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Abstract

Federated fine-tuning of large language models (LLMs) is critical for improv-
ing their performance in handling domain-specific tasks. However, prior work
has shown that clients’ private data can actually be recovered via gradient in-
version attacks. Existing privacy preservation techniques against such attacks
typically entail performance degradation and high costs, making them ill-suited
for clients with heterogeneous data distributions and device capabilities. In this
paper, we propose SHE-LoRA, which integrates selective homomorphic encryption
(HE) and low-rank adaptation (LoRA) to enable efficient and privacy-preserving
federated tuning of LLMs in cross-device environment. Heterogeneous clients
adaptively select partial model parameters for homomorphic encryption based on
parameter sensitivity assessment, with the encryption subset obtained via negoti-
ation. To ensure accurate model aggregation, we design a column-aware secure
aggregation method and customized reparameterization techniques to align the
aggregation results with the heterogeneous device capabilities of clients. Extensive
experiments demonstrate that SHE-LoRA maintains performance comparable to
non-private baselines, achieves strong resistance to the state-of-the-art attacks,
and significantly reduces communication overhead by 94.901% and encryption
computation overhead by 99.829%, compared to baseline. Our code is accessible
at https://anonymous.4open.science/r/SHE-LoRA-8D84.

1 Introduction

Large language models (LLMs) have demonstrated impressive generalization capabilities across a
wide range of tasks, but their deployment in domain-specific applications (e.g., healthcare, financial
transactions) [15, 25] often requires private, user-generated data. While the demand for deploying
LLMs across diverse domains is continuously growing, stringent privacy preservation regulations
like GDPR [44] pose significant barriers to centralized fine-tuning. To address this issue, Federated
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learning (FL) has emerged as a promising and privacy-preserving solution by enabling decentralized
parameter-efficient fine-tuning (PEFT) of LLMs without exposing sensitive user data [52].

Among various PEFT techniques, Low-Rank Adaptation (LoRA) stands out due to its high efficiency
and model quality. It reparameterizes the weight matrix W ∈ Rm×n as W = W0 + BA, where
W0 ∈ Rm×n represents the frozen pre-trained parameters, and B ∈ Rm×r and A ∈ Rr×n are the
adapter parameters to be learned. Given that r ≪ min(m,n), LoRA significantly reduces both
computation and communication costs in Federated PEFT. However, recent works [36, 6] have shown
that the parameters or gradients transmitted during Federated PEFT can be exploited via inversion
attacks to reconstruct private training data, highlighting the need for enhanced privacy protection in
federated PEFT with LoRA.

Many privacy-preserving techniques have been proposed to mitigate privacy leakage risks in FL,
including differential privacy (DP) [42, 51, 56], secure multi-party computation (MPC) [34, 29,
53], and homomorphic encryption (HE) [20, 27, 23]. DP ensures formal privacy guarantees by
perturbing data or model updates with noise. However, in LoRA-based settings which involve the
multiplication between A and B, the noise is amplified, which can hinder convergence and degrade
model performance [42]. In contrast, cryptographic approaches such as MPC and HE can achieve
higher accuracy. MPC-based secure aggregation employs techniques such as garbled circuits and
secret sharing to securely compute PEFT updates without exposing sensitive data. Nevertheless, it
often requires intricately designed computation and synchronization protocols, making it less practical
for FL with heterogeneous data and system capabilities [28, 31]. Selective HE (SHE) [20, 27, 23]
offers a compelling alternative. By encrypting only sensitive parameters and enabling computation
on encrypted data without decryption, it offers strong privacy guarantees and relatively low HE costs
without sacrificing accuracy, making it highly attractive for privacy-preserving federated PEFT.

However, existing SHE methods struggle to balance privacy and efficiency in cross-device federated
PEFT with LoRA, particularly under Non-IID (Non-Independently Identically Distributed) data and
heterogeneous device capabilities. As discussed in Section 2.4, two observations highlight these
challenges: 1) LoRA matrix multiplication makes ∆W denser, which may increase the number of
parameters requiring encryption, and 2) variations in encrypted positions across heterogeneous clients
lead to an expanded union of encrypted parameters during aggregation, raising HE costs. Driven by
these limitations, we aim to adaptively balance security and HE overhead per client in cross-device
federated PEFT with LoRA. Achieving this requires addressing the following key challenges:

• How to adaptively apply SHE across heterogeneous clients? Algorithms like FedAvg [32] are
not directly applicable to LoRA-based PEFT. Naively applying LoRA requires all clients to use
the same low-rank configuration, which is impractical for devices with heterogeneous resources.
Furthermore, separately aggregating the two LoRA matrices (A and B) is not mathematically
equivalent to full-weight aggregation (Section 2.4). This challenge is exacerbated by the fact that
clients with different hardware capabilities cannot encrypt parameter updates of uniform size, which
disrupts aggregation and complicates reconstruction of low-rank matrices from encrypted weights.
Hence, a new SHE-compatible aggregation algorithm is needed to support heterogeneity.

• How to avoid the expansion of encrypted subsets on SHE? In heterogeneous settings, clients
may independently encrypt arbitrary positions in their model parameter matrix, inflating ciphertext
size during aggregation. Moreover, mixing plaintext and ciphertext matrices introduces structural
disorder, making aggregation inefficient. Without efficient negotiation of encryption positions, both
ciphertext size and aggregation overhead can increase substantially.

To address these challenges, we propose SHE-LoRA, which integrates SHE and LoRA to enable
efficient and privacy-preserving federated tuning of LLMs in cross-device environments. Specifically,

• We propose SHE-LoRA to enable client-specific encryption based on local resource constraints
and privacy needs. Each client evaluates the sensitivity of LoRA parameters and selects a subset to
encrypt within a local encryption budget. This subset is encoded using order-preserving encryption
(OPE) and sent to the server, which then negotiates a global encrypted subset to optimally balance
privacy and HE overhead per client.

• We introduce a column-swapping parameter obfuscation method that clusters plaintext and
ciphertext parameters separately, enabling efficient matrix operations on plaintext and allowing
ciphertexts to be batch encrypted. Additionally, the obfuscation of parameter positions making
attacks more difficult and reducing the risk of privacy breaches.
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• Our column-aware secure aggregation scheme aligns encrypted columns across clients and
aggregates them, followed by low-rank decomposition for efficient reparameterization to restore
LoRA structure. This improves both aggregation accuracy and communication efficiency.

• Experimental results on OpenLLaMA-3B and BERT-Large demonstrate that SHE-LoRA pro-
vides strong resistance to the state-of-the-art attacks, reducing reconstruction scores to zero when
the batch size is B ≥ 8 while maintaining performance comparable to non-private baselines. It
also achieves up to 94.901% reduction in communication cost and 99.829% reduction in encryption
overhead, compared to baseline.

2 Preliminaries and Motivations

2.1 Definition of Parameter Sensitivity

Inspired by model pruning theory, which removes unimportant model parameters to reduce model
size while maintaining performance, SHE identifies and selectively encrypts the most important
model parameters (i.e., the most sensitive ones whose removal will cause significant degradation
of model performance). For a given model with parameters W, let L(W) denote the loss function.
Given a subset of the model parameters w ∈W, their sensitivity is denoted as Ω(w), and the model
parameters with w zeroed out are denoted as W−w. Thus, Ω(w) is defined as the increase in loss
when w is zeroed out:

Ω(w) = |L(W)− L(W−w)|. (1)

From Eq. (1), a larger loss increase after removing w indicates higher sensitivity of w. Thus, Ω(w)
reflects not only importance, but also the potential privacy risk that may be leaked via observing
w. However, directly computing Ω(w) for all parameters is computationally infeasible. Taylor
approximation-based estimation [21, 16] requires gradient computation, which also incurs significant
overhead, especially in large language models (LLMs), where high dimensionality and outlier
activations [40] further exacerbate the cost. To mitigate this, we adopt Wanda [41] to estimate the
sensitivity of a parameter Wij in the i-th row and j-th column as:

Ω(Wij) = |Wij | · ∥xj∥2, (2)

where | · | represents the absolute value operator, ∥xj∥2 evaluates the l2 norm of the j-th features.
Since both the model parameters W and the input data x are directly accessible, Wanda estimates
parameter sensitivity with only a single forward pass.

2.2 Privacy Leakage Quantification

We leverage mutual information to quantify privacy leakage caused by the selective encryption of
w. Specifically, we assume that once encrypted with HE, w does not leak any privacy information.
While for the accessible plaintext portion of the model parameters (i.e., W−w), we measure the
mutual information shared between W−w and W as:

I(W;W−w) =
∑

y∈W−w

∑
x∈W

p(x, y) log2
p(x, y)

p(x)p(y)
, (3)

where p(x, y) denotes the joint probability distribution, with p(x) and p(y) representing the marginal
distributions of W and W−w, respectively. Given our objective of selectively encrypting the most
privacy-sensitive model parameters, I(W;W−w) quantifies the extent of privacy leakage attributable
to the unencrypted model parameters (i.e., W−w). As the value of I(W;W−w) increases, so does
the risk of privacy leakage resulting from the selective encryption of w.

2.3 Threat Model

Following prior work [27, 20], we assume a semi-honest adversary A that may compromise the
aggregation server or a subset of clients. While A follows the training protocol, it passively attempts
to infer private client data from observed PEFT updates. Even whenA compromises certain clients, it
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only gains access to the updates from those clients. We adopt single-key HE, where all clients use the
same HE key to enable secure ciphertext aggregation and prevent the server from learning individual
updates. For potential attacks from compromised clients, we assume secure communication channels
between each client and the server. To maintain the integrity of privacy guarantees under single-key
HE, we assume that the server and clients do not collude. In particular, compromised clients do not
reveal their encryption keys to the server. Relaxing this assumption would require multi-key HE,
which we discuss as a possible extension in Appendix C. Protection against other malicious behaviors
(e.g., collusion, poisoning, backdoor attacks) is beyond the scope of this work; we refer readers to
existing defenses [54, 37].

2.4 Motivations

Naive averaging of LoRAs leads to mathematical errors. Popular federated LoRA methods
[52, 49, 33, 4], such as FedAvg with Naive LoRA, require clients to possess homogeneous LoRA
ranks, and aggregates the two low-rank matrices A and B separately across clients (i.e., server side =∑

B ×
∑

A, rank(A) = rank(B)). However, this introduces inconsistency in global model updates,
as the aggregation of LoRA updates that can be used for model tuning (i.e.,

∑
(B×A)) is intrinsically

unequal to
∑

B ×
∑

A. This mismatch will cause deviations in reconstructed weight updates and
degrade model performance. Moreover, separately aggregating the LoRA matrices requires all clients
to use the same rank, which is unrealistic for cross-device federated LoRA. As a result, this naive
approach is not applicable to heterogeneous LoRA settings.

Matrix multiplication expands encryption positions. HE is a privacy-preserving technique that
deprives attackers of access to model parameters or gradients, preventing them from obtaining any
information and thus hindering attacks. However, this perfect security comes with a high cost.
Although existing SHE methods like FedML-HE [27] and MaskCrypt [23] reduce HE overhead by
selectively encrypting a subset of model parameters with masking, the matrix multiplication of LoRA
will lead to an expanded encryption subset as shown in Fig. 1, which significantly increases the cost
of SHE during LoRA.

Matrices from heterogeneous clients inflate ciphertext size. Our experiments show that clients
with heterogeneous hardwares and Non-IID data tend to focus on different sensitive model parameters
during fine-tuning. As a result, the positions selected for encryption vary across clients. In the
aggregation phase, if a client encrypts a specific model parameter, the parameter corresponding to the
same position must remain encrypted in the global model as well, leading to inflated ciphertext size
as the number of clients grows, which is illustrated in Fig. 2.

Figure 1: Expansion of encryption positions. Figure 2: Inflation of ciphertext size.

3 Method

In order to adaptively balance security and HE overhead per client in cross-device federated LoRA,
encrypting A offers a cost-effective solution. Since A directly operates on user data, it is more
vulnerable to inversion attacks [36], making its protection essential for preventing privacy leakage.
Following this rationale, the diagram of SHE-LoRA is as illustrated in Fig. 3.

Specifically, SHE-LoRA consists of the following components: Step 1. HE Subset Negotiation.
First, based on the definition of model parameter sensitivity in Eq. (2), each client assesses its model
parameter importance and transmits to server. Then, the server negotiates a global encryption subset
and feeds it back to clients. Step 2. Selective Encryption of Model Parameter Matrix. Based
on the global subset, clients perform column swapping to cluster encrypted columns on one side of
the matrix, achieving parameter location obfuscation that enhances privacy protection and improves
the efficiency of HE. Step 3. Adaptive Aggregation. The server performs adaptive, column-aware
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Figure 3: The diagram of the SHE-LoRA.

aggregation to the plaintext and ciphertext, results from heterogeneous encryption subsets, enabling
efficient and accurate aggregation of model updates. Step 4. Reparameterization. Each client
reparameterizes the aggregated plaintext and ciphertext results into LoRA parameters, matching its
local rank and enabling continued local fine-tuning.

3.1 HE Subset Negotiation

3.1.1 Assessment of Parameter Importance

Figure 4: Sensitivity of model parameters.

Fig. 4 illustrates the sensitivity of model parameters
measured by Eq. (2), where darker color indicates
higher importance. We can see that the sensitivity val-
ues generally differ by the columns of the parameter
matrix, suggesting a strong correlation with specific
data channels. Considering that as explained in Sec-
tion 2.4, encrypting even a single element in a column
will result in the expansion of encryption positions
for that entire column due to matrix multiplication,
and vectorized HE operation by columns is benefi-
cial to improving HE efficiency [20, 12], we let each
client assess the importance and determine its encryption subsets of columns by its encryption budget,
which is pre-determined offline according to its device capability. Specifically, for a parameter matrix
A ∈ Rr×n and input X ∈ RL×n, we use Sj =

∑r
i=0 |Wij | · ∥Xj∥2 to calculate the importance of

the j-th channel, where ∥Xj∥2 evaluates the l2 norm of the j-th features aggregated across L tokens.
Thus, the proposed approach can not only provide channel-level privacy protection, but also prevent
unnecessary expansion of encryption positions, and improve HE efficiency.
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3.1.2 Encryption Subset Negotiation

As explained in Section 2.4, clients with heterogeneous data distributions and device capabilities will
select different positions and amounts of important model parameters for encryption according to
their individual budgets. As the union of encryption subsets expands with the aggregation of client
model updates, the size of the ciphertext may inflate significantly. To address this, we further narrow
down the encryption subset by designing a globally shared encryption subset across clients, ensuring
that the overall ciphertext size remains within the allocated encryption budget per client.

Figure 5: Selective encryption of
columns.

To prevent the server from snooping on the positions of im-
portant model parameters and conducting targeted attacks, we
apply OPE to hide each client’s encryption subset. As OPE
preserves numerical ordering of the plaintext, the server cannot
obtain any information from the cipher other than the plaintext
order. Specifically, the client first encrypts a tuple (G,S) with
OPE and sends it to the server, where G is the set of columns
that needs HE, and S is their sensitivities. Then, the server
maintains two shared lists based on all the clients’ tuples: the
Common list, which counts the occurrences of each column,
and the Sensitivity list, which sorts all columns according to
their importance. Finally, by taking into account both the over-
lap of important encryption subsets across clients (reflected in
Common and Sensitivity) and the preferred encryption subsets
of individual clients (reflected in Gi), the server negotiates a
global encryption subset satisfying the budget of each client (denoted as γi ∈ [0, 1]), of which
algorithmic details are elaborated in Appendix D.1. As a result, the negotiated global encryption
subset optimally balances privacy and HE overhead per client.

3.2 Selective Encryption of Model Parameter Matrix

As illustrated in the top of Fig. 5, the selected columns for encryption may be scattered across
the parameter matrix. This irregular distribution increases the complexity of matrix batching and
raises the overhead of encryption, decryption, and computation. To address this issue, based on
the negotiated encryption subset, we propose a column-swapping method to separately cluster the
columns waiting to be encrypted and those remain unencrypted. This approach brings three key
benefits: (1) encrypted columns are grouped together, allowing for efficient batch encryption, reduced
storage and communication overhead; (2) the clustered unencrypted columns can be directly used
in matrix operations, improving computational efficiency; and (3) the column-wise obfuscation
increases the difficulty of potential privacy attacks.

After swapping, we selectively encrypt the model parameter matrix, with the encryption subset being
the last k columns. Thus, the tensor to be encrypted, denoted as D, has the shape of (r, k). In HE,
the CKKS (Cheon-Kim-Kim-Song) scheme [12] serves as an encryption technique that facilitates
approximate floating-point arithmetic, making it particularly advantageous for the encryption of
matrices or tensors. For large-scale tensors, due to the restricted cipher space for individual encryption,
it requires the tensor to be split into blocks, with each block being encrypted separately. As illustrated
in the bottom of Fig. 5, we divide D into blocks by column, assuming a block size of chunk, then the
number of blocks is n = ⌈k/chunk⌉, D = {D1, D2, . . . , Dn}, where each block contains a tensor
that has the shape of (r, chunk). For each block Di, CKKS encryption is performed to obtain cipher
Ci = CKKS(Di, pk), where pk is the public HE key. After all blocks are encrypted, the complete
cipher list {Ci}n is sent to the server.

3.3 Adaptive Aggregation

After receiving both unencrypted and encrypted model parameters from the clients, the server
performs matrix multiplication to obtain each client’s full model parameter matrix ∆Wi = BiAi,
where the last ki = ⌊n × γi⌋ columns need encryption, while the rest remain unencrypted. Since
decryption can only be performed on the client side, to prevent the inflation of ciphertext size caused
by aggregating heterogeneous encryption subsets, we propose to aggregate the unencrypted and
encrypted parts separately.
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Aggregation of Unencrypted Model Parameters. By calculating the matrix multiplication of B and
the unencrypted part of A (denoted as Ai

plain), we can obtain the aggregation result of unencrypted
model parameters ∆W i

plain = BiAi
plain for client i. As the number of encrypted columns of client i is

ki, then ∆W i
plain ∈ Rm×(n−ki). In our scenario, the encryption budgets of the clients are different,

meaning that the shape of ∆W i
plain varies across the clients. According to Section 3.2, we can ensure

that the unencrypted model parameter positions of all the clients are left-aligned. Therefore, we
can simply perform block-wise weighted averaging to aggregate the unencrypted model parameters.
Specifically, we only average the unencrypted model parameter positions shared by all the clients as
illustrated in Fig. 6. A detailed algorithmic introduction is available in Appendix D.2.

Figure 6: Aggregation of unencrypted model parameters (Same-colored columns are aligned; blank
columns indicate the encrypted columns).
Aggregation of Encrypted Model Parameters: The server receives the set of ciphers ∆W i

cipher =

{Ci}n ∈ Rm×ki from the clients. Since the budget γi of each client is different, the generated cipher
set may be inconsistent, but the cipher block order is consistent across all the clients. Similar to the
above, the encrypted model parameter positions of all the clients are right-aligned, and the cipher sets
are aggregated via block-wise weighted averaging. The detailed algorithm is in Appendix D.3.

To reduce communication overhead, we transmit the unencrypted and encrypted parts separately. For
the unencrypted part, since most of the model parameters remain unencrypted during LoRA, we let
the server, which generally has more computation capability, apply singular value decomposition
(SVD) to decompose the aggregation result: ∆W plain(∈ Rm×K) = UpΣpV

⊤
p , where K = n −

min(ki),Up ∈ Rm×m,Σp ∈ Rm×K , V ⊤
p ∈ RK×K . Then, according to each client’s rank ri, the

server slices the decomposition results as: Up[:, : ri] ∈ Rm×ri ,Σp[: ri, : ri] ∈ Rri×ri , V ⊤
p [: ri, :] ∈

Rri×K . Thus, each client receives the model parameters corresponding to its own rank. For the
encrypted part, since each client only selectively encrypts a small portion of model parameters, we
let the server first truncate the aggregation result by the encryption budget of respective clients, and
then let the clients decrypt their corresponding encrypted model parameters as in Section 3.4. For
example, as illustrated in the “Step 4” of Fig. 3, suppose Client 1’s encryption budget can only afford
3 cipher blocks, while the aggregation result contains 6 cipher blocks in total. Therefore, the server
will truncate the aggregation result to 3 blocks, and send it back to Client 1 for further decryption.

3.4 Reparameterization

To enable the next round of FL training, each client needs to merge the plaintext and ciphertext results
returned by the server into new LoRA parameters. The client receives the plaintext decomposition
results Bp = Up

√
Σp ∈ Rm×r, Ap =

√
ΣpV

⊤
p ∈ Rr×K , and the cipher blocks from the server.

For the plaintext decomposition results, the client directly zero-pads Bp ∈ Rm×r and Ap ∈ Rr×n

for further update of its model parameter matrix. For the cipher blocks, the client first decrypts the
ciphertext into plaintext, and then performs SVD and zero-padding to obtain the decomposed results
∆W cipher = UcΣcV

⊤
c . By merging the decomposition results of the plaintext and ciphertext through

Eq. (4) and restoring the position of the model parameters according to the corresponding positions
in Section 3.2, the parameters can be restored to the correct aggregation result.

Bg = [Up

√
Σp Uc

√
Σc] ∈ Rm×(r+r), Ag =

[√
ΣpV

⊤
P√

ΣcV
⊤
c

]
∈ R(r+r)×n. (4)

Finally, the client performs SVD on Ag and Bg again, and re-adjust the parameter shapes according to
the client’s rank to B̂ ∈ Rm×r and Â ∈ Rr×n. As the SVD conducted by the client is all on low-rank
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matrices, the computation overhead is trivial. The detailed derivation of the reparameterization is
presented in Appendix D.4.

4 Experiments

4.1 Settings

Table 1: Heterogeneous device types.

Type Rank Budget(Bert,LLaMA)%
1 8 (0.4, 0.125)
2 16 (0.4, 0.125)
3 16 (0.8, 0.25)
4 32 (1.6, 0.50)

Model: In our experiments, we selected
two representative pre-trained language mod-
els—namely, Bert-Large [14] and OpenLLaMA-
3B [17] to investigate their performance across
diverse task scenarios. Bert-Large is a model
based on the Transformer encoder architec-
ture, while OpenLLaMA-3B is founded on the
LLaMA architecture.

Datasets: We employed the IMDB and natural-instructions datasets for natural language understand-
ing and natural language generation tasks, respectively. Natural-instructions [47] comprises 1616
NLP tasks spanning 76 distinct task types. Furthermore, we evaluated the performance of federated
fine-tuned models on MMLU [22] for natural language generation tasks, and on GLUE [45] for
natural language understanding tasks.

Hyperparameters of HE: We employed the CKKS from the TenSEAL library [7] to implement
HE operations. We follow the instruction1, by setting the polynomial degree to 8192,2048, and the
modules chain to [60, 40, 60],[20,20] for OpenLLaMA-3B and Bert-Large, separately.

Devices: We established training on 50 clients for 200 rounds. SHE-LoRA is implemented in
PyTorch based on the Flower framework2, and conducted all experiments on a server equipped with
four NVIDIA A6000 GPUs and an Intel Xeon Platinum 8369B CPU. In practical deployments, each
client can be run on significantly less demanding hardware. As detailed in Table 1, we predefined
four types of configurations with varying encryption budgets and LoRA ranks, and assigned them
to clients based on their computational capabilities. From a naive perspective, we posit that weaker
devices are characterized by lower rank and encryption budget. Similarly, high-performance devices
are capable of supporting a higher rank and accommodating a more substantial encryption budget.

4.2 Privacy Attack

The SHE-LoRA is applicable to both parameter and gradient updates. Although parameter-based
attacks can be transformed into gradient-based ones, this is highly inaccurate and impractical for
large models, even with direct access to gradients [46]. Therefore, we evaluate SHE-LoRA under
DAGER [36], the current state-of-the-art (SOTA) gradient inversion method. DAGER exploits the fact
that gradients are linear combinations of input embeddings (Appendix A.5) . It iterates over the entire
vocabulary and measures the distance between each embedding vector and the principal components
of the gradient, aiming to identify tokens. This approach relies on a strong assumption that the
number of unique tokens b≪ rank. However, this assumption rarely holds for resource-constrained
clients with very low ranks, making such attacks significantly more difficult.

Table 2: Data reconstruction of DAGER on the OpenLLaMA-3B when Rank is 256.

Dataset Method B=4 B=8 B=16
R-1 R-2 R-1 R-2 R-1 R-2

SST2
Non-Privacy 90.343 89.197 80.976 77.834 42.281 31.79

with DP 84.123 81.806 59.201 50.809 28.844 11.134
SHE-LoRA 66.383 61.071 0 0 0 0

Rotten
Tomatoes

Non-Privacy 59.14 55.316 19.297 10.606 1.366 0.563
with DP 34.605 26.784 14.166 5.482 0 0

SHE-LoRA 24.861 16.238 0 0 0 0

1https://github.com/OpenMined/TenSEAL
2https://flower.ai/
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Theoretically, the change in the principal components of the gradient due to selective HE and column
confusion is minimal, which does not lead to the failure of the DAGER attack. However, for the
low-rank space of the LoRA parameter, this perturbation leads to a strong change in the orthogonal
complement of the gradient, which is manifested by a drastic change in the vectors of the orthogonal
complement in the column space of the gradient, leading to the failure of DAGER’s span check. We
show the defense effect of SHE-LoRA for different batch sizes at rank = 256, with only one column
interfered. We did not report results for higher encryption ratios, as the attack failed when the ratio
exceeded 0.125%.

Figure 7: Impact of encryption ratio and
strategy on mutual information.

The Table 2 demonstrates the data reconstruction effec-
tiveness of the DAGER attack on two datasets, SST2 and
Rotten Tomatoes, under the OpenLLaMA-3B, Rank=256
(smaller values indicate worse reconstruction and bet-
ter privacy protection), comparing three methods: non-
Privacy, with DP, and SHE-LoRA. Following the DP
method mentioned by DAGER [36], we implement pri-
vacy protection by adding σ2 noise to the gradient, and we
choose σ = 10−7. The SHE-LoRA shows strong defense
in both datasets, with different batchsizes, especially at
B=8 and above, the attacker cannot reconstruct any valid
data (with a score of 0). Differential privacy can reduce
the reconstruction effect, but the protection ability is far
less than SHE-LoRA, and it will bring performance loss. SHE-LoRA is effective in improving the
model security and resisting data reconstruction attacks, especially in the case of larger batch size, it
can realize “complete protection”, which is far better than the traditional differential privacy method.

4.3 Privacy Analysis from Mutual Information Perspective

In addition, as shown in Fig. 7, from an information theoretic perspective, we compare the variation of
the mutual information of the SHE-LoRA leakage parameters under three different parameter selection
strategies. As the parameter removal ratio increases, the mutual information values corresponding to
all three strategies (Max, Min, and Random) gradually decrease, indicating that the more parameters
are removed, the less information is contained in the remaining parameters, and the better privacy
protection is. Among the three methods, the Max strategy has the lowest mutual information value and
the strongest privacy protection at all ratios, while the Min strategy has the highest mutual information
value and retains the most information, indicating a weaker degree of privacy protection. This
indicates that more sensitive parameters contain more privacy information, and selective encryption
for more sensitive parameters can more effectively reduce the risk of privacy leakage.

4.4 Performance

We report the performance comparison of SHE-LoRA with two homogeneous LoRA-based methods
(FedIT [52] and FedSA [19]) and two heterogeneous LoRA-based methods (HeterLoRA [13] and
FlexLoRA [5]). Natural language understanding tasks are evaluated on the GLUE benchmark [45],
while natural language generation tasks are assessed on the MMLU benchmark [22]. Our method
achieves comparable performance to the state-of-the-art method FlexLoRA and outperforms the other
baselines. Detailed experimental results and analysis are in Appendix F.5.

4.5 Costs Comparison

To the best of our knowledge, we are the first to use HE specifically designed for federated LoRA.
To show the overhead comparison of SHE-LoRA over other HE methods, we applied Paillier [35]
for FedIT to implement MaskCrypt [23], who uses the paillier algorithm for FL, keeping the same
encryption ratio as SHE-LoRA. The Fig. 8 shows the time of encryption and communication cost of
MaskCrypt and SHE-LoRA under both OpenLLaMA-3B and Bert-Large models at fixed 5 rounds
according to different encryption ratios.

Encryption Time: As the encryption ratio increases, the encryption time of both schemes increases
significantly. On the OpenLLaMA-3B model, the encryption time of MaskCrypt is much higher
than that of SHE-LoRA, especially at high encryption ratios (e.g., 10%), the time is as high as
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(a) OpenLLaMA-3B. (b) Bert-Large.
Figure 8: The costs comparison of SHE-LoRA with MaskCrypt at different ratios.

15,375.11 seconds, while that of SHE-LoRA is only 261.92 seconds, which reduces the encryption
overhead by 98.296%. At low encryption ratios (e.g., 0.3‰, 1.25‰), MaskCrypt’s encryption time is
also consistently higher than that of SHE-LoRA. And for the Bert model, at 50% encryption ratio,
SHE-LoRA brings as much as 99.829% time gain, which suggests that MaskCrypt is extremely
inefficient in large-scale parameter encryption scenarios, while SHE-LoRA greatly reduces the time
overhead from encryption thanks to the batch packing encryption.

Ciphertext Size: Similarly, the size of both ciphertexts increases rapidly with the encryption ratio
enhancement. The MaskCrypt ciphertext expansion is much larger than that of SHE-LoRA. For
example, at 10% encryption ratio, the size of the MaskCrypt ciphertext is 5323.14MB, while that of
the SHE-LoRA is 1867.84MB, which saves 64.911% of the communication overhead. And for Bert
model, at 10% encryption ratio, this gain is even more obvious, reaching 94.901%.

During the federated LoRA of the large model, our SHE-LoRA scheme significantly outperforms the
MaskCrypt due to the large number of parameters, especially at high encryption ratios, where the
Paillier-based HE scheme MaskCrypt is almost unavailable. Furthermore, Appendix F.2 includes a
detailed report on the training time of SHE-LoRA across varying encryption budgets.

5 Conclusion

In this paper, we introduce SHE-LoRA, a heterogeneous federated fine-tuning approach leveraging
selective homomorphic encryption, to address privacy challenges in heterogeneous environments.
This method constrains the expansion of the ciphertext through encrypted subset negotiation. Column
swapping enhances the computational efficiency of homomorphic encryption while obfuscating
parameter positions, thereby heightening attack resistance. The column-aware aggregation technique
ensures result accuracy. Ultimately, the reparameterization approach tailors aggregated outcomes
to heterogeneous devices, addressing device heterogeneity. SHE-LoRA offers customized privacy
protection tailored to device heterogeneity. Moving forward, we aim to investigate the theoretical
relationships among parameter sensitivity, defense robustness, and information leakage. Additionally,
we plan to integrate this approach with other technologies, such as multi-key homomorphic encryption,
threshold homomorphic encryption, and proxy re-encryption, to explore the equilibrium between
security and performance under broader conditions.
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A Preliminary

A.1 Singular Value Decomposition

Singular value decomposition (SVD) [30] is a mathematical method that decomposes any real or
complex matrix into the product of three standard matrices. Applicable to matrices of arbitrary shapes,
it can be adopted for tasks such as dimensionality reduction, data compression, and recommendation
systems. For a real matrix A ∈ Rm×n, SVD decomposes it as follows: A = UΣV ⊤, where
U ∈ Rm×m is an orthogonal matrix, Σ ∈ Rm×n is a diagonal matrix with non-negative real numbers
on its diagonal, known as singular values, arranged in descending order, and V ⊤ ∈ Rn×n is an
orthogonal matrix as well. To match heterogeneous LoRAs from clients, many methods [49, 4]
have employed SVD decomposition, breaking down the aggregated matrix into B = U

√
Σ and

A =
√
ΣV ⊤, which enables the projection of the original parameters into a lower-dimensional space

while preserving the essential features.

A.2 Federated Parameter-Efficient Fine-Tuning

Federated Parameter-Efficient Fine-Tuning (PEFT) is a technology designed for the efficient fine-
tuning of large models within a distributed learning framework that prioritizes data privacy. For
instance, consider LoRA [24], a well-established method for high-efficiency parameter fine-tuning.
Assuming that the weight matrix of the global pre-trained model is denoted as W ∈ Rm×n, LoRA
introduces trainable parameters, B ∈ Rm×r and A ∈ Rr×n. Each client freezes the original weights
W and learns only the trainable low-rank parameters B and A on its local data. Then, the updates
(e.g., weights or gradients) from clients are aggregated by the server via

∆w̄ =

N∑
i=1

αiBiAi, (5)

where αi indicates the weight of client i. Federated PEFT uses the Eq. (5) to guarantee heterogeneous
LoRA exact parameter aggregation. SVD is used to reparameterize the aggregation result into
heterogeneous LoRA parameters to reduce the communication overhead of the result ∆w̄. The new
LoRA parameters are then sent back to each device for continued local training, and the process is
iterated repeatedly to progressively optimize the model. It is worth noting that the model parameters
are transmitted in plaintext throughout this process, making them visible to the server.

A.3 Homomorphic Encryption

Homomorphic encryption [38, 18] is a cryptographic primitive that allows computations to be
performed on encrypted data without revealing the underlying plaintext. It is exceptionally well-
suited for FL, as it enables the computation of aggregation in server without exposing clients’ updates.
The Cheon–Kim–Kim–Song (CKKS) encryption scheme [12] supports approximate numerical
computations and floating-point arithmetic. The CKKS offers relatively high computational efficiency
and supports vectorized operations, making it highly suitable for LoRA tuning in FL. It can be
used to encrypt the parameters or gradients of local models, allowing the server to perform model
aggregation without decrypting any data, thereby protecting user privacy. In the implementation of
SHE-LoRA, we employ the CKKS provided by the TenSEAL library3, which supports homomorphic
computations on both vectors and tensors, thereby enabling encrypted computation operations over
complex model parameters.

A.4 Order-Preserving Encryption

Order-Preserving Encryption (OPE) [1, 10] is a cryptographic technique that preserves the numerical
order of plaintexts. If two plaintexts, a and b, satisfy the condition a < b, then their encrypted
ciphertexts will also satisfy Enc(a) < Enc(b). This enables comparisons, sorting, or range queries
to be performed on ciphertexts without decryption. In principle, OPE maps plaintexts to an interval
within the ciphertext space, while ensuring that the mapping function is monotonically increasing.
Although OPE does not provide semantic security in the traditional sense (i.e., it is possible to infer

3https://github.com/OpenMined/TenSEAL

14



the approximate range of the plaintext from the ciphertext), it is highly useful in applications that
require sorting or range operations on encrypted data, such as encrypted databases or cloud storage
queries. In SHE-LoRA, we employ OPE to hide clients’ encryption subset, which prevents the server
from snooping on the positions of important model parameters and conducting targeted attacks.

A.5 Data Reconstruction via Inversion Attacks

Inversion attacks [36, 6, 55, 26] aim to reconstruct private training data or model parameters, such as
pixel values in images or sensitive information in text, by reversing the clients’ updates uploaded
during federated fine-tuning, such as gradients, model parameter updates or prediction results.
Specifically, for a model fW(x) = W⊤x, a client trains it with its local data (x, y), and calculates
the local gradient g as the derivative of the loss function L:

g =
∂L
∂W

=
∂L
∂fW

∂fW
∂W

=
∂L
∂fW

· x, (6)

and uploads it to the server. The uploaded gradient g contains a linear combination of the original
data. An attacker can analyze the principal components of the model update to search for the client’s
data distribution space and then reconstruct the data [36].

A.6 Matrix Multiplication in LoRA Amplifies DP Noise.

Differential privacy [51, 56] is a common privacy defense method that adds specific noise to updated
gradients or parameters, making the relationship between gradients and data non-linear, which
misleads the attacker’s optimization direction. Given that the LoRA fine-tuning parameter is ∆W =
BA, and ∆W plays a role during model inference, if a noise ϵ satisfying the privacy budget is added
to the parameters, then:

∆W = (B + ϵB)(A+ ϵA) = BA+BϵA +AϵB + ϵAϵB (7)

Thus, except for BA, all the terms in Eq. (7) are noises that will be aggregated into the global model
parameters, which may severely affect the model’s performance and convergence direction.

B Related Work

LoRA Tuning in FL. Among existing PEFT techniques, LoRA [24] stands out due to its excellent
performance and lesser trainable parameters in Federated PEFT. The application of efficient fine-
tuning techniques in FL can reduce communication overhead and enhance overall efficiency. FedIT
[52] employs FedAvg to aggregate updates from locally performed LoRA fine-tuning. FeDeRA [49]
modifies the initialization of matrices A and B by the SVD results of pre-trained parameters. It
helps mitigate the client drift that arises from the random initialization of A in the presence of data
heterogeneity, thereby addressing the challenges of model convergence during the early stages of
training. SLoRA [4] employs SVD to initialize matrices A and B, subsequently calculating a mask to
reduce the parameters to train and communication costs. FedRA [39] partitions the pre-trained model
by layer, enabling clients to fine-tune specific layers while the server aggregates the results to produce
the whole model. Although it reduces training costs, the model remains fundamentally homogeneous.
HydraLoRA [43] is inspired by the mixture of experts (MOE) architecture and learns multiple LoRAs
corresponding to different knowledge. PiSSA [33] directly fine-tunes the principal component of
the pre-trained model, facilitating rapid convergence and enhancing overall performance. These
LoRA variants primarily focus on reducing training costs in homogeneous settings, but neglect the
heterogeneity of device capabilities and Non-IID data in cross-device federated PEFT scenarios.

Heterogeneous LoRA. FLoRA [48] contends that the aggregation used in FedIT [52] is flawed and
employs stacking to aggregate parameters from heterogeneous clients. HeterLORA [13] implements
different ranks on clients and aggregates heterogeneous LoRA modules through zero-padding. How-
ever, zero-padding may dilute certain parameters, when aggregating the raw model parameters and
padded ones. Additionally, it redistributes LoRA modules in a heterogeneous manner via truncation.
RBLA [11] designs a rank-based LoRA aggregation to prevent model parameter dilution caused by
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zero-padding. FlexLoRA [5] synthesizes a complete set of LoRA weights from individual client con-
tributions, and employs SVD for weight reparameterization, thereby fully leveraging heterogeneous
client resources. Furthermore, pFedLoRA [50] aggregates adapters to facilitate personalized FL, and
treats LoRA as a mechanism for knowledge transfer, allowing clients to locally train heterogeneous
models while maintaining a homogeneous adapter. Although these works have made significant
contributions to heterogeneous LoRA, they still suffer from potential privacy leakage risks under
inversion attacks.

Privacy Preservation Techniques. Recent works have demonstrated that the model parameters or
gradients transmitted during federated PEFT can be exploited via inversion attacks to reconstruct
private training data [36, 6, 55, 26]. To address this issue, Yu et al. [51] employ the DP-SGD
optimizer for fine-tuning, providing formal DP guarantees for model parameters. Considering that
the DP noise may be amplified by LoRA multiplication, FFA-LORA [42] modifies the LoRA training
procedure by freezing matrix A after initialization and applying DP solely to model parameter matrix
B. However, it reduces the volume of trainable model parameters, which may negatively impact
fine-tuning performance. Similarly, FedSA-LoRA [19] proposes to globally train model parameter
matrix A while reserving matrix B for local training without participating in aggregation. Meanwhile,
several approaches have been proposed to utilize HE for privacy preservation in FL. Han and Yan
[20] proposes an adaptive, precision-lossless batch HE method that transforms model parameters
into non-negative values to prevent overflow errors. Inspired by model pruning techniques that
leverage sensitivity to eliminate redundant model parameters, FedML-HE [27] encrypts only a subset
of sensitive model parameters to reduce the encryption overhead associated with HE. MaskCrypt
[23] selects a consensus mask for SHE to minimize overhead across homogeneous devices. In
summary, DP faces the dilemma of hindering model convergence or improving privacy protection,
while existing HE methods struggle to balance privacy and efficiency in cross-device federated PEFT
with LoRA, particularly under scenarios with Non-IID data and heterogeneous device capabilities.

C Key Management

In the configuration outlined herein, the system necessitates an honest-but-curious server to execute
the aggregation of models. Then, a trusted third party is required to oversee the distribution of keys for
both Order-Preserving Encryption (OPE) and Homomorphic Encryption (HE), with the assumption
that it will not collude with the server. However, to relax above strict assumption in serverless scenar-
ios, cryptographic primitives such as threshold homomorphic encryption, multi-key homomorphic
encryption, and proxy re-encryption can be employed to achieve distributed secure computation.
Threshold Homomorphic Encryption [2] is a cryptographic scheme that amalgamates the threshold
cryptography and homomorphic encryption. It not only supports computations on encrypted data
(homomorphism) but also enables joint decryption by multiple participants (thresholding), thereby
enhancing both security and fault tolerance while preserving privacy. Decryption can only be accom-
plished with the collective participation of a predetermined number of participants, known as the
threshold. Proxy Re-Encryption [9, 3] permits a semi-trusted third party (the proxy) to transform
ciphertext encrypted for one party into ciphertext decryptable by another, all without accessing the
original plaintext or either party’s private keys. Multi-Key Homomorphic Encryption [2] enables
homomorphic operations to be performed on user data encrypted under different keys, obviating
the need for key sharing. The resultant ciphertext requires collaborative partial decryption by all
participants, each utilizing their respective private key, to yield the final plaintext outcome. This
mechanism ensures that joint computations can be performed in multi-party data collaborations while
protecting the data privacy of each participant.

D Additional Technical Details of Our Method

D.1 The Algorithm of Encryption Subset Negotiation

The workflow of encryption subset negotiation is summarized as algorithm 1. Note that server keeps
the rank and budget γ of all clients. The number of encrypted columns is denoted as k = γ ·n, where
n is the number of columns of the parameter matrix. As described in Section 3.1.2, the server receive
a set of tuple (G,S) from clients as input, where G is the set of columns that needs HE, and S is their
sensitivities. At Lines 1-3, the server first initiates the negotiation result and number of positions to
be selected at each round. Then, the server maintains two shared lists: the Common list, which counts
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Algorithm 1: Encryption Subset Negotiation

Input: clients = {rank, k, (G,S)}Ni=1, a, b, c are three hyper-parameters of selection ratio.
Output: results: the column index of public encryption subset.

1 results,selected_num← {}, 0;
2 Common← count each column occurrences in G from all clients;
3 Sensitivity← sort columns by S from all clients, and remove duplicate columns;
4 Γ← sort all the unique budget columns;
5 for each budget k columns in Γ do
6 λ← update current budget by k − selected_num;
7 P ← average sampling (a ∗ λ) columns from clients whose budget is k;
8 C ← get top-(b ∗ λ) columns from Common;
9 S ← get top-(c ∗ λ) columns from Sensitivity;

10 results← result of k columns is {S,C, P, {results}};
11 selected_num← k;
12 return results

Algorithm 2: Aggregation of Unencrypted Model Parameters

Input: {∆W i}Ni=1: Set of N matrices, each ∆W i with shape (m,n− ki)
Output: ∆W plain: Aggregated matrix with shape (m,K)

1 K ← n−min(k1, . . . , kN ) ;
2 ∆W plain ← 0m×K ;
3 Counts← 01×K ;
4 for each client i = 1 to N do
5 ci ← get column count of ∆W i ;
6 ∆W plain[:, : ci]← ∆W plain[:, : ci] + ∆W i;
7 Counts[: ci]← Counts[: ci] + 1 ;
8 for j = 1 to K do
9 if Counts[j] > 0 then

10 ∆W plain[:, j]← ∆W plain[:, j]/Counts[j];

11 return ∆W plain

the occurrences of each column, and the Sensitivity list, which sorts all columns according to their
importance. At Line 4, budgets from all clients are sorted after deduplication. At Lines 5-11, the
server repeats the process certain times, which determined by the number of unique budgets. For
each process, the number of column positions to be negotiated, termed as λ, is calculated by the
difference between current budget k columns and those, which have been determined. The server
takes into account among Common, Sensitivity, and the preferred encryption subsets of individual
clients (reflected in Gi) in different proportions and selects λ columns. By splicing the columns in
this round of negotiation in front of the columns that have been negotiated, and the server will get the
result of a new round of negotiation. Starting with the smallest columns of encrypted budget, the
server gradually negotiates up to the maximum budget columns, while keeping the previous result.
Finally, the server produces negotiated global encryption subset.

During the negotiation process, the final result involves the selection of three hyperparameters, and
we analyze the impact of hyperparameters on the negotiation result in the Appendix F.3.

D.2 Aggregation of Unencrypted Model Parameters

In this section, algorithm 2 demonstrated how server aggregates the unencrypted model parameters,
termed as ∆W i

plain, which is calculated the matrix multiplication of B and the unencrypted part
of A(denoted as Aplain). For simplicity, we use ∆Wi instead of ∆Wi

plain, which indicates the
multiplication result of client i. The input of the algorithm is the set of plaintext matrices ∆W from
all N clients. At Line 1, the columns of aggregation result is initialized by n −min(k1, . . . , kn),
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which n is the number of all columns of frozen pre-train parameter matrix, and ki indicates the
number of encrypted columns of client i. At Lines 2-3, the server initializes the result to 0 ∈ Rm×K

and sets a counter to count the number of clients contributing when each column is aggregated. At
Lines 4-7, the server incorporates client parameters ∆Wi into the results and updates the counter
to record the number of clients contributing to each column. At Lines 8-11, the server averages the
results based on the counters and returns the final aggregated result R ∈ Rm×K .

D.3 Aggregation of Encrypted Model Parameters

Similar to the above algorithm 2, the server needs to aggregate the encrypted model parameters
as well. It should be noted that after the client performs column swapping according to the global
encryption parameter subset (as shown in Figure 5 in Section 3.1.2), all client parameters’ position
are aligned, where the plaintext is left-aligned and the ciphertext is right-aligned. The algorithm 3
takes the set of cipher blocks ∆Wi

cipher = {Ci}n ∈ Rm×ki as the input. At Lines 1-3, the server
first identify the max number of cipher blocks, and initialize the results and counter. At Lines 4-8, the
server combines encrypted model parameters ∆Wi

cipher into the results and updates the counter to
record the number of clients contributing to each block. Finally, at Lines 9-12, the server averages
the encrypted model parameters block by block, and return the final aggregated encrypted model
parameters, denoted as ∆W cipher = {Ck}Bk=1. Although the blocks of encrypted model parameters
extends to B, each client only receives a part of the result matching its encryption budget.

Algorithm 3: Aggregation of Encrypted Model Parameters

Input: {{Ck
i }

mi

k=1}Ni=1: Ciphertexts from N clients, where mi indicates blocks of clienti.
Output: {Ck}Bk=1: Aggregated ciphers, B = max(m1,m2, . . . ,mN )

1 B ← max(m1,m2, . . . ,mN ) ;
2 {Ck}Bk=1 ← 0 ;
3 {nk}Bk=1 ← 0 ;
4 for block k = 1 to B do
5 for client i = 1 to N do
6 if blocks of client mi ≥ k then
7 Ck ← Ck + Ck

i ;
8 nk ← nk + 1 ;

9 for block k = 1 to B do
10 if counternk > 0 then
11 Ck ← Ck/nk ;

12 return {Ck}Bk=1

D.4 Reparameterization of LoRA

Note that the decryption and reparameterization of parameters is running on the client, since only
the client maintains the private key for decryption. The client gets the two low rank matrices
(Bp, Ap) and a set of cipher blocks ({C}k) from the server, where the two matrices need pad to
Bp ∈ Rm×r, Ap ∈ Rr×n, and cipher blocks need to be decrypted to ∆W cipher. The updated full-
parameter for each client, termed as ∆W , can be formulated as two parts, the plaintext update
∆W plain = BpAp and the ciphertext update ∆W cipher ∈ Rr×k as shown in Eq. (8). In order to
reparameterize the two parts of the model parameters into the parameter matrices B̂ and Â of LoRA,
we first apply SVD and zero-padding to the ciphertext update to generate two low-rank matrices
(Bc ∈ Rm×r, Ac ∈ Rr×n), which ensures the next fusion. The final LoRA parameter matrices(B̂, Â)
are calculated as follows:
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∆W = ∆W plain +∆W cipher (8)
SVD
==== BpAp +BcAc

= (U1

√
Σ1)
√
Σ1V

⊤
1 + (U2

√
Σ2)
√
Σ2V

⊤
2

=
[
U1

√
Σ1, U2

√
Σ2

]m×(r+r)
[√

Σ1V
⊤
1√

Σ2V
⊤
2

](r+r)×n

SVD
==== (U3Σ3V

⊤
3 )(U4Σ4V

⊤
4 )

= (U3Σ3V
⊤
3 U4

√
Σ4):,:r(

√
Σ4V

⊤
4 ):r,:

= B̂Â

E Distributability and Scalability

Our system implementation is predicated upon Flower4 [8], an open-source FL framework developed
by a team at the University of Oxford. Flower is designed to streamline the construction of FL systems
while affording a high degree of flexibility and scalability. It supports a variety of mainstream machine
learning frameworks, such as PyTorch, TensorFlow, and Hugging Face Transformers, rendering it
suitable for researchers and engineers addressing FL requirements across diverse scenarios. Flower
allows users to extensively configure the framework according to their specific needs, thereby
accommodating various FL scenarios while offering substantial support for AI research. Based on
Flower, our SHE-LoRA supports parallelized simulation and multi-machine deployment, capable of
satisfying the distributed and scalable requirements inherent in real-world applications.

F Additional Experimental Results

F.1 Data Heterogeneity

Data heterogeneity in FL is a significant difference in the distribution, scale, and characteristics of
local data of each participant in a distributed environment. We visualize the results of SHE-LoRA
heterogeneous dataset partitioning by dividing the dataset into ten clients as an example on the IMDB
datasets in the Fig. 9. From the perspective of data heterogeneity, the Fig. 9 presents the double
differences of client data in the FL: 1). Client 5 shows a significant data magnitude imbalance, and its
total sample size is only 2% of client 1, which leads to the aggravation of gradient update direction
bias during model training. 2). Clients 2/4/7/8 show an extreme unimodal label distribution, which is
non-independent and identical (non-IID) in the Dirichlet distribution parameter α=0.3, which may
lead to the collapse of the feature space, the polarization of the decision boundary, and the gradient
conflict during global aggregation of the local model.

Following the Flower Dadaset community’s5 division, the Fig. 10 illustrates the distribution of
positive and negative samples (pos/neg) in each partition (Partition ID) of the IMDB dataset under
three different partitioning strategies (IIdPartitioner, DirichletPartitioner, and ShardPartitioner [32]).
Each subgraph represents a partitioner, with the horizontal axis being the percentage of samples in
each partition and the vertical axis being the partition number. The different colors represent positive
and negative categories.

The proportion of positive and negative samples in each partition is more balanced and consistent
by IIdPartitioner and ShardPartitioner, reflecting the homogeneity of data distribution. However,
under the way of DirichletPartitioner, the proportion of positive and negative samples in each
partition is quite different, some partitions are almost all positive samples, and some partitions are
dominated by negative samples, showing obvious data heterogeneity (Non-IID). Therefore, we use
the DirichletPartitioner to simulate the inconsistent data distribution of each participant in the real
scenario, so as to better study and evaluate the performance of the SHE-LoRA algorithm in the
heterogeneous data environment.

4https://flower.ai/
5https://flower.ai/docs/datasets
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Figure 9: Non-IID data visualization for heterogeneous clients.

Figure 10: The comparison of label distribution under three dataset partitioning strategies.
F.2 Training Time Comparison

In addition, we compare the single-round training times of SHE-LoRA with those of FedIT, Flex-
LoRA, and HeterLoRA on two models, Bert-Large and OpenLLaMA-3B, for different encryption
ratios in the Fig. 11. The single-round training times of FedIT, Flex-LoRA, and HeterLoRA are
very similar to one another. Among them, FlexLoRA brings a slight computational overhead on
OpenLLaMA-3B due to the SVD decomposition, but this increase is minimal and not significant on
slightly smaller matrix decompositions.

For SHE-LoRA, the increase in training time is due to the encryption of ciphertext blocks, the
calculation of ciphertext, the decryption of ciphertext, and the decomposition of SVD, among which
ciphertext calculation overhead is the largest. The total training time of the SHE-LoRA increases
significantly by the calculation of ciphertext. As the encryption ratio increases, the number of
ciphertext blocks becomes more and more, leading to a linear increase in the encryption cost and
calculation overhead. Therefore, it is very important to choose the proper encryption ratio to balance
the overhead and privacy that comes with encryption.

F.3 The Impact of Hyperparameter of Negotiation

For the three parameters, a, b, c, involved in the negotiation process in Appendix D.1, they indicate
the proportion of encryption parameters selected from Clients, Common and Sensitivity, respectively.
This mainly reflects whether the negotiation strategy focuses more on global or personalized privacy-
sensitive locations. In the case of extreme heterogeneity, the elements in Common have a very low
value and the negotiation result focuses more on personalized privacy-sensitive locations.
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Figure 11: The Avg. training time comparison.
We set up four selection strategies to show the impact of negotiation results under different strategies
as shown in the Fig. 12.

Figure 12: Distribution of three hyperparameters under different strategies.

• Strategy 1 selects 60% from Clients, 30% from Common, and 10% from Sensitivity, indicat-
ing that the selection results are more inclined to client personalization.

• Strategy 2 selects 20%,10%,70% respectively, which takes another opposite choice and
selects more sensitive parameters.

• Strategy 3 chooses 30%,60%,10%,respectively, focusing more on public privacy sensitive
parameter locations.

• And strategy 4 uses 40%,30%,30% a more balanced choice.

The negotiation results generated under the four selection strategies are shown in Fig. 13. It shows
the sensitivity score of different clients (A, B, C) at each parameter position (location index) under
four different negotiation strategies. The horizontal axis is the parameter location index (Index), and
the vertical axis is the sensitivity score (Score) of the parameter. Color distinguishes different clients:
red is Client A, blue is Client B, and green is Client C. The “Checked" and “Unchecked" states of
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each client are represented in dark and light colors, respectively, indicating whether the parameters
are selected. For example, the sensitive parameters of client 1 are centrally distributed on the left
(index 1-5), the sensitive parameters of client 2 are relatively centered (index 3-7), and the sensitive
parameters of client 3 are relatively concentrated on the right (index 5-10).

Strategy 1 tends to choose the more important parameter at index 3,5,7 across clients, and selects
the parameter at index 1 when selecting the most sensitive parameter position, and then selects 6
randomly from 4 and 6 according to the number of occurrences. Strategy 2 selects index 9 from the
perspective of client personalization, and selects others based on sensitive and common parameters.
The choice of strategy 3 seems to be relatively balanced, with the most sensitive parameters and
the most frequent parameters of all clients. The results of Strategy 4 show the diversity of sources,
including not only the most sensitive parameters for each client, but also the parameters that are
common and important and those (i.e., index 1) that are available for personalization.

Figure 13: The impact of hyperparameter of negotiation.

F.4 The Impact of the Number of Clients on Encryption Time.

In SHE-LoRA, we assume that the clients dynamicly adjust the encryption subset to ensure that
encryption and decryption are synchronized with the FL system without causing the client to lag
behind. Therefore, the number of clients does not significantly increase the time for homomorphic
encryption, but if each client adaptively selects the best encryption subset, the encryption time is
limited to the encryption time of the longest client.

F.5 Performance

We employed FedIT [52] and FedSA [19] as baseline methods under homogeneous LoRA. FedIT
averages LoRA weights across clients, limiting the rank to the capacity of the weakest device.
FedSA trains matrix B locally while aggregating matrix A globally, leveraging federated learning to
enhance the representational capacity of LoRA. Besides, we took FLoRA [48], HeterLoRA [13], and
FlexLoRA [5] as baselines under heterogeneous settings. FLoRA employs stacking to reduce full
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weight computations and achieve precise averaging across heterogeneous LoRA updates, but it comes
with the trade-off of an expanded parameter space. HeterLoRA zero-pads all LoRA matrices to the
global maximum rank, applies average aggregation similar to FedAvg, and subsequently truncates
the aggregated weights to align with the local rank of each client. However, zero-padding introduces
additional dilution in the aggregated parameters, which in turn leads to degraded model performance.
Flex-LoRA reconstructs the full parameter matrix for each client by computing B ×A and performs
aggregation. Subsequently, the aggregated matrix is decomposed using singular value decomposition
(SVD) and truncated according to the client’s LoRA rank, producing a low-rank parameter matrix.

Table 3: MMLU Benchmark
Method STEM SS Humanities Average

FedIT [52] 21.5 21.3 20.4 21.2
FedSA [19] 21.8 21.4 19.7 20.1

HeterLoRA [13] 24.7 25.4 25.8 26
Flex-LoRA [5] 26.2 27.9 26.6 27.4

SHE-LoRA 28.1 29.2 26.5 28.2

Table 4: GLUE Benchmark
Method SST2 MRPC QQP RTE WNLI QNLI

FedIT [52] 47.41 31.62 64.71 43.07 46.34 48.87
FedSA [19] 48.23 33.71 66.32 43.56 48.27 48.26

HeterLoRA [13] 55.73 68.38 72.17 44.72 48.86 49.14
Flex-LoRA [5] 52.29 74.81 75.31 46.93 49.66 49.51

SHE-LoRA 57.11 70.88 72.52 50.18 57.75 59.63

Natural Language Generation: According to the results in Table 3, FedIT and FedSA perform
the worst on the MMLU Benchmark, obtaining scores of 21.2 and 20.1, respectively. These results
indicate the limitations of traditional homogeneous approaches in heterogeneous LoRA settings,
where the inability to effectively utilize client-specific information hinders overall performance.
While HeterLoRA integrates parameters from heterogeneous devices to improve performance, its
reliance on zero-padding leads to parameter dilution, resulting in inferior performance compared to
Flex-LoRA. SHE-LoRA achieves the highest scores on STEM, Social Sciences(SS) and the overall
Average, and matches Flex-LoRA’s performance on Humanities. Both methods outperform all other
baselines by a significant margin. These results indicate that SHE-LoRA better preserves informative
updates in heterogeneous generative tasks, leading to improved generalization and performance.

Natural Language Understanding: Similarly, we reviewed on the six datasets of GLUE Benchmark
in the Table 4, and the performances of FedIT and FedSA reaffirmed the limitations of traditional
aggregation methods in heterogeneous scenarios. Flex-LoRA and SHE-LoRA, on the other hand,
outperform the other methods, demonstrating that SHE-LoRA can more effectively update model
parameters in heterogeneous environments while achieving performance comparable to non-private
methods. Unsurprisingly, HeterLoRA achieves better performance than homogeneous baselines.
However, it lags behind Flex-LoRA and SHE-LoRA, primarily due to the performance degradation
caused by parameter dilution.

SHE-LoRA demonstrates strong performance across both benchmarks, achieving state-of-the-art
results in heterogeneous settings while maintaining optimal performance despite the integration of
privacy-preserving mechanisms.

G Limitations

As described in Section 2.3 and Appendix C, SHE-LoRA operates under the assumption of an
honest-but-curious server, where all clients share the same HE key. Although secure communication
channels can be used to defend against malicious clients or collusion between the server and clients,
such mechanisms incur higher encryption costs. A promising direction for future work is to explore
more efficient distributed parameter protection using techniques such as threshold homomorphic
encryption, multi-key homomorphic encryption, or proxy re-encryption.
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H Broader Impact

In this work, we leverage parameter sensitivity and SHE to ensure the secure aggregation of federated
LoRA against inversion attacks such as DAGER. Such attacks are able to recover the original client
data from clients’ updates uploaded during federated PEFT, exacerbating privacy concerns and
hindering the possibility of FL to extract value from distributed data. Our work offers adaptive and
sufficient privacy preservation, while minimizing HE overhead per client in cross-device federated
PEFT with LoRA.

Importantly, we find that with more sensitive model parameters being encrypted, the mutual informa-
tion that can be leaked from the model updates drops dramatically, indicating that it is possible to
effectively reduce the risk of privacy leakage in terms of privacy information as long as the sensitive
model parameters are correctly encrypted. Our work implies that critical information within the
model parameters can be soundly protected against the state-of-the-art attacks by merely encrypting
less than 1% of the model parameters. Furthermore, we take into account the heterogeneity of the
parameter sensitivity and encryption capabilities across clients, and broadly adapt the cost-effective
SHE-LoRA to accommodate clients with diverse data distributions and device capabilities. With
these observations, we highlight the feasibility and effectiveness of applying tailored and secure
privacy protection for cross-device federated PEFT at much lower overhead compared to existing
off-the-shelf privacy protection techniques.
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