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Private Geometric Median in Nearly-Linear Time

Syamantak Kumar∗ Daogao Liu† Kevin Tian‡ Chutong Yang§

Abstract

Estimating the geometric median of a dataset is a robust counterpart to mean estimation, and
is a fundamental problem in computational geometry. Recently, [HSU24] gave an (ϵ, δ)-differentially
private algorithm obtaining an α-multiplicative approximation to the geometric median objective,
1
n

∑
i∈[n] ∥ · −xi∥, given a dataset D := {xi}i∈[n] ⊂ Rd. Their algorithm requires n ≳

√
d · 1

αϵ

samples, which they prove is information-theoretically optimal. This result is surprising because its
error scales with the effective radius of D (i.e., of a ball capturing most points), rather than the
worst-case radius. We give an improved algorithm that obtains the same approximation quality,
also using n ≳

√
d · 1

αϵ
samples, but in time Õ(nd + d

α2 ). Our runtime is nearly-linear, plus the
cost of the cheapest non-private first-order method due to [CLM+16]. To achieve our results, we
use subsampling and geometric aggregation tools inspired by FriendlyCore [TCK+22] to speed up
the “warm start” component of the [HSU24] algorithm, combined with a careful custom analysis of
DP-SGD’s sensitivity for the geometric median objective.

1 Introduction
The geometric median problem, also known as the Fermat-Weber problem, is one of the oldest problems
in computational geometry. In this problem, we are given a dataset D = {xi}i∈[n] ⊂ Rd, and our goal is
to find a point x⋆ ∈ Rd that minimizes the average Euclidean distance to points in the dataset:

x⋆ ∈ arg min
x∈Rd

fD(x), where fD(x) :=
1

n

∑
i∈[n]

∥x− xi∥. (1)

This problem has received widespread interest due to its applications in high-dimensional statistics.
In particular, the geometric median of a dataset D enjoys robustness properties that the mean (i.e.,
1
n

∑
i∈[n] xi, the minimizer of 1

n

∑
i∈[n] ∥x− xi∥2) does not. For example, it is known (cf. Lemma 4) that

if greater than half of D lies within a distance r of some x̄ ∈ Rd, then the geometric median lies within
O(r) of x̄. Thus, the geometric median provides strong estimation guarantees even when D contains
outliers. This is in contrast to simpler estimators such as the mean, which can be arbitrarily corrupted
by a single outlier. As a result, studying the properties and computational aspects of the geometric
median has a long history, see e.g., [Web29, LR91] for some famous examples.

In this paper, we provide improved algorithms for estimating (1) subject to (ϵ, δ)-differential privacy (DP,
Definition 1), the de facto notion of provable privacy in modern machine learning. Privately computing
the geometric median naturally fits into a recent line of work on designing DP algorithms in the presence
of outliers. To explain the challenge of such problems, the definition of DP implies that the privacy-
preserving guarantee must hold for worst-case datasets. This stringent definition affords DP a variety of
desirable properties, most notably composition of private mechanisms (cf. [DR14], Section 3.5). However,
it also begets challenges: for example, estimating the empirical mean of D subject to (ϵ, δ)-DP necessarily
results in error scaling ∝ R, the diameter of the dataset (cf. Section 5, [BST14]). Moreover, the worst-
case nature of DP is at odds with typical average-case machine learning settings, where most (or all) of
D is drawn from a distribution that we wish to learn about. From an algorithm design standpoint, the
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question follows: how do we design methods that provide privacy guarantees for worst-case data, but
also yield improved utility guarantees for (mostly) average-case data?

Such questions have been successfully addressed for various statistical tasks in recent work, including
parameter estimation [BD14, KV17, BKSW19, DFM+20, BDKU20, BGS+21, AL22, LKJO22, KDH23,
BHS23], clustering [NRS07, NSV16, CKM+21, TCK+22], and more. However, existing approaches for
estimating (1) (even non-privately) are based on iterative optimization methods, as the geometric median
does not admit a simple, closed-form solution. Much of the DP optimization toolkit is exactly plagued by
the aforementioned “worst-case sensitivity” issues, e.g., lower bounds for general stochastic optimization
problems again scale with the domain size. This is troubling in the context of (1), because a major
appeal of the geometric median is its robustness: its error should not be significantly affected by any
small subset of the data. Privately estimating the geometric median thus poses an interesting technical
challenge, beyond its potential appeal as a subroutine in downstream robust algorithms.

To explain the distinction between worst-case and average-case error rates in the context of (1), we
introduce the following helpful notation: for all quantiles τ ∈ [0, 1], we let

r(τ) := argmin
r≥0

∑
i∈[n]

I∥xi−x⋆∥≤r ≥ τn

 , where x⋆ := arg min
x∈Rd

1

n

∑
i∈[n]

∥x− xi∥ , (2)

when D = {xi}i∈[n] ⊂ Rd is clear from context. In other words, r(τ) is the smallest radius describing a
ball around the geometric median x⋆ containing at least τn points in D. We also use R to denote an a
priori overall domain size bound, where we are guaranteed that D ⊂ Bd(R). Note that in general, it is
possible for, e.g., r(0.9) ≪ R if ≈ 10% of D consists of outliers with atypical norms. Due to the robust
nature of the geometric median (i.e., the aforementioned Lemma 4), a natural target is estimation error
scaling with the “effective radius” r(τ) for some quantile τ ∈ (0.5, 1). This is a much stronger guarantee
than the error rates ∝ R that typical DP optimization methods give.

Because a simple argument (Lemma 3) shows that r(τ) = O(fD(x⋆)) for all τ < 1, in this introduction
our goal will be to approximate the minimizer of (1) to additive error αfD(x⋆) for some α ∈ (0, 1), i.e.,
to give α-multiplicative error guarantees on optimizing fD.1 Again, datasets with outliers may have
fD(x⋆)≪ R, so this goal is beyond the reach of naïvely applying DP optimization methods.

In a recent exciting work, [HSU24] bypassed this obstacle and obtained such private multiplicative
approximations to the geometric median, and with near-optimal sample complexity. Assuming that
D has size n ≳

√
d · 1

αϵ ,
2 [HSU24] gave two algorithms for estimating (1) to α-multiplicative error (cf.

Appendix A). They also proved a matching lower bound, showing that this many samples is information-
theoretically necessary.3 From both a theoretical and practical perspective, the main outstanding ques-
tion left by [HSU24] is that of computational efficiency: in particular, the [HSU24] algorithms ran in time
Õ(n2d + n3ϵ2) or Õ(n2d + nd2 + d4.372). This leaves a significant gap between algorithms for privately
solving (1), and their counterparts in the non-private setting, where [CLM+16] showed that (1) could be
approximated to α-multiplicative error in nearly-linear time Õ(min(nd, d

α2 )).

1.1 Our results
Our main contribution is a faster algorithm for privately approximating (1) to α-multiplicative error.

Theorem 1 (informal, see Theorem 4). Let D = {xi}i∈[n] ⊂ Bd(R) for R > 0, 0 < r ≤ r(0.9), and
(α, ϵ, δ) ∈ [0, 1]3. There is an (ϵ, δ)-DP algorithm that returns x̂ such that with probability ≥ 1 − δ,
fD(x̂) ≤ (1 + α)fD(x⋆), assuming n ≳

√
d

αϵ . The algorithm runs in time Õ(nd+ d
α2 ).

To briefly explain Theorem 1’s statement, it uses a priori knowledge of 0 < r < R such that R upper
bounds the domain size of D, and r lower bounds the “effective radius” r(0.9). However, its runtime only

1Our results, as well as those of [HSU24], in fact give stronger additive error bounds of αr(τ) for any fixed τ ∈ (0.5, 1).
2In this introduction only, we use Õ,≲,≳ to hide polylogarithmic factors in problem parameters, i.e., d, 1

α
, 1

ϵ
, 1

δ
, and

R
r

, where D ⊆ Bd(R) and r ≤ r(0.9). Our formal theorem statements explicitly state our dependences on all parameters.
3Intuitively, we require α ≈ d−1/2 to obtain nontrivial mean estimation when D consists of i.i.d. Gaussian data (as a

typical radius is ≈
√
d), matching known sample complexity lower bounds of ≈ d

ϵ
for Gaussian mean estimation [KLSU19].

2



depends polylogarithmically on the aspect ratio R
r , rather than polynomially (as naïve DP optimization

methods would); we also remark that our sample complexity is independent of R
r .

The runtime of Theorem 1 is nearly-linear in the regime n ≳ 1
α2 (e.g., if

√
d · 1ϵ ≳ 1

α ), but more generally
it does incur an additive overhead of d

α2 . This overhead matches the fastest non-private first-order
method for approximating (1) to α-multiplicative error, due to [CLM+16]. We note that [CLM+16] also
gave a custom second-order interior-point method, that non-privately solves (1) in time Õ(nd), i.e., with
polylogarithmic dependence on 1

α . We leave removing this additive runtime term in the DP setting, or
proving this is impossible in concrete query models, as a challenging question for future work.

Our algorithm follows a roadmap given by [HSU24], who split their algorithm into two phases: an initial
“warm start” phase that computes an O(1)-multiplicative approximation of the geometric median, and
a secondary “boosting” phase that uses iterative optimization methods to improve the warm start to
an α-multiplicative approximation. The role of the warm start is to improve the domain size of the
boosting phase to scale with the effective radius. However, both the warm start and the boosting phases
of [HSU24] required superlinear ≈ n2d time. Our improvement to the warm start phase of the [HSU24]
is quite simple, and may be of independent interest, so we provide a self-contained statement here.

Theorem 2 (informal, see Theorem 3). Let D = {xi}i∈[n] ⊂ Bd(R) for R > 0, 0 < r ≤ r(0.9),
and (ϵ, δ) ∈ [0, 1]2. There is an (ϵ, δ)-DP algorithm that returns x̂ such that with probability ≥ 1 − δ,
fD(x̂) = O(fD(x⋆)), assuming n ≳

√
d
ϵ . The algorithm runs in time Õ(nd).

1.2 Our techniques
As discussed previously, our algorithm employs a similar framework as [HSU24]. It is convenient to
further split the warm start phase of the algorithm into two parts: finding an estimate r̂ of the effective
radius of D, and finding an approximate centerpoint at distance O(r̂) from the geometric median x⋆.

Radius estimation. Our radius estimation algorithm is almost identical to that in [HSU24], Section
2.1, which uses the sparse vector technique (cf. Lemma 2) to detect the first time an estimate r̂ is such
that most points have ≥ 3

4 of D at a distance of ≈ r̂. The estimate r̂ is geometrically updated over a
grid of size O(log(Rr )). Naïvely implemented, this strategy takes ≳ n2d time due to the need for pairwise
distance comparisons (cf. Appendix A); even if dimesionality reduction techniques are used, this step
appears to require Ω(n2) time. We make a simple observation that a random sample of ≈ log( 1δ ) points
from D is enough to determine whether a given point has ≫ β neighbors, or ≪ γ, for appropriate
(constant) quantile thresholds β, γ, which is enough to obtain an Õ(nd) runtime.

Centerpoint estimation. Our centerpoint estimation step departs from [HSU24], Section 2.2, who
analyzed a custom variant of DP gradient descent with geometrically-decaying step sizes. We make the
simple observation that directly applying the FriendlyCore algorithm of [HSU24] yields the same result.
However, the standard implementation of FriendlyCore again requires Ω(n2) time to estimate weights for
each data point. We again show that FriendlyCore can be sped up to run in Õ(nd) time (independently
of R

r ) via weights estimated through subsampling. Our privacy proof of this subsampled variant is subtle,
and based on an argument (Lemma 1) that couples our algorithm to an idealized algorithm that never
fails to be private. We use this to account for the privacy loss due to the failure of our subsampling,
i.e., if the estimates are inaccurate. We note that the [HSU24] algorithm for this step already ran in
nearly-linear ≈ nd log(Rr ) time, so we obtain an asymptotic improvement only if R

r is large.

Boosting. The most technically novel part of our algorithm is in the boosting phase, which takes
as input a radius and centerpoint estimate from the previous steps, and outputs an α-multiplicative
approximation to (1). Like [HSU24], we use iterative optimization methods to implement this phase.
However, a major bottleneck to a faster algorithm is the lack of a nearly-linear time DP solver for non-
smooth empirical risk minimization (ERM) problems. Indeed, such Õ(1)-pass optimizers are known only
when the objective is convex and sufficiently smooth [FKT20], or n ≳ d2 samples are taken [CJJ+23].
This is an issue, because while computing the geometric median (1) is a convex ERM problem, it is
non-smooth, and nontrivial multiplicative guarantees are possible even with n ≈

√
d samples.
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We give a custom analysis of DP-SGD, specifically catered to the (non-smooth) ERM objective (1). Our
main contribution is a tighter sensitivity analysis of DP-SGD’s iterates, leveraging the structure of the
geometric median. To motivate this observation, consider coupled algorithms with iterates z, z′, both
taking gradient steps with respect to the subsampled function ∥· − xi∥ for some dataset element xi ∈ D.
A simple calculation (12) shows these gradients are unit vectors u, u′, in the directions of z − xi and
z′−xi respectively. It is not hard to formalize (Lemma 11) that updating z← z− ηu and z′ ← z′− ηu′

is always contractive, unless z, z′ were both already very close to xi (and hence, each other) to begin
with. We use this structural result to inductively control DP-SGD’s sensitivity, which lets us leverage a
prior reduction from private optimization to stable optimization [FKT20].

Our result is the first we are aware of that obtains a nearly-linear runtime for DP-SGD on a structured
non-smooth problem. We were inspired by [ALT24], who also gave faster runtimes for (smooth) DP
optimization problems with outliers under further assumptions on the objective. We hope that our work
motivates future DP optimization methods that harness problem structure for improved rates.

1.3 Related work
Differentially private convex optimization. Differentially private convex optimization has been
studied extensively for over a decade [CM08, KST12, BST14, KJ16, BFGT20, FKT20, BGN21, GLL22,
GLL+23] and inspired the influential DP-SGD algorithm widely adopted in deep learning [ACG+16].
In the classic setting, where functions are assumed to be Lipschitz and defined over a convex domain
of diameter R, optimal rates have been achieved with linear dependence on R [BFTGT19]. Recent
years have seen significant advancements in optimizing the gradient complexity of DP stochastic convex
optimization [FKT20, AFKT21, KLL21, ZTC22, CJJ+23, CCGT24]. Despite these efforts, a nearly-
linear gradient complexity has only been established for sufficiently smooth functions [FKT20, ZTC22,
CCGT24] and for non-smooth functions [CJJ+23] when the condition

√
n ≳ d is satisfied.

Differential privacy with average-case data. Adapting noise to the inherent properties of data,
rather than catering to worst-case scenarios, is critical for making differential privacy practical in real-
world applications. Several important approaches have emerged in this direction: smooth sensitivity
frameworks [NRS07] that refine local sensitivity to make it private; instance optimality techniques [AD20]
that provide tailored guarantees for specific datasets; methods with improved performance under dis-
tributional assumptions such as sub-Gaussian or heavy-tailed i.i.d. data [CWZ21, AL23, ALT24]; and
data-dependent sensitivity computations that adapt during algorithm execution [ATMR21]. These ap-
proaches collectively represent the frontier in balancing privacy and utility beyond worst-case analyses.
We view our work as another contribution towards this broader program.

2 Preliminaries
In this section, we collect preliminary results used throughout the paper. We define our notation in
Section 2.1. We then formally state helper definitions and known tools from the literature on differential
privacy and computing the geometric median in Sections 2.2 and 2.3 respectively.

2.1 Notation and probability basics
Throughout, vectors are denoted in lowercase boldface, and the all-zeroes and all-ones vectors in dimen-
sion d are respectively denoted 0d and 1d. We use ∥·∥ to denote the Euclidean (ℓ2) norm of a vector
argument. We use [d] to denote {i ∈ N | 1 ≤ i ≤ d}. We use Bd(µ, r) := {x ∈ Rd | ∥x− µ∥ ≤ r} to
denote the Euclidean ball of radius r > 0 around µ ∈ Rd; when µ is unspecified, then µ = 0d by default.
For a compact set K ⊆ Rd, we use ΠK(x) to denote the Euclidean projection argminy∈K ∥x− y∥.

We let IE denote the 0-1 indicator random variable corresponding to an event E . For two densities µ, ν
on the same probability space Ω and α > 1, we define the α-Rényi divergence by:

Dα(µ∥ν) :=
1

α− 1
log

(∫ (
µ(ω)

ν(ω)

)α

ν(ω)dω
)
.
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We use N (µ, σ2Id) to denote the multivariate normal distribution with mean µ ∈ Rd and covariance
σ2Id, where Id denotes the d × d identity matrix. We let Laplace(λ) be the Laplace distribution with
scale parameter λ ≥ 0, whose density is ∝ exp(− |·|

λ ). We let Unif(S) denote the uniform distribution
over a set S, and Bern(p) denote the Bernoulli distribution taking on values {0, 1} with mean p ∈ [0, 1].
We refer to a product distribution consisting of k i.i.d. copies of a base distribution D by D⊗k. We also
use the bounded Laplace distribution with parameters λ, τ ≥ 0, denoted BoundedLaplace(λ, τ), which is
the distribution of X ∼ Laplace(λ) conditioned on |X| ≤ τ .

Finally, we require the following standard bound on binomial concentration.

Fact 1 (Chernoff bound). For all i ∈ [n], let Xi ∼ Bern(pi) for some pi ∈ [0, 1], and let µ :=
∑

i∈[n] pi
and µ̂ :=

∑
i∈[n] Xi. Then,

Pr [µ̂ > (1 + ϵ)µ] ≤ exp

(
− ϵ2µ

2 + ϵ

)
for all ϵ ≥ 0,

Pr [µ̂ < (1− ϵ)µ] ≤ exp

(
−ϵ2µ

2

)
for all ϵ ∈ (0, 1).

2.2 Differential privacy
Let X be some domain, and let D ∈ Xn be a dataset consisting of n elements from X . We say that two
datasets D, D′ ∈ Xn are neighboring if their symmetric difference has size 1, i.e., they differ in a single
element. We use the following definition of differential privacy in this paper.

Definition 1 (Differential privacy). Let (ϵ, δ) ∈ [0, 1]2.4 We say that a randomized algorithm A : Xn →
Ω satisfies (ϵ, δ)-differential privacy (or, is (ϵ, δ)-DP) if for all events E ⊆ Ω, and for all neighboring
datasets D,D′ ∈ Xn, we have

Pr [A(D) ∈ E ] ≤ exp(ϵ) Pr [A(D′) ∈ E ] + δ.

DP algorithms satisfy basic composition (Theorem B.1, [DR14]), i.e., if A1 : Xn → Ω1 is (ϵ1, δ1)-DP and
A2 : Xn×Ω1 → Ω2 is (ϵ2, δ2)-DP, then running A2 on D and the output of A1(D) is (ϵ1+ϵ2, δ1+δ2)-DP.
We next state the Gaussian mechanism. Recall that if v : Xn → Rk is a vector-valued function of a
dataset, we say v has sensitivity ∆ if for all neighboring D,D′ ∈ Xn, we have ∥v(D)− v(D′)∥ ≤ ∆.

Fact 2 (Theorem A.1, [DR14]). Let v : Xn → Rk have sensitivity ∆, and let (ϵ, δ) ∈ [0, 1]2. Then,

drawing a sample from N (v(D), σ2Ik) is (ϵ, δ)-DP, for any σ ≥ 2∆
ϵ ·
√
log( 2δ ).

We also require the bounded Laplace mechanism, which is known to give the following guarantee.

Fact 3 (Lemma 9, [ALT24]). Let s : Xn → R have sensitivity ∆, and let (ϵ, δ) ∈ [0, 1]2. Then, drawing
ξ ∼ BoundedLaplace(∆ϵ , τ) and outputting s(D) + ξ is (ϵ, δ)-DP for any τ ≥ ∆

ϵ log( 4δ ).

Fact 3 is proven in [ALT24] using a coupling argument, using the fact that BoundedLaplace(λ) and
Laplace(λ) result in the same sample except with some probability. We appeal to this privacy proof
technique several times in Section 3, so we state it explicitly here for convenience.

Lemma 1. For (ϵ, δ) ∈ [0, 1]2, A : Xn → Ω be an (ϵ, δ)-DP algorithm, and let A be an algorithm such
that on any input D ∈ Xn, we have that the total variation distance between A(D) and A(D) is at most
δ′. Then, A is an (ϵ, δ + 4δ′)-DP algorithm.

Proof. For neighboring datasets D,D′, and any event E ∈ Ω, we have that

Pr
[
A(D) ∈ E

]
≤ Pr [A(D) ∈ E ] + δ′

≤ exp (ϵ) Pr [A(D′) ∈ E ] + δ + δ′

≤ exp (ϵ) Pr
[
A(D′) ∈ E

]
+ δ + 4δ′.

4In principle, the privacy parameter ϵ can be larger than 1. However, in this paper, sample complexities are unaffected
up to constants for any ϵ ≥ 1 if we simply obtain (1, δ)-DP guarantees rather than (ϵ, δ)-DP guarantees, which are only
stronger. Thus we state all results for ϵ ∈ [0, 1] for convenience, which simplifies some bounds.
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The first and last lines used the assumption between A and A, and the second line used that A is DP.

We next recall the following well-known result on detecting the first large element in a stream.

Algorithm 1 AboveThreshold(D, {qt}t∈[T ], τ, ϵ)

Input: Dataset D ∈ Xn, sensitivity-∆ queries {qt : Xn → R}t∈[T ], threshold τ ∈ R, privacy parameter
ϵ > 0

1: τ̂ ← τ + νthresh for νthresh ∼ Laplace( 2∆ϵ )
2: for t ∈ [T ] do
3: νt ∼ Laplace( 4∆ϵ )
4: if qt(D) + νt ≥ τ̂ then
5: Output: at ← ⊤
6: Halt
7: else
8: Output: at ← ⊥
9: end if

10: end for

Lemma 2 (Theorems 3.23, 3.24, [DR14]). AboveThreshold is (ϵ, 0)-DP. Moreover, for γ ∈ (0, 1), let

α =
8∆ log( 2T

γ )

ϵ and D ∈ Xn. AboveThreshold halts at time k ∈ [T +1] such that with probability ≥ 1− γ:

• at = ⊥ and qt(D) ≤ τ + α for all t < k.

• ak = ⊤ and qk(D) ≥ τ − α or k = T + 1.

Finally, our developments in Section 4 use the notions of Rényi DP (RDP) and central DP (CDP). We
provide a self-contained summary of the definitions and properties satisfied by RDP and CDP here, but
refer the reader to [BS16, Mir17] for a more detailed overview.

Definition 2 (RDP and CDP). Let α ≥ 1, ρ ≥ 0. We say that a randomized algorithm A : Xn → Ω
satisfies (α, ρ)-Rényi differential privacy (or, is (α, ρ)-RDP) if for all neighboring datasets D,D′ ∈ Xn,

Dα(A(D)∥A(D′)) ≤ αρ.

If this holds for all α ≥ 1, we say A satisfies ρ-central differential privacy (or, is ρ-CDP).

Fact 4 ([Mir17]). RDP and CDP satisfy the following properties.

1. (Composition): If A1 : Xn → Ω1 is (α, ρ1)-RDP and A2 : Xn × Ω1 → Ω2 is (α, ρ2) for any fixed
choice of input from Ω1, the composition of A2 and A1 is (α, ρ1 + ρ2)-RDP.

2. (RDP to DP): If A is (α, ρ)-RDP, it is also (αρ+ 1
α−1 log

1
δ , δ)-DP for all δ ∈ (0, 1).

3. (Gaussian mechanism): Let v : Xn → Rk have sensitivity ∆. Then for any σ > 0, drawing a
sample from N (v(D), σ2Ik) is ∆2

2σ2 -CDP.

2.3 Geometric median
Throughout the rest of the paper, for a parameter R > 0, we fix a dataset D := {xi}i∈[n] ⊂ Bd(R), i.e.,
with domain X := Bd(R). Our goal is to approximate the geometric median of D, i.e.,

x⋆(D) := arg min
x∈Rd

fD(x), where fD(x) :=
1

n

∑
i∈[n]

∥x− xi∥ (3)

is the average Euclidean distance to the dataset. Following e.g., [CLM+16, HSU24], we also define the
quantile radii associated with our dataset D centered at x̄ ∈ Rd by

r(τ)(D; x̄) := argmin
r≥0

∑
i∈[n]

I∥xi−x̄∥≤r ≥ τn

 , for all τ ∈ [0, 1]. (4)
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In other words, r(τ)(D; x̄) is the smallest radius r ≥ 0 such that Bd(x̄, r) contains at least a τ fraction of
the points in D. When x̄ is unspecified, we always assume by default that x̄ = x⋆(D).

In our utility analysis we will often suppress the dependence on D in x⋆, r
(τ), etc., as the dataset of

interest will not change. In the privacy analysis, we specify the dependence of these functions on the
dataset explicitly when comparing algorithms run on neighboring datasets.

Finally, we include two helper results from prior work that are frequently used throughout.

Lemma 3. Let D := {xi}i∈[n] ⊂ Rd. Then, fD (x⋆) ≥ (1− τ)r(τ) for all τ ∈ [0, 1].

Proof. This is immediate from the definition of fD and nonnegativity of each summand ∥· − xi∥.

Lemma 4 (Lemma 24, [CLM+16]). Let D := {xi}i∈[n] ⊂ Rd and let S ⊆ [n] have |S| < n
2 . Then,

∥x⋆ − x∥ ≤
(
2n− 2|S|
n− 2|S|

)
max
i/∈S
∥xi − x∥, for all x ∈ Rd.

3 Constant-Factor Approximation
In this section, we give our first main result: a fast algorithm for computing a constant-factor approxima-
tion to the geometric median. Our approach is to speed up several of the steps in the initial two phases
of the [HSU24] algorithm via subsampling and techniques inspired by the FriendlyCore framework of
[TCK+22]. Specifically, in Section 3.1, we first show how Algorithm 1 can be sped up using subsampled
scores, to estimate quantile radii up to constant factors in nearly-linear time, improving Section 2.1 of
[HSU24]. In Section 3.2, we then adapt a weighted variant of FriendlyCore to give a simple algorithm
for approximate centerpoint computation, improving Section 2.2 of [HSU24] for large aspect ratios.

3.1 Radius estimation
In this section, we present and analyze our radius estimation algorithm.

Algorithm 2 FastRadius(D, r, R, ϵ, δ)

Input: Dataset D ∈ Bd(R)n, radius search bounds 0 < r ≤ R, privacy bounds (ϵ, δ) ∈
[0, 1]2

1: T ← ⌈log2(Rr )⌉
2: k ← 3 log(4Tδ )
3: τ ← 0.775n
4: τ̂ ← τ + νthresh for νthresh ∼ Laplace( 6ϵ )
5: for t ∈ [T ] do
6: rt ← r · 2t−1

7: for i ∈ [n] do
8: S

(i)
t ← Unif([n])⊗k

9: N
(i)
t ← n

k

∑
j∈S(i) I∥xi−xj∥≤rt

10: end for
11: qt ← 1

n

∑
i∈[n] N

(i)
t

12: νt ∼ Laplace( 12ϵ )
13: if qt + νt ≥ τ̂ then
14: Return: rt
15: end if
16: end for
17: Return: R

Algorithm 2 is clearly an instance of Algorithm 1 with ∆ = 3, where the queries are given on Line 11.
However, one subtlety is that the queries in Algorithm 2 have random sensitivities depending on the
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subsampled sets on Line 8. Nonetheless, we show that Chernoff bounds control this sensitivity with high
probability, which yields privacy upon applying Lemma 2.

Lemma 5. Algorithm 2 is (ϵ, δ)-DP.

Proof. Fix neighboring datasets D,D′ ∈ Bd(R)n, and assume without loss that they differ in the nth

entry. Observe that FastRadius (independently) uses randomness in two places: the random subsets in
Line 8, and the Laplace noise added as in the original AboveThreshold algorithm in Lines 4 and 12.

We next claim that in any iteration t ∈ [T ], as long as the number of copies of the index n occurring
in
⋃

i∈[n−1] S
(i)
t is at most 2k, then the sensitivity of the query qt is at most 3. To see this, denoting

by qt, q
′
t the random queries when Algorithm 2 is run on D, D′ respectively, and similarly defining

{N (i)
t , (N

(i)
t )′}i∈[n], we observe that the sensitivity is controlled as follows:

qt − q′t ≤
1

n

∑
i∈[n−1]

(
N

(i)
t −

(
N

(i)
t

)′)
+

n

n

≤ 1

n
· n
k
·

number of copies of n occurring in
⋃

i∈[n−1]

S
(i)
t

+ 1 ≤ 3.

The first line holds because the nth (neighboring) point has N
(n)
t ≤ n and (N

(n)
t )′ ≥ 0; the second is

because every I∥xi−xj∥≤rt used in the computation of N (i)
t is coupled except when j = n is sampled.

Now, let A denote Algorithm 2, and let A denote a variant that conditions on the randomly-sampled⋃
i∈[n−1] S

(i)
t containing at most 2k copies of the index n, in all encountered iterations t ∈ [T ]. By using

Fact 1 (with µ ← k · n−1
n , ϵ ← 1), due to our choice of k,

⋃
i∈[n−1] S

(i)
t contains at most 2k copies of

n except with probability δ
4T , so by a union bound, the total variation distance between A and A is at

most δ
4 . Moreover, A is (ϵ, 0)-DP by using Lemma 2. Thus, A is (ϵ, δ)-DP using Lemma 1.

We are now ready to prove a utility and runtime guarantee on Algorithm 2.

Lemma 6. Algorithm 2 runs in time O(nd log(Rr ) log(log(
R
r )

1
δ )). Moreover, if r ≤ 4r(0.9) and n ≥

2400
ϵ log( 4Tδ ), with probability ≥ 1− δ, Algorithm 2 outputs r̂ satisfying 1

4r
(0.75) ≤ r̂ ≤ 4r(0.9).

Proof. The first claim is immediate. To see the second, for all t ∈ [T ] denote the “ideal” query by:

q⋆t :=
1

n

∑
i∈[n]

∑
j∈[n]

I∥xi−xj∥≤rt ,

and recall Eqt = q⋆t . Our first claim is that with probability ≥ 1 − δ
2 , the following guarantees hold for

all iterations t ∈ [T ] that Algorithm 2 completes:

q⋆t > 0.8n =⇒ qt > 0.79n, and q⋆t < 0.75n =⇒ qt < 0.76n. (5)

To see the first part of (5), we can view nqt as a random sum of Bernoulli variables with mean nq⋆t >
0.8n2 ≥ 20000 log( δ

4T ), so Fact 1 with ϵ ← 1
80 yields the claim in iteration t with probability ≥ 1− δ

2T .
Similarly, the second part of (5) follows by using Fact 1 with µ < 0.7n2 and (1 + ϵ)µ← 0.71n2, because

exp

(
− ϵ2µ

2 + ϵ

)
≤ exp

(
− ϵ2µ

151ϵ

)
= exp

(
− ϵµ

151

)
≤ exp

(
− n2

15100

)
≤ δ

2T
(6)

for the relevant range of n and ϵ ≥ 1
75 , ϵµ ≥ n2

100 . We thus obtain (5) after a union bound over all t ∈ [T ].

Now, suppose that t ∈ [T ] is the first index where qt + νt ≥ τ̂ , so that r̂ = rt and 1
2 r̂ = rt−1, where we

let r0 := r
2 . If no such query passes, then we set t = T + 1 by default. Then by the utility guarantees of

Lemma 6, we have that with probability ≥ 1− δ
2 ,

qt ≥ 0.76n, qt−1 ≤ 0.79n,
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since n
100 ≥ α = 24

ϵ log( 4Tδ ) . By taking the contrapositive of (5), we can conclude that with probability
≥ 1− δ, we have q⋆t ≥ 0.75n and q⋆t−1 ≤ 0.8n. Condition on this event for the rest of the proof.

Because q⋆t ≥ 0.75n, there is clearly some xi ∈ D such that |D ∩Bd(xi, r̂)| ≥ 0.75n, as this is the average
number of dataset elements in a radius-r̂ ball centered at a random x ∈ D. Now applying Lemma 4 with
S set to the indices of D \ Bd(xi, r̂), so that |S| ≤ 0.25n, gives

∥x⋆ − xi∥ ≤ 3r̂ =⇒ ∥x⋆ − xj∥ ≤ 4r̂ for all xj ∈ D ∩ Bd(xi, r̂).

This implies 4r̂ ≥ r(0.75) as claimed. Further, because q⋆t−1 ≤ 0.8n, we claim r̂
2 > 2r(0.9) cannot hold.

Assume for contradiction that this happened, and let S := D∩Bd(x⋆, r
(0.9)). By the triangle inequality,

for all of the 0.9n choices of xi ∈ S, we have that∑
j∈[n]

I∥xi−xj∥≤ r̂
2
≥ 0.9n,

which implies that q⋆t−1 ≥ 0.81n, a contradiction. Thus, we obtain r̂ ≤ 4r(0.9) as well.

We remark that all of this logic handles the case where 2 ≤ t ≤ T is the iteration where Algorithm 2
returns. However, it is straightforward to check that the conclusion holds when t = 1 (i.e., r̂ = r) because
we assumed r ≤ 4r(0.9), and the lower bound logic on r̂ is the same as before. Similarly, if r̂ = R, then
the upper bound logic on r̂ is the same as before, and 2R ≥ r(1) ≥ r(0.75) ≥ 2

4r
(0.75) is clear.

In summary, Lemmas 5 and 6 show that we can privately estimate r̂ satisfying 1
4r

(0.75) ≤ r̂ ≤ 4r(0.9) in
nearly-linear time. The upper bound implies (with Lemma 3) that r̂ = O(fD(x⋆)); on the other hand,
the lower bound will be critically used in our centerpoint estimation procedure in Section 3.2.

3.2 Centerpoint estimation
In this section, we combine the subsampling strategies used in Section 3.1 with a simplification of the
FriendlyCore framework [TCK+22] to obtain a private estimate of an approximate centerpoint.

Algorithm 3 FastCenter(D, r̂, ϵ, δ)
Input: Dataset D ∈ Bd(R)n, radius r̂ ∈ R>0, privacy bounds (ϵ, δ) ∈ [0, 1]2

1: k ← 600 log(18nδ )
2: for i ∈ [n] do
3: Si ← Unif([n])⊗k

4: fi ←
∑

j∈S(i) I∥xi−xj∥≤2r̂

5: pi ← min(max(0, fi−0.5k
0.25k ), 1)

6: end for
7: Z ←

∑
i∈[n] pi

8: ξ ∼ BoundedLaplace( 24ϵ ,
24
ϵ log( 24δ ))

9: if Z + ξ − 24
ϵ log( 24δ ) ≤ 0.55n then

10: Return: 0d

11: end if
12: x̄← 1

Z

∑
i∈[n] pixi

13: ξ ∼ N (0d, σ
2Id), for σ ← 1600r̂

nϵ

√
log( 12δ )

14: Return: x̄+ ξ

To briefly explain, Algorithm 3 outputs a noisy weighted average of the dataset. The weights {pi}i∈[n]

linearly interpolate estimated scores fi ∈ [0.5k, 0.75k] into the range [0, 1], sending fi ≥ 0.75k to 1, and
fi ≤ 0.5k to 0. We first make some basic observations about the points that contribute positively to the
weighted combination x̄, based on binomial concentration.

Lemma 7. Assume that r̂ ≥ r(0.75) in the context of Algorithm 3. With probability ≥ 1 − δ
18 , every

i ∈ [n] that is assigned pi > 0 in Algorithm 3 satisfies ∥xi − x⋆∥ ≤ 3r̂, and Z ≥ 0.6n.
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Proof. Our proof is analogous to Lemma 6, where for all i ∈ [n] we define the “ideal score”

f⋆
i :=

k

n

∑
j∈[n]

I∥xi−xj∥≤2r̂,

such that Efi = f⋆
i . We first claim that with probability ≥ 1− δ

18 , the following hold for all i ∈ [n]:

f⋆
i ≥ 0.75k =⇒ fi ≥ 0.7k, and f⋆

i ≤ 0.45k =⇒ fi ≤ 0.5k. (7)

The first claim above is immediate from our choice of k and Fact 1 (with failure probability ≤ δ
18n for

each i ∈ [n]); the second follows (with the same failure probability) similarly to (6), i.e.,

exp

(
− ϵ2µ

2 + ϵ

)
≤ exp

(
−ϵµ

20

)
≤ exp

(
− k

400

)
≤ δ

18n
,

in our application, with ϵ ≥ 1
9 and ϵµ ≥ k

20 . Thus a union bound proves (7).

To obtain the first claim, observe that any i ∈ [n] with ∥xi − x⋆∥ > 3r̂ must have that B(xi, 2r̂) does
not intersect B(x⋆, r̂). However, B(x⋆, r̂) contains 0.75n points in D by assumption, so f⋆

i ≤ 0.25k and
thus as long as the implication (7) holds, then pi = 0 as desired. For the second claim, any xi satisfying
∥xi − x⋆∥ ≤ r(0.75) has |B(xi, 2r̂) ∩ D| ≥ 0.75n, so that f⋆

i ≥ 0.7k. Thus, every such xi has pi ≥ 0.8 as
long as (7) holds, so the total contribution made by the ≥ 0.75n such xi to Z is at least 0.6n.

We next observe that whenever the algorithm does not return on Line 10, all surviving points (i.e., with
pi > 0) must lie in a ball of diameter O(r̂), under a high-probability event over our subsampled scores.
Importantly, this holds independently of any assumption on r̂ (e.g., we do not require r̂ ≥ r(0.75)).

Lemma 8. Suppose that it is the case that in the context of Algorithm 3, we have

f⋆
i ≤ 0.45k =⇒ fi ≤ 0.5k, and f⋆

i ≤ 0.55k =⇒ fi ≤ 0.6k, (8)

for all i ∈ [n]. If Z > 0.55n, there exists some x ∈ Rd such that {xi | pi > 0}i∈[n] ⊆ B(x, 4r̂). Moreover,
the event (8) occurs with probability ≥ 1− δ

9 .

Proof. The first statement in (8) was proven in (7) to hold with probability δ
18 , and the second statement’s

proof is identical to the first half up to changing constants, so we omit it. Conditioned on this event,
every xi with pi > 0 has f⋆

i > 0.45k. Moreover, because Z > 0.55n, there exists some j ∈ [n] (i.e., with
the maximum value of pj) such that pj > 0.55, which implies fj > 0.6k and thus f⋆

j > 0.55k.

So, we have shown that B(xj , 2r̂) contains more than 0.55n points in D, and every surviving i ∈ [n] (i.e.,
with positive pi) contains more than 0.45n points in D. Thus, B(xj , 2r̂) and B(xi, 2r̂) intersect, and in
particular, B(xj , 4r̂) contains every surviving point by the triangle inequality.

We are now ready to prove a privacy bound on Algorithm 3.

Lemma 9. If n ≥ 20, Algorithm 3 is (ϵ, δ)-DP.

Proof. Fix neighboring datasets D,D′ ∈ Bd(R)n, and assume without loss that they differ in the nth

entry xn ̸= x′
n. We will define A, an alternate variant of Algorithm 3, which we denote A, where we

condition on the following two events occurring. First, the index n should occur at most 2k times in⋃
i∈[n−1] Si. Second, the implications (8) must hold. It is clear that the first described event occurs with

probability ≥ 1 − δ
18 by using Fact 1 with our choice of k, and we proved in Lemma 8 that the second

described event occurs with probability ≥ 1− δ
9 . Thus, the total variation distance between A and A is

at most δ
6 . We will prove that A is (ϵ, δ

3 )-DP, from which Lemma 1 gives that A is (ϵ, δ)-DP.

We begin by showing that according to A, the statistic Z + ξ − 24
ϵ log( 24δ ) satisfies ( ϵ2 ,

δ
6 )-DP. To do

so, we will prove that Z has sensitivity ≤ 12, and then apply Fact 3. Recall that by assumption, when
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A is run the number of times n appears in
⋃

i∈[n] Si is at most 2k. Thus, for coupled values of Z,Z ′

corresponding to D,D′, where the coupling is over the random indices selected on Line 3,

Z − Z ′ ≤ 1

0.25k
(k − 0) +

1

0.25k

number of copies of n occurring in
⋃

i∈[n−1]

Si

 ≤ 12.

In fact, we note that the following stronger unsigned bound holds:∑
i∈[n]

|pi − p′i| ≤ 4 +
∑

i∈[n−1]

|pi − p′i|

≤ 4 +
1

0.25k

number of copies of n occurring in
⋃

i∈[n−1]

Si

 ≤ 12,

(9)

because the clipping to the interval [0, 1] in the definitions of pi, p′i can only improve |pi − p′i|, and the
distance between the corresponding fi, f

′
i is at most the number of copies of n occurring in them.

Now, it remains to bound the privacy loss of the rest of A, depending on whether Line 9 passes. If the
algorithm terminates on Line 10, then there is no additional privacy loss.

Otherwise, suppose we enter the branch starting on Line 12. Our next step is to bound the sensitivity
of x̄. Observe that whenever this branch is entered, we necessarily have Z > 0.55n (and similarly,
Z ′ > 0.55n), because Z + ξ − 24

ϵ log( 24δ ) ≤ Z deterministically. Thus, Lemma 8 guarantees that in A,
all xi ∈ D with pi > 0 are contained in a ball of radius 4r̂, and similarly all surviving elements in D′

are contained in a ball of radius 4r̂. However, there are at least 0.55n surviving elements of both D and
D′, and in particular, for the given range of n there are at least two common surviving elements (one of
which must be shared). A ball of radius 8r̂ around this element, which we denote x̂ in the rest of the
proof, contains all surviving elements in D (according to {pi}i∈[n]) and in D′ (according to {p′i}i∈[n]).

Now we wish to bound x̄− x̄′, where x̄′ := 1
Z′

∑
i∈[n] p

′
ix

′
i. We have shown that in A, |Z −Z ′| ≤ 12 and

min(Z,Z ′) ≥ 0.55n. For convenience, define yi := xi− x̂ for all i ∈ [n], and similarly define y′
i. Recalling

that all surviving elements of D ∪D′ are contained in B(x̂, 8r̂),

∥x̄− x̄′∥ =

∥∥∥∥∥∥ 1Z
∑
i∈[n]

piyi −
1

Z ′

∑
i∈[n]

p′iy
′
i

∥∥∥∥∥∥
≤
∣∣∣∣ 1Z − 1

Z ′

∣∣∣∣
∥∥∥∥∥∥
∑

i∈[n−1]

piyi

∥∥∥∥∥∥+ 1

Z ′

∥∥∥∥∥∥
∑

i∈[n−1]

(pi − p′i)yi

∥∥∥∥∥∥+ pn
Z
∥yn∥+

p′n
Z ′ ∥y

′
n∥

≤
∣∣∣∣Z ′ − Z

Z ′

∣∣∣∣
∥∥∥∥∥∥ 1Z

∑
i∈[n−1]

piyi

∥∥∥∥∥∥+ 8r̂

0.55n

∑
i∈[n−1]

|pi − p′i|+
16r̂

0.55n

≤ 96r̂

0.55n
+

104r̂

0.55n
+

16r̂

0.55n
≤ 400r̂

n
.

The first line shifted both x̄ and x̄′ by x̂, and the second line applied the triangle inequality. The third
line applied the triangle inequality to the middle term, and bounded the contribution of yn by using that
∥yn∥ ≤ 8r̂ if pn > 0; a similar bound applies to y′

n. In the fourth line, we used the triangle inequality on
the first term, as well as that

∑
i∈[n−1] |pi − p′i| ≤ 1 + 12 by using (9) and accounting for the nth point

separately. Thus, x̄ has sensitivity 400r̂
n in A. Fact 2 now guarantees that Line 19 is also ( ϵ2 ,

δ
6 )-DP.

We now combine our developments to give our constant-factor approximation to the geometric median.

Theorem 3. Let D = {xi}i∈[n] ⊂ Bd(R) for R > 0, let 0 < r ≤ 4r(0.9)(D), and let (ϵ, δ) ∈ [0, 1]2.
Suppose that

n ≥ C ·

√d log( 1δ )
ϵ

+
log
(

log(R
r )

δ

)
ϵ

 ,
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for a sufficiently large constant C. There is an (ϵ, δ)-DP algorithm (Algorithm 3 using Algorithm 2 to
compute the parameter r̂) that returns (x̂, r̂) such that with probability ≥ 1− δ, following notation (3),

fD(x̂) ≤ (40C ′ + 1)fD(x⋆(D)), r̂ ≤ 4r(0.9), (10)

for a universal constant C ′. Moreover, ∥x⋆(D)− x̂∥ ≤ C ′r̂. The algorithm runs in time

O

(
nd log

(
R

r

)
log

(
n log(Rr )

δ

))
.

Proof. Regarding the utility bound, we will only establish that ∥x⋆(D)− x̂∥ ≤ C ′r̂, which also gives (10)
upon observing that fD is 1-Lipschitz, and fD(x⋆(D)) ≥ 0.1r(0.9)(D), due to Lemma 3.

We first run Algorithm 2 with parameters (ϵ, δ)← ( ϵ2 ,
δ
2 ), which gives for large enough C (via Lemma 6)

1

4
r(0.75) ≤ r̂ ≤ 4r(0.9), (11)

with probability ≥ 1− δ
2 . Next, we run Algorithm 3 with this value of r̂, and parameters (ϵ, δ)← ( ϵ2 ,

δ
2 ).

The privacy of composing these two algorithms now follows from Lemmas 5 and 9, and the runtime
follows from Lemma 6, because Algorithm 2’s runtime does not dominate upon inspection.

It remains to argue about the utility, i.e., that ∥x⋆(D)− x̂∥ ≤ C ′r̂. Conditioned on (11) holding,
Lemma 6 guarantees that with probability ≥ 1 − δ

4 , we have that ∥x̄− x⋆(D)∥ ≤ 3r̂, as a positively-
weighted average of points in Bd(x⋆(D), 3r̂). Finally, for the given value of σ in Algorithm 2, standard
Gaussian concentration bounds imply that with probability ≥ 1− δ

4 ,

∥x̄− x̂∥ = ∥ξ∥ ≤ 3σ

√
d log

(
4

δ

)
= O

(
r̂ ·
√
d log( 1δ )

nϵ

)
= O(r̂).

Thus, ∥x⋆(D)− x̂∥ ≤ C ′r̂ holds for an appropriate C ′, except with probability δ.

We remark that Theorem 3 actually comes with the slightly stronger guarantee that we obtain the
optimal value for the geometric median objective fD, up to an additive error scaling as O(r(0.9)). In
general, while r(0.9) = O(fD(x⋆(D))) is always true by Lemma 3, it is possible that r(0.9) ≪ fD(x⋆(D)) if
a small fraction of outlier points contributes significantly to the objective. We also note that for datasets
where we have more a priori information on the number of outliers we expect to see, we can adjust the
quantile 0.9 in Theorem 3 to be any quantile > 0.5 by appropriately adjusting constants.

4 Boosting Approximations via Stable DP-SGD
In this section, we give a DP algorithm that efficiently minimizes the geometric median objective (3)
over a domain Bd(x̄, r̂), given a dataset D := {xi}i∈[n]. In our final application to the geometric median
problem, the optimization domain (i.e., the parameters x̄ ∈ Rd and r̂ ∈ R≥0) will be privately estimated
using Theorem 3, such that with high probability r̂ = O(fD(x⋆(D))) and ∥x− x⋆(D)∥ ≤ r̂. In the
meantime, we treat the domain Bd(x̄, r̂) as a public input here.

Our strategy is to use a localization framework given by [FKT20], which gives a query-efficient reduction
from private DP-SGD to stable DP-SGD executed in phases. Specifically, observe that outputting5

z− xi

∥z− xi∥
= ∇∥· − xi∥ (z) (12)

for a uniformly random i ∈ [n] is unbiased for a subgradient of fD(z). This leads us to define the
following Algorithm 4 patterned off the [FKT20] framework, whose privacy is analyzed in Section 4.1
using a custom stability argument, and whose utility is analyzed in Section 4.2.

5By default, if x = xi, we let (12) evaluate to 0d, which is a valid subgradient by first-order optimality.
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Algorithm 4 StableDPSGD(D, x̄, r̂, ρ, δ, η, T )
Input: Dataset D = {xi}i∈[n] ⊂ Rd, domain parameters (x̄, r̂) ∈ Rd × R≥0, privacy bound ρ > 0, failure
probability δ ∈ (0, 1), step size η > 0, step count T = 2K−1 ≥ n for K ∈ N

1: m← 3(Tn + log( 8δ ))
2: for k ∈ [K] do
3: (T (k), η(k), σ(k))← (2−k(T + 1), 4−kη, 3−k (2m+1)η√

ρ )

4: if k = 1 then
5: z

(k)
0 ← x̄

6: K(k) ← Bd(z
(k)
0 , r̂)

7: else
8: z

(k)
0 ← x̂(k−1)

9: K(k) ← Bd(z
(k)
0 , 2σ(k)

√
d log( 4Kδ ))

10: end if
11: for 0 ≤ t < T (k) do
12: g

(k)
t ← z

(k)
t −xi

∥z(k)
t −xi∥

for i ∼ Unif([n])

13: z
(k)
t+1 ← ΠK(k)(z

(k)
t − η(k)g

(k)
t )

14: end for
15: x̄(k) ← 1

T (k)

∑
0≤t<T (k) z

(k)
t

16: ξ(k) ∼ N (0d, (σ
(k))2Id)

17: x̂(k) ← x̄(k) + ξ(k)

18: end for
19: Return: x̂(K)

Algorithm 4 proceeds in K ≈ log(T ) phases. In each phase (loop of Lines 2 to 18) other than k = 1, we
define a domain K(k) centered at the output of the previous phase with geometrically shrinking radius
∝ σ(k); the domain for phase k = 1 is simply Bd(x̄, r̂). After this, we take T (k) steps of SGD over K(k)

with step size η(k), and output a noised variant of the average iterate in Lines 15 to 17.

Remark 1. Several steps in Algorithm 4 are used only in the worst-case utility proof, and do not
affect privacy. Practical optimizations can be made while preserving privacy guarantees, e.g., removing
projections onto the changing domains K(k) rather than K(1), which is not used in the privacy proof.

One optimization we found useful in our experiments (described in Section 5) is replacing the random
sampling on Line 12 with deterministic passes through the dataset in a fixed order. By doing so, we
know the total number of accesses of any single element is ≤ m := ⌈Tn ⌉ (rather than the high-probability
estimate in Lemma 10 for the randomized variant in Algorithm 4). This lets us tighten the noise level
σ(k) by a fairly significant constant factor, resulting in improved empirical performance.

4.1 Privacy of Algorithm 4
In this section, we show that Algorithm 4 satisfies (ϵ, δ)-DP for an appropriate choice of ρ. When the
sample functions of interest are smooth (i.e., have bounded second derivative), [FKT20] gives a proof
based on the contractivity of iterates. This is based on the observation that gradient descent steps
with respect to a smooth function are contractive for an appropriate step size (see e.g., Proposition 2.10,
[FKT20]). Unfortunately, our sample functions are of the form ∥· − xi∥, which are not even differentiable,
let alone smooth. Nonetheless, we inductively prove approximate contractivity of Algorithm 4’s iterates
by opening up the analysis and using the structure of the geometric median objective.

Throughout, we fix neighboring D,D′ ∈ (Rd)n, and assume without loss of generality they differ in the nth

entry. To simplify notation, we let I ∈ [n]T denote the multiset of T indices sampled in Line 12, across
all phases. We prove DP of Algorithm 4 via appealing to Lemma 1, where we let A denote Algorithm 4,
and we let A denote a variant of Algorithm 4 conditioned on I containing at most m := 3(Tn + log( 8δ ))

copies of n. We first bound the total variation distance between A and A using Fact 1.
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Lemma 10. With probability ≥ 1− δ
8 , Algorithm 4 yields I containing ≤ m copies of n.

Proof. In expectation, we have T
n ≥ 1 copies, so the result follows from Fact 1 and our choice of m.

We will show that A is (ϵ, δ
2 )-DP, upon which Lemmas 1 and 10 imply that A (Algorithm 4) is (ϵ, δ)-DP.

To do so, we control the sensitivity of each iterate z
(k)
t , using the following two helper facts.

Fact 5 ([Roc76]). Let K ⊂ Rd be a compact, convex set. Then for any x,y ∈ Rd, we have

∥ΠK(x)−ΠK(y)∥ ≤ ∥x− y∥ .

Lemma 11. For any unit vectors u,v ∈ Rd, and a, b > 0, let x = au and y = bv. Then, letting
x′ ← (a− η)u and y′ ← (b− η)v, we have ∥x′ − y′∥ ≤ max(∥x− y∥ , 3η).

Proof. We claim that
∥x′ − y′∥ ≤ ∥x− y∥ ⇐⇒ a+ b ≥ η, (13)

from which the proof follows from observing that if a + b ≤ η, then we can trivially bound ∥x′ − y′∥ ≤
∥x− y∥+ 2η ≤ a+ b+ 2η ≤ 3η. Indeed, (13) follows from a direct expansion:

∥x− y∥2 − ∥x′ − y′∥2 = a2 + b2 − 2ab ⟨u,v⟩ − (a− η)2 − (b− η)2 + 2(a− η)(b− η) ⟨u,v⟩
= 2η(a+ b)− 2η2 − 2η(a+ b) ⟨u,v⟩+ 2η2 ⟨u,v⟩
= 2η(a+ b− η)(1− ⟨u,v⟩).

Thus, for η ≥ 0 and ⟨u,v⟩ ≥ 0, we conclude that (13) holds.

Corollary 1. For any phase k ∈ [K] in Algorithm 4, condition on the value of z(k)0 , and assume that I
contains at most m copies of n. Then for any 0 ≤ t < Tk, the sensitivity of z(k)t is ≤ (2m+ 1)η(k).

Proof. Throughout this proof only, we drop the iteration k from superscripts for notational simplicity,
so we let T := T (k) and η := η(k), referring to the relevant iterates as {zt}0≤t<T := {z(k)t }0≤t<T (k) . We
also refer to the index i selected on Line 12 in iteration 0 ≤ t < T by it.

Fix two copies of the kth phase of Algorithm 4, both initialized at z0, but using neighboring datasets D,
D′ differing in the nth entry. Also, fix a realization of {it}0≤t<T , such that it = n at most m choices of t
(note that m is actually a bound on how many times it = n across all phases, so it certainly bounds the
occurrence count in a single phase). Conditioned on this realization, Algorithm 4 is now a deterministic
mapping from z0 to the iterates {zt}0≤t<T , depending on the dataset used.

Denote the iterates given by the dataset D by {zt}0≤t<T and the iterates given by D′ by {z′t}0≤t<T , so
that z0 = z′0 by assumption. Also, let Φt := ∥zt − z′t∥ for all 0 ≤ t < T . We claim that for all 0 ≤ t < T ,

Φt ≤ max(2mt + 1, 3)η, where mt :=
∑

0≤s<t

Iis=n, (14)

i.e., mt is the number of times the index n was sampled in the first t iterations of the phase. If we can
show (14) holds, then we are done because mt ≤ m by assumption.

We are left with proving (14), which we do by induction. The base case t = 0 is clear. Suppose (14)
holds at iteration t. In iteration t + 1, if mt+1 = mt + 1 (i.e., it = n was sampled), then (14) holds by
the triangle inequality and the induction hypothesis, because all gradient steps ηgt have ∥ηgt∥ ≤ η, and
projection to K can only decrease distances (Fact 5). Otherwise, let it = i ̸= n be the sampled index,
using the common point xi ∈ D ∩ D′. Now, (14) follows from applying Lemma 11 with

x← zt − xi, y← z′t − xi, u←
zt − xi

∥zt − xi∥
, v← z′t − xi

∥z′t − xi∥
.

In particular, we have that ∥x− y∥ = Φt, and ∥x′ − y′∥ ≥ Φt+1 (due to Fact 5), following notation from
Lemma 11. We thus have Φt+1 ≤ max(Φt, 3η), which clearly also preserves (14) inductively.
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We can now conclude our privacy proof by applying composition to Corollary 1.

Lemma 12. Let ϵ ∈ [0, 1]. If 1
ρ ≥

4 log( 2
δ )

ϵ2 + 2
ϵ , Algorithm 4 is (ϵ, δ)-DP.

Proof. We claim that Algorithm 4 satisfies ρ-CDP, conditioned on I containing at most m choices of t
(we denote this conditional variant by A). By applying the second part of Fact 4 with α← 2 log( 2

δ )

ϵ + 1,
this implies that A is (ϵ, δ

2 )-DP. Because A has total variation distance at most δ
8 to Algorithm 4 due to

Lemma 10, we conclude using Lemma 1 that Algorithm 4 is (ϵ, δ)-DP.

We are left to show A satisfies ρ-CDP. In fact, we will show that for all k ∈ [K], the output of the kth

phase of A, i.e., x̂(k), satisfies ( 169 )−k · ρ2 -CDP (treating the starting iterate z
(k)
0 = x̂(k−1) as fixed). Using

composition of RDP (the first part of Fact 4), this implies A is ρ-CDP as desired.

Finally, we bound the CDP of phase k ∈ [K]. Under A, we showed in Corollary 1 that all iterates of the
kth phase have sensitivity ≤ (2m+1)η(k). Thus the average iterate x̄(k) also has sensitivity ≤ (2m+1)η(k)

by the triangle inequality. We can now bound the CDP of the kth phase using the third part of Fact 4:

((2m+ 1)η(k))2

2(σ(k))2
=

((2m+ 1)η)2

((2m+ 1)η)2
· 16−k · 9k · ρ

2
≤
(
16

9

)−k

· ρ
2
.

4.2 Utility of Algorithm 4
We now analyze the error guarantees for Algorithm 4 on optimizing the geometric median objective fD
(3). We begin by providing a high-probability bound on the utility guarantees of each single phase.

Lemma 13. Following notation of Algorithm 4, we have with probability ≥ 1− δ
2 that

fD(x̄
(1)− fD(x⋆) ≤

r̂2

2η(1)T (1)
+

η(1)

2
+ 4r̂

√
2 log(4Kδ )

T (1)
,

where x⋆ := argminx∈Bd(x̄,r̂)f(x), and

fD(x̄
(k))− fD(x̄

(k−1)) ≤
2(σ(k))2d log( 4Kδ )

η(k)T (k)
+

η(k)

2
+ 8σ(k) log

(
4K

δ

)√
2d

T (k)
for all 2 ≤ k ≤ K.

Proof. First, with probability ≥ 1− δ
4 , we have

∥∥∥ξ(k)∥∥∥ ≤ 2σ(k)

√
d log

(
4K

δ

)
for all k ∈ [K],

by standard Gaussian concentration. Thus, x̄(k−1) ∈ K(k) for all 2 ≤ k ≤ K, and x⋆ ∈ K(1), except with
probability δ

4 . Next, consider the kth phase of Algorithm 4, and for some 0 ≤ t < Tk, let us denote

g̃
(k)
t :=

z
(k)
t − xi∥∥∥z(k)t − xi

∥∥∥
where i ∈ [n] is the random index sampled on Line 12 in the tth iteration of phase k. We also denote

g
(k)
t :=

1

n

∑
i∈[n]

z
(k)
t − xi∥∥∥z(k)t − xi

∥∥∥ .
We observe that E[g̃(k)

t ] = g
(k)
t for any realization of the randomness in all previous iterations. Now, by

the standard Euclidean mirror descent analysis, see e.g., Theorem 3.2 of [Bub15], for any u ∈ K(k),

〈
η(k)g̃

(k)
t , z

(k)
t − u

〉
≤

∥∥∥z(k)t − u
∥∥∥2

2
−

∥∥∥z(k)t+1 − u
∥∥∥2

2
+

(η(k))2

2
. (15)
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Here we implicitly used that ∥g̃(k)
t ∥ ≤ 1 for all choices of the sampled index i ∈ [n]. Now summing (15)

for all iterations 0 ≤ t < T (k), and normalizing by η(k)T (k), we obtain

1

T (k)

∑
0≤t<T (k)

〈
g̃
(k)
t , z

(k)
t − u

〉
≤

∥∥∥z(k)0 − u
∥∥∥2

2η(k)T (k)
+

η(k)

2
.

Next, we claim that with probability ≥ 1− δ
4 ,

1

T (1)

∑
0≤t<T (1)

〈
g
(1)
t − g̃

(1)
t , z

(1)
t − u

〉
≤ 4r̂

√
2 log

(
4K
δ

)
T (1)

,

1

T (k)

∑
0≤t<T (k)

〈
g
(k)
t − g̃

(k)
t , z

(k)
t − u

〉
≤ 8σ(k) log

(
4K

δ

)√
2d

T (k)
for all 2 ≤ k ≤ K.

In each case, this is because ⟨g(k)
t − g̃

(k)
t , z

(k)
t −u⟩ is a mean-zero random variable, that is bounded (with

probability 1) by twice the diameter of K(k). Thus we can bound the sub-Gaussian parameter of their
sum, and applying the Azuma-Hoeffding inequality then gives the result. Now, finally by convexity,

1

T (1)

∑
0≤t<T (1)

〈
g
(1)
t , z

(1)
t − u

〉
≥ 1

T (1)

∑
0≤t<T (1)

fD(z
(1)
t )− fD(u) ≥ fD(x̄

(1))− fD(u),

1

T (k)

∑
0≤t<T (k)

〈
g
(k)
t , z

(k)
t − u

〉
≥ 1

T (k)

∑
0≤t<T (k)

fD(z
(k)
t )− fD(u) ≥ fD(x̄

(k))− fD(u) for all 2 ≤ k ≤ K.

Combining the above three displays, and plugging in u← x⋆ or u← x̄(k−1), now gives the conclusion.

By summing the conclusion of Lemma 13 across all phases, we obtain an overall error bound.

Lemma 14. Following notation of Algorithm 4 and Lemma 13, we have with probability ≥ 1− δ that

fD(x̂
(K))− fD(x⋆) ≤

r̂2

16ηT
+ 19η + 8r̂

√
log( 4Kδ )

T
+

1314Tηd log4( 8Kδ )

ρn2
.

Proof. Throughout this proof, condition on the conclusion of Lemma 13 holding, as well as∥∥∥ξ(K)
∥∥∥ ≤ 2σ(K)

√
d log

(
2

δ

)
,

both of which hold with probability ≥ 1− δ by a union bound. Next, by Lemma 13,

fD(x̂K)− fD(x⋆) = fD(x̄
(1))− fD(x⋆) +

K∑
k=2

fD(x̄
(k))− fD(x̄

(k−1)) + fD(x̂K)− fD(x̄K)

≤ r̂2

2η(1)T (1)
+

η(1)

2
+ 4r̂

√
2 log(4Kδ )

T (1)

+

K∑
k=2

(
2(σ(k))2d log( 4Kδ )

η(k)T (k)
+

η(k)

2
+ 8σ(k) log

(
4K

δ

)√
2d

T (k)

)
+
∥∥∥ξ(K)

∥∥∥
≤ r̂2

16ηT
+

η

2
+ 8r̂

√
log( 4Kδ )

T
+

144m2ηd log( 4Kδ )

ρT
+

12
√
dmη log( 4Kδ )
√
ρT

≤ r̂2

16ηT
+

η

2
+ 8r̂

√
log( 4Kδ )

T
+

1296Tηd log3( 8Kδ )

ρn2
+

36
√
dTη log2( 8Kδ )
√
ρn

≤ r̂2

16ηT
+ 19η + 8r̂

√
log( 4Kδ )

T
+

1314Tηd log4( 8Kδ )

ρn2
.
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The third line used Lipschitzness of fD, the fourth summed parameters using various geometric sequences,
the fifth plugged in our value of m, and the last split the fifth term using 2ab ≤ a2+b2 appropriately.

By combining Lemmas 12 and 14 with Theorem 3, we obtain our main result on privately approximating
the geometric median to an arbitrary multiplicative factor 1 + α, given enough samples.

Theorem 4. Let D = {xi}i∈[n] ⊂ Bd(R) for R > 0, let 0 < r ≤ 4r(0.9)(D), and let (α, ϵ, δ) ∈ [0, 1]3.
Suppose that

n ≥ C ·

(√
d

αϵ
log2.5

(
log( d

αδϵ )

δ

))
,

for a sufficiently large constant C. There is an (ϵ, δ)-DP algorithm (Algorithm 4 using Theorem 3 to
compute the parameters (x̄, r̂)) that returns x̂ such that with probability ≥ 1− δ, following notation (3),

fD(x̂) ≤ (1 + α)fD(x⋆(D)).

The algorithm runs in time

O

(
nd log

(
R

r

)
log

(
d log(Rr )

αδϵ

)
+

d

α2
log

(
log( d

αδϵ )

δ

))
.

Proof. We first apply Theorem 3 to compute a (x̄, r̂) pair satisfying r̂ ≤ C ′r(0.9)(D), ∥x̄− x⋆(D)∥ ≤ r̂,
for a universal constant C ′, subject to ( ϵ2 ,

δ
2 )-DP and δ

2 failure probability. We can verify that Theorem 3
gives these guarantees within the stated runtime, for a large enough C. Next, we call Algorithm 4 with
ρ← ϵ2

32 log( 4
δ )

and δ ← δ
2 , which is ( ϵ2 ,

δ
2 )-DP by Lemma 12, so this composition is (ϵ, δ)-DP.

Denoting x̂ := x̂(K) to be the output of Algorithm 4, Lemma 14 guarantees that with probability ≥ 1− δ
2 ,

fD(x̂)− fD(x⋆(D)) ≤
r̂2

16ηT
+ 19η + 8r̂

√
log( 16Kδ )

T
+

5256Tηd log5( 16Kδ )

ϵ2n2
,

for some choice of η, T and our earlier choices of privacy parameters. Optimizing in η, we have

fD(x̂)− fD(x⋆(D)) ≤ 12r̂

√
log( 16Kδ )

T
+

37r̂
√
d log5( 16Kδ )

ϵn
.

Finally, for a large enough C in the definition of n, and T ≥ n+
57600(C′)2 log( 16K

δ )

α2 , we obtain

fD(x̂)− fD(x⋆(D)) ≤ 12r̂

√
log( 16Kδ )

T
+

37r̂
√
d log5( 16Kδ )

ϵn
≤ αr̂

10C ′ ≤
αr(0.9)

10
≤ αfD(x⋆(D)).

The last inequality used Lemma 3. Now, the runtime follows from combining Theorem 3 and the fact
that every iteration of Algorithm 4 can clearly be implemented in O(d) time.

5 Experiments
In this section, we present empirical evidence supporting the efficacy of our techniques. We implement
and conduct experiments on Algorithm 2 (the radius estimation step of Section 3) and Algorithm 4, to
evaluate how subsampled estimates and DP-SGD respectively improve the performance of our algorithm.6

We do not present experiments on Algorithm 3, as our analysis results in loose constants, which in our
preliminary experimentation significantly impacted its performance in practice. We leave optimizing the
performance of this step as an important step for future work. In our experiments, Algorithm 4 was

6Our subsampling experiments were performed on a single Google Colab CPU, and our boosting experiments were
performed on a personal Apple M4 with 16GB RAM.
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fairly robust to the choice of initialization, so it is possible that private heuristics may serve as stand-in
to this step. Moreover, our Algorithm 3 and Section 2.2 of [HSU24] had essentially the same runtime,
so we find it in line with our conceptual contribution to focus on evaluating the other two components.

We use two types of synthetic datasets with outliers, described here. To avoid contamination in hyper-
parameter selection, every experiment is performed with a freshly-generated dataset.

GaussianCluster(R,n, d, σ, fracin): This dataset is described in Appendix H of [HSU24]. We draw nin =
fracin n points i.i.d. from N (µ, σ2Id) with µ uniform on the sphere of radius R

2 , and nout = n − nin

outliers uniformly from the Euclidean ball of radius R.

HeavyTailed(ν, n, d): This dataset samples n points in Rd from a zero-mean multivariate Student’s t
distribution with identity scale and degrees of freedom ν.

5.1 Subsampling
In this section,7 we describe our experiments to show the benefit of subsampling in FastRadius (Algo-
rithm 2) over RadiusFinder (Algorithm 1 from [HSU24]) for differentially private estimation of the quantile
radius, which is the first step in differentially private estimation of the geometric median.

In the first experiment (Figure 1a), we set n = 1000, d = 10, inlier fraction fracin = 0.9, standard
deviation σ = 0.1, and choose an upper bound R from the set {0.5, 1, 2, 4, 8, 10}. The dataset is generated
as GaussianCluster(R,n, d, σ, fracin) dataset. We set privacy parameters ε = 1.0 and δ = 10−5, quantile
fraction γ = 0.75, and for each trial we sample rmin ∼ Unif([0.005, 0.02]) to randomly initialize our search
grid. Since γ < fracin, we estimate the ground-truth quantile radius rtrue = σ

√
d, run both algorithms on

this dataset, measure the estimated radius r̂ and wall-clock runtime, and report the mean and standard
deviation of the estimation ratio r̂/rtrue and runtime over 100 independent trials.

In the second experiment (Figure 1b), we assess the robustness of FastRadius and RadiusFinder to heavy-
tailed data. We set n = 1000 and d = 10 in the HeavyTailed(ν, n, d) dataset with varying degrees of
freedom ν ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. For each trial, we sample rmin ∼ Unif([0.005, 0.02]), set
privacy parameters ε = 1.0, δ = 10−5 and quantile fraction γ = 0.75. We estimate the theoretical
quantile radius rtrue =

√
dFd,ν(γ) where Fd,ν is the CDF of an F(d, ν) distribution, which is the Fisher

F-distribution with d and ν degrees of freedom, execute both algorithms, record r̂ and runtime, and
summarize the mean and standard deviation of the ratio r̂/rtrue and runtime across 100 repetitions.

(a) Ratio of the estimated quantile radius to the
true radius with varying data radius R.

(b) Ratio of the estimated quantile radius to the
true radius with varying degrees of freedom ν.

Figure 1: Comparison of RadiusFinder and FastRadius across different data distributions. Plots averaged
across 100 trials and standard deviations are reported as error bars.

We observe that in both cases, across a range of increasingly heavier tails of the distributions, both
algorithms achieve reasonable approximation to the true quantile radius, always staying multiplicatively

7We provide code for the experiments in this section here.
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between roughly 1.2 to 3 of the true quantile radius. We further record the average wall-clock time
required by both algorithms in Table 1. We observe that FastRadius is significantly faster compared to
RadiusFinder, while performing competitively in terms of estimation quality.

We remark that we also experimented with varying n ∈ {500, 1000, 2000} and d ∈ {5, 10, 20} and observed
qualitatively similar trends for the performance of both algorithms.

Table 1: Average wall-clock time in seconds over 100 trials for each algorithm in each experiment

Experiment RadiusFinder FastRadius

Varying R (Figure 1a) 1.192± 0.047 0.0411± 0.002
Varying ν (Figure 1b) 1.204± 0.171 0.0413± 0.007

5.2 Boosting
In this section,8 we evaluate the performance of our boosting algorithm in Section 4 based on a low-pass
DP-SGD implementation, compared to the baseline method from [HSU24]. We will in fact evaluate three
methods: (1) the baseline method, DPGD (vanilla DP gradient descent), as described in Algorithms 3
and 6, [HSU24], but with an optimized step size selected through ablation studies; (2) StableDPSGD,
i.e., our Algorithm 4 implemented as written, and (3) FixedOrderDPSGD, a variant of our Algorithm 4
with the last optimization described in Remark 1. We calibrated our noise level in FixedOrderDPSGD to
ensure a fixed level of CDP via a group privacy argument, where we use that each dataset element is
deterministically accessed at most m = ⌈Tn ⌉ times in FixedOrderDPSGD with T iterations.

We next describe our hyperparameter optimization for the baseline, DPGD, as implemented in Algorithm
6, [HSU24]. We note that this implementation of DPGD satisfies ρ-CDP for an arbitrary choice of step
size η (as it scales the noise appropriately), so we are free to tune for the best choice of η.

Algorithm 3 in [HSU24] recommends a constant step size of ηbase = 2r̂
√

d
6ρn2 , where r̂ is the estimated

radius. However, conventional analyses of projected gradient descent (cf. Section 3.1, [Bub15]) recom-
mend a step size scaling as a multiple of ηbase = r̂ · 1√

T
, where T is the iteration count. Moreover, there

is theoretical precedent for DP-(S)GD going through a phase transition in step sizes for different regimes
of n, T (e.g., [FKT20], Theorem 4.4). We thus examined multiples of both of these choices of ηbase, i.e.,
we used step sizes η = ηbase · ηmultiplier with multipliers ηmultiplier ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75} and
ηbase ∈ {2r̂

√
d

6ρn2 , r̂ · 1√
T
} in an ablation study, across all datasets appearing in our experiments.

Our results indicated that the ηmultiplier depends significantly on dataset size, in that larger datasets
benefit from higher ηmultiplier. We observed that if we chose ηbase = 2r̂

√
d

6ρn2 , as n increases, using
larger ηmultiplier values consistently reduced optimization error, but with diminishing returns. However,
using r̂ · 1√

T
as the base step size yielded significantly more stable performance across multiple scales of

n, T , compared to the recommendation in [HSU24], suggesting this is the correct scaling in practice. Our
findings were that DPGD yielded the consistently best performance with ηmultiplier = 1 and ηbase = r̂· 1√

T
.9

We now describe our setup. In all our experiments, we set d = 50, ρ = 0.5, and vary n ∈ {100, 1000, 10000}.
For the GaussianCluster dataset, we set σ = 0.1 and vary the bounding radius R ∈ {25, 50, 100}. We set
our estimated initial radius r̂ = 20σ

√
d and initialize all algorithms at a uniformly random point on the

surface of Bd(0.75r̂).10 For the HeavyTailed dataset, we use the same values of d, ρ, and the same range
of n. We vary ν ∈ {2.5, 5.0, 10.0}, set our estimated initial radius r̂ = 20

√
dFd,ν(0.75) to be consistent

with Section 5.1, and again initialize randomly on the surface of Bd(0.75r̂).

In our first set of experiments (Figures 2 and 3), we used the middle “scale” parameter, i.e., R = 50
for the GaussianCluster dataset and ν = 5.0 for the HeavyTailed dataset, varying n only. We report the

8We provide code for the experiments in this section here.
9Larger step size multipliers yielded better performance on GaussianCluster data, but led to large amounts of instability

on HeavyTailed data. We chose the largest multiplier that did not result in significant instability on any dataset.
10We chose a relatively pessimistic multiple of r̂ to create a larger initial loss and account for estimation error.
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performance of the three evaluated methods, plotting the passes over the dataset used by the excess error.
Our error metric is 1

r̂ · (fD(x̂)− fD(x̂)), i.e., a multiple of the “effective radius” used in the experiment.
This is a more reflective performance metric than the corresponding multiple of fD, as our algorithms
achieve this bound (see discussion after Theorem 3), and fD ≥ r̂ for our datasets due to outliers.

(a) n = 100 (b) n = 1000 (c) n = 10000

Figure 2: Comparison of DPGD, StableDPSGD, and FixedOrderDPSGD across GaussianCluster data over
R50, varying n. Plots averaged across 20 trials and standard deviations are reported as error bars.

Across GaussianCluster datasets of size n ∈ {100, 1000, 10000}, we found that FixedOrderDPSGD consis-
tently outperformed StableDPSGD, and consistently outperformed the baseline by a significant margin
once dataset sizes were large enough. As the theory predicts, the gains of stochastic methods in terms
of error-to-pass ratios are more stark when dataset sizes are larger, reflecting the superlinear gradient
query complexity (each requiring one pass) that DPGD needs to obtain the optimal utility.

(a) n = 100 (b) n = 1000 (c) n = 10000

Figure 3: Comparison of DPGD, StableDPSGD, and FixedOrderDPSGD across HeavyTailed data over R50,
varying n. Plots averaged across 20 trials and standard deviations are reported as error bars.

We next present our comparisons for the HeavyTailed dataset. Again, our (optimized) method led to
similar or better performance than the baseline for larger n. We suspect that the improved performance
of the baseline owes to the relative “simplicity” of this dataset, e.g., it is rotationally symmetric around
the population geometric median, and this is likely to be reflected in a sample.

In our second set of experiments (Figures 4 and 5), we fixed the size of the dataset at n = 1000, varying
the scale parameter (R for GaussianCluster and ν for HeavyTailed). The relative performance of our
evaluated algorithms was essentially unchanged across the parameter settings we considered.

Finally, we remark that one major limitation of our evaluation is that full-batch gradient methods such as
DPGD can be implemented with parallelized gradient computations, leading to wall-clock time savings.
In our experiments, DPGD often performed better than FixedOrderDPSGD in terms of wall-clock time
(for the same estimation error), even when it incurred significantly larger pass complexities. On the
other hand, we expect the gains of methods based on DP-SGD to be larger as the dataset size and
dimension (n, d) grow. There are interesting natural extensions towards realizing the full potential of
private optimization algorithms in practice, such as our Algorithm 4, e.g., the benefits of using adaptive
step sizes or minibatches, which we believe are important and exciting future directions.
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(a) R = 25 (b) R = 50 (c) R = 100

Figure 4: Comparison of DPGD, StableDPSGD, and FixedOrderDPSGD across GaussianCluster data over
R50, varying R. Plots averaged across 20 trials and standard deviations are reported as error bars.

(a) ν = 2.5 (b) ν = 5 (c) ν = 10

Figure 5: Comparison of DPGD, StableDPSGD, and FixedOrderDPSGD across HeavyTailed data over R50,
varying ν. Plots averaged across 20 trials and standard deviations are reported as error bars.
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A Discussion of [HSU24] runtime
We give a brief discussion of the runtime of the [HSU24] algorithm in this section, as the claimed runtimes
in the original paper do not match those described in Section 1. As the [HSU24] algorithm is split into
three parts (the first two of which correspond to the warm start phase and the third of which corresponds
to the boosting phase), we discuss the runtime of each part separately.

Radius estimation. The radius estimation component of [HSU24] corresponds to Algorithm 1 and
Section 2.1 of the paper. The authors claim a runtime of O(n2 log(Rr )) for this step due to need to do
pairwise distance comparisons on a dataset of size n, for O(log(Rr )) times in total. However, we believe
the runtime of this step should be O(n2d log(Rr )), accounting for the O(d) cost of each comparison.

Centerpoint estimation. The centerpoint estimation component of [HSU24] corresponds to Algo-
rithm 2 and Section 2.2 of the paper. We agree with the authors that this algorithm runs in time
O(nd log(Rr )), and in particular, this step does not dominate any runtime asymptotically.

Boosting. The boosting component of [HSU24] corresponds to Algorithms 3 and 4 and Section 3 of the
paper. The authors provide two different boosting procedures (based on gradient descent and cutting-
plane methods) and state their runtimes as Õ(n2d) and Õ(nd2 + d2+ω), where ω < 2.372 is the current
matrix multiplication exponent [ADV+25]. We agree with the runtime analysis of the cutting-plane
method; however, we believe there is an additive Õ(n3ϵ2) term in the runtime of gradient descent. This
follows by noting that Algorithm 3 uses ≈ n2ϵ2

d iterations, each of which takes O(nd) time to implement.
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