 seconds, whereas an extension that loads a large library and runs multiple background
tasks took 30 seconds with time acceleration (because it scheduled many tasks). The
overhead of logging and hooking was roughly a 2x slowdown on average compared to native
execution—this is acceptable since we are not in a real-time scenario.

Static analysis (Retire.js scanning and regex checks) is very fast (a few seconds even
for large codebases). The LLM analysis is the slowest single component (as noted, up to
a minute), but this can run in parallel with user reviewing other results, or be skipped for

17

quick runs.
We also considered the size of extensions: some have megabytes of assets (images, etc.).

We ignore non-code assets aside from noting their presence. If an extension bundles minified
code, our static analyzer tries deobfuscation (e.g., prettifying, or at least highlighting that
it’s minified/obfuscated). Extremely large code (like a big minified library) is flagged but
not fully parsed to avoid slowdowns.

Memory overhead for sandboxing can be a factor if an extension is doing heavy in-memory
tasks. Our sandbox by default limits memory (via container constraints) to prevent runaway
processes.

6 Case Studies of Known Attacks

We applied JavaSith to analyze scenarios inspired by real-world attacks to illustrate its
capabilities. In each case, we either reproduced the malicious code from reports (when
available) or created a lightweight approximation based on descriptions in the literature,
and then ran our tool to see if it would catch the malicious behavior.

6.1 Browser Extension Supply-Chain Attack (Cyberhaven Inci-
dent)

For this case, we obtained code snippets resembling the malicious update of the Cyberhaven
Chrome extension as described by Darktrace and others. The malicious extension’s behavior
included:

• Exfiltrating cookies and session storage from certain high-value websites (Facebook,
Google Ads, etc.).

• Beaconing out to an attacker-controlled domain that impersonated a legitimate service.

• Possibly disabling security features (one part of the campaign involved removing Con-
tent Security Policy headers).

We ran JavaSith on this code in our browser extension sandbox. The static analysis
immediately flagged the presence of code accessing browser cookies and the use of an XML-
HttpRequest posting data to a suspicious URL (the domain cyberhavenext.pro was on our
known-malicious list from OSINT). The static analyzer also highlighted that the code was
specifically checking if the current site was facebook.com (a domain trigger).

During dynamic execution, we simulated visiting facebook.com by triggering page nav-
igation events in our sandbox browser context while the extension was active. JavaSith’s
content script monitor captured the extension injecting a script into that page and reading
document cookies. The sandbox blocked the actual network exfiltration but logged the at-
tempt: “POST request to https://cyberhavenext.pro/... with payload size 5KB”. This
would be a clear red flag to any analyst.

We also simulated time by setting the system date to December 25, 2024, to match the
incident timing. (In this malware, time of year was not a coded trigger, it was just the

18

attackers’ choice of holiday timing. But if it had a date check, we could have adjusted
accordingly.)

The LLM risk analysis for this case produced a summary: “This Chrome extension
appears to steal authentication tokens (cookies) from the user’s browsing sessions on specific
sites and send them to an external server under the guise of a legitimate domain. This
behavior indicates a serious account takeover risk. The extension operates silently and could
grant attackers unauthorized access to user accounts. This is highly malicious.” This aligns
with the assessment reported by Nightfall’s post-mortem.

In a real deployment, JavaSith would have caught this malicious update as soon as it
was analyzed, potentially preventing the days of undetected operation. One can imagine a
company using JavaSith to automatically scan updates to extensions before allowing them in
a managed browser environment, which could have flagged the Cyberhaven extension update
as suspicious due to its new network behavior (especially since previous versions likely did
not have such behavior).

6.2 Malicious VS Code Extensions (Cryptomining Campaign)

We tested JavaSith on a sample malicious VSCode extension patterned after the April 2025
cryptominer case. The extension’s extension.js on activation would:

1. Download a PowerShell script from asdf11.xyz.

2. Execute it by spawning powershell.exe via Node’s child process.exec.

3. After the script finishes, call VSCode’s commands API to install another extension
(the real one it was faking).

JavaSith’s static analysis flagged multiple issues right away: a hardcoded URL containing
an uncommon domain (likely malicious), usage of child process.exec to run PowerShell,
and the presence of a base64-encoded string which turned out to be part of the script. These
by themselves put the risk at High.

In the sandbox, when executed, the extension indeed invoked the PowerShell. Our iso-
lated environment prevented launching a real PowerShell process, but we intercepted the
command string. It was a complex script; JavaSith logged attempts to modify registry keys
and schedule tasks (the script content was decoded from base64 at runtime; our dynamic
instrumentation caught the decoding function and captured the decoded result).

One interesting event was the extension calling a VSCode command to install an extension
by ID. The sandbox’s fake VSCode API recorded this call Command:

workbench . ex t en s i on s . i n s t a l l Ex t e n s i o n

with argument ms-vscode.prettier”). This is an unusual action for an extension to perform,
so our heuristic flagged it as well (“Extension installing another extension”).

The Time Machine wasn’t heavily utilized here because the malware ran quickly on
activation. However, had the cryptominer delayed its start (say, only run after VSCode has
been open for 10 minutes to avoid immediate suspicion), our accelerated timers would trigger
it.

19

The LLM summary for this case was along the lines of: “This VSCode extension executes
a hidden PowerShell script that makes system changes (disabling updates, adding tasks) and
then downloads a cryptomining program. It also installs the legitimate Prettier extension
afterward, likely to hide its malicious actions.It seems like this is a malicious extension that
compromises the host machine for cryptojacking.”

This matches the description from Symantec/Broadcom. JavaSith successfully identified
the malicious behavior, and an end-user running it would be alerted before the miner could
actually run (especially since our sandbox blocked the actual external network calls and
process launches by default after logging them).

6.3 Malicious VS Code Extensions (Information Stealers)

We next took a scenario of the info-stealing extensions. Using a simplified reimplementation
of ‘clipboard-helper-vscode‘ (as per ReversingLabs description), we created an extension that
registers an event for text copy (simulated via a periodic clipboard check) and, if it sees any
text, sends it via an HTTP POST to a Discord webhook URL.

JavaSith’s static scan immediately spotted the Discord webhook URL string embedded
in the code. This triggered one of our high-severity rules. During dynamic run, we put some
text in the simulated clipboard and triggered the extension’s function. The sandbox logged
an HTTP POST to discord.com/api/webhooks/... with a payload containing the test
text. We prevented the actual network call for safety.

The outcome was straightforward: JavaSith categorized this extension as malicious with
the reason “exfiltrating user data to an external server (Discord webhook)”. The LLM
summarized: “This extension appears to send clipboard data to a remote server (using a
Discord webhook) without permission. This behavior is indicative of spyware, potentially
stealing sensitive information. Users’ copied data (which may include passwords or tokens)
could be compromised.”

Because the extension code was otherwise not doing anything useful (in our test), it was
clearly malicious. In real cases, such extensions might also provide some fake functionality to
look legitimate. JavaSith would still catch the background stealing unless it was extremely
stealthy or heavily encrypted (in which case static patterns might still detect something
anomalous).

6.4 Malicious NPM Package

Finally, we tested a malicious NPM scenario inspired by the ‘os-info-checker-es6‘ package.
We constructed a package that on install checks the OS, then downloads a payload if on
Windows. We introduced obfuscation by using zero-width spaces in the code (to mimic the
Unicode hiding trick). We also hosted a fake “payload URL” via an internal test server.

JavaSith’s static analysis caught unusual Unicode characters in the source (non-printable
characters, which we flag as obfuscation). It also saw that the install script had a ‘curl‘
command (in our simulation) to a Google Calendar URL (mimicking the technique of using
Google services as a C2). These were flagged as suspicious.

During dynamic install in the sandbox, the package tried to perform the HTTP GET
for the payload. We intercepted that and responded with a dummy response to allow it to

20

continue. The package then wrote a file to the temp directory (which in a real attack could
be a malicious binary) and attempted to execute it. Our sandbox prevented execution, but
we captured the attempt (“exec file: ./payload.exe”).

The Time Machine wasn’t needed here, as the package ran its malicious logic immediately.
JavaSith effectively identified it as malicious. Notably, no normal package should hide code
in such a manner or reach out to an unrelated external URL in an install script. Our tool
would warn the user not to install this package.

These case studies collectively demonstrate that JavaSith can handle a range of malicious
behavior: from web-focused data theft to host compromise through script execution, across
different environments.

7 Evaluation

We evaluate JavaSith on two fronts: detection effectiveness and performance overhead. Our
evaluation is limited by the availability of known ground-truth malicious extensions and
packages (often such code is not public). However, using samples from threat reports and
synthetic variants, we can gauge how well JavaSith performs.

7.1 Detection Coverage and Effectiveness

We compiled a test set of 20 extensions/packages:

• 5 known malicious Chrome extensions (from public sources or recreated from descrip-
tions).

• 5 benign Chrome extensions (popular ones like uBlock Origin, etc.) as false-positive
tests.

• 3 malicious VSCode extensions (including cryptominer and info-stealer types).

• 3 benign VSCode extensions (e.g., Python extension, Prettier).

• 4 NPM packages (2 malicious or suspected, 2 benign).

JavaSith successfully flagged all malicious samples with high severity. In cases where we
had actual known malicious code, the dynamic analysis often produced very evident logs
(e.g., network calls to suspicious domains, attempts to execute shell commands). The static
analysis was particularly useful for those that attempt to hide until certain triggers. For
example, one malicious Chrome extension in our set was known to only activate on specific
domains; our static scan found those domain strings in the code.

We did not encounter any false negatives in this set, though we acknowledge the set is not
exhaustive. The benign extensions, in contrast, yielded no high-severity alerts. There were a
few low-severity notices (for instance, one benign extension included Google Analytics code
which made network requests; our tool logged it but our heuristics recognized the domain as
benign and the behavior as expected). The LLM sometimes was slightly over-cautious; for
a benign extension that accessed a web API, the LLM mused if it might leak data, but our

21

final risk scoring logic did not mark it as malicious because none of the concrete detectors
fired. This highlights the importance of combining automated flags with the LLM reasoning,
but not relying solely on the latter.

A metric we consider is whether JavaSith would have caught known incidents prior to
their public discovery: - The Cyberhaven extension: Yes, likely, due to cookie access and
strange network traffic. - The VSCode miner extensions: Yes, the combination of static
(PowerShell present in code) and dynamic (network and process spawn) would flag it. - The
Discord webhook info-stealers: Absolutely, given the static presence of the webhook URL. -
Various NPM attacks (like the Unicode one, or packages that steal tokens): Yes, as long as
we run the install, their activity becomes evident.

One limitation is that if an extension’s payload is extremely environment-specific (for
example, only triggers if a certain API returns a specific response), we might not trigger
it in analysis. However, our multi-pronged approach (especially the static code reading via
LLM) can still notice something’s off.

7.2 Performance Overhead and User Experience

We measured the analysis time for a subset of extensions under different settings (with-
/without time acceleration, with/without LLM): - For small extensions (¡ 100KB code),
JavaSith completes analysis in 5–10 seconds without LLM. With LLM, add 30 seconds for
model loading and inference. - For larger extensions (1MB of code/assets), dynamic analysis
might take 20 seconds, static 5 seconds, plus LLM 30–60 seconds. So under 2 minutes
end-to-end.

While this is slower than a trivial static linter, it is quite reasonable given the depth of
analysis. In a scenario where a user is installing a new extension, a 1-2 minute scan is a
minor inconvenience compared to the potential damage of a malicious install.

We also considered the sandbox overhead. Running a cryptominer in sandbox, for exam-
ple—our container prevented actual CPU mining, but we let the process spawn to observe
behavior for a short time then terminated it. The overhead on the host system was negligible
beyond the work done inside the container (which we limited). The user’s system might see
some CPU use during analysis (especially if the LLM runs on CPU, though WebGPU can
offload to GPU if available).

The GUI’s responsiveness was tested with logs of 1000 events (which was our biggest
case—the cryptominer extension performed many actions). The interface remained navigable
after we optimized how we render logs (batching and lazy-loading entries).

Memory consumption: the largest factor is the LLM model (which can be several giga-
bytes loaded). For everyday use, users might opt not to load the LLM unless they specifically
want the detailed analysis; even without it, the rest of the tool functions. We also foresee
that smaller models or quantization will reduce this footprint (and as hardware improves,
running these models will become more feasible; on a high-end machine a 7B model runs
sufficiently).

22

7.3 Limits of Detection

No security solution is perfect. We identified a few scenarios where JavaSith might not fully
catch the threat: - If a malicious extension is completely dormant until it receives a remote
command (e.g., it polls a server for a signal to activate), and if that command is not provided
during analysis, we might only see the polling (which itself could be deemed suspicious, but
if it’s a common benign behavior like checking for update, it could be overlooked). One
mitigation is to examine the code for any hints of such logic and allow analysts to feed
custom inputs (like simulating a command from a C2 server). - Highly obfuscated code
could stymie static analysis and even the LLM. We had one test with heavily obfuscated
code (using a packer); the static analysis basically flagged “code is heavily obfuscated”
and the LLM couldn’t parse it meaningfully. In such cases, dynamic analysis is even more
crucial, but if the code is obfuscated to the point it constructs payload at runtime in a
convoluted way, only the raw behavior will show. JavaSith can still log that behavior but
understanding it is hard. In future, integrating a de-obfuscator or using the LLM to attempt
de-obfuscation could help. - Resource-intensive or interactive extensions (like those requiring
user UI interaction to trigger functionality) might not reveal much in an automated run. For
instance, an extension that only does something when a browser action button is clicked. Our
current sandbox doesn’t simulate clicking the extension’s button. We rely on static analysis
in such cases, or a user manually invoking some action. Extending the sandbox to simulate
common user interactions (like triggering commands or clicking an extension UI if present) is
potential future work. - Native code: If an extension or package includes a compiled binary
(e.g., a Node native addon or a WASM module), our analysis of its internal logic is limited.
We can detect its presence and maybe intercept calls it makes (if through known interfaces),
but analyzing compiled payloads is out of scope. At least, we flag that such a binary exists,
which is itself unusual for many extensions. - Evasion: A sophisticated attacker might try to
detect analysis environments. For example, checking if certain debugging objects exist or if
known sandbox artifacts are present. We attempted to make the sandbox as transparent as
possible, but certain differences (like timing or the lack of real user data) could theoretically
tip off the malware that it’s under analysis. This cat-and-mouse game is common in malware.
Since JavaSith runs on the client side without a standard fingerprint, attackers would have
a very hard time targeting it.

Overall, our evaluation indicates JavaSith is effective in identifying malicious behavior in
extensions and packages, with manageable runtime overhead. In the next section, we discuss
the broader context, limitations, and how JavaSith could evolve.

8 Discussion

JavaSith represents a step toward giving end-users and enterprise security teams more control
and visibility into the extensions and packages they use. By performing client-side analysis,
we avoid reliance solely on marketplace gatekeepers. Here we discuss the implications of
such a tool and some broader considerations.

Empowering Users vs. Usability: One might question if average users would run a
1-minute analysis before installing a browser extension. Power users or security-conscious

23

organizations might, but regular users probably will not. However, JavaSith could be in-
tegrated into browsers or IDEs as an automated vetting system. For example, enterprise
browser deployments could automatically run JavaSith on any extension before allowing it.
This way, the burden is not on the end-user to manually invoke it each time; it becomes
an invisible shield that only alerts when something is wrong. Similarly, a developer’s IDE
like VSCode could integrate such scanning when new extensions are installed (perhaps in a
future “Secure Mode” of VSCode, analogous to Workspace Trust).

False Positives and Trust Calibration: A challenge in any detection system is avoid-
ing false alarms. We tuned JavaSith to prioritize catching true malicious intent, which means
it may raise warnings for things that are not necessarily malicious but “could be.” For ex-
ample, an extension that reads cookies might be doing so for legitimate reasons (like an
extension that manages session cookies). JavaSith would flag that, but our LLM or expla-
nation can provide context (“Extension reads cookies for domain X – this could be normal
if functionality requires it”). We expect that over time, with a larger corpus, we can refine
heuristics to better differentiate benign vs malicious patterns (possibly even training the
LLM on known-bad vs known-good code to see differences).

We also allow a “learning mode” where if a user knows an extension is safe, they can
mark it, and our system remembers that decision (similar to how antivirus allows exceptions).
However, this can be risky if users whitelist something malicious, so it’s more viable in a
managed setting where security teams review and approve certain extensions.

Privacy and Offline Use: A key reason to have a client-side LLM is privacy (and
independence from cloud). JavaSith never needs to send the extension’s code to an external
server for analysis, which is important for sensitive environments (e.g., evaluating an exten-
sion in a corporate setting where the code might have proprietary info or where contacting
an external API could leak that someone is investigating a particular extension). The flip
side is performance constraints of local analysis, but as hardware improves and specialized
security models are developed, this will get better.

Keeping Pace with Attackers: Attackers will undoubtedly innovate. JavaSith should
be updated with new detection logic as new techniques emerge (similar to antivirus updates).
For instance, if attackers start using more exotic covert channels (like using browser extension
storage in a clever way), we would integrate checks for that. Our modular architecture
(especially the static analysis rules and LLM prompts) can be updated without overhauling
the whole system. The LLM component could even be used in a threat-hunting mode where
it’s asked “do you see anything potentially malicious or unusual in this code?” to catch novel
techniques that don’t match explicit rules.

Integration with Threat Intelligence: We could enhance JavaSith by feeding it
known bad indicators (domains, hashes, etc.) from threat intel feeds. For example, if a
certain URL or regex is known to appear in malware, our static scanner can have that
in a blacklist. Similarly, if a certain obfuscation signature (like a known packer stub) is
detected, we can label it. The dynamic part could also output traces in a format that can
be cross-checked against threat databases.

User Interface and Actionability: One risk of presenting too much information is
overwhelming the user. We aim to have clear, concise risk outputs. If JavaSith finds nothing
major, it could simply say “No significant risks detected.” If it does find serious issues, it
should summarize: “Likely Malicious – reasons: contacts known bad site, steals data.” For

24

an average user, that alone might prompt them to avoid the extension. For a developer or
researcher, the detailed logs remain available. In testing, we found the combination of a risk
score (High/Medium/Low) plus a one-sentence reason derived from LLM output is effective.

Limitations of LLM Analysis: While powerful, the LLM is not infallible. It might
hallucinate interpretations that aren’t accurate. We mitigate this by structuring the prompt
to stick to evidence (we list the events and code facts for the model). We also allow the
user to see exactly what events were fed into the LLM, for transparency. If the LLM says
“steals Facebook token” and the user sees indeed a network call to a suspicious domain after
accessing Facebook, that aligns. If the LLM says something the user doesn’t find in logs,
that could indicate a misinterpretation, which is why raw data is always available.

Interestingly, the LLM can sometimes suggest remediation (like “you should remove
this extension immediately”), which is helpful. It might also suggest other steps (revoke
credentials, etc., if an extension was found stealing tokens). These touches turn a raw
analysis tool into more of an assistant.

Open Sourcing and Community: A tool like JavaSith would benefit from commu-
nity contributions. If open-sourced, security researchers could contribute new rules (like
volunteer-maintained lists of malicious patterns). Also, being transparent about how it
works can increase trust. Attackers might read the code and attempt to circumvent it, but
since they already assume they may be under scrutiny, the benefit of community-driven im-
provements likely outweighs the risk. It’s a constant arms race anyway, and openness can
speed defensive innovation.

Broader Platform Coverage: While we focused on Chrome and VSCode (and indi-
rectly Node/NPM), the general approach can extend to other ecosystems: other IDE plugins
and other package managers (PyPI, RubyGems). Given more time, we plan to adapt our
sandbox to scan mobile app plugins or browser user scripts. The supply chain threat is
everywhere, and each environment has its specifics but similar core issues (unvetted code
running with user privileges).

Continuous Monitoring vs Pre-Install Scan: JavaSith currently performs a pre-
install or on-demand scan. Another approach is continuous monitoring of extension behavior
at runtime on the user’s system. While conceptually similar, that veers into intrusion detec-
tion rather than preemption. There is value in both; a sophisticated enterprise might deploy
JavaSith in CI pipelines (to scan dependencies) and on endpoints (to watch extension behav-
ior live). However, running the sandbox continuously is expensive. Instead, a lighter-weight
runtime monitor (like an extension that monitors other extensions, or OS-level monitors for
processes launched by VSCode extensions) could complement JavaSith’s heavy upfront scan.

In conclusion, JavaSith opens new possibilities for proactive defense in the extension and
package ecosystem. It is not a silver bullet, but it raises the effort required for attackers to
succeed undetected. As we refine the tool and gather more feedback, we expect it to become
a practical addition to the security toolkit of developers and IT administrators alike.

9 Limitations and Future Work

While our work demonstrates the feasibility and value of client-side extension analysis, there
are limitations to acknowledge and areas for improvement:

25

Scalability: JavaSith currently analyzes one extension or package at a time. In an
enterprise with hundreds of extensions in use, scanning them all periodically could be heavy
(though it can be parallelized across machines or time). We plan to add a batch mode and
perhaps a “quick scan” mode for routine re-checks (e.g., skip dynamic analysis if the code is
unchanged from a previously scanned version, etc.).

Depth of Simulation: Our browser simulation is not a full Chrome browser – some
extension behaviors (like complex interactions with actual page content or advanced Chrome
APIs) might not be fully covered. We intend to integrate more of Chrome’s own headless
capabilities; possibly even using Chrome’s headless mode with the extension loaded and then
instrumenting it via the DevTools protocol (which some research tools have done). Similarly
for VSCode, while we simulate enough for typical malicious patterns, an extension doing
heavy GUI work in VSCode might not see all its functionality in our sandbox (though that’s
less relevant to detecting malicious activity).

Evasive Malware: If an extension uses extremely subtle triggers or requires specific user
context, our automated analysis might miss it. One idea is to incorporate feedback-guided
execution: have JavaSith try multiple scenarios (e.g., simulate browsing a list of popular
sites, simulate user inactivity or specific keystrokes) to coax out hidden behavior. This is an
area of future research, essentially fuzzing the extension’s event space.

Machine Learning Enhancements: The current LLM integration uses a general-
purpose model. Training or fine-tuning an LLM specifically on malicious vs. benign extension
code (if we gather such a dataset) could improve its accuracy and reduce false positives/neg-
atives. We also consider adding a smaller, rule-based ML classifier that runs before the LLM
to handle obvious cases faster.

User Study and Feedback: We plan to conduct user studies with developers and
security analysts to gauge JavaSith’s usability. Understanding how users interpret the risk
reports, and whether it actually influences their decisions (e.g., not installing an extension),
is key. If users find parts of the output confusing, we will refine the presentation.

Integration with Dev Tools: We envision future integration such as a browser exten-
sion that automatically runs JavaSith when you try to install another extension from the
web store, or a VSCode feature that scans extensions in the background. Collaborating with
browser/IDE vendors to embed such capabilities (even in a lite form) would greatly increase
impact. For now, JavaSith remains an external tool, but one that could be automated via
scripts.

Extending to Other Platforms: As noted, other extension systems could be targeted
by similar supply chain attacks. In future work, we aim to support at least Mobile app
plugins or mods (like browser mods on Android) are another frontier.

Live Protection: A natural extension is combining JavaSith’s analysis with live pro-
tection. For example, an enterprise could run JavaSith on all allowed extensions and then
deploy a policy that if an extension tries at runtime to do something outside what was
observed (like contacting a new domain), it gets blocked. This kind of whitelisting could
be powerful but also complex to maintain. Nonetheless, it’s an interesting direction where
JavaSith’s output (the expected behavior of an extension) forms a baseline for monitoring
in production.

26

10 Conclusion

We presented JavaSith, a state of the art client-side framework that brings advanced analysis
techniques to bear on the problem of malicious browser extensions, VSCode extensions, and
NPM packages. By emulating the runtime environment and accelerating time, JavaSith can
coerce malicious code into revealing itself, while static analysis and language model reasoning
provide a comprehensive understanding of potential threats. Our case studies of real attacks
illustrate that JavaSith would have been effective at detecting stealthy malicious behaviors
that previously went unnoticed, thus potentially preventing significant breaches.

JavaSith complements existing security measures by acting as a last line of defense at the
point of installation or update. As supply chain attacks continue to rise and evolve, tools
like JavaSith empower users and organizations to regain visibility and control. While not
a panacea, the multi-faceted approach of JavaSith raises the bar for attackers – they must
now evade not just store policies but also dynamic sandboxes, static detectors, and AI-based
scrutiny on the client side.

Future work will aim to broaden JavaSith’s coverage to more platforms, refine its detec-
tion logic via larger datasets and user feedback, and optimize its performance to make it
practically invisible in user workflows. We also plan to explore collaborations with platform
vendors to integrate aspects of JavaSith into extension marketplaces and developer tools (for
example, a “scan before install” feature).

In summary, the JavaSith framework demonstrates that powerful analysis of extension
code can be done locally, preserving user privacy while uncovering malicious intent. We
hope this work spurs further development of user-centric security tools in the software supply
chain domain. By shining a light into the black box of extension behavior, we can make it
significantly harder for attackers to hide in plain sight.

References

[1] JavaSith Browser Extensions: https://extensions.security

[2] JavaSith IDE Extensions: https://ide.security

[3] JavaSith Code: https://code.security

[4] Hunters: Understanding The Chrome Extension Threat Cam-
paign - Beyond Cyberhaven https://www.hunters.security/en/blog/

chrome-extension-threat-campaign

[5] Darktrace. “Cyberhaven Supply Chain Attack Exploiting Browser Ex-
tensions.” 2024. [Online]. Available: https://www.darktrace.com/blog/

cyberhaven-supply-chain-attack-exploiting-browser-extensions

[6] cyberhaven. “Cyberhaven’s preliminary analysis of the recent malicious
Chrome extension : https://www.cyberhaven.com/engineering-blog/

cyberhavens-preliminary-analysis-of-the-recent-malicious-chrome-extension?

ref=31337infosec.com

27

https://extensions.security
https://ide.security
https://code.security
https://www.hunters.security/en/blog/chrome-extension-threat-campaign
https://www.hunters.security/en/blog/chrome-extension-threat-campaign
https://www.darktrace.com/blog/cyberhaven-supply-chain-attack-exploiting-browser-extensions
https://www.darktrace.com/blog/cyberhaven-supply-chain-attack-exploiting-browser-extensions
https://www.cyberhaven.com/engineering-blog/cyberhavens-preliminary-analysis-of-the-recent-malicious-chrome-extension?ref=31337infosec.com
https://www.cyberhaven.com/engineering-blog/cyberhavens-preliminary-analysis-of-the-recent-malicious-chrome-extension?ref=31337infosec.com
https://www.cyberhaven.com/engineering-blog/cyberhavens-preliminary-analysis-of-the-recent-malicious-chrome-extension?ref=31337infosec.com

[7] Insurance Business. “Supply chain cyber attacks surge over 400%, expected to continue
rising – Cowbell report : https://www.insurancebusinessmag.com/us/news/cyber/
supply-chain-cyber-attacks-surge-over-400-expected-to-continue-rising--cowbell-report-525369.

aspx#:~:text=Between%202021%20and%202023%2C%20supply,cyber%20risk%

20report%20by%20Cowbell.

[8] Broadcom. “Malicious VSCode Extensions Infecting Users with Cryp-
tominer.” Security Bulletin, 2025. [Online]. Available: https://

www.broadcom.com/support/security-center/protection-bulletin/

malicious-vscode-extensions-infecing-users-with-cryptominer

[9] Microsoft. “Extension Runtime Security.” Visual Studio Code Documentation. [On-
line]. Available: https://code.visualstudio.com/docs/configure/extensions/

extension-runtime-security

[10] ReversingLabs. “Malicious Helpers: VSCode Extensions Observed Stealing Sensitive
Information.” 2025. [Online]. Available: https://www.reversinglabs.com/blog/

malicious-helpers-vs-code-extensions-observed-stealing-sensitive-information

[11] TheHackerNews. “Malicious npm Package Leverages Unicode Steganography, Google
Calendar as C2 Dropper” 2025. [Online]. Available: https://thehackernews.com/

2025/05/malicious-npm-package-leverages-unicode.html

[12] SES is a shim for Hardened JavaScript as proposed to ECMA TC39. SES stands for fear-
less cooperation. Hardened JavaScript is highly compatible with ordinary JavaScript.
Most existing JavaScript libraries can run on Hardened JavaScript.https://github.
com/endojs/endo

[13] MLC-AI. “Web-LLM: Run large language models in your browser.” GitHub Repository,
2023. [Online]. Available: https://github.com/mlc-ai/web-llm

[14] Retire.js. “RetireJS - Scanner detecting the use of JavaScript libraries with known vul-
nerabilities.” [Online]. Available: https://retirejs.github.io/

[15] MDN Web Docs. “Content Security Policy (CSP).” [Online]. Available: https://

developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CSP. Accessed: May 2024.

[16] MDN Web Docs. “¡iframe¿: The Inline Frame element.” [Online]. Available: https://
developer.mozilla.org/en-US/docs/Web/HTML/Reference/Elements/iframe. Ac-
cessed: May 2024.

28

https://www.insurancebusinessmag.com/us/news/cyber/supply-chain-cyber-attacks-surge-over-400-expected-to-continue-rising--cowbell-report-525369.aspx#:~:text=Between%202021%20and%202023%2C%20supply,cyber%20risk%20report%20by%20Cowbell.
https://www.insurancebusinessmag.com/us/news/cyber/supply-chain-cyber-attacks-surge-over-400-expected-to-continue-rising--cowbell-report-525369.aspx#:~:text=Between%202021%20and%202023%2C%20supply,cyber%20risk%20report%20by%20Cowbell.
https://www.insurancebusinessmag.com/us/news/cyber/supply-chain-cyber-attacks-surge-over-400-expected-to-continue-rising--cowbell-report-525369.aspx#:~:text=Between%202021%20and%202023%2C%20supply,cyber%20risk%20report%20by%20Cowbell.
https://www.insurancebusinessmag.com/us/news/cyber/supply-chain-cyber-attacks-surge-over-400-expected-to-continue-rising--cowbell-report-525369.aspx#:~:text=Between%202021%20and%202023%2C%20supply,cyber%20risk%20report%20by%20Cowbell.
https://www.broadcom.com/support/security-center/protection-bulletin/malicious-vscode-extensions-infecing-users-with-cryptominer
https://www.broadcom.com/support/security-center/protection-bulletin/malicious-vscode-extensions-infecing-users-with-cryptominer
https://www.broadcom.com/support/security-center/protection-bulletin/malicious-vscode-extensions-infecing-users-with-cryptominer
https://code.visualstudio.com/docs/configure/extensions/extension-runtime-security
https://code.visualstudio.com/docs/configure/extensions/extension-runtime-security
https://www.reversinglabs.com/blog/malicious-helpers-vs-code-extensions-observed-stealing-sensitive-information
https://www.reversinglabs.com/blog/malicious-helpers-vs-code-extensions-observed-stealing-sensitive-information
https://thehackernews.com/2025/05/malicious-npm-package-leverages-unicode.html
https://thehackernews.com/2025/05/malicious-npm-package-leverages-unicode.html
https://github.com/endojs/endo
https://github.com/endojs/endo
https://github.com/mlc-ai/web-llm
https://retirejs.github.io/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CSP
https://developer.mozilla.org/en-US/docs/Web/HTML/Reference/Elements/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Reference/Elements/iframe

	Introduction
	Background and Motivation
	Extension Architecture and Security Model
	Threats and Notable Incidents

	Related Work
	Design and Architecture of JavaSith
	Emulated Runtime Sandbox
	Time Machine Module
	Static Analysis Engine
	WebLLM-Based Risk Analyzer
	Graphical User Interface (GUI)

	Technical Implementation
	Sandboxing and API Hooking
	Time Control Mechanism
	LLM Integration Details
	Performance Considerations

	Case Studies of Known Attacks
	Browser Extension Supply-Chain Attack (Cyberhaven Incident)
	Malicious VS Code Extensions (Cryptomining Campaign)
	Malicious VS Code Extensions (Information Stealers)
	Malicious NPM Package

	Evaluation
	Detection Coverage and Effectiveness
	Performance Overhead and User Experience
	Limits of Detection

	Discussion
	Limitations and Future Work
	Conclusion

