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ABSTRACT
Directed fuzzing is a critical technique in cybersecurity, targeting

specific sections of a program. This approach is essential in various
security-related domains such as crash reproduction, patch testing,
and vulnerability detection. Despite its importance, current directed
fuzzing methods exhibit a trade-off between efficiency and effec-
tiveness. For instance, directed grey-box fuzzing, while efficient in
generating fuzzing inputs, lacks sufficient precision. The low preci-
sion causes time wasted on executing code that cannot help reach
the target site. Conversely, interpreter- or observer-based directed
symbolic execution can produce high-quality inputs while incur-
ring non-negligible runtime overhead. These limitations undermine
the feasibility of directed fuzzers in real-world scenarios.

To kill the birds of efficiency and effectiveness with one stone,
in this paper, we involve compilation-based concolic execution into
directed fuzzing and present ColorGo, achieving high scalability
while preserving the high precision from symbolic execution. Col-
orGo is a new directed whitebox fuzzer that concretely executes
the instrumented program with constraint-solving capability on
generated input. It guides the exploration by incremental coloration
including static reachability analysis and dynamic feasibility anal-
ysis. We evaluated ColorGo on diverse real-world programs and
demonstrated that ColorGo outperforms AFLGo by up to 100× in
reaching target sites and reproducing target crashes.

1 INTRODUCTION
Directed fuzzing is an approach that aims to reach a target site

of a program under test, e.g., a target line of code, by iteratively
generating inputs named seeds. Due to its directed nature, it plays
a vital role in various software testing and debugging tasks, e.g.,
patch testing [11, 22], crash reproduction [10, 14, 16], and vulnera-
bility detection [26, 29, 31]. For direct fuzzers, the time it takes to
reach a target site is a key performance metric. However, existing
approaches, i.e., graybox fuzzers [3, 5, 10, 12, 21], and whitebox
ones [14, 22], suffer from poor efficiency due to their slow or im-
precise seed generation process.

The state-of-the-art directed fuzzing is directed graybox fuzzing,
which achieves high seed-generating speed [3]. However, graybox
approaches suffer from poor performance due to the low precision
of the generated seeds since new seeds are generated by randomly
mutating existing ones. Many useless seeds are generated in the
random process, wasting execution time. For example, as shown
in Figure 1, if we want to satisfy the condition 𝑖𝑛𝑝𝑢𝑡 = 123456790
in a graybox fuzzer, we need to mutate at most 232 times, any
intermediate outcome is considered useless.

Another approach is directed whitebox fuzzing. Whitebox ap-
proaches are based on symbolic execution. They can leverage the
internal structure of the program and generate precise solutions by
solving constraints. However, existing whitebox approaches rely on
interpretation-based symbolic engines, which incur high runtime
overhead [4].

int input;
if (input==123456789) {

assert(0); /*error*/
}

Listing 1: Mutation Example

In this paper, we propose using compilation-based concolic exe-
cution to achieve directed fuzzing, i.e., Directed Concolic Execution
(DCE). This approach addresses the low-efficiency issue of the gray-
box approach and the low-precision issue of the whitebox approach.
Compared to graybox approaches, DCE can generate precise seeds
by solving constraints in the path conditions. Compared to white-
box approaches, DCE reduces runtime overhead by moving the
interpretation overhead to compilation time through instrumenta-
tion.

However, two challenges have to be addressed to achieve high-
performance and practical directed concolic execution.

The lack of global information. An efficient DCE needs the
assistance of global information, i.e., the internal structure of the
program and the global runtime information, to restrict the search
space and implement effective search strategy [12, 21]. However,
concolic execution is concretely executed over an input, which only
maintains the current execution status. As a result, a naive DCE
cannot effectively direct the execution of the program, causing high
search overhead or failed searches.

The intrinsic drawbacks of symbolic execution. While using
symbolic execution can improve the precision of input genera-
tion, we still need to address the inherent challenges of symbolic
execution. For instance, the loop statement introduces a state ex-
plosion problem due to its circular execution flow. Interprocedural
analysis necessitates additional effort to achieve data-sensitive and
control-flow-sensitive characteristics. Furthermore, the indirect call
requires an adapted points-to-analysis specifically designed for the
LLVM framework. These problems can cause DCEs to be stuck or
lost in the middle of a program, and thus lead to failed path-finding.

We present ColorGo, a whitebox directed fuzzer that overcomes
these challenges. First, to gather global information, we utilize the
code structure information provided by the compiler as static infor-
mation. The compiler obtains the internal structure of the program
during the process of analyzing and translating the source code.
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We use this static information to limit the search scope in terms of
inter-procedural control-flow graph (iCFG) reachability, which we
refer to as static coloration. This static process is completed during
compilation, eliminating any runtime overhead. Next, to supple-
ment the global information with the runtime information from
concolic execution, we perform incremental coloration at runtime,
focusing on the feasibility of path constraints. Our goal is to reduce
the exploration space and avoid unnecessary searches. Once the
coloration is completed, we employ early stopping and deviation
basic block identification as part of our proposed efficient search
strategy. Finally, to address the inherent limitations of symbolic ex-
ecution, we specifically target them based on the characteristics of
concolic execution, i.e., target line feedback, partial function model,
and reverse edge stopping.

To evaluate the effectiveness of our design, we implement Col-
orGo on top of the LLVM framework. We compare it with state-of-
the-art directed fuzzers and evaluate it on three types of real-world
programs. Our experiments show that ColorGo achieves 50×, 100×
speedup for reaching target sites and reproducing vulnerabilities.
Besides, we conduct an ablation study and shows the effectiveness
of individual components in our design.

In summary, we make the following contributions in this paper:
(1) We propose a directed whitebox fuzzer that combines light-

weight program analysis and compilation-based concolic
execution to efficiently generate input for reaching specific
code regions.

(2) We implement a practical system called ColorGo on top of
the LLVM framework, which addresses the inherent limita-
tions by combining the characteristics of concolic execution,
achieving both high precision and scalability.

(3) We conduct experiments on real-world programs (jasper,
lame, binutils), demonstrating significant performance im-
provements compared to the state-of-the-art directed gray-
box fuzzers.

In the rest of the paper, we first elaborate on our idea of compilation-
based Directed Concolic Execution (Section 3). We then present
ColorGo in detail (Section 4) and compare its performance with
state-of-the-art implementation (Section 5), showing that it is or-
ders of magnitude faster than the benchmark in testing real-world
software.

2 BACKGROUND AND MOTIVATION
In this section, we introduce two commonly used techniques for

directed fuzzing, i.e., directed graybox fuzzing and directed symbolic
execution, and discuss their limitations. We then introduce our
motivations to use concolic execution to overcome these limitations.
Finally, we discuss the new challenges of achieving directed concolic
execution.

2.1 Backgroud
Directed Graybox Fuzzing. Directed grabox fuzzing is the

most widely adopted approach in the literature of directed fuzzing.
The fuzzing process of graybox approaches can be divided into two
phases, i.e., exploration and exploitation. During the exploration
phase, a graybox fuzzer covers as many program paths as possi-
ble by iteratively mutating seeds that trigger new paths. After a

user-specific time period, the fuzzer enters the exploitation phase
to focus on specific code areas. Specifically, graybox fuzzers use
lightweight instrumentation methods to calculate the quality of
seeds, e.g., distance [3, 10] and similarity [5, 20]. Intuitively, if a
seed executes on a path that is closer to the target site, then seeds
generated from it are also more likely to be close to the target.
Therefore, existing graybox fuzzers give high-quality seeds higher
priorities for mutation, and generate more inputs from them.

However, directed graybox fuzzers suffer from poor performance
because of the imprecise seed generation. Seeds with high priorities
are selected for random mutation since they will possibly generate
new seeds that can satisfy the desired path conditions. Unfortu-
nately, a lot of seeds that do not help promote directed fuzzing are
generated due to the inaccurate priority and the randomness of
seed mutation. These seeds lead to irrelevant execution, which is
time-consuming and reduces the fuzzing performance.

Directed Symbolic Execution. Different from the randomized
directed graybox fuzzing, directed symbolic execution (DSE) pre-
cisely generates inputs. It casts directed fuzzing to a step-by-step
constraint-solving process. By thoroughly analyzing the program
and extracting structural information, DSE can determine which
constraint to solve and generate input that is closer to the target
by solving this constraint.

However, existing approaches [14, 22] rely on interpretation-
based symbolic execution engines, e.g., KLEE [4], which suffer from
high state management overhead. Specifically, these symbolic ex-
ecution engines are virtual machines over LLVM bitcode. They
iteratively fetch each instruction, execute the instruction symboli-
cally, and update the symbol states in the memory model. During
the process, they fork the execution trace on each branch condition,
generating huge execution states. The heavy virtual machine and
state management mechanism incur heavy runtime overhead on
both computation and memory. Meanwhile, The forking system
needs to manage massive information for each execution state,
which causes the problem of state explosion.

2.2 Motivation
2.2.1 Directed Concolic Execution.
To address the aforementioned problems, and take both precision
and efficiency into account, our method adopts compilation-based
concolic execution. Concolic Execution is similar to dynamic sym-
bolic execution, as it executes concrete execution over one input
and conducts analysis only over the explored path. To introduce
symbolic characteristics, concolic execution treats variables related
to input as symbolic variables and maintains corresponding sym-
bolic expressions. To achieve efficient symbolic execution, concolic
execution does not employ a global manager that records a vast
space of states. Instead, concolic execution implicitly maintains
concrete states through the native CPU. After execution, all sta-
tuses of an execution trace are recorded as the new input. This
stateless implementation reduces computational complexity and
memory space usage, resulting in unprecedented efficiency close to
native execution and fundamentally eliminating the state explosion
problem. However, the stateless nature also introduces the problem
of lack of global information, which is used to guide the fuzzing
process.
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There are primarily two methods to instrument the program
in concolic execution, either at compilation time, e.g., through an
LLVM pass, like SYMCC, or at execution time using dynamic binary
translators (DBT), like SymQEMU and QSYM. DBT does runtime
code manipulation when a program executes, works like an ob-
server between application and operating system, and performs
JIT translation, which incurs a non-negligible overhead at runtime.
For instance, as SymFusion[8] mentioned, SymQEMU could be 6.5×
slower than SymCC on a simple code snippet. Our work is based on
compilation-based concolic execution for its runtime performance
advantage. We instrument the program under test at the level of the
compiler’s intermediate representation, which allows us to bypass
the complex semantics of the source code. Consequently, our work
is compatible with all source languages that can be compiled to
the intermediate representation. As Katch proposed, symbolically
interpreting the program is several orders of magnitude slower
than native execution, while the instrumented programs have a
comparable execution time to their native counterparts. To achieve
high precision, compilation-based concolic execution only needs
one concrete execution, at the cost of one irrelevant execution, but
reduces massive irrelevant explorations caused by imprecise inputs.
Besides, the code analysis results provided by the compiler offer us
a convenient way to access global information.

Directed Concolic Execution, a directed fuzzing tool built upon
compilation-based concolic execution, which addresses both the
issues of low precision and low scalability, is a key component of
our approach. However, the design is not as straightforward as the
concept. Complex program semantics present challenges in tracking
symbolic expression, and there are some inherent limitations of
symbolic execution, such as handling indirect calls, interprocedural
analysis, and loop unrolling.

2.2.2 Problem statement.
In this section, we provide some examples of limitations of concolic
execution to expand the challenge we mention in Section 1. Before
this, We need to illustrate the definition of relevant code. Given
some targets, we identify the relevant code according to the reach-
ability on the inter-procedure control flow graph and the feasibility
of the path constraint. The search scope is all relevant code.

Indirect Call. A call graph is utilized to determine the reacha-
bility of each basic block and target site, and it is combined with
the control flow graph to construct an inter-procedure control flow.
Constructing an Interprocedural Control Flow Graph (iCFG) poses
a significant challenge, mainly because it’s challenging to infer
the targets of indirect control transfer instructions, particularly
indirect calls. Indirect calls are calls through register or memory
operands. While modern static analysis tools, such as the SVF [28],
can support indirect call target inference when constructing control
flow graphs using points-to analysis, the LLVM compiler cannot
natively support this feature.

Take Figure 1 as an example, as Figure 1a shows, the 𝑎𝑑𝑑 function
is called indirectly first through a function pointer 𝑓 𝑢𝑛𝑐𝑃𝑡𝑟 , and the
corresponding IR shows the pointer variable 𝑓 𝑢𝑛𝑐𝑃𝑡𝑟 is stored in
memory.Whenwe process the instruction call in Line 8 in Figure 1b,
we can not directly resolve the indirect instruction operand to get
the actual target 𝑎𝑑𝑑 . In contrast, for the instruction call in Line 10

(a) C source Code.

(b) LLVM IR.

Figure 1: A indirect call example.

(a) Example of data-sensitive analy-
sis.

(b) Example of control-sensitive
analysis.

Figure 2: A function call example.

in Figure 1b which conducts a direct all, we can determine that the
target function is 𝑎𝑑𝑑 directly without additional analysis.

That is, although we construct an iCFG involving indirect call
through additional points-to-analysis, and find a path from func-
tion𝑚𝑎𝑖𝑛 to 𝑎𝑑𝑑 (function𝑚𝑎𝑖𝑛 indirectly calls function 𝑎𝑑𝑑) in
the iCFG, we can not color irrelevant basic block correctly at com-
pilation time, because we can not location the call instruction in
𝑚𝑎𝑖𝑛 whose operand is the function 𝑎𝑑𝑑 .

Interprocedural Analysis. Symbolic execution can be cate-
gorized into two types of analysis: intraprocedural analysis and
interprocedural analysis. Intraprocedural analysis only considers
statements within a procedure, whereas interprocedural analysis
requires the inclusion of procedure calls to conduct whole-program
analysis. Interprocedural analysis can be implemented in two ways,
data-flow sensitive inter-procedural analysis and control-flow sen-
sitive inter-procedural analysis.

Let’s consider Figure 2a as an example. In order to reach target
line 11, we need to solve the constraint in Line 10, which issues a

3



Conference’17, July 2017, Washington, DC, USA Jia Li, Jiacheng Shen, Yuxin Su, and Michael R. Lyu

sub-procedure call. However, the intraprocedural analyzer is unable
to analyze the operations performed by the function 𝑓 (). As a
result, it replaces the symbolic value of 𝑓 (𝑎) with its concrete value.
Therefore, the path constraint that we formulate becomes 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡+
1 == 5. Without any symbolic variables, no test input is generated
for this equation during execution. As a result, it fails to reach
the branch in Line 10, and so does the directed fuzzing. When we
conduct data-flow sensitive inter-procedural analysis, the symbolic
variable can pass through the statements. Because of the branch
statement in Line 2, the return value depends on the concrete value
of 𝑥 . For example, if the condition 𝑥 ! = 2 is true, the return value is a
concrete value of 1, otherwise, the return value is a symbolic value of
2𝑥 ; Unfortunately, we only need to solve the constraint 𝑓 (𝑎)+1! = 5
when it is not satisfied, that is, the return value of 𝑓 is not equal to
4, thus the value of x is not equal to 2, then we run to Line 3, return
a concrete value of 1. We do not have an opportunity to solve the
constraint 2 ∗ 𝑎 + 1 == 5 and generate the wanted input 𝑎 = 2.
However, if Line 2 did not have a branch and 𝑓 directly returned
2 ∗ 𝑥 , the situation would be simpler and solvable. Consequently,
data-flow sensitive inter-procedural analysis would handle this
scenario well. In this case, we can observe how control flow affects
inter-procedural analysis. Let’s see a more strict case shown in
Figure 2b, where both sides of the branch return a concrete value.
Although the branch condition in Line 2 clearly indicates that 𝑥 = 2,
data-flow sensitive analysis cannot determine this. In such cases,
control-flow sensitive analysis is necessary. By combining control-
flow sensitive analysis with the branch condition, we can encode it
into the return value, i.e., ((𝑥 == 2) & 4) ⊕ ((𝑥 ! = 2) & 1).

Compared to symbolic execution, concolic execution’s lack of
global information presents a significant challenge, making inter-
procedural analysis considerably more difficult. This issue is partic-
ularly critical in the context of directed fuzzing, which contrasts
with coverage-guided fuzzing. Directed fuzzing requires a higher
level of precision in path exploration, and any missteps can lead
to lost or stuck during exploration. The challenge is to balance
precision with concolic execution’s limitations.

while(true) {
char input;
switch(input) {

case 'X':
break;

case 'Y':
assert(0);/*error*/
break;

case 'Z':
break;

default:
}

}

Listing 2: A loop example.

Loop Unrolling. Loop and recursion are frequently used in
programs, but traditional symbolic execution struggles to handle
them effectively. The state explosion problem arises when symbolic
execution forks a new path at every branch point (including the loop
branch). This means that without a limiting measure, the number of
paths grows infinitely at an exponential rate. Concolic execution’s
stateless nature avoids state explosion, but the problem of loops
persists.

switch

input='X' input='Y' input='Z' input='_'

start

endwhile

input=='Y'

input=='X'

input=='Z'

!(input=='Z'||input=='Y'||input=='Z')

Figure 3: Control-flow graph of the loop example.

Consider the example shown in Figure 3, where line 7 is the
fuzzing target. A naive way to mark the relevant path would be to
iteratively mark the basic blocks preceding the target basic block.
If the target basic block is the red one, then all basic blocks except
the end node would be marked as relevant in the search space. As a
result, when we execute the switch statement, we lose direction to
the final target node, because all successors of the switch statement
are marked as relevant in the circular execution flow. Therefore, we
need to design a special method for handling loop and recursion, as
the naive method performs well for other statements except loop
statement.

3 COLORGO
In this section, we present the design of ColorGo, a directed

whitebox fuzzer employing concolic execution and exploration
space coloration for efficient crash reproduction. It addresses the
low scalability of directed symbolic execution and the low precision
of directed graybox fuzzing by introducing concolic execution into
the directed fuzzing domain and overcoming the lack of global
information and the inherent limitation of symbolic execution. As
a result, it achieves high scalability.

3.1 Overview
The overall architecture of ColorGo is depicted in Figure 4. In

brief, we spread works in both compilation time and run time. At
compilation time, we process source code with files that contain
target lines and stack trace information, generating colored iCFG
and instrumented programs. At runtime, we iteratively execute the
generated instrumented program on the input set, at the same time
generating new inputs added to the input set, until reach the target
site. We now describe some important components of our approach.
The detailed implementation will be described in the next section.

4
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Figure 4: Architecture of ColorGo.

3.2 Incremental Coloration
ColorGo is a tool that performs incremental coloration to restrict

search scope and improve search performance. It uses global infor-
mation to achieve this. The aim is to identify relevant code that
needs to be explored, to avoid wasting time on paths that won’t
help to reach the target sites.

To accomplish this, we convert directed fuzzing into a one-source,
multi-targets graph search problem on iCFG. This involves marking
the search scope using a process called coloration. The marking
process is divided into two phases: static coloration and dynamic
coloration.

Static coloration is performed at compilation time. Given target
lines(e.g., main.c:5) and a function call chain extracted from the
stack trace, we do static coloration in an LLVM pass, where we can
exploit the knowledge available in the compiler as part of global
information. For each function, we color the target basic blocks
which include the target line’s corresponding instructions using
debug information, or call instruction whose operand is the target
function; Then, we iteratively color the predecessor basic blocks of
target basic blocks. Finally, we get a connected subgraph of origin
iCFG, which is called colored iCFG. The step is straightforward
except we should specifically handle the indirect call and loop
statement mentioned in Section 2.2.2. We integrate a conservative
points-to-analysis tool [1] to translate indirect function call into
corresponding target line and feedback to the beginning of our
framework. Besides, we stop the iterative coloration when detecting
the reverse edge, i.e., edges from the back basic block to the front
basic block.

Dynamic coloration is performed at runtime and uses path con-
straint feasibility information as a supplement to global information.

While graybox fuzzer [12] designs carefully to balance the preci-
sion and efficiency when pruning infeasible paths. The concolic
execution natively supports runtime infeasible path pruning. At
each key branch point, the instrumented program extracts the path
constraint that points to the colored side and sends it to the backend
solver to derive a solution. If the path constraint is infeasible, its
subtree in colored iCFG is sliced away and won’t be explored again,
which is called incremental coloration.

The coloration information will be later used in directed concolic
execution to restrict search space and achieve a high-performance
search strategy, we discuss this in the next section.

3.3 Compilation-based Concolic Execution
The key component of ColorGo is the directed concolic executor,

which is implemented as an instrumented program.
In this work, we choose compilation-based concolic execution

for these reasons: Firstly, compared with the runtime instrumenta-
tion, the injected code can run seamlessly with the application code,
eliminating the need for switching between the target and an inter-
preter or an attached observer, achieving low run-time overhead.
Secondly, we require the assistance of code analysis information
and high-level knowledge generated by the compiler to generate
global information to guide the coloration. Thirdly, compared to
source-to-source translation, the compiler intermediate representa-
tion (IR) level instrumentation simplifies the integration of concolic
execution capability as we only need to handle a limited instruction
set.

We instrument the direct logic into the program when doing
compilation. The most important question is how our directed logic
works. For the search strategy, we borrow the concept deviation
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basic block from Windranger [10], where the execution trace starts
to deviate from the target sites. For example, in the middle Colored
iCFG in Figure 4, node 1 is not a deviation basic block, for its both
siblings are colored nodes. But node 2 is a deviation basic block for
one of its siblings is not a colored node. We only generate constraint
solving when current execution trace starts to deviate from target
sites. Take the right Colored iCFG in Figure 4 as an example, to
reach the target site we conduct two times of execution, which
is marked on the arrows as number 1, 2. In every deviation basic
block we generate a new input on which the program will reach the
colored basic block. After one time of "corrections", the program
executes on 𝑛𝑒𝑤𝑖𝑛𝑝𝑢𝑡 and will finally reach target red node. We
call this search strategy Fast Depth First Search (FDFS), to reach the
target node with minimal time for input generation and program
execution. Suppose we do not use this method, a naive DFS generate
input towards every colored side, which results in generating an
unnecessary solution at the first branch point. This time wasting is
more severe in real-world programs. For search scope restriction,
we terminate the execution when runs to the end node of iCFG, i.e.,
both siblings are uncolored, or at branch points with an unfeasible
path condition.

3.4 Interprocedural Analysis
Unlike coverage-guided fuzzing which negates the branch condi-

tions along the way, directed fuzzing needs to execute a more com-
plex logic to selectively explore path. As discussed in Section 2.2.2,
we need to implement both data-flow sensitive and control-flow
sensitive methods. The data-flow sensitive analysis follows SYMCC.
When do function calls, we propagate the symbolic function pa-
rameter throughout the subprocess instructions to construct the
corresponding symbolic expression in the called function. Finally,
we register the return expression for later use. However, the control-
flow sensitive feature is harder to realize in the concolic executor.
At each branch point, the concolic executor only sends the current
branch condition to the symbolic backend, and the complete path
constraint is collected during runtime. Therefore, if we want to
encode path constraints to return value during compilation time,
we need to conduct complicated static analysis. This is similar to
the function summary technique in symbolic execution. The func-
tion summary can be defined as a disjunction of formulas, which
is present in the form that combines a conjunction of constraints
on the inputs and a conjunction of constraints on the outputs. For
example, the summary for the function 𝑓 in Figure 2b could be
(𝑥 = 2 ∧ 𝑟𝑒𝑡 = 4) ∨ (𝑥 ≠ 2 ∧ 𝑟𝑒𝑡 = 1). SMART [? ]uses static analy-
sis to generate function summaries to assist the inter-procedural
analysis of symbolic execution, which effectively alleviates the path
explosion problem caused by too many function calls. However,
This heavy global static analysis and status management obey the
design concept of concolic execution, and result in low scalability.

To balance the scalability and effectiveness, we propose a partial
function model. While modeling all user-defined functions in the
program introduces great complexity to our design, we only model
functions in C standard library, which is considered simple but
important. To normally reason most of the program, we build a
summary for some important functions in C standard library (e.g.,
strlen and strchr). We will discuss this in detail in Section 4.

4 IMPLEMENTATION
We discuss the detailed implementation of ColorGo in this sec-

tion. We built ColorGo using LLVM pass, written from SYMCC. The
pass consists of roughly 500 edited lines of C++ code. In this pass,
we process LLVM intermediate representations one by one at both
the module and function levels. To build the instrumented program,
the instrumentation performs only once along with the compilation.
To conduct directed concolic execution, the instrumented code will
be executed over and over again until reach target site or all colored
path are explored. The instrumented code reserves the behavior of
the original program but invokes constraint solver when deviating
from target execution path to generate new input that corrects
the execution. We propagate the symbolic expression along the
instructions by adding around each LLVM IR with calls to symbolic
handling implemented in the run-time support library as SYMCC
does. Our directed characteristic is mainly reflected on the time
we initiate constraint solving. We build a concolic executor as a
scheduler that picks the next input to execute on, written in a shell
script, and comprises another 200 lines. The low code volume shows
the flexibility of our system, thus it’s easy to deploy a new directed
logic based on our implementation with little work.

4.1 Instrument at compilation time
To derive instrumented binary, we conduct instrumentation at

compilation time. The input of our approach source code files,
target lines, and functions in the stack trace. Note that the target
lines in a feedback version by points-to-analysis [1]. In general,
We will compile the source code of the program under test to an
instrumented binary.

First, we read the input and register the target lines and functions
for each function in a map. Second, for each function, we process
each instruction in order, if we identify that the instruction maps to
target line according to debug info or the instruction is a call/invoke
instruction and its operands is target function, the basic block to
which the instruction belongs would be marked as target basic
block. Then we do a back propagation in control-flow graph which
iteratively mark the predecessors of target basic block. Finally, we
will mark the root node in CFG. After the coloration of all functions,
we get a connected subgraph of origin iCFG which is called Colored
iCFG. We specially handle loop statements to avoid coloring all
basic blocks in the loop body, to be specific, we stop the propagation
when detecting inverse edge (from back basic block to front basic
block), which can effectively solve the loop pollution problem we
introduce in Section 2.2.2.

Strictly speaking, we will process all instructions twice at com-
pilation time, at the first time we get colored iCFG and the second
time we insert calls to symbolic backend to generate new input ac-
cording to the colored iCFG. The execution trace diverges at every
branch point, thus, we should insert check logic around every con-
ditional branch/switch statement. If a function has an empty target
basic block set, we will skip the check for there is no distinction
among all basic blocks, which is a common case in subprocess.

• For conditional branch statements, the check logic acts be-
like: If both sides point to a non-colored basic block, execu-
tion terminates early. If both sides point to the colored basic
block, skip check. If one of the sides points to a non-colored
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basic block and the another one points to a colored basic
block, we send the symbolic expression of branch constraint,
concrete value of branch constraint, and a boolean value
which represent the wanted value of branch constraint to
the symbolic backend, and symbolic backend will check the
equality of concrete value and wanted value, if equal, add
this branch constraint according to the concrete value to
path constraint, if not, initiate a constraint solving to satisfy
the equation of path condition and the wanted value.

• For switch statement, the check logic acts like the conditional
branch statement in general, but there is a little difference:
when constructing the constraint, we can not directly ex-
tract the case constraint from the operand, especially for the
default case, which needs to be handled manually. If at least
one of the sides points to a non-colored basic block, we will
produce solutions for each (not one of) case which points to
a colored basic block.

4.2 The Placement of the instrumentation in
the Compiler Pipeline

The placement of the instrumentation pass is nontrivial. We
place the pass in early the pipeline to achieve maximum structure
similarity to the source code, in order to best map to the input target
information. For instance, the compiler may merge some functions
when doing optimization, after which we can not extract the origin
function information and it is hard to map the optimized version
to the original execution flow. So directed fuzzer is lost here if we
instrument the optimized version.

4.3 Explore at runtime
After the compilation, we derived a symbolized binary that drives

the program to the target site. At runtime, we just repeatedly ex-
ecute the binary and collect generated input. The input helps to
correct current execution traces to a specified path leading to tar-
get sites. Recall the Section 3.2, we cast directed fuzzing into one
source, multi-targets graph search problem on iCFG. At compila-
tion time, we define the search scope by coloration statically and
embed deviation-correction and early-termination logic into the
program at compilation time. Now the final question comes: How
do we schedule the newly generated input to realize our Fast Depth
First Search (FDFS) strategy?

The answer is straightforward, we maintain a stack as the input
pool. Every newly generated input is pushed to the top of the stack
and tends to be executed immediately. The FDFS acts like a persis-
tent detective who wants to explore deep into the program as fast
as possible. It terminates as soon as know there is no way to target
sites, i.e., at branch point whose siblings are all uncolored, or when
current path constraint is infeasible. It only corrects the execution
when necessary (in deviation basic block) because correction means
re-executing the program. Besides, we avoid generating repeated
input by a map, which is practical when at branch point more than
one side are colored and generating inputs run to each other over
and over again when executing.

Table 1: Real-world benchmark programs used in the evaluation.

Project Program # Version # Input Format

jasper imginfo 2.0.12 Image
lame lame 3.99.5 Audio
binutils cxxfilt 2.26 Txt

4.4 Compilation Boundary and Function Model
The compilation-based approach also has its intrinsic draw-

back, that is, not all programs can be recompiled. For example,
some system libraries and third-party libraries are not typically
recompiled by application developers. The symbolic execution
would degrade to concrete executionwhen running uninstrumented
code. Latest work [8] proposes a hybrid instrumentation approach
for concolic execution which instruments internal code at com-
pilation time and external code at runtime. But SYMFUSION in-
curs an average of 3X slowdown. In fact, when doing fuzzing,
we only focus on program under test, and the most of symbolic
state loss because of uninstrumented code can be relieved by func-
tion model, which is also preserved by SYMFUSION. We model
important functions in C standard library and additionally con-
duct our data-flow and control-flow sensitive analysis in function
models to produce function summary (i.e., encode the path condi-
tion into the return expression). For example, to model function
𝑐𝑜𝑛𝑠𝑡𝑐ℎ𝑎𝑟 ∗𝑠𝑡𝑟𝑐ℎ𝑟 (𝑐𝑜𝑛𝑠𝑡𝑐ℎ𝑎𝑟 ∗𝑠𝑡𝑟, 𝑖𝑛𝑡𝑐), which find char 𝑐 in string
𝑠𝑡𝑟 and return the position of 𝑠𝑡𝑟 where 𝑐 first happens, we set the
return expression as ((𝑠 [0] == 𝑐) & 𝑠 [0]) ⊕ ((𝑠 [𝑖] == 𝑐) & 𝑠 [𝑖]).

5 EVALUATION
In this section, we evaluate ColorGo using real-world programs

and answer the following questions:
• RQ1: How fast can ColorGo reach target sites?
• RQ2: How fast can ColorGo expose vulnerabilities?
• RQ3: How does every component in ColorGo contribute to the
overall performance?

• RQ4: What’s the runtime overhead introduced by ColorGo’s
instrumentation?

5.1 Evaluation Setup
BaseLine. We compare ColorGo with a state-of-the-art directed
graybox fuzzer AFLGo. Which is publicly available by the time of
writing this paper.
Evaluation Criteria.We use two criteria to evaluate the perfor-
mance of different fuzzing techniques.
• Time-to-Reach (TTR) is used to measure the time fuzzer used
to generate the first input on which the program can reach the
target site.

• Time-to-Expose (TTE) is used to measure the time fuzzer used
to generate the first input on which the program can reproduce
known venerability.

Evaluation Datasets.We use real-world programs from the fol-
lowing datasets as the evaluation benchmarks:
• UniBench [17] is a recent dataset proposed for evaluating fuzzing
techniques. It consists of 20 real-world programs from 6 different
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Table 2: Time-to-Reach results on programs from UniBench.

Prog. Targets AFLGo ColorGo
Runs 𝜇TTR Executions TTR TET Solves 𝜇ST

imginfo
jpc_cs.c:316 —— T.O 2 275 ms 160 ms 1 406 𝜇s
bmp_dec.c:373 —— T.O 16 314169 ms 312656 ms 1 1098 𝜇s
jp2_cod.c:275 —— T.O 2 266 ms 90 ms 2 691 𝜇s

lame
get_audio.c:1280 10 26.7s 2 587 ms 190 ms 1 897 𝜇s
get_audio.c:1285 10 51.3s 2 594 ms 198 ms 1 1191 𝜇s
get_audio.c:692 10 64.05s 2 1228 ms 784 ms 1 195233 𝜇s

Table 3: Time-to-Expose results on AFLGo test suite.

Prog. Targets AFLGo ColorGo
Runs 𝜇TTE Executions TTE TET Solves 𝜇ST ETE

binutils

2016-4487(4489) 10 40.6s 5 308 ms 180 ms 4 658 𝜇s 5
2016-4488 10 1s 5 927 ms 710 ms 9 746 𝜇s 5
2016-4490 10 13s 3 122 ms 60 ms 5 494 𝜇s 3
2016-4492 10 44.8s 4 444 ms 172 ms 4 399 𝜇s 4

categories, categorized based on the input file type. From this
dataset, we selected some programs to measure the Time-to-
Reach (TTR) of baseline and our work. These benchmarks are
used to address RQ1.

• AFLGo Test Suite [2] is a collection of programs with n-day
vulnerabilities, which was used in the experiments of AFLGo [3].
This test suite has been utilized in multiple research studies [5,
10] to evaluate DGF techniques. These benchmarks are used to
address RQ2-4.

Experiment Settings. We conducted our evaluations on the ma-
chine equipped with Intel Xeon Gold 5218R CPU with 20 cores,
using Ubuntu 20.04.6 LTS as the operating system. During exper-
iments, each fuzzer instance runs in a docker container [9] and
binds to one CPU core.

The baseline DGF was repeated 10 times with a time budget of
24 hours. Our method does not contains randomness, and therefore
statistical evaluation is unnecessary. We only evaluate our method
once. The detail of the real-world benchmark programs we used is
shown in Table 1.

5.2 Performance on Reaching Target Site
We conduct the evaluation on two kinds of open-source real-

world programs from UniBench. Table 2 shows the results.
• Jasper is a collection of software (i.e., a library and application pro-
grams) for the coding and manipulation of images. This software
can handle image data in a variety of formats. One such format
supported by Jasper is the JPEG-2000 format defined in ISO/IEC
15444-1. Our target covers three formats of image, including jpc,
bmp, and jp2.

• LAME is an MP3 encoding tool. The goal of the LAME project is
to use the open-source model to improve the psycho acoustics,
noise shaping, and speed of MP3.
The metric we use to measure the performance is the time cost

to reach the selected target sites. Additionally, we provide the mean
solve time which represents the solver used to produce a solution.
On all target sites, ColorGo outperforms benchmark fuzzer and

achieves the shortest 𝜇TTR. Overall, even discard data that AFLGo
timeout (>24h). In terms of mean TTR, ColorGo outperforms DGF
(AFLGo) by 50×. The result shows that our concolic execution,
which takes both precision and efficiency into account, has better
capability to reach the target site than DGF.

We use the same initial inputs in UniBench for all experiments,
the number 16 of runs in this table shows the demand of sorting
the inputs in the initial queue, while our work tries them in order.

We add a new metric called Total Execution Time (TET) which
separately counts the time used on program execution, the subtrac-
tion of TTT and TET represents time for concolic executor to build
up, including some file I/O operations and the maintenance of input
queue. We can see more than half of the time spent on the starting
process in our experiment, but when the total time is longer, the
proportion of starting time is smaller.

5.3 Performance on Exposing specific
vulnerability

In this section, we evaluate the vulnerability reproduction per-
formance by the time used to trigger specific crushes. Vulnerability
reproduction is more in line with the actual application scenario,
and the vulnerability report always includes stack trace of the error,
which records the function call stack. The function call chain fur-
ther restricted the search scope at the level of Call Graph. We search
the information of CVEs we reproduce on the official website and
record the function call stack for our later use. Table 3 shows the
results.

The program we selected to evaluate our work is:

• Binutil. The GNU Binutils are a collection of binary tools. We
evaluate c++filt, a filter to demangle encoded C++ symbols.

We add a new metric called Early Termination Executions (ETE)
to illustrate the effectiveness of our coloration. The percentage
of early termination runs in all runs is 100%, which proves our
coloration does help to avoid wasting time on irrelevant code ex-
ploration.
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Except for CVE-2016-4488, which is considered very easy to
expose (𝜇TTE < 1s), ColorGo significantly outperforms other tools
by 100× faster to expose them. The result shows that ColorGo
performs best when the path is highly specified. In such cases, we
can maximize the effectiveness of precise seed generation.

Table 4: Mean Execution Time on AFLGo test suite. ET = early termi-
nation

Prog. Targets Mean Execution Time
Default No ET Pure execution

binutils

2016-4487(4489) 36 ms 40ms 16ms
2016-4488 142 ms —— 47ms
2016-4490 20 ms 38ms 17ms
2016-4492 43 ms 48ms 16ms

5.4 Impact of Different Components
To investigate the impact of different components in ColorGo, we

disable each component individually and conduct experiments on
the same targets selected from AFLGo Test Suite as in Section 5.2.

5.4.1 Impact of Search Scope Restriction. We conducted an exper-
iment to study the impact of search scope restriction. To do this,
we disabled the early termination mechanism, which allowed the
program to execute outside the colored space. The out-of-colored
execution is useless and time-wasting and may produce new in-
put which results in irrelevant execution. The disabled one follows
almost the same execution path as the original one. We compare
the average execution time to show the speedup for each execu-
tion of our method. Table 4 shows the results. We can observe
that disabling the early termination causes an increase (>10%) on
TTE, which means the search scope restriction has a significant
impact on the performance of ColorGo. The increased degree of
TTE depends on the depth of our target. If the target is located
near the beginning of the program, the effect of early termination
will be more significant. For CVE-2016-4490, by conducting col-
oration and path pruning, we reduced the average execution time
by 50%. Besides, the CVE-2016-4488 failed to be reproduced because
of the huge change in execution path caused by disabling part of
the coloration, which also demonstrates our coloration can help
the path-finding of directed fuzzer.

5.4.2 Impact of Search Strategy. To validate the effectiveness of
our search strategy, we compare our FDFS with the implementation
of naive DFS which disables the concept of deviation basic block,
which issues constraint solving towards every colored side along the
execution path. The result is presented in Table 5, it is clear that the
number of useless solutions has increased a lot (100×) as we collect
all potential input along the way in coloration scope. The increase
of useless solutions and inputs results in the growth of the number
of executions, which significantly degrade the performance. The
degradation of performance proves our FDFS outperforms naive
DFS a lot.

5.5 Instrumentation Overhead
Concolic execution obtains symbolic capability by instrumenta-

tion, which causes additional runtime overhead. To evaluate the

runtime overhead, we run the same input against three versions of
the benchmark program in Section 5.2. One is the vanilla version
without any instrumentation, and the other is instrumented by
ColorGo, where we add symbolic expression propagation and con-
straint solving but disable the early termination to ensure that we
run the same paths on two versions. Additionally, we also present
the default data we obtain in Section 5.2 by experimenting with
the native implementation of ColorGo as a reference. The results
are shown in Table 4, we compare the default mean execution time,
mean execution time disabled early termination, and mean execu-
tion time of pure execution. We have observed that ColorGo can
cause up to a 67% runtime overhead which reduces to 62% on aver-
age. If early termination is used, this percentage could be decreased
to 50%. The cost of instrumentation is negligible compared to the
cost of interpretation.

6 RELATEDWORK
There are two threads of work in the literature related to ColorGo,

i.e., directed graybox fuzzing and hybrid fuzzing. In this section,
we introduce these works accordingly.

6.1 Directed Graybox Fuzzing
Nowadays, many new works emerge to optimize directed gray-

box fuzzing, including fitness metrics [5, 29, 32, 35] to conduct
seed prioritization, make fuzzing optimization including input opti-
mization [12, 13, 33, 36], power scheduling [5, 19, 20, 35], mutator
scheduling [5, 18, 27, 33], and mutation operations [13, 29, 32, 33],
to make directed fuzzing more directed.

Regarding search scope restriction, we prove that there is an
intersection between whitebox directed fuzzing and graybox di-
rected fuzzing, and there may be other opportunities to learn from
each other for eventual performance gains. To enhance our search
strategy design and make more informed decisions about which
constraints to solve and which inputs to execute, we can assign a
weight to each edge in the iCFG. This takes into account various
influencing factors. This weighting system is akin to the fitness
metrics used in Directed Greybox Fuzzing (DGF). DGF employs
a fitness metric to gauge how closely the current fuzzing aligns
with the fitness goal. While early iterations of DGF only considered
distance on the iCFG, numerous variants have been developed to re-
fine the fitness metric. For instance, TOFU [30] defines its distance
metric as the number of correct branching decisions required to
reach the target. RDFuzz [32], on the other hand, combines distance
with the execution frequency of basic blocks to prioritize seeds.
AFLChurn [35] assigns a numerical weight to a basic block based
on its recent changes or frequency of alterations. WindRanger [10],
meanwhile, factors in deviation basic blocks.

The similarity metric is proposed by Hawkeye [5], which is the
degree of overlap between the current status and target status from
a certain aspect, including execution trace similarity [5], statement
sequence similarity [19, 20], and so on. Similarity metric is also
used for specific bug detection such as use-after-free bug and other
memory-related bugs [6, 23].

Deep learning has also played a role in vulnerable probability
prediction at the level of function and basic block [15, 18, 34]. The
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Table 5: Performance of different search strategies on AFLGo test suite.

Proj. Targets FDFS DFS

Executions Mean
Execution Time Solves 𝜇ST TTE Executions Mean

Execution Time Solves 𝜇ST TTE

binutils

2016-4487(4489) 5 36 ms 4 658 𝜇s 308 ms 39 47 ms 365 462 𝜇s 25450 ms
2016-4488 5 142 ms 9 746 𝜇s 927 ms 25 43 ms 112 559 𝜇s 5810 ms
2016-4490 3 20 ms 5 494 𝜇s 122 ms 8 41 ms 39 513 𝜇s 1009 ms
2016-4492 4 43 ms 4 399 𝜇s 444 ms —— —— —— —— ——

probability-based metric allows for the combination of seed prior-
itization and target identification. This enables directing fuzzing
towards potentially vulnerable locations, without being dependent
on the source code.

These adaptations demonstrate the evolution and sophistication
of the fitness metric, enabling more nuanced and effective fuzzing
strategies.

6.2 Hybrid Fuzzing
Hybrid fuzzing [6, 16, 19, 24, 25] combines symbolic execution

and graybox fuzzing, to utilize the advantages of each technique.
In this scenario, symbolic execution acts as an assistant by solving
condition of branch that is hard to cover by graybox fuzzing. Hybrid
fuzzing also aims to combine the precision of DSE and the scalabil-
ity of DGF to mitigate their individual weaknesses by selectively
using symbolic execution, under the observation that DGF tends
to explore branches with simpler path constraints while DSE is
geared towards solving complicated path constraints. However, it
does not solve the problems of both techniques fundamentally as
our work has done. Two components intertwining in the system
also introduce complexity and make the system more cumbersome
and inefficient.

7 CONCLUSION
In this paper, we propose a directed whitebox fuzzer that utilizes

compilation-based concolic execution. Our innovative approach
aims to address the inefficiency and imprecision issues found in
existing graybox and whitebox directed fuzzers. We introduce Col-
orGo, a tool designed to effectively reach target sites by iteratively
concretely executing an instrumented program. To enhance the
directed whitebox fuzzing, we propose incremental coloration to re-
strict the exploration scope and overcome the limitations of concolic
execution. Furthermore, we conducted a comparative experiment
with state-of-the-art directed graybox fuzzing. Our results demon-
strate that our method outperforms it by reaching the target sites
50 times faster and exposing vulnerabilities 100 times faster. Addi-
tionally, we thoroughly investigate the effect of different parts of
our design on the final performance.

8 DATA AVAILABILITY
The source code and detailed experiment are available on the

website [7]. Besides, we demonstrate the guidelines for the repro-
duction of all experiment results.
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