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Abstract
Fully homomorphic encryption (FHE) and trusted execution
environments (TEE) are two approaches to provide confiden-
tiality during data processing. Each approach has its own
strengths andweaknesses. In certain scenarios, computations
can be carried out in a hybrid environment, using both FHE
and TEE. However, processing data in such hybrid settings
presents challenges, as it requires to adapt and rewrite the
algorithms for the chosen technique. We propose a domain-
specific language (DSL) for secure computation that allows
to express the computations to perform and execute them
using a backend that leverages either FHE or TEE, depending
on what is available.
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1 Introduction
Fully homomorphic encryption (FHE) is a cryptographic ap-
proach that enables the evaluation of arbitrary functions
𝑓 over encrypted data. This capability allows users to out-
source computations to cloud providers without exposing
sensitive cleartext input, intermediate results, or final out-
puts. However, this method is resource-intensive, raising
significant challenges, particularly in terms of computational
efficiency and scalability [2].
Conversely, trusted execution environments (TEE) offer

a complementary solution through hardware-based secure
enclaves that permit data processing in a privacy preserving
manner.
The support of both FHE and TEE presents a promising

avenue for enhancing data privacy in hybrid environments,
where the choice of the secure computation method may
depend on factors such as legacy hardware compatibility or
the necessity for zero-trust architectures.

Despite the advantages of both FHE and TEE, the practical
implementation of secure computations in hybrid environ-
ments is challenging. While running legacy applications
within TEE-based enclaves is made easy through LibOS ap-
proaches, adapting source code and algorithms for FHE often
requires significant modifications. This dual maintenance
of codebases for both FHE and TEE can lead to increased
complexity and resource overhead.

To address these challenges, we propose a domain-specific
language (DSL) designed for hybrid secure computation. This

DSL provides a common representation of computations, en-
abling developers to write a single codebase that can be
executed across multiple backends, whether utilizing FHE
or TEE. By streamlining the development process and re-
ducing the need for separate implementations, our approach
enhances the efficiency and practicality of secure computa-
tions in hybrid environments, ultimately helping to increase
the adoption of privacy preserving techniques in real-world
applications.

2 Adversarial model
We consider a semi-honest (honest but curious) adversarial
model where the interpretor is guaranteed to follow the
protocol specification but may attempt to glean additional
information from the metadata and the execution patterns
of the program.

The type of data and metadata, such as the size of a vector,
is explicitly excluded from the scope. This decision is based
on a trade-off between security and usability. Additionally,
the user may opt to explicitly designate certain data as clear
when necessary for runtime operations. In fact, FHE does
not allow for data-dependent branching, meaning that data
used for loop conditions must be known, for instance.

We consider the standard TEE adversary model where the
privileged OS and other hardware is under complete control
of the adversary, with the exception of the CPU. Moreover,
we assume the presence of a public-key infrastructure as well
as cryptographic primitives thatmake secure communication
channels possible.

Discussion. Certain metadata could be protected. For in-
stance, the vector size might be substituted with a combina-
tion of a maximum size and padding. However, this approach
comes with a cost, as it requires more memory space and
results in larger messages.

3 Architecture
We propose a DSL specifically designed for secure hybrid
computation. This language brings a clear differentiation be-
tween encrypted data and cleartext data, traditional control
structures adapted to the constraints of FHE, and consistent
behavior across the different backends.

The tool parses the source code into a unified abstract syn-
tax tree (AST), which is then executed by the chosen backend.

https://orcid.org/0009-0009-3476-1688
https://arxiv.org/abs/2505.20912v1


Romain de Laage

Script in a common DSL
for secure computation

Parsing of the script
to an AST

Execution in a secure
backend

TEE backend

FHE backend

Feed with an
encrypted

input context

Output an
encrypted

context

Figure 1: Overview of the DSL

1 xSum = 0

2 for x in xVec {

3 xSum = xSum + x

4 }

5 ySum = 0

6 for y in yVec {

7 ySum = ySum + y

8 }

9 xMean = xSum / len(xVec)

10 yMean = ySum / len(xVec)

11 sum = 0

12 for i in range(len(xVec)) {

13 sum = sum + (xVec[i] - xMean) * (yVec[i] - yMean)

14 }

15 covariance = sum / len(xVec)

Figure 2: Code to get the covariance between two arrays

All backends include an interpreter capable of importing an
encrypted context and executing the AST, producing an en-
crypted output context. This facilitates integration into a data
processing workflow. The operation of the DSL is illustrated
in Figure 1.
The resulting language has some limitations due to the

use of FHE for one of the backends. Indeed, if-else statements
are treated as expressions, with each branch containing only
a single expression. Additionally, encrypted data-dependent
branching is not allowed, meaning that loop conditions must
operate on vectors of a known size.

4 Preliminary results
Figure 2 shows the shared code in our DSL to compute the
covariance between two arrays of integers (xVec and yVec)
provided in the input context of the interpreter. Its output
context contains the result in the covariance variable. This
code can be run directly on the different backends.

Figure 3 shows the execution time of the give algorithm on
the different backends, the baseline running without any pro-
tection.1. As expected, the TEE-enabled backend performs

1Benchmarks are run on a server with a 16-core Intel(R) Xeon(R) Gold 6326
CPU clocked at 2.90 GHz, a 24 MB last-level cache and 64 GB of DRAM.
The server runs Ubuntu 24.04.2 LTS and Linux 6.8.0-57-generic. We use
Occlum containers based on version 0.31.0-rc-ubuntu22.04. The configured
EPC size is 64 GB. We report the average of 5 runs.
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Figure 3: Execution time on different backends

comparably to the baseline. However, the FHE backend ex-
hibits significant overhead. We will evaluate the impact of
the different backends (execution time and scalability) on all
the elementary operations as part of future work.

5 Related Work
Previous work have already explored DSL for secure compu-
tation. [1] proposes a DSL for FHE, [4] proposes a DSL for
computation in Intel SGX. Although these DSLs simplify the
use of secure computing technologies, they focus on a single
technology. Thus, they do not allow the use of a single code
base in a hybrid environment.
[3] proposes a FHE transpiler that allows to transpile a

C++ code to TFHE circuits. [5] proposes a TFHE transpiler to
transpile a Python function. By doing this, they allow devel-
opers to use an existing codebase on top of FHE. Howeover,
the code must still be adapted to conform to the limitations
imposed by the use of FHE. Furthermore, these tools are not
designed for integration into a data processing workflow
within a hybrid environment.
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