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ABSTRACT

Incident response plays a pivotal role in mitigating the impact of
cyber attacks. In recent years, the intensity and complexity of global
cyber threats have grown significantly, making it increasingly chal-
lenging for traditional threat detection and incident response meth-
ods to operate effectively in complex network environments. While
Large Language Models (LLMs) have shown great potential in early
threat detection, their capabilities remain limited when it comes
to automated incident response after an intrusion. To address this
gap, we construct an incremental benchmark based on real-world
incident response tasks to thoroughly evaluate the performance of
LLMs in this domain. Our analysis reveals several key challenges
that hinder the practical application of contemporary LLMs, includ-
ing context loss, hallucinations, privacy protection concerns, and
their limited ability to provide accurate, context-specific recommen-
dations. In response to these challenges, we propose IRCopilot,
a novel framework for automated incident response powered by
LLMs. IRCopilot mimics the three dynamic phases of a real-world
incident response team using four collaborative LLM-based session
components. These components are designed with clear divisions
of responsibility, reducing issues such as hallucinations and context
loss. Our method leverages diverse prompt designs and strategic
responsibility segmentation, significantly improving the system’s
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practicality and efficiency. Experimental results demonstrate that
IRCopilot outperforms baseline LLMs across key benchmarks,
achieving sub-task completion rates of 150%, 138%, 136%, 119%,
and 114% for various response tasks. Moreover, IRCopilot exhibits
robust performance on public incident response platforms and in
real-world attack scenarios, showcasing its strong applicability.
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1 INTRODUCTION

Incident Response (IR) is a cornerstone of system and network
security, offering effective countermeasures to mitigate potential
losses caused by cyber attacks. As shown in Figure 1, the lifecycle
of IR comprises three key stages: detection, response, and recovery,
which play critical roles in the broader information security frame-
work [41]. Achieving efficient incident response requires timely
decision-making, cross-functional collaboration, and the ability to
adapt swiftly to evolving threats. However, current IR practices
heavily rely on manual analysis, specialized expertise, structured
processes and collaboration, making them increasingly inadequate
in addressing today’s complex and frequent cyber threats.
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Figure 1: Two main contributions of this work: 1) We build

an Incident Response (IR) benchmark to evaluate the con-

temporary LLMs on IR tasks, in terms of three stages. 2) We

propose IRCopilot to enhance the performance on IR tasks.

To gain a clearer understanding of the current IR landscape, we
conducted a preliminary survey. Our findings highlight several
urgent concerns: (1) Continuous expansion of the attack surface
and increase in vulnerability. (2) Diversification of vulnerability
types and cybersecurity incidents. (3) Prominence of industry and
scenario specificity. . (4) Rising technical, economic, and ethical
challenges from cyber attack losses. Traditional security operations
and response models, which depend heavily on manual efforts, are
no longer sufficient to address these realities. Consequently, en-
hancing automation in IR has becomes a critical research objective.

In recent years, the development of Natural Language Processing
(NLP) [28] and Large LanguageModels (LLMs), such as GPT [23, 26]
and BERT [30], has presented new opportunities for automated
analysis and decision-making. In the field of cybersecurity, LLMs
have demonstrated strong potential [29, 34, 48] and are expected
to serve as "intelligent assistants" in IR. Some preliminary studies
have utilized LLMs to assist in security analysis and threat intel-
ligence extraction [24, 38, 44], but they primarily focus on early
stages of threat scenarios (such as intelligence gathering and detec-
tion), lacking comprehensive response (analysis) and recovery to
threats. Fully leveraging the language understanding and multitask
inference capabilities of LLMs for automated IR remains an area
that has not been thoroughly explored.

To bridge these gaps, there is an urgent need of a comprehensive
benchmark to evaluate the capabilities of LLMs in incident response.
Currently, evaluation frameworks designed for specific tasks are
lacking. To bridge these gaps, we develop an IR benchmark encom-
passing three mainstream platforms (i.e., XuanJi [21], ZGSF [22],
and TryHackMe [19]), comprising a total of 12 case machines and
130 sub-tasks. This benchmark covers the three main stages of
the IR lifecycle as defined by NIST 3.0 [41], with each sub-task
mapped to more detailed execution steps within the corresponding
guidelines. By assessing the completion rates of sub-tasks, we can
comprehensively characterize the model’s capabilities in IR.

We then conduct an exploratory study using the designed bench-
mark to evaluate the capabilities of LLMs in IR tasks, with a focus
on handling real-world complexities. We test four commercial LLMs
(i.e.,GPT-4 [4],GPT-4o [4],Claude-3.5-Sonnet [3], andGPT-o1 [4])
and one open-source LLM (DeepSeek-V3 [9]) under controlled con-
ditions with identical environment configurations and prompts.

Experiment results show that LLMs cannot effectively overcome
these tasks. Specifically, they face the following challenges in IR
tasks: (1) difficulty in formulating appropriate response strategies;
(2) generation of inaccurate guidance or commands; (3) overlooking
critical details; (4) limited long-term memory and poor handling
of multiple lines of evidence; (5) potential privacy risks due to
exposure to sensitive information.

To enhance automation in incident response, minimize human
errors, shorten response time, and provide intelligent decision sup-
port during unexpected security incidents, we propose IRCopilot,
an interactive automated IR system driven by LLMs. Targeting the
identified challenges, IRCopilot consists of four functional com-
ponents: Planner, Generator, Reflector, and Analyst (see Figure 1),
and can be divided into three stages of thought: reasoning, action,
and reflection. (1) In the reasoning stage, the Planner is responsi-
ble for overall task planning and decomposing complex problems
into more detailed sub-tasks. The Analyst evaluates and analyzes
the execution results and feeds the analysis conclusions back to
the Planner to support subsequent decision-making and optimiza-
tion. Such decision process effectively overcome the challenges of
LLMs to zero-shot the correct response sequence. (2) In the action
stage, the Generator produces specific execution plans based on
the Planner’s instructions. Since the overall task is decomposed
to sub operations individually, the attention/memeory issues of
LLMs [55, 57] are effectively mitigated. (3) Finally, in the reflection
stage, the Reflector integrates multi-source information to review
the execution process and propose improvement suggestions, form-
ing a complete closed loop from strategy formulation to continuous
optimization. By integrating the aforementioned four LLM compo-
nents, IRCopilot can efficiently support various functions such as
incident detection and classification, evidence analysis and threat
intelligence correlation, emergency plan formulation, interactive
decision-making and execution recommendations, as well as built-
in security compliance auditing and data protection. Throughout
this process, a seamless connection is achieved from high-level
strategy to precise execution and intelligent data analysis, ensuring
the coherence and efficiency of IR.

We evaluate IRCopilot across various testing scenarios to verify
its effectiveness and scope of applicability. The results indicate that,
in the benchmark tests, IRCopilot achieve sub-task completion
rates of 1.5×, 1.38×, 1.36×, 1.19×, and 1.14× higher than directly
applying GPT-4, DeepSeek-V3, GPT-4o, Claude-3.5-Sonnet, and
GPT-o1 respectively, thus demonstrating significantly better per-
formance than the baseline methods. In real-world challenges (i.e.,
TryHackMe, XuanJi, and ZGSF), IRCopilot successfully resolve the
majority of incident response tasks, underscoring its practical value
in enhancing efficiency and accuracy. Furthermore, we conduct an
evaluation on five real network attack cases and find that IRCopilot
effectively identifies and extracts critical traces and information left
by attackers. More details are available on Anonymous GitHub [12].

To summarize, we make the following key contributions:
• Comprehensive Survey ofRecent IncidentResponseTrends

and Cybersecurity Landscape. This survey reveals numerous
findings they are currently encountering and highlights the limi-
tations of existing solutions.

• Development of aComprehensive IncidentResponseBench-

mark. Our benchmark covers numerous target machines from
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prominent platforms (TryHackMe, XuanJi, and ZGSF). It com-
prises 12 representative targets (with 130 sub-tasks) and spans
the three key stages of incident response, partially drawing on
real-world attack scenarios to provide fair and holistic evalua-
tions, and highlights the challenges faced by LLMs in IR tasks.
As far as we know, this is the first comprehensive benchmark in
this domain dedicated to specific incident response workflows,
with stage-wise evaluation and comparison capabilities.

• Design of an Innovative LLM-Based Incident Response Sys-

tem.Our automated and interactive system, IRCopilot, provides
efficient and innovative incident handling capabilities. Through
various technological innovations, it significantly boosts incident
response accuracy and execution efficiency while minimizing its
impact on the system, ensuring overall stability and practicality.

• Systematic Evaluation and Real-World Validation. The eval-
uation results indicate that incident response analysis based on
the GPT-4o series successfully achieve objectives in the vast ma-
jority of tasks, thus demonstrating the practicality and reliability
of IRCopilot in complex environments. Furthermore, we vali-
date its performance in real-world scenarios, encompassing two
major operating systems and various attack methods. The find-
ings show that this approach is versatile and can be effectively
extended to real-world incident response.

2 BACKGROUND & RELATEDWORK

2.1 Global Cybersecurity Landscape

In recent years, the global cybersecurity ecosystem has been fac-
ing unprecedented challenges of complexity and dynamism. We
conducted an in-depth analysis of over 200 annual reports on cy-
bersecurity or IR, and draw the following observations.
(1) Continuous Expansion of Attack Surface and Increase in

Vulnerability. The increasing complexity and high interconnectiv-
ity of software systems are continuously expanding the potential
attack surface, driving a sustained rise in the number and severity
of vulnerabilities. According to publicly available data from the
NVD (National Vulnerability Database) [17] (showing in Appendix
Figure 8a), the number of published CVEs (Common Vulnerabilities
and Exposures) has surged dramatically from approximately 7,928
in 2014 to 40,287 in 2024, exhibiting an exponential upward trend.
Additionally, the cumulative number of CVEs has grown from less
than 70,000 to over 262,000 within a decade. This means that the
amount of vulnerability intelligence data that security teams need
to handle is massive.
(2) Diversification of Vulnerability Types and Cybersecurity

Incidents. These vulnerabilities are not confined to a single ex-
ploitation technique but exhibit highly diversified and specialized
characteristics (Appendix Figure 8b). Between 2014 and 2023, the
number and proportion of vulnerabilities such as code execution,
privilege escalation, denial of service, and information disclosure
have all increased. A significant point of concern is the increase in
remote code execution and privilege escalation vulnerabilities, as
these types of vulnerabilities are often directly exploited by attack-
ers to penetrate core system components, ultimately enabling full
control over an organization’s internal resources.
(3) Prominence of Industry and Scenario Specificity. Mean-
while, the threats faced by organizations across different sectors

and industries have become increasingly differentiated and multi-
faceted. According to data released by Check Point[6], the average
weekly number of attacks in critical infrastructure sectors such
as finance, government, education, and healthcare has increased
significantly between 2020 and 2023 (Appendix Figure 7). This indi-
cates that customized attack patterns targeting different industries
are becoming increasingly sophisticated.
(4) Comprehensive Upgrade of Cybersecurity Requirements.
In addition, empirical studies and data analysis in the field of IR
also reveal a complex landscape of evolving threats. According to
data released by Unit 42 [20], between 2021 and 2023, ransomware
attacks (including encrypted and unencrypted ransomware), BEC
(Business Email Compromise), network intrusions and Web appli-
cation breaches have become the main types of investigations and
responses (Appendix Figure 10). The variations in attack techniques
and focus areas across different years reflect the flexibility and dy-
namic adjustments in attackers’ strategies. This increases not only
the workload and cognitive load of IR teams, but also the risks
of misjudgments, delays, and resource wastage. Correspondingly,
Kaspersky [13] (Appendix Figure 9) presents statistics on security
incidents and risks triggered by various initial attack vectors. The
results indicate that these attacks may lead not only to direct eco-
nomic losses, but also to data breaches, service interruptions, and
privacy and ethical issues.

2.2 Incident Response

Cybersecurity incident response involves organized, systematic
actions taken by an organization upon detecting a security incident
or potential breach due to unauthorized activities. These activities
may compromise the confidentiality, integrity, or availability of
systems or assets, or violate laws, policies, or security protocols.
The aim is to reduce harm, limit losses, and quickly restore normal
operations. As shown in Figure 1, the lifecycle of IR consists of three
key stages [41]: Detect, Respond and Recover. In the Detect phase,
potential cybersecurity threats and compromises are identified and
analyzed. The Respond phase analyzes the system and takes neces-
sary measures to address detected cybersecurity incidents. Finally,
in the Recover phase, efforts are made to restore affected assets and
operations to their normal state.
Limitations. The increasing persistence, stealth, and unpredictabil-
ity of cyber threats challenge traditional threat detection methods.
Conventional rule-based and machine learning methodologies ex-
cel in a priori tasks, such as real-time intrusion detection and threat
analysis, due to their low latency and precision [54]. However, these
approaches stumblewhen it comes to incident response, particularly
in post-incident forensic analysis and adaptive mitigation. These
methods rely on fixed rules and pre-trained models, which hampers
their ability to keep up with an ever-changing threat landscape,
leaving them less suited to the dynamic, reactive demands of IR. In
the past, IR has relied heavily on manual efforts and expert knowl-
edge, with teams laboriously investigating the overall scope of
incidents, analyzing threats, and addressing critical issues by hand.
But as threats become more sophisticated, manual approach strug-
gles to deliver timely and efficient outcomes. Although traditional a
priori methods can help with initial assessments, their task-specific
focus and limited scalability fall short of the broader demands of
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IR. Consequently, integrating artificial intelligence to automate IR
remains a significant challenge. Moreover, cyber threats do not
just exploit system vulnerabilities, they can also stem from diverse
sources like internal actors and espionage, making analysis even
trickier. When faced with massive amounts of network data and
unpredictable scenarios, security researchers require more adapt-
able tools. LLMs show promise here, leveraging their flexibility and
contextual understanding [27].

2.3 Large Language Models and Their

Applications for Cybersecurity

With the development of LLMs recently, significant transforma-
tions have occurred across various fields. Renowned models such
as GPT [23, 26], Llama [31], Claude [7], and DeepSeek [8] have
demonstrated excellent performance in numerous domains, includ-
ing text generation [37], translation [50], programming [36], and
summarization [56].

To further enhance the performance of LLMs in complex task
scenarios, researchers have introduced and adopted various cutting-
edge planning and reasoningmethods, collectively known as prompt
engineering. These methods include CoT (Chain of Thought) [51],
ToT (Tree of Thoughts) [52], RAG (Retrieval Augmented Genera-
tion) [35], ReAct (Reasoning and Acting) [53], and Reflexion [47].
They enable LLMs to generate more factually grounded responses
and perform better in intricate analytical tasks. For instance, ToT
constructs a thought tree structure, prompting the model to engage
in multi-level reasoning before providing the final answer, thereby
improving the accuracy and reliability of responses. These charac-
teristics make ToT particularly suitable for the deep analysis and
decision-making required in automated cybersecurity IR. We will
investigate how to employ these prompt engineering techniques to
optimize the application effectiveness of LLMs in automated IR.

LLMs, with their deep contextual understanding and reasoning
capabilities, have demonstrated considerable potential in numerous
areas of cybersecurity, including code analysis [42], penetration
testing [29, 34], OSINT (Open Source Intelligence) [46], vulnera-
bility remediation and management [39, 43], malicious webpage
identification [38], attack pattern extraction from CTI [24], log-
based anomaly detection [44], and developing privacy-preserving
models for IoT [32]. However, existing research focuses mainly on
early threat stages, such as intelligence gathering and detection.
With the escalating severity of cyber threats, the domain of au-
tomated IR post-intrusion remains relatively underdeveloped. To
address this gap, we propose an LLM-based automated incident
response framework. Furthermore, there is currently a lack of a
benchmark capable of evaluating the performance of LLMs in IR.
Our research will establish a professional, objective, and represen-
tative benchmark to provide a reliable reference for subsequent
studies in this field.

3 THREAT MODEL

We consider a practical scenario with three parties: a victim, an
attacker, and a third-party IR service provider (responder).
Victim’s Capabilities & Goals. Operating from a white-box per-
spective, the victim’s IT infrastructure is equipped with an intrusion
detection system (IDS) capable of identifying unauthorized access or

anomalous network activity. Upon detecting a potential threat, the
victim promptly informs the responder. Their goal is to minimize
attack impact while preserving critical business operations.
Attacker’s Capabilities & Goals. From a gray-box perspective,
the attacker seeks to steal sensitive data, extort profit, or disrupt
operations by gaining unauthorized access. Their capabilities in-
clude: (1) adequate resources (e.g., computing power, libraries) and
experience in multi-stage attacks and evasion techniques. (2) partial
knowledge of the victim’s security defenses, allowing bypass of
specific protections. Furthermore, they (3) inevitably leave traces
in the compromised system.
Responder’s Capabilities & Goals. The responder operates from
a gray-box perspective, possessing: (1) limited privileges to access
victim data, restricted to information necessary for IR. (2) partial
knowledge of attacker traces and compromised assets. Their re-
sponsibility to respond effectively while minimizing disruptions to
the victim’s core business operations.

4 A BENCHMARK FOR INCIDENT RESPONSE

4.1 Motivation

The evaluation of LLMs in the context of IR necessitates an objec-
tive and comprehensive benchmark. Existing benchmarks in this
domain [1, 2, 33], while valuable, exhibit significant limitations
when applied to LLM assessment. These benchmarks primarily
emphasize the completion of overarching task workflows, often
neglecting the detailed evaluation of specific sub-tasks and inter-
mediate steps within the IR process. Although such macro-oriented
benchmarks help determine the success or failure of the final re-
sponse, they fail to adequately reflect the progressive advancements
and value accumulation at each stage of the IR. Consequently, these
benchmarks struggle to accurately measure the comprehensive ca-
pabilities of LLMs in the details and steps of IR, and they cannot
provide strong support for precise performance evaluation and
optimization improvements of the models.

To address the above issues, we propose a comprehensive inci-
dent response benchmark that meets the following criteria:
Comprehensive and Realistic Tasks. Benchmark designs should
incorporate a diverse range of IR task types to ensure strong rel-
evance to real-world scenarios. Beyond supporting mainstream
operating systems, it is essential to include contexts based on actual
cybersecurity incidents.
Difficulty Gradient Design. To ensure broad applicability, the
benchmark should feature layered difficulty levels. This strategy
not only enables a more precise evaluation of IR personnel’s capa-
bilities at different levels, but also provides a flexible framework for
adaptation and serves for future research and practice.
Phase-oriented Effectiveness Evaluation. To assess both the
final results and key stages of IR, the benchmark should adopt a
multi-phase evaluation system. This enables a thorough analysis of
the entire IR. Using measurable indicators, it clarifies the impact of
each stage on response effectiveness and efficiency, offering precise
guidance for strategy optimization and capability improvement.

4.2 Benchmark Design

Based on the aforementioned criteria, we develop a new IR bench-
mark to systematically map tasks in real-world settings. We invite
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Table 1: Performance of contemporary LLMs on the benchmark.

Overall Sub-task

LLMs Easy (3) Medium (6) Hard (3) Total (12) Easy (36) Medium (62) Hard (32) Total (130)

GPT-4 0 (0.00%) 1 (16.67%) 0 (0.00%) 1 (8.33%) 22 (61.11%) 39 (62.90%) 15 (46.88%) 76 (58.46%)

DeepSeek-V3 0 (0.00%) 1 (16.67%) 0 (0.00%) 1 (8.33%) 20 (55.56%) 43 (69.35%) 22 (68.75%) 85 (65.38%)

GPT-4o 1 (33.33%) 1 (16.67%) 1 (33.33%) 3 (25.00%) 28 (77.78%) 45 (72.58%) 21 (65.63%) 94 (72.31%)

Claude-3.5-Sonnet 2 (66.67%) 2 (33.33%) 1 (33.33%) 5 (41.67%) 31 (86.11%) 50 (80.65%) 27 (84.38%) 108 (83.08%)

GPT-o1 1 (33.33%) 3 (50.00%) 1 (33.33%) 5 (41.67%) 31 (86.11%) 54 (87.10%) 28 (87.50%) 113 (86.92%)

Average 0.8 (26.67%) 1.6 (26.67%) 0.6 (20.00%) 3 (25.00%) 26.4 (73.33%) 46.2 (74.52%) 22.6 (70.63%) 95.2 (73.23%)

Table 2: Causes of LLM failures in incident response.

Failure Reasons GPT-4 DeepSeek GPT-4o Claude GPT-o1 Total

False IR Strategy 20 20 14 12 8 74

False Command Generation 11 6 10 2 1 30

Key Information Ignored 7 7 5 1 4 24

False Guidance Generation 8 4 2 2 4 20

False Result Interpretation 5 5 2 2 0 14

Session context lost 3 3 3 3 0 12

Total 54 45 36 22 17 174

three seasoned anonymous cybersecurity experts to contribute to
the design of the benchmark. Each expert brings more than five
years of experience in incident response and vulnerability analy-
sis, holds a CISSP [5] certification, and has documented multiple
CVE vulnerability discoveries. The design and development process
involves several key stages.
Task Selection. In the task selection process, we focus on construct-
ing simulated environments based on real cybersecurity incident
clues. First, we collect IR tasks from mainstream cybersecurity prac-
tice platforms (i.e., XuanJi [21], ZGSF [22] and TryHackMe [19]).
Our selection criteria aim to encompass as broadly as possible
the common types of incidents encountered in reality. To ensure
comprehensive and high-quality tasks, we rigorously review all IR-
related tasks and virtual environments across each platform. From
this, we select a representative subset of tasks covering various
incident types and response methods. To simulate real-world IR
scenarios of varying complexity, experts categorize these tasks into
three levels—Easy, Medium, and Hard—based on manual testing,
discussion, and task completion rates. Importantly, we prioritize
the selection of tasks that are less likely to have been included in
LLM training corpora. In particular, we focus on tasks published
after common model training cutoffs and avoid widely publicized
or overly replicated content. This helps mitigate potential data leak-
age and ensures fair evaluation of LLM generalization capabilities.
Further details are discussed in Sec. 7. Additionally, all selected
tasks exclude real-world privacy or sensitive data, thereby avoiding
potential ethical and legal concerns.
Task Decomposition. To ensure the rigor and systematic nature
of our research methodology, we break down each IR task into a
series of sub-tasks across three steps: clue acquisition, information
analysis, and incident handling and recovery. The entire process
strictly adheres to the guiding principles of NIST SP 800-61 Rev.
3 [41], mapping each sub-task to the specific step breakdowns
defined in the guidelines. Ultimately, we develop a comprehensive
list of sub-tasks for each benchmark task, which is provided in
Appendix Table 10.

Benchmark Validation. To ensure the scientific validity and ef-
fectiveness of the benchmark, we implement a rigorous evaluation
and iterative optimization process. Specifically, the experts inde-
pendently complete the assigned benchmark tasks and document a
detailed IR process based on their performance and results. Based
on the experts’ feedback, we selectively adjust the task decomposi-
tion strategy, focusing on addressing potential multiple response
paths within the tasks, thereby enhancing the applicability and
flexibility of the benchmarks in practical applications.

Through the process outlined above, we develop a comprehen-
sive benchmark that systematically reflects real-world IR strategies.
This benchmark includes 12 IR objectives, each assigned varying
difficulty levels, and is further subdivided into 130 specific sub-tasks
across 27 categories. These objectives and sub-tasks fully repre-
sent the essential technologies, skills, and scenarios integral to IR.
Designed with careful attention to task quantity and scope, the
benchmark accommodates diverse real-world applications while
effectively evaluating multi-level IR capabilities. Detailed content
and classifications are published on our Anonymous Github [12] for
researchers and practitioners to reference. Furthermore, publicly
available high-difficulty cases are currently limited, and we will
continuously expand the benchmark to enhance its adaptability.

4.3 Evaluation on Contemporary LLMs

We launch a preliminary exploration to evaluate LLMs’ capabilities
in IR tasks on the benchmark constructed above, using a human-in-
the-loop strategy [11, 25, 29, 49]. The human expert acts solely as
an executor, adhering to the LLM’s instructions without offering in-
dependent insights or decisions. We assess the performance of three
state-of-the-art commercial LLMs (GPT-4, GPT-4o, and Claude-3.5-
Sonnet), along with one open-source LLM (DeepSeek-V3) and the
reasoning-focused LLM (GPT-o1). To ensure fair comparisons, all
experiments are performed under consistent conditions, employing
identical prompts and environmental settings. The LLMs are explic-
itly instructed not to use external automated tools as the purpose is
to evaluate LLMs’ inherent knowledge and capabilities. An incident
response consists of multiple interconnected tasks spanning the
detection, response, and recovery phases. Success is only achieve
when all sub-tasks in these phases are completed successfully.

Table 1 illustrates the performance of the evaluated LLMs across
tasks of varying difficulty levels. Among the models, Claude-3.5-
Sonnet achieve the highest overall performance, successfully com-
pleting 5 out of 12 tasks, with a sub-task completion rate of 83.08%.
In contrast, GPT-4o, DeepSeek-V3, and GPT-4 achieve lower rates
of 72.31%, 65.38%, and 58.46%, respectively. Across all models, LLMs
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Figure 2: Workflow of IRCopilot. This figure illustrates the principle of IRCopilot, structured into three cognitive stages:

Reasoning, Action, and Reflection. 1. In the Reasoning phase, we design the Planner and Analyst to maintain the IRT and

tackle Challenges I, III, and IV mentioned in Sec. 4.3 through step-by-step reasoning. 2. In the Action phase, the Generator

distributes and generates guidance and commands to mitigate Challenge II. 3. Finally, in the Reflection phase, the Reflector

addresses challenges posed by hallucination and privacy risks.

consistently excel on simple and medium-difficulty tasks, likely
attributable to their strengths in basic analysis and information
processing. However, their performance declines on harder tasks,
exposing limitations in handling complex IR scenarios. We find that
the success of LLMs in IR is not only closely related to the overall
difficulty of the task, but also tightly connected to the completion of
individual sub-tasks within it, where even subtle differences can pre-
cipitate failure. Particularly in complex scenarios, the capabilities
of LLMs are frequently constrained by their performance in spe-
cific sub-tasks, which ultimately determines the overall IR outcome.
For instance, they may falter if it misinterprets a single sub-task
requirement, amplifying the impact of such errors in contexts.

To better understand the limitations, we manually investigate
and summarize the causes behind the models’ sub-task failures,
with results detailed in Table 2. Common failure modes include the
inability to devise effective IR strategies and to deliver accurate
guidance, etc. To elucidate the most critical issues, we provide con-
crete examples of the two primary causes of failure in Appendix B.1
and B.2. Through manual analysis, we pinpoint the specific reasons
driving these failures and outline the key challenges below:
(1) Difficulty Strategy Formulation: LLMs frequently struggle

to develop effective strategies for IR tasks, particularly in in-
tegrating appropriate task prioritization.This limitation stems
from their difficulty in synthesizing and organizing the provided
information into coherent and actionable plans.

(2) Inaccurate Guidance or Commands: Models occasionally
generate decisions that are either suboptimal or inaccurate, as
well as commands that are erroneous or incompatible with the
target operating system, resulting in IR failures.

(3) Overlooking Minor Details: During prolonged tasks, LLMs
often miss small yet critical details essential for task completion.

(4) Limited Long-Term Memory: LLMs face challenges in main-
taining the continuity of tasks, managing multiple evidence
streams, and preserving coherence over extended contexts.

(5) Privacy and Security Risks: In certain instances, LLMs un-
intentionally process or expose sensitive information during

task execution, thereby posing significant potential risks to data
privacy and security.

5 IRCOPILOT

5.1 Design Overview

To address the challenges mentioned above, we propose a novel
solution named IRCopilot. Our approach is inspired by the op-
erational framework of real-world IR teams, specifically the Blue
Team [18]. In these teams, leaders leverage a comprehensive under-
standing of the infrastructure to formulate strategies, decompose
them into manageable sub-tasks, and delegate these to individual
executors, orchestrating the entire IR effort. The executors inde-
pendently carry out their assigned tasks and provide feedback to
the leader. The leader evaluates the outcomes, reflects on identified
issues, and refines their decisions, thereby iteratively advancing IR.

Based on this workflow, we design IRCopilot with three dy-
namic phases—Reasoning, Action, and Reflection—and coordinate
its operation through four LLM session components: Planner, Gen-
erator, Reflector, and Analyst, as illustrated in Figure 2. The Planner
formulates the strategic overall plan and decomposes it into man-
ageable sub-tasks; the Generator produces specific instructions or
commands based on Planner’s directives; the Reflector provides
optimization suggestions by reflecting on various types of informa-
tion; and the Analyst thoroughly analyzes the execution results and
feeds them back to Planner. Each phase maintains an independent
LLM session to preserve its specific session history and contextual
information. Each component performs its designated role without
interfering with others, thereby enhancing the efficiency and gen-
eralization capabilities of IRCopilot. This structured division of
labor, rooted in real-world practices, enables IRCopilot to mitigate
LLM limitations and achieve greater precision.

Drawing lessons from failures, we incorporate several innova-
tions into the design of IRCopilot to enhance its practicality and
effectiveness. (1) To bolster the reasoning capabilities of LLMs, we
employ a range of promptingmethodologies (i.e., CoT [51], ToT [52],
Few-Shot Prompt [40], and Negative Prompt [45]). (2) We refine
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2.3 Display System Information (To-do)
2.4 Check Account Security (To-do)

  Incident Response Tree:

2.2.3 Review .sql (Completed)
    - Result: $2a$10$EuWPZHzz32dJN7jex...

2.2.1 Review .example (N/A)
2.2.2 Review .xml (N/A)

2. Incident Response Procedures [To-do]

1. Incident Response Objectives (Linux)

1.1 Encrypted Value of Nacos User Password (Completed)
1.2 Shiro Key (To-do)
1.3 Target Machine Kernel Version (To-do)
1.4 Remove the Backdoor User (To-do)

2.1 Review Command History (To-do)

2.2.4 Review schema.sql (To-do)

2.2 Review Password Information in Config Files (To-do)

Figure 3: Natural Language Representation of the IRT for the

XuanJi-Nacos Target.

the responsibilities of each phase, enabling the LLM to deliver more
precise decisions while minimizing the risk of overlooking critical
details. (3) To address Challenges I and IV, we introduce an IR Tree
(Sec. 5.2), which integrates two key elements: an IR objective ta-
ble and detailed IR steps. (4) We design the Reflector component
(Sec. 5.4) to reflect on four distinct sources of information and offer
adaptive optimization suggestions for improved decision-making.
The complete prompts are available at our anonymous GitHub [12].
Detailed design specifics for each component are provided below.

5.2 Planner

To overcome the challenges of strategy formulation and the loss
of session context, we develop the Planner component. The Plan-
ner serves as the core decision-making component in IRCopilot,
responsible for overseeing IR tasks at a macro level, making criti-
cal decisions, and coordinating the entire IR process. The Planner
receives IR outcomes or intents from the user and prepares for
subsequent analysis and actions. These steps are then forwarded to
the Generator for further detailed interpretation and execution.

IR is typically a continuous and complex process, necessitating
the development of long-term strategies and the maintenance of
contextual coherence. We draw lessons from Failure Case 1 and
inspiration from the Penetration Testing Task Tree [29], motivating
the design of IRCopilot and leading to the introduction of the IRT
(Incident Response Tree) as a core mechanism for task decomposi-
tion and tracking. The IRT tracks task statuses (i.e., "Completed,"
"To-do," and "N/A") in a structured tree format. This structured
approach enhances task clarity at each stage and ensures the conti-
nuity of the IR process, thereby mitigating context loss in LLMs.

Taking the XuanJi-Nacos target as an example, we demonstrate
the operational mechanism of the Planner and its corresponding
prompt strategy (Figure 4), which we divide into reasoning and
decision-making processes.

As the leader of cybersecurity incident response,
you are responsible for high-level planning and
maintaining an Incident Response Tree (IRT). Adhere
to the following principles:
1. Task Structure:
• Organize all tasks in a hierarchical sequence
(e.g., 1, 1.1, 1.1.1), where sub-tasks are nested
under their parent tasks to form a clear tree-like
structure.

• Each level reflects the dependency and granularity
of tasks, ensuring logical progression from
high-level objectives to specific actions.

2. Task Status and Updates:
• Assign each task a status: "To Do," "Completed," or
"N/A," and update it based on the latest findings
with a brief outcome report.

• For tasks under "1. Incident Response Objectives,"
replace the status with specific details (e.g.,
answers or information) in parentheses once
resolved (e.g., "1.1 OS version - (Ubuntu 20.04)").
Note: "N/A" is not permitted in this section.

• For other sections (e.g., "2. Incident Response
Procedures"), retain the standard status labels
and append results separately when applicable.

3. Adding Sub-Tasks:
• Only add sub-tasks if a task is unclear or requires
further investigation (e.g., analyzing historical
command outputs). Avoid including unverified or
undiscovered information in the IRT.

4. Prohibited Commands:
• Avoid global search commands like "find" or "grep."

Below are the IRT templates generated under two
different scenarios:

Scenario 1: When tasks are clear (e.g., specific
information is required via a defined method), focus
solely on "1. Incident Response Objectives" without
additional sections:
1. Incident Response Objectives (linux) - [To-do]

1.1 Server OS version - (To-do)
1.2 Sensitive files in home directory - (To-do)
...

Scenario 2: When tasks lack clarity (e.g., involving
a "flag field"), expand the IRT with "2. Incident
Response Procedures" for further investigation:
1. Incident Response Objectives (linux) - [To-do]

1.1 Attacker IP - (...)
1.2 Modified plaintext admin password - (To-do)
...

2. Incident Response Procedures - [To-do]
2.1 Review Command History - (Completed)

Results from 2.1: - ...
2.2 Investigate Sensitive Directories - (To-do)
...

Figure 4: The prompt strategy of Planner for two scenarios:

principles in the initial part, followed by specific strategies

for Scenario 1 (clear tasks) and Scenario 2 (unclear tasks).



CCS ’25, October 13–17, 2025, Taipei, Taiwan Xihuan Lin et al.

(1) Initialization and Classification of the IRT ❶: The Planner
acquires the user’s IR objectives and fundamental system informa-
tion to construct the initial IRT structure, represented as a hier-
archical task table in natural language. We conduct a categorized
discussion of user intentions. When clear IR goals are provided,
IRCopilot initiates the response using these as the starting point,
and logging them in the "Incident Response Objectives" table (see
Section 1 in Figure 3). For scenarios lacking explicit objectives, we
assign priorities to IR sub-tasks based on expert insights from Sec. 4,
and maintain a secondary "Incident Response Procedures" tree under
the root node (see Section 2 in Figure 3). IRCopilot begins the
investigation with high-priority tasks, progressively addressing
subsequent ones. Throughout this process, the Planner classifies
and labels tasks. Simultaneously, it performs a preliminary deduc-
tion of potential execution steps within the task table, laying the
foundation for subsequent IR processes.
(2) Verification and Maintenance of the IRT ❷: After the IRT
is generated, the Reflector verifies it to ensure that irrelevant tasks
are excluded, preventing unnecessary objectives from being mis-
takenly incorporated into the IRT. During the verification process,
the Reflector prevents modifications to the root node or key IR
objectives of the IRT, thereby avoiding structural deviations or er-
rors in response steps caused by LLM hallucinations. If any issues
are detected during verification, the Reflector triggers a rollback
mechanism, prompting the Planner to re-evaluate and deduce the
IRT to ensure task accuracy and correctness.
(3) Dynamic Sub-task Management ❸: Following the update
of the IRT, the Planner prioritizes recently added sub-tasks, incor-
porating them into the pending task list and formulating concise
solutions by weighing various contextual factors. In Figure 3, this is
reflected by the prioritization of the recently added 2.2.x sub-tasks.
Specifically, the sub-task "2.2.3 Review nacos-mysql.sql" is com-
pleted, while tasks such as "2.2.4 Review schema.sql," "2.1 Review
Command History," and "2.3 Display System Information" remain
in the "To-do" status. ❹ The Planner will evaluate these tasks, deter-
mine their priority, and formulate decisions to refine the execution
path. Subsequently, the tasks are delegated to the Generator for
step-by-step analysis and generation of execution instructions.
(4) Continuous Optimization and Feedback Loop ❺: To op-
timize the continuous update process of the IRT, we introduce a
result recording mechanism at IRT nodes (e.g., Result: $2a$10$...).
This ensures that task execution statuses and outputs are updated in
real-time within the IRT, combating the forgetting issue associated
with LLMs. Additionally, the system conducts real-time reflection
on decisions, and the Planner dynamically adjusts IRT branches
based on these results, continuously optimizing subsequent task
paths to improve IR efficiency.

Furthermore, for ethical and security concerns, we design an
interface that enables direct interaction with the Planner to prevent
LLM from unintentionally accessing sensitive data.

5.3 Generator

To address the challenges of inaccurate guidance or commands,
we designed the Generator. The Generator plays a critical role in
guiding and generating the sub-tasks determined by the Planner,

responsible for converting abstract task requirements into con-
crete executable commands. Upon receiving a new sub-task, IR-
Copilot directs the Generator to disregard extraneous contextual
information, focus exclusively on the current sub-task, and avoid
interference from other sub-tasks.

In this process, we do not have the Generator produce guidance
directly; instead, it decomposes the task into several sequential
steps. ❻ Firstly, the Generator focuses on refining the sub-tasks
formulated by the Planner into a series of detailed steps. We briefly
tag the OS in IRT-Incident Response Objectives and prompt the Gen-
erator to formulate specific strategies for different OS based on the
current context. ❼ When a sub-task can be accomplished in multi-
ple ways, the Generator creates as many distinct guidance strategies
as possible. Subsequently, it converts these guidance strategies into
executable terminal commands or provides precise investigative
descriptions within desktop operating systems. ❽ Throughout this
process, the Generator not only ensures that the semantics and logic
of the commands align with expectations but also strictly standard-
izes their format by using the "$" symbol as both the starting and
ending markers. This formatting approach facilitates subsequent
parsing and extraction of key information while minimizing pars-
ing ambiguities caused by inconsistent formats, thereby enhancing
the system’s robustness and the accuracy of task execution.

The Generator serves as a pivotal component connecting the
forward-looking decisions provided by the Planner with the specific
execution steps of IR. It guarantees that strategic plans are carefully
converted into accurate and executable operational instructions.
This conversion process transforms abstract strategic intentions
into concrete practical actions, thereby significantly enhancing the
coherence and overall efficiency of IR execution. Furthermore, it
produces clear and human-friendly outputs, ensuring the integrity
and traceability of the response process.

5.4 Reflector

The Reflector is capable of effectively analyzing and reflecting on
the natural language interactions occurring among the other three
central components. The rationale of introducing this component
is primarily based on the following four needs. First, it mitigates
privacy and security concerns, as LLMs may unintentionally access
sensitive data, posing significant risks to data security during task
execution. Second, contemporary LLMs still suffer from halluci-
nation issues, which may cause other components to understand
or generate erroneous information, thereby directly leading to the
failure of IR tasks or increasing unnecessary steps and costs. Third,
users who lack specialized IR knowledge find it difficult to deter-
mine whether the LLM has made suboptimal decisions, generated
incorrect guidance, or neglected key information. Finally, in iter-
ative scenarios, the Reflector prevents the accumulation of errors
by monitoring and correcting outputs, ensuring other components
do not perpetuate initial mistakes when handling new tasks or
expanded contexts. Thus, the Reflector is essential for resolving
these challenges.

In IRCopilot, the Reflector processes four distinct types of in-
formation: (1) ❷ IRT consists of content generated by the Planner
and updated by the Analyst; (2) ❺ decisions made by the Planner
together with concise descriptions; (3) ❾ guidance or commands
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produced by the Generator based on the Planner’s decisions and de-
scriptions; and (4) ❿ execution results of the Generator’s guidance.
Drawing inspiration from methodologies such as Few-Shot Prompt
and Negative Prompt, we develop a set of prompts that empower
the Reflector to identify potential hallucinations across contexts,
confirm the inclusion of all critical information, pinpoint erroneous
steps and their causes, and ultimately suggest modifications and
conduct traceback analysis.

5.5 Analyst

IR requires the comprehensive analysis of multiple distinct traces
left by attackers, such as intrusion paths, malware activities, indi-
cations of data breaches, and anomalous behaviors in system logs.
This process takes the form of a one-to-many, potentially weighted,
tree structure. Therefore, our IRT designmust comprehensively con-
sider the possibilities of various tasks and their inter-dependencies.
Additionally, the issue of overlooking minor but crucial details must
be taken into account in the design.

To address these issues, we design the Analyst as an auxiliary
module to the Planner. It adopts the Tree-of-Thought (ToT) [52]
reasoning technique, which generalizes over CoT to prompting
language models, and enables exploration over coherent units of
thoughts that serve as intermediate steps toward problem solving.
ToT enables LLMs to engage in intentional decision-making by
evaluating various reasoning trajectories and reflecting on their
choices to determine the subsequent actions. Additionally, ToT
facilitates forward planning and retrospective adjustments when
required, ensuring that decisions are made with a comprehensive
and global perspective. The Analyst breaks down the complete
results into multiple executable sub-tasks. In particular, once the
execution results for specific sub-tasks are received, it dynamically
adds items requiring further investigation to the IRT. Finally, the
Analyst feeds these findings back to the Planner, helping it make
more precise and effective decisions.

6 EVALUATION ON IRCOPILOT

In this section, we assess the performance of IRCopilot in IR by
addressing the following research questions:
• RQ1 (Performance & Efficiency): How does IRCopilot per-
form with different LLMs in terms of performance and efficiency?

• RQ2 (Ablation):What is the contribution of each component
within IRCopilot to the overall IR?

• RQ3 (Practicality): Does IRCopilot demonstrate practicality
and effectiveness in real-world IR tasks?

6.1 Experimental Settings

We implement IRCopilot with 2,788 lines of Python3 code and
257 lines of prompts. We evaluate its performance by utilizing
the benchmark tests outlined in Sec. 4 and applying it to real-
world IR scenarios. We develop four working versions, IRCopilot-
GPT-4, IRCopilot-GPT-4o, IRCopilot-Claude-3.5-Sonnet, and
IRCopilot-DeepSeek-V3, using GPT-4 [4], GPT-4o [4], Claude-3.5-
Sonnet [3], DeepSeek-V3 [9] as the underlying LLMs respectively.
Except for the 257 lines of prompts we designed, all other inputs and
experimental settings are identical to those described in Sec. 4.3.
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Figure 5: The performance of GPT-4, IRCopilot-GPT-

4, DeepSeek-V3, IRCopilot-DeepSeek-V3, GPT-4o,

IRCopilot-GPT-4o, Claude-3.5-Sonnet, IRCopilot-

Claude-3.5-Sonnet, GPT-o1, and IRCopilot-GPT-o1 on

the benchmark.

6.2 Performance & Efficiency Evaluation (RQ1)

Figure 5a presents the performance of GPT-4, IRCopilot-GPT-4,
DeepSeek-V3, IRCopilot-DeepSeek-V3, GPT-4o, IRCopilot-GPT-
4o, Claude-3.5-Sonnet, IRCopilot-Claude-3.5-Sonnet, GPT-o1
and IRCopilot-GPT-o1 across tasks of varying difficulty. As shown,
compared to their base LLMs, IRCopilot shows excellent perfor-
mance in IR tasks. In particular, IRCopilot-GPT-4o, IRCopilot-
Claude-3.5-Sonnet, and IRCopilot-GPT-o1 outperform othermod-
els at most difficulty levels, exhibiting a notable advantage in han-
dling IR of moderate or lower complexity. In contrast, IRCopilot-
GPT-4 and GPT-4 both trail behind IRCopilot-GPT-4o and GPT-4o,
revealing the limitations of the GPT-4-based approach in more
complex scenarios. We attribute this discrepancy to the relatively
smaller training dataset and narrower incident coverage of GPT-4
compared with GPT-4o, which is a limitation that OpenAI also
notes on its website [4]. Additionally, we find that IRCopilot’s
capabilities scale positively with the performance of baseline LLMs.

Figure 5b shows the performance of the above models on sub-
tasks with different degrees of difficulty. As illustrated, IRCopilot-
GPT-4, IRCopilot-DeepSeek-V3, IRCopilot-GPT-4o, IRCopilot-
Claude-3.5-Sonnet, and IRCopilot-GPT-o1 each outperform their
respective base LLMs, achieving 150%, 138%, 136%, 119%, and 114%
of the base-model performance, respectively. This outcome con-
firms that our approach effectively alleviates critical bottlenecks
of hallucination, context loss, and difficulties in handling progres-
sively complex questions encountered by LLMs in IR workflows.
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Table 3: Efficiency comparison of GPT-4o-2024-08-06 and

IRCopilot-GPT-4o-2024-08-06 on the benchmark.

Benchmark 𝑛𝑔 𝑛𝑖 𝑡𝑔 (s) 𝑡𝑖 (s) 𝑠𝑔 (s) 𝑠𝑖 (s)

Investigating Windows 17 22 249.9 278.0 14.7 12.6

Linux 1 4 7 61.6 193.6 15.4 27.7
Web 1 7 7 69.7 147.4 10.0 21.1
Tardigrade 12 15 143.7 201.0 12.0 13.4
Ransomware 4 6 118.0 159.2 29.5 26.5

Web 2 7 11 54.3 109.1 7.8 9.9
Web 3 7 11 83.3 289.3 11.9 26.3
Black Pages & Tampering 10 10 62.0 112.8 6.2 11.3
Windows Miner 5 9 92.0 68.1 18.4 7.6

Linux 2 7 10 66.1 294.0 9.4 29.4
Nacos 6 6 75.9 119.4 12.7 19.9
Where-1S-tHe-Hacker 8 14 108.2 157.1 13.5 11.2

This further verifies the applicability and effectiveness of our ap-
proach. However, these methods still encounter difficulties with
high-complexity tasks, primarily due to inherent limitations of
LLMs that remain unaddressed. Our approach does not expand the
training knowledge base in domains such as attacks, investigations,
analysis, or response, which limits improvements in more complex
scenarios, as further discussed in Sec. 7.

To assess the efficiency of IRCopilot in real-time IR, we con-
duct a study on the benchmark to measure response times under
controlled conditions. We ensure consistency by performing all
experiments at the same time and under identical environmental
settings, with other configurations matching those described in
previous sections. Likewise, we utilize the GPT-4o-2024-08-06 API
to seamlessly integrate IRCopilot-GPT-4o-2024-08-06. For each
task in the benchmark, we perform ten experiments to measure the
time taken by LLM to generate response content.

Real-world IR involves numerous uncontrollable variables, such
as network delays and unpredictable incident scenarios. To mitigate
this, we focus on the LLM’s reasoning time, defined as the duration
to process inputs and produce outputs on platform, as a critical and
controllable metric. This approach isolates the LLM’s performance,
emphasizing its reasoning speed as the key efficiency metric. Our
goal is to provide reference indicators for efficiency in real-time IR
systems. Table 3 compares the efficiency of GPT-4o and IRCopi-
lot on benchmark. We calculate the average time per sub-task by
dividing the total time by the number of completed sub-tasks for
a more precise efficiency evaluation. The metrics are defined as
follows. (1) 𝑛𝑔 and 𝑛𝑖 : Number of sub-tasks completed by GPT-4o
and IRCopilot. (2) 𝑡𝑔 and 𝑡𝑖 : Average time to complete each task
for GPT-4o and IRCopilot (in seconds). (3) 𝑠𝑔 and 𝑠𝑖 : Average time
per sub-task for GPT-4o and IRCopilot (in seconds), computed as
𝑡𝑔/𝑛𝑔 and 𝑡𝑖/𝑛𝑖 to reflect efficiency.

Our method generally requires more time across most tasks,
although it is faster on 4 out of the 12 benchmark sub-tasks. This
stems from the need for multi-step reasoning and the maintenance
of an IRT, both of which elevate the time cost. Nevertheless, we
consider this trade-off of efficiency for enhanced performance to
be justified, as evidenced by a 15% accuracy improvement in ’Ran-
somware’ despite a 20% time increase. We hope that future research

Table 4: Comparison of IRCopilot-GPT-4o-2024-08-06 and

IRCopilot-GPT-o1 on the benchmark.

Benchmark 𝑛4𝑜 𝑛𝑜1 𝑡4𝑜 (s) 𝑡𝑜1 (s) 𝑐4𝑜 (USD) 𝑐𝑜1 (USD)

Investigating Windows 22 22 278.0 914.4 0.78 5.90
Linux 1 7 7 193.6 463.8 0.27 2.06
Web 1 7 7 147.4 1,095.5 0.45 3.79
Tardigrade 15 15 201.0 673.3 0.43 3.54
Ransomware 6 6 159.2 664.0 0.23 2.77
Web 2 11 11 109.1 708.7 0.43 3.45
Web 3 11 11 289.3 1,365.8 0.65 6.48
Black Pages & Tampering 10 10 112.8 674.5 0.46 2.17
Windows Miner 9 9 68.1 577.5 0.35 1.94
Linux 2 10 11 294.0 885.7 0.51 4.73
Nacos 6 6 119.4 630.0 0.32 2.81
Where-1S-tHe-Hacker 14 14 157.1 690.7 0.35 3.88

can improve efficiencywhilemaintaining performance. Importantly,
even with this additional time, our approach remains more efficient
than traditional manual IR methods [10, 15].

We compare the key metrics of a reasoning-focused LLM (GPT-
o1) and a foundational LLM (IRCopilot-GPT-4o) on the benchmark,
as detailed in Table 4. The metrics are defined as follows: (1) 𝑛4𝑜 and
𝑛𝑜1: Number of sub-tasks completed by IRCopilot-GPT-4o-2024-08-
06 and IRCopilot-GPT-o1. (2) 𝑡4𝑜 and 𝑡𝑜1: Average time to complete
each task for IRCopilot-GPT-4o-2024-08-06 and IRCopilot-GPT-
o1 (in seconds). (3) 𝑐4𝑜 and 𝑐𝑜1: Average cost to complete each task
for IRCopilot-GPT-4o-2024-08-06 and IRCopilot-GPT-o1 (USD).

The outcomes demonstrate that IRCopilot exhibits versatility
across LLMs with different thinking patterns. However, the out-
comes also reveal that these patterns lead to varying performance
characteristics. In particular, the use of GPT-o1 yields a modest
performance improvement, but this enhancement is accompanied
by a substantial increase in reasoning time and cost overhead. After
a comprehensive evaluation of the trade-offs between performance,
time, and cost, we conclude that the combination of IRCopilot
and GPT-4o offers the best balance for IR tasks and is the optimal
choice at present.

6.3 Ablation Study (RQ2)

To analyze the contribution of each component in our approach to
the overall IR process, we conduct an ablation study, design and
implement the following four variants:
(1) IRCopilot-no-Planner: the Planner component is disabled,

bypassing the IRT strategy and forwarding tasks directly to
subsequent components.

(2) IRCopilot-no-Generator: the Generator component is deacti-
vated, allowing other modules to directly produce guidance.

(3) IRCopilot-no-Reflector: the Reflector component is disabled,
eliminating the reflection step.

(4) IRCopilot-no-Analyst: the Analyst component and the ToT
prompting method are disabled, directing execution results
straight to the Planner component.
IRCopilot-GPT-4o and IRCopilot-Claude-3.5-Sonnet demon-

strate similar performance in Sec. 6.2. However, IRCopilot-GPT-4o
stands out with significantly lower costs, approximately 1/5 of
IRCopilot-Claude-3.5-Sonnet’s, along with faster response times.
Due to its superior cost-effectiveness and efficiency, we consider
IRCopilot-GPT-4o the preferred choice. Consequently, all variants
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Figure 6: The performance of IRCopilot, IRCopilot-
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Reflector and IRCopilot-no-Analyst on the benchmark.

utilize the IRCopilot-GPT-4o API for evaluation. Notably, a com-
prehensive IR task encompasses multiple objectives, and success
requires fulfilling all of them. Conducting ablation experiments on
the components could therefore hinder successful task completion.
For this reason, our ablation study focuses solely on the quantitative
analysis of sub-tasks.

Figure 6 illustrates the performance of the four variants assessed
through our comprehensive benchmark tests. Across these evalua-
tions, IRCopilot consistently surpasses each ablation baseline in
sub-task completion rates. The ablation study yields several key
observations, summarized as follows:
• IRCopilot-no-Planner achieves the lowest success rate, com-
pleting only 42.97% (55/128) of the sub-tasks compared to the full
variant, followed by IRCopilot-no-Analyst at 48.44% (62/128).
These figures fall below even the baseline GPT-4o’s performance.
This highlights the critical importance of the Planner compo-
nent’s IRT strategy and decision-making capabilities, as well as
the Analyst component’s ToT method, in ensuring effective IR
processes. Moreover, these results emphasize that robust reason-
ing ability is indispensable for driving successful outcomes in
such tasks.

• IRCopilot-no-Generator performs approximately on par with
the baseline GPT-4o at 70.31% (90/128), indicating that this com-
ponent primarily generates IR guidance through the base LLM.
This provides auxiliary support to incident responders and re-
duces operational costs.

• IRCopilot-no-Reflector demonstrates a slight decrease com-
pared to the full variant in sub-task completion at 85.94% (90/128).
This decline is mainly attributed to occasional LLM ’hallucina-
tions’ or other minor issues. However, the frequency of such
errors is relatively low, and the Reflector component is capable
of rectifying these minor errors in most cases, thereby positively
contributing to the overall IR process. Nevertheless, IRCopilot-
no-Reflector still marginally outperforms the baseline GPT-4o,
suggesting that even in the absence of the Reflector component,
the other components of IRCopilot continue to provide a certain
performance advantage.

6.4 Practicality Study (RQ3)

To evaluate the adaptability of IRCopilot in addressing real-world
cybersecurity incidents, we conducted a practicality study that
extends beyond the benchmark tests outlined in Sec. 4. For this

Table 5: IRCopilot performance over TryHackMe chal-

lenges.

Challenge Difficulty OS Completions Cost (USD)

Eradication & Remediation easy Linux 4/5 (✓) 0.29
Investigating Windows easy Windows 4/5 (✓) 0.78
Linux Incident Surface easy Linux 3/5 (✓) 0.53
Linux File System Analysis easy Linux 5/5 (✓) 0.46
Linux Process Analysis easy Linux 5/5 (✓) 0.69
Threat Intel & Containment easy Linux 5/5 (✓) 0.08
Windows Network Analysis easy Windows 5/5 (✓) 0.15
Blizzard medium Windows 0/5 (✗) -
Investigating Windows 2.0 medium Windows 4/5 (✓) 1.11
Investigating Windows 3.x medium Windows 4/5 (✓) 0.80
Linux Logs Investigations medium Linux 5/5 (✓) 0.29
Linux Live Analysis medium Linux 4/5 (✓) 0.54
Tardigrade medium Linux 3/5 (✓) 0.43
Tempest medium Windows 0/5 (✗) -
Windows Applications Forensics medium Windows 4/5 (✓) 0.31
Windows Event Logs medium Windows 5/5 (✓) 0.24
Squid Game hard Linux 0/5 (✗) -

Table 6: IRCopilot performance over XuanJi challenges.

Challenge Difficulty OS Completions Cost (USD)

Webshell Detection and Removal easy Linux 4/5 (✓) 0.24
Windows EVTX File Analysis easy Windows 5/5 (✓) 0.21
Linux Backdoor Emergency medium Linux 2/5 (✓) 0.80
Log Analysis - MySQL medium Linux 0/5 (✗) -
Log Analysis - Redis medium Linux 0/5 (✗) -
Traffic Feature Analysis - Tomcat medium Linux 3/5 (✓) 0.24
VulnTarget n - Ransomware medium Linux 4/5 (✓) 0.23
Windows Black Pages & Tampering medium Windows 5/5 (✓) 0.46
Memory Trojan Analysis - Nacos hard Linux 5/5 (✓) 0.32
Memory Trojan Analysis - shiro hard Linux 5/5 (✓) 0.19
Windows Wordpress hard Windows 3/5 (✓) 0.26
Where 1S tHe Hacker hard Windows 0/5 (✗) -

assessment, we selected 35 distinct machines across three different
platforms to test IRCopilot’s performance:
(1) TryHackMe [19]: A subscription-based cybersecurity education

platform. We selected 17 machines of varying difficulty: 7 easy,
9 medium, and 1 hard target.

(2) XuanJi [21]: A pay-per-time platform featuring globally rec-
ognized IR machines. From this, we select 12 representative
machines, consisting of 2 easy, 6 medium, and 4 hard targets.

(3) ZGSF [22]: A public account platform managed by a cyberse-
curity laboratory, providing free access. From this, we select
6 representative machines, including 2 easy, 3 medium, and 1
hard target. These machines are adapted from real-world cy-
ber attack cases, with relevant privacy information removed to
prevent ethical and moral issues.
Our evaluation integrates IRCopilot with the GPT-4o-2024-08-

06 API to create IRCopilot-GPT-4o-2024-08-06, establishing the
completion of the entire IR process as the criterion for a successful
test. For each target, we conduct five experiments and record the
number of times the tasks are successfully completed. We establish
that if at least one of the five experiments results in a successful
response, we consider the IR successful. This is because in real-world
cybersecurity IR process, multiple security practitioners usually
work individually on one particular workload to perform extended
analyses and responses. Therefore, the ultimate success contingent
upon the successful completion of the task from at least one of the
security experts.
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Table 7: IRCopilot performance over ZGSF challenges.

Challenge Difficulty OS Completions Cost (USD)

Linux 1 easy Linux 5/5 (✓) 0.27
Windows 1 easy Windows 5/5 (✓) 0.45
Windows 2 medium Windows 3/5 (✓) 0.43
Windows 3 medium Windows 4/5 (✓) 0.65
Cryptojacking medium Windows 5/5 (✓) 0.35
Linux 2 hard Linux 0/5 (✗) -

Table 8: Performance over real-world attack cases.

Machine OS Tasks Completions Cost (USD)

Sunlogin Windows 3 4/5 (✓) 0.66
algo Linux 4 3/5 (✓) 0.51
kswapd0 Linux 3 5/5 (✓) 0.25
Cryptojacking 1 Linux 5 2/5 (✓) 0.90
Cryptojacking 2 Linux 6 4/5 (✓) 0.61

Table 5 details the performance of IRCopilot in the TryHackMe
challenges. IRCopilot successfully completes all 7 easy tasks and
7 of 9 medium tasks, achieving a completion rate of 77.8%. Con-
currently, when utilizing the GPT-4o-2024-08-06 API, IRCopilot
maintains a low operational cost. This indicates that IRCopilot is
capable of efficiently handling a wide range of low to medium diffi-
culty of IR tasks with reduced expenditure. Notably, the platform
offers few high-difficulty tasks, and only one is available, which
IRCopilot does not complete.

Table 6 outlines the performance of IRCopilot on the XuanJi
platform challenges. At the easy level, IRCopilot completes all
tasks, demonstrating high reliability. For medium challenges, it re-
solves 3 of 6 tasks (50% completion rate) at an average cost of $0.39
per task. At the hard level, it completes 2 of 4 challenges (50% com-
pletion rate), showcasing its capability for complex tasks. In general,
IRCopilot exhibits strong adaptability, although performance in
higher-difficulty tasks could be improved.

Table 7 presents IRCopilot’s performance on ZGSF challenges.
It achieves a 100% completion rate for both easy and medium tasks,
with average costs of $0.36 and $0.48 per task, respectively. However,
IRCopilot fails to complete the hard-level tasks, indicating certain
inherent limitations in handling highly complex IR scenarios.

Notably, we included fewer tasks of Hard difficulty. This is due
to the limited number of publicly available IR tasks on the platform.
Despite this constraint, we ensured that the selected tasks were
sufficient to support our conclusions. Specifically, compared to
the other two difficulty levels, IRCopilot exhibits slightly lower
performance on Hard difficulty tasks.

Additionally, we select five real-world instances of personal PCs
or servers compromised by attacks, which are published on the
XuanJi platform. These cases span diverse system types, attack
scenarios, and techniques. Similarly, to adhere to ethical guidelines,
the privacy data of these machines has been anonymized.

Table 8 showcases capabilities of IRCopilot in adapting to tasks
on compromised machines within real-world attack environments,
demonstrating its effectiveness in identifying and extracting at-
tacker traces and information from actual cyber incidents. This
capability is crucial for improving the efficiency of handling and

Table 9: Comparison of IR benchmark release dates against

LLM knowledge cutoff dates.

Model GPT-4 DeepSeek-V3 GPT-4o Claude-3.5-Sonnet GPT-o1

Cutoff 2023-04 2024-07 2023-10 2024-04 2023-10

After 10 0 10 3 10
Before 2 12 2 9 2

responding to cybersecurity incidents. The findings show that IR-
Copilot performs robustly and shows considerable potential across
a variety of real and diverse challenges, providing valuable sup-
port for post-IR and bolstering defenses against the evolving cyber
threat landscape.

7 DISCUSSION

Data Contamination Mitigation. IRCopilot is built based on
LLMs, recognizing that cases or writeups on these platforms may
already be included in LLM training data, which can potentially bias
experimental results. To address concerns about data contamination
in LLMs/IRCopilot, we implement three measures. Initially, we
prioritize benchmark cases with more recent publication dates
during the selection process, which are most likely to fall outside
the scope of the LLMs’ training data. we compare the publication
date of each selected case with the specific knowledge cutoff dates
of the LLMs [14, 16] as shown in Table 9. Majorities (33/60) of
the tasks are after the cutoff date of the models. Subsequently, we
assess whether the LLMs underwent targeted training by querying
them for detailed information about specific cases. More details are
available at our Anonymous Github [12]. Finally, since IRCopilot
has the ability to display each step of its reasoning process, we
confirm through an examination of its reasoning paths that it lacks
prior knowledge of the cases. Furthermore, real-world cases in
practicality study further demonstrated that, even without targeted
training, IRCopilot shows significant feasibility and effectiveness
in real-world applications.

Selection of LLM API. During the design phase, we system-
atically evaluated multiple LLM APIs and ultimately select four:
GPT-4, GPT-4o-2024-08-06, and Claude-3.5-Sonnet as commercial
APIs, alongside DeepSeek-V3 as the open-source model. In our ex-
periments, the latest model GPT-4o-2024-08-06 shows even better
performance than GPT-4, offering faster response times and a con-
text window of up to 128K tokens. Meanwhile, Claude-3.5-Sonnet
and DeepSeek-V3 excel at reasoning and code analysis. Notably,
GPT-4o-2024-08-06 also costs just one-twelfth of GPT-4, making it
a cost-effective choice for real-world applications.

Limitations. Even advanced models display limitations under
specific conditions. For instance, they may produce outputs that
contradict prior context, resulting in hallucinations [55, 57]. In our
system, these hallucinations typically appear as erroneous anal-
yses, judgments, or decisions derived from existing information
(Appendix B.3). To address this, we introduce the IRT and Reflector
to mitigate their impact. Beyond hallucinations, complex sample
analysis and reverse engineering tasks often remain incomplete due
to the limited capabilities of both IRCopilot and LLMs in handling
intricate scenarios (Appendix B.4). As training data and model ar-
chitectures continue to evolve, we anticipate that LLM performance
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will improve, gradually reducing the occurrence of hallucinations
and enhancing the ability to manage complex IR tasks.

Future Work for Improvement. Despite our efforts to design
and evaluate multiple countermeasures, cybersecurity is always an
evolving game, as we face the emergence of increasingly diverse and
sophisticated attack vectors. We attempted to integrate RAG into
the design, but it led to decreased efficiency and higher overhead,
failing to yield the anticipated performance gains. Looking forward,
a promising research direction is the development of adaptive de-
fense mechanisms. These should incorporate more advanced agent
systems, augmented with enhanced memory or search capabilities,
to effectively counter sophisticated threats. Our findings indicate
a positive correlation between the effectiveness of this approach
and the capabilities of baseline LLMs. We are confident that, as
LLMs evolve and defense strategies improve, these systems will
become more adaptable, robust, and efficient, capable of addressing
a broader spectrum of complex security incidents.

8 CONCLUSION

Modern cybersecurity landscape brings numerous challenges for au-
tomated incident response. This paper performs a systematic study
to address them with two contributions. First, we establish a new
comprehensive incident response benchmark to demonstrate the
limitations of directly applying LLMs in this complex domain. Sec-
ond, we design IRCopilot, an advanced LLM-driven approach for
efficient incident response by simulating the planning and response
processes of real-world professional teams. This is achieved by an
interactive modular design, and adoptions of multiple strategies to
mitigate LLMs’ hallucinations and context limitations. We evaluate
IRCopilot through extensive experiments and real-world scenar-
ios, demonstrating the feasibility of leveraging LLMs for incident
response tasks and laying the groundwork for future developments
of cybersecurity enhancement.

REFERENCES

[1] 2025. The 5/5/5 Benchmark. RetrievedMarch 24, 2025 fromhttps://sysdig.com/555-
benchmark

[2] 2025. 7 Incident Response Metrics and How to Use Them. Retrieved March 24, 2025
from https://securityscorecard.com/blog/how-to-use-incident-response-metrics

[3] 2025. Anthropic. Retrieved March 24, 2025 from https://docs.anthropic.com
[4] 2025. API platform. Retrieved March 24, 2025 from https://openai.com/api
[5] 2025. Certified Information Systems Security Professional. Retrieved March 24,

2025 from https://www.isc2.org/certifications/cissp
[6] 2025. Check Point Software. Retrieved March 24, 2025 from https://www.

checkpoint.com
[7] 2025. Claude. Retrieved March 24, 2025 from https://claude.ai
[8] 2025. DeepSeek. Retrieved March 24, 2025 from https://www.deepseek.com
[9] 2025. DeepSeek API Docs. Retrieved March 24, 2025 from https://api-docs.

deepseek.com
[10] 2025. Grey Time: The Hidden Cost of Incident Response. Retrieved April 13, 2025

from https://www.rapid7.com/blog/post/2022/09/13/grey-time-the-hidden-cost-
of-incident-response/

[11] 2025. Human-in-the-loop. Retrieved March 24, 2025 from https://en.wikipedia.
org/wiki/Human-in-the-loop

[12] 2025. IRCopilot: Automated Incident Response with Large Language Models. Re-
trieved March 24, 2025 from https://anonymous.4open.science/r/IRCopilot-78A0

[13] 2025. kaspersky. Retrieved March 24, 2025 from https://www.kaspersky.com
[14] 2025. Knowledge Cutoff Dates of all LLMs explained. Retrieved March 24, 2025

from https://otterly.ai/blog/knowledge-cutoff
[15] 2025. Mean Time to Respond: Optimizing IT Performance. Retrieved April 13,

2025 from https://blog.invgate.com/mean-time-to-respond
[16] 2025. Models - OpenAI API. Retrieved March 24, 2025 from https://platform.

openai.com/docs/models

[17] 2025. National Vulnerability Database. Retrieved March 24, 2025 from https:
//nvd.nist.gov

[18] 2025. Red Team vs Blue Team in Cybersecurity. Retrieved March 24, 2025 from
https://www.offsec.com/blog/red-team-vs-blue-team

[19] 2025. TryHackMe. Retrieved March 24, 2025 from https://tryhackme.com
[20] 2025. Unit 42. RetrievedMarch 24, 2025 from https://unit42.paloaltonetworks.com
[21] 2025. XuanJi. Retrieved March 24, 2025 from https://xj.edisec.net
[22] 2025. ZGSF Lab. Retrieved March 24, 2025 from https://mp.weixin.qq.com/mp/

profile_ext?action=home&__biz=MzkxMTUwOTY1MA==
[23] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[24] Md Tanvirul Alam, Dipkamal Bhusal, Youngja Park, and Nidhi Rastogi. 2023.
Looking beyond IoCs: Automatically extracting attack patterns from external
CTI. In Proceedings of the 26th International Symposium on Research in Attacks,
Intrusions and Defenses. 92–108.

[25] Maryam Amirizaniani, Jihan Yao, Adrian Lavergne, Elizabeth Snell Okada,
Aman Chadha, Tanya Roosta, and Chirag Shah. 2024. Developing a framework
for auditing large language models using human-in-the-loop. arXiv preprint
arXiv:2402.09346 (2024).

[26] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in Neural
Information Processing Systems 33 (2020), 1877–1901.

[27] Yiren Chen, Mengjiao Cui, DingWang, Yiyang Cao, Peian Yang, Bo Jiang, Zhigang
Lu, and Baoxu Liu. 2024. A survey of large language models for cyber threat
detection. Computers & Security (2024), 104016.

[28] KR1442 Chowdhary and KR Chowdhary. 2020. Natural language processing.
Fundamentals of artificial intelligence (2020), 603–649.

[29] Gelei Deng, Yi Liu, Víctor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu,
Tianwei Zhang, Yang Liu, Martin Pinzger, and Stefan Rass. 2024. {PentestGPT}:
Evaluating and harnessing large language models for automated penetration
testing. In 33rd USENIX Security Symposium (USENIX Security 24). 847–864.

[30] Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2018).

[31] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[32] MohamedAmine Ferrag,MthandazoNdhlovu, Norbert Tihanyi, Lucas CCordeiro,
Merouane Debbah, and Thierry Lestable. 2023. Revolutionizing cyber threat
detection with large language models. arXiv preprint arXiv:2306.14263 (2023).

[33] Joint Task Force. 2017. Security and privacy controls for information systems and
organizations. Technical Report. National Institute of Standards and Technology.

[34] Junjie Huang and Quanyan Zhu. 2024. PenHeal: A Two-Stage LLM Framework for
Automated Pentesting and Optimal Remediation. In 1st International Workshop
on Autonomous Cybersecurity, AutonomousCyber 2024, As part of the 31st ACM
Conference on Computer and Communications Security, ACMCCS 2024. Association
for Computing Machinery, Inc, 11–22.

[35] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[36] Jia Li, Ge Li, Chongyang Tao, Huangzhao Zhang, Fang Liu, and Zhi Jin. 2023.
Large language model-aware in-context learning for code generation. arXiv
preprint arXiv:2310.09748 (2023).

[37] Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. 2024.
Pre-trained language models for text generation: A survey. Comput. Surveys 56,
9 (2024), 1–39.

[38] Lu Li and Bojie Gong. 2023. Prompting Large Language Models for Malicious
Webpage Detection. In 2023 IEEE 4th International Conference on Pattern Recogni-
tion and Machine Learning (PRML). IEEE, 393–400.

[39] Peiyu Liu, Junming Liu, Lirong Fu, Kangjie Lu, Yifan Xia, Xuhong Zhang, Wenzhi
Chen, HaiqinWeng, Shouling Ji, andWenhaiWang. 2024. Exploring {ChatGPT’s}
capabilities on vulnerability management. In 33rd USENIX Security Symposium
(USENIX Security 24). 811–828.

[40] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh
Hajishirzi, and Luke Zettlemoyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? arXiv preprint arXiv:2202.12837 (2022).

[41] Alexander Nelson, Sanjay Rekhi, Murugiah Souppaya, and Karen Scarfone. 2024.
Incident Response Recommendations and Considerations for Cybersecurity Risk
Management: A CSF 2.0 Community Profile. Technical Report. National Institute
of Standards and Technology.

[42] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 754–768.

https://sysdig.com/555-benchmark
https://sysdig.com/555-benchmark
https://securityscorecard.com/blog/how-to-use-incident-response-metrics
https://docs.anthropic.com
https://openai.com/api
https://www.isc2.org/certifications/cissp
https://www.checkpoint.com
https://www.checkpoint.com
https://claude.ai
https://www.deepseek.com
https://api-docs.deepseek.com
https://api-docs.deepseek.com
https://www.rapid7.com/blog/post/2022/09/13/grey-time-the-hidden-cost-of-incident-response/
https://www.rapid7.com/blog/post/2022/09/13/grey-time-the-hidden-cost-of-incident-response/
https://en.wikipedia.org/wiki/Human-in-the-loop
https://en.wikipedia.org/wiki/Human-in-the-loop
https://anonymous.4open.science/r/IRCopilot-78A0
https://www.kaspersky.com
https://otterly.ai/blog/knowledge-cutoff
https://blog.invgate.com/mean-time-to-respond
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://nvd.nist.gov
https://nvd.nist.gov
https://www.offsec.com/blog/red-team-vs-blue-team
https://tryhackme.com
https://unit42.paloaltonetworks.com
https://xj.edisec.net
https://mp.weixin.qq.com/mp/profile_ext?action=home&__biz=MzkxMTUwOTY1MA==
https://mp.weixin.qq.com/mp/profile_ext?action=home&__biz=MzkxMTUwOTY1MA==


CCS ’25, October 13–17, 2025, Taipei, Taiwan Xihuan Lin et al.

[43] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan
Dolan-Gavitt. 2023. Examining zero-shot vulnerability repair with large language
models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2339–2356.

[44] Jiaxing Qi, Shaohan Huang, Zhongzhi Luan, Shu Yang, Carol Fung, Hailong Yang,
Depei Qian, Jing Shang, Zhiwen Xiao, and Zhihui Wu. 2023. Loggpt: Exploring
chatgpt for log-based anomaly detection. In 2023 IEEE International Conference
on High Performance Computing & Communications, Data Science & Systems,
Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys). IEEE, 273–280.

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
10684–10695.

[46] Samaneh Shafee, Alysson Bessani, and Pedro M Ferreira. 2024. Evaluation of llm
chatbots for osint-based cyber threat awareness. arXiv preprint arXiv:2401.15127
(2024).

[47] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. 2023. Reflexion: Language agents with verbal reinforcement learning.
Advances in Neural Information Processing Systems 36 (2023), 8634–8652.

[48] Chengyu Song, Linru Ma, Jianming Zheng, Jinzhi Liao, Hongyu Kuang, and Lin
Yang. 2024. Audit-LLM: Multi-Agent Collaboration for Log-based Insider Threat
Detection. arXiv preprint arXiv:2408.08902 (2024).

[49] Wannita Takerngsaksiri, Jirat Pasuksmit, Patanamon Thongtanunam, Chakkrit
Tantithamthavorn, Ruixiong Zhang, Fan Jiang, Jing Li, Evan Cook, Kun Chen,
and Ming Wu. 2024. Human-In-the-Loop Software Development Agents. arXiv
preprint arXiv:2411.12924 (2024).

[50] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and
Lidia S Chao. 2019. Learning Deep Transformer Models for Machine Translation.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 1810–1822.

[51] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems 35
(2022), 24824–24837.

[52] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving with
large language models. Advances in Neural Information Processing Systems 36
(2023), 11809–11822.

[53] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. In International Conference on Learning Representations (ICLR).

[54] Shuhan Yuan and Xintao Wu. 2021. Deep learning for insider threat detection:
Review, challenges and opportunities. Computers & Security 104 (2021), 102221.

[55] Muru Zhang, Ofir Press, WilliamMerrill, Alisa Liu, and Noah A Smith. 2023. How
language model hallucinations can snowball. arXiv preprint arXiv:2305.13534
(2023).

[56] Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and
Tatsunori B Hashimoto. 2024. Benchmarking large language models for news
summarization. Transactions of the Association for Computational Linguistics 12
(2024), 39–57.

[57] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting
Huang, Enbo Zhao, Yu Zhang, Yulong Chen, et al. 2023. Siren’s song in the
AI ocean: a survey on hallucination in large language models. arXiv preprint
arXiv:2309.01219 (2023).

A GLOBAL CYBERSECURITY LANDSCAPE

B CASE DISCUSSION

B.1 Case I (False IR Strategy)

In Task 2 of the benchmark "ZGSF_Linux 1", the "False Response
Strategy" results in a typical failure.

0 500 1000 1500 2000
Average Weekly Attacks

Hardware Vendor
Software Vendor

Insurance / Legal
Transportation

SI / VAR / Distributor
Consultant

Manufacturing
Leisure / Hospitality

Retail / Wholesale
Utilities

Finance / Banking
ISP / MSP

Communications
Healthcare

Government / Military
Education / Research

2023
2022
2021
2020

Figure 7: Average Weekly Attacks per Organization by Indus-

try (2020-2023).

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 20240

6k

12k

18k

24k

30k

36k

42k
New CVEs
Cumulative CVEs

60k

90k

120k

150k

180k

210k

240k

270k

(a) CVE Trends (2014-2024).

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
0

500

1000

1500

2000

2500

3000

3500

4000 Code Execution
Denial of Service
Bypass
Privilege Escalation
Information Leak

(b) Vulnerabilities by Impact Types (2014-2024).
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False IR Strategy (LLMs)

Use the following methods to systematically identify potential
flag information in the system:
1. Search for all possible flag files in the system:
find / -type f -name "flag*" 2>/dev/null
2. Inspect memory or processes for hidden information:
strings /dev/mem | grep -i "flag"
3. Analyze network traffic and scheduled tasks:
tcpdump -A -i eth0 | grep "flag"
4. Examine attack scripts and environment variables:
env | grep "flag"
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IR should adopt a step-by-step clue analysis process instead
of relying solely on keyword searches, as some clues may lie be-
yond the files. This highlights a key limitation of LLMs in devising
effective strategies for IR tasks. To address this, we introduced IRT
in IRCopilot to prioritize IR tasks. When the task lacks clear in-
formation, it will be executed sequentially in accordance with the
order in the "Incident Response Procedures."

IRCopilot-Planner

IRT:
1. Incident Response Objectives (Linux) - [To-do]

1.1 Hacker’s IP address - (To-do)
1.2 Flag 1 - (To-do)
...

2. Incident Response Procedures - [To-do]
2.1 Review Command History - (To-do)
2.2 Investigate Sensitive Directories - (To-do)
2.3 Analyze System Logs - (To-do)
...

Task selection: 2.1 Review Command History

1. View the command history of the current user.
$ history $

2. Looking directly at the ".bash_history" file may provide more
information, especially after the user has logged out.

$ cat ~/.bash_history $

B.2 Case II (False Commands Generation)

We present a specific example of a failure caused by the "False Com-
mand Generation" in Task 6 of "XuanJI_Where-1S-tHe-Hacker"

within the benchmark. When searching for hidden accounts, di-
rectly using the "net user" command fails to provide complete in-
formation. This case shows that LLMs may generate incorrect com-
mands, which contradict facts and lead to task failures.

False Commands Generation (LLMs)

Hidden Accounts Created by Hackers
Check the system account list:
1. Run net user to view the list of accounts and check for any
suspicious accounts.
2. Run net user <username> to view detailed information.

In IRCopilot, the approach should involve first analyzing sub-
tasks and then generating multiple solutions, specifically by check-
ing Regedit or using the WMIC command.

IRCopilot-Generator

To complete the task, we need to check in detail. Here are the
specific steps and commands to perform this task:
1. Hidden accounts are typically recorded in the registry at the
following location:

$ ...\SAM\SAM\Domains\Account\Users $
This path stores all user SIDs and related information.
2. The WMIC can quickly list all accounts and their SIDs:

$ wmic useraccount get name,sid $

B.3 Case III (Hallucinations)

We present an example of "XuanJI_Where-1S-tHe-Hacker" in the
benchmark, specifically Task 9, which involves identifying the mo-
ment the hacker reads the stored key from the file. This task remains
unsolved by both LLMs and IRCopilot due to hallucinations. The
suggested Event IDs 4656 and 4663 track general file access events,
which are too broad and may not specifically capture cryptographic
key operations. This can lead to missed or irrelevant logs, failing to
pinpoint the exact moment of the key access. In contrast, Event
ID 5058 is the appropriate choice, as it logs key file operations
(e.g.reading a stored cryptographic key) in the Windows Security
event log, enabling accurate identification of the event.

False Guidance Generation (Hallucinations)

"The moment the hacker reads the stored key from the file"
requires checking the following:
1. Check the file access events related to the key (event ID 4656
or 4663)
2. Check the file access records under sensitive directories

B.4 Case IV (Limitations)

Here, we offer an example task highlighting the limitations of LLMs
and IRCopilot: the Squid Game malicious file analysis challenge
from TryHackMe. This challenge demands sophisticated dynamic
and static analysis, encompassing data flow analysis, VBA macro
handling, obfuscated content decoding, and the seamless integra-
tion of multiple tools.
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Results of Oledump

ubuntu@ip-10-10-114-110:~/Desktop/maldocs$ oledump.py at-
tacker1.doc
1: 114 ’\x01CompObj’
...
8: M 9852 ’Macros/VBA/ThisDocument’
...

LLMs
oledump.py -s 8 -v attacker1.doc
oledump.py -s 1 -d attacker1.doc

The output from these two commands generates obfuscated data
streams that are challenging for LLMs to parse, often necessitating
intricate manual analysis. We’re optimistic that future develop-
ments will address this.

C ETHICAL CONSIDERATIONS AND OPEN

SCIENCE POLICY COMPLIANCE

C.1 Ethical Considerations

This research investigates automated incident response with LLMs.
While we believe our work can contribute to incident response in
real-world environments, we adhere to key ethical principles to
minimize potential risks:
• Risk Considerations: Effective corrective measures require that
the model remains under the victim’s control. To achieve this, we
deploy the incident response model on a separate, independent
machine, ensuring continuous victim oversight and minimiz-
ing the risk of malicious manipulation. This strategy safeguards
the security of LLMs and is essential for their safe and reliable
deployment.

• Data Privacy Protection: To prevent the model from directly
accessing sensitive personal data, we employ professionals from
the victim’s side as intermediaries and have the model operate
on an isolated machine. This approach safeguards the privacy
of all parties and ensures data security. Additionally, we equip
IRCopilot with interfaces to access local LLMs and intentionally
design the model to avoid accessing system private data and
services unless absolutely necessary.

• Promotion of Ethical Guidelines: We firmly oppose any mali-
cious use of IRCopilot and actively advocate for ethical guide-
lines to ensure it consistently serves a positive role in the cyber-
security landscape.
Through this work, we aim to make a positive contribution to the

practical application of LLMs in cybersecurity incident response,
assisting IT resource owners in mitigating the impact of cyberat-
tacks.

C.2 Compliance with the Open Science Policy

We are committed to the principles of open science, ensuring that
our research outputs are publicly accessible. This includes:

• Open Source Code. We fully endorse open science prin-
ciples and are dedicated to promoting transparency, repro-
ducibility, and collaboration in scientific research. The full

source code for our project will be openly available onAnony-
mousGitHub at https://anonymous.4open.science/r/IRCopilot-
78A0 after publication. This allows for transparency, repro-
ducibility, and enables other researchers to build upon our
work.

• BenchmarkAccess.Wepublish our benchmark in an anonymized
repository https://anonymous.4open.science/r/IRCopilot-78A0.
This provides a fair and comprehensive evaluation for in-
cident response and supports the phased comparison of re-
search outcomes.

By sharing both our code and benchmark, we seek to promote
academic collaboration, technological advancement, and repro-
ducibility in the field.

https://anonymous.4open.science/r/IRCopilot-78A0
https://anonymous.4open.science/r/IRCopilot-78A0
https://anonymous.4open.science/r/IRCopilot-78A0
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Table 10: Summarized 27 types of sub-tasks in the proposed incident response benchmark.

Phase Technique Description

Detection

System Information Gathering Includes operating system identification, network configuration analysis, hardware information gathering, etc.
Open Port Identification Detect open network ports on the target system.
Service Enumeration Identify and analyze running services to uncover version details and vulnerabilities.
Directory Inspection Examine key directories and hidden files for unusual activity.
Account Security Review Audit user account permissions and identify unauthorized accounts or backdoors.
File Integrity Check Monitor file hashes to detect unauthorized changes.
Other Detections Inspect other vulnerable areas of the system, such as the registry, etc.

Response

Historical Command and Behavior Analysis Review user commands and system behaviors to detect abnormal operations.
Permission Review and Management Audit system and application permissions to enforce least-privilege principles and manage risky permissions.
File Analysis Inspect system files and source code for vulnerabilities or malicious content.
Malicious File Handling Identify, isolate, and remove malicious files to prevent further damage.
Startup Item Analysis Review startup items for unauthorized programs or scripts.
Scheduled Task Analysis Analyze the system’s scheduled tasks settings to identify possible malicious or planned tasks.
Anomaly Behavior Response Respond to abnormal system or user behaviors to contain potential threats.
Memory and Process Analysis Examine memory and processes to identify abnormal or malicious activity.
Malicious Process Handling Terminate malicious processes to mitigate ongoing threats.
System Log Analysis Analyze system logs for signs of compromise, unauthorized access, or suspicious activities.
Application Log Analysis Review application logs for exploitation attempts or unusual behavior.
Network Traffic Analysis Analyze network traffic to identify suspicious communication or data exfiltration.
Risky IP Management Block or monitor traffic from known malicious or suspicious IP addresses.
Database Analysis Analyze databases for security vulnerabilities, data leaks, or unauthorized access.
Other Responses Conduct additional response activities, such as analyzing virtualization environments or reviewing container security.

Recovery

System Recovery Restore the system to a stable state after failures, malware, or misconfigurations.
Data Recovery Recover lost or corrupted data from backups or damaged media.
Service Recovery Restore key services and applications to minimize downtime.
Vulnerability Patching Apply patches to fix vulnerabilities and prevent recurrence of attacks.
Other Recoveries Additional recovery methods, such as network recovery and permission reset, to address various aspects of system restoration.
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