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Abstract
Vulnerabilities in open-source software can cause cascading effects
in the modern digital ecosystem. It is especially worrying if these
vulnerabilities repeat across many projects, as once the adversaries
find one of them, they can scale up the attack very easily. Unfortu-
nately, since developers frequently reuse code from their own or
external code resources, some nearly identical vulnerabilities exist
across many open-source projects.

We conducted a study to examine the prevalence of a particular
vulnerable code pattern that enables path traversal attacks (CWE-
22) across open-source GitHub projects. To handle this study at
the GitHub scale, we developed an automated pipeline that scans
GitHub for the targeted vulnerable pattern, confirms the vulner-
ability by first running a static analysis and then exploiting the
vulnerability in the context of the studied project, assesses its im-
pact by calculating the CVSS score, generates a patch using GPT-4,
and reports the vulnerability to the maintainers.

Using our pipeline, we identified 1,756 vulnerable open-source
projects, some of which are very influential. Formany of the affected
projects, the vulnerability is critical (CVSS score higher than 9.0),
as it can be exploited remotely without any privileges and critically
impact the confidentiality and availability of the system. We have
responsibly disclosed the vulnerability to the maintainers, and 14%
of the reported vulnerabilities have been remediated.

We also investigated the root causes of the vulnerable code pat-
tern and assessed the side effects of the large number of copies of
this vulnerable pattern that seem to have poisoned several popular
LLMs. Our study highlights the urgent need to help secure the open-
source ecosystem by leveraging scalable automated vulnerability
management solutions and raising awareness among developers.1

CCS Concepts
• Security and privacy→ Software security engineering;Web
application security; Vulnerability management; Vulnerabil-
ity scanners; Penetration testing.

Keywords
Path traversal, automated vulnerability detection and remediation,
open source software security

1To appear in ACM AsiaCCS 2025. This is the author-prepared version.

1 Introduction
Open-source software is a cornerstone of software systems today.
Academic and industry studies [12, 13, 47, 66] highlight the critical
dependency of our digital ecosystems on open-source projects.
However, this dependency also creates various security risks and,
for example, enables software supply chain attacks [12, 60, 84, 132].

One particular source of security concerns is that developers
tend to reuse code, whether coming from their codebase or other
projects and community sources [23, 80]. However, as programmers
copy-paste the code, they can transfer vulnerabilities from that code
into their own or create new vulnerabilities [57, 101, 117, 118]. For
example, it was shown that developers copy vulnerable code snip-
pets from StackOverflow [23, 37, 112]. The proliferation of such
vulnerable code patterns across many open-source projects multi-
plies the risks. First, the attackers need to know only one pattern to
be able to successfully attack many projects and their downstream
dependencies [101, 123]. Second, the widespread presence of a vul-
nerable pattern across many codebases may normalize this code to
developers, and they will continue copy-pasting it further and will
not be so confident in identifying it as vulnerable [80]. Additionally,
today, in the age of large languagemodels (LLMs) that are trained on
open-source codebases [58, 124], the presence of a repeated vulner-
able code pattern across many projects enables further replication
of the vulnerability by means of code generation [3, 26, 62].

In this work, motivated by the knowledge of the widespread
vulnerable code reuse, we conduct a study of one such vulnerable
code pattern and its spread across GitHub, which is currently the
most popular online platform to host open-source software projects.

The focus of our research is a path traversal vulnerability (CWE-
22 [78]) that enables adversaries to access files or resources in
the vulnerable system, which are outside of the restricted location
designated for anonymous web users. This type of vulnerability is
very dangerous, as it may threaten the confidentiality, integrity, and
availability of the system. According to MITRE, this vulnerability
was among the top 25 most dangerous software weaknesses for
2024 [77]. It is also among the top 10 known exploited vulnerabilities
(KEV) for 2024 [76], with an average CVSS score of 8.09 (high) for
KEVs of this type.

Within this research, we explore a particular path traversal vul-
nerable code pattern that we spotted in different Node.js projects,
where developers seem to be unaware of its security implications.

https://arxiv.org/abs/2505.20186v1
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During our initial investigation, we identified the usage of this pat-
tern in two prominent open-source projects, obtaining two CVEs
for them, and questioned ourselves about how many more vulnera-
ble open-source projects are out there. But this is a question that
cannot be investigated manually due to the vast size of GitHub and
the complexity of validating each single vulnerability instance and
examining its security implications in the context of each project.
At the same time, discovering a vulnerability creates an ethical
obligation for security researchers to help the maintainers patch it.
This is a challenging and time-consuming task in itself, as a project-
specific patch needs to be developed and responsibly communicated
to the maintainers. Thus, we decided to study the prevalence of
this code pattern systematically, while also developing a means to
remediate it as much as possible. The key objectives of our study
are the following:

O1: Examine the presence of this path traversal code pattern
across open-source GitHub projects.

O2: Understand the security implications for vulnerable projects
by checking the exploitability of the code and evaluating
the CVSS score of the confirmed vulnerability instances.

O3: Raise awareness and help the maintainers to patch the code
in a scalable yet responsible manner.

O4: Examine the root causes of the vulnerable code pattern.
O5: Assess the influence of the widespread vulnerable code

pattern on the current popular LLMs.

Our contributions are the following:
(1) We developed a pipeline to detect the studied critical path-

traversal vulnerability code pattern in open-source projects at the
GitHub scale that automates the detection, exploitation, and re-
mediation (including patch generation, CVSS score estimation, and
reporting). Our pipeline is released open-source2.

(2) Using our pipeline, we scanned GitHub and identified 1,756
exploitable instances of path traversal that we started to re-
sponsibly report to the maintainers. Some of these vulnerabilities
were discovered in very popular projects with thousands of stars,
sometimes hosted under the umbrella of prominent organizations.
Eliminating this vulnerable pattern in open-source projects thus
substantially contributes to the confidentiality and availability of
software. Our prototype pipeline has already led to 63 projects
being fixed, and more projects that have been informed and are in
the process of fixing the issue. We report on the responses of the
maintainers that we have received so far.

(3)We investigated the root causes of the vulnerable code snippet
that first emerged around 2010 and evaluated its impact on LLMs.
We traced how the code pattern migrated between different rep-
utable community platforms and developer learning resources. We
saw that developers voicing security concerns were not supported
by the majority, reflecting prejudice [8] and indicating that more
effort is needed to raise security awareness about such tricky vul-
nerabilities. The current LLM chatbots, however, are in a far worse
situation: we show that they are contaminated with the studied
vulnerable code pattern and generate it even when instructed to
synthesize secure code.

2The repo will be published after the paper is presented at AsiaCCS in https://github.
com/JafarAkhondali/DotDotDefender

To the best of our knowledge, our study is the first one to both
examine the prevalence of the critical path traversal vulnerable code
pattern in open-source GitHub projects and provide an automated
means to detect and remediate novel instances of this vulnerability
at a large scale.

2 Methodology
In this section, we describe the methodology of our study. First, we
discuss the path traversal vulnerable code pattern that is the focus
of this study. To accomplish the objectives of our study, we need to
detect, exploit, and remediate this vulnerability in a considerable
number of open-source projects. This is only possible through auto-
mated means. Thus, in the remainder of this section, we describe an
automated pipeline that achieves our objectives. Although in prior
literature automated implementations of the independent steps of
detection [43, 52, 61, 65, 108], exploitation [18, 19, 32, 52, 119] and
remediation [17, 34, 38, 97, 99, 109, 114, 120, 121] are described, our
pipeline is – to the best of our knowledge – the first to automate
the complete end-to-end process from detection to remediation
(including responsible disclosure) of path traversal vulnerabilities
in real-world Node.js projects at the GitHub scale.

2.1 Path Traversal Vulnerable Code Pattern
The focus of this study is on a simple and popular code pattern that
creates a static HTTP file server for Node.js web applications. A
simplified version of this code pattern is shown in Fig. 2. Despite its
simplicity and popularity, many developers appear unaware that
this code pattern is vulnerable to the path traversal attack [78].
The vulnerability manifests itself as follows. In line 8, the parser
extracts the pathname provided by the user. Then, at line 9, the path
of the current working directory (the public directory intended to
be served to users) is joined using the join function. The join
function first concatenates the two paths and then normalizes the
final path. This allows attackers to provide a pathname that resolves
to directories outside of the public directory intended to be served.

This pattern can be exploited in two ways. First, consider a
current working directory of /home/myapp/ and a user-supplied
pathname of ../../etc/passwd. This resolves to the final path
/etc/passwd. Consequently, malicious users can access files out-
side of the directory intended to be served, thereby damaging the
confidentiality of the system. This vulnerability also allows reading
special UNIX-like files like /proc/self/environ that expose envi-
ronment variables. Second, this code snippet is vulnerable to denial
of service attacks. When receiving a request to read a very large
file (e.g., /dev/urandom), its content is first written into a variable
and then served to the user. Such behavior can use up the whole
memory of the system and crash the server process.

2.2 Pipeline Design
To investigate the spread of this particular vulnerable code pattern
across GitHub, an automated approach is necessary due to the
vast number of candidate projects hosted on GitHub. The primary
design objective of this approach is that it needs to select candidate
repositories, detect a vulnerable code snippet in such a repository,
attempt exploitation, and finally remediation, all in an automated
fashionwith as little manual effort as possible. A pipeline is a natural

https://github.com/JafarAkhondali/DotDotDefender
https://github.com/JafarAkhondali/DotDotDefender


Eradicating the Unseen: Detecting, Exploiting, and Remediating a Path Traversal Vulnerability across GitHub

Figure 1: Overall flowchart of the proposed pipeline.

Figure 2: Simplified JavaScript (Node.js) code vulnerable to the path traversal attack.

design for such an approach, particularly because every step of it
also acts as a filter: at any step in the pipeline, a candidate project
may be discarded. Our pipeline components and their interaction
are shown in Fig. 1. Steps A, B, and C automate the detection
of potentially vulnerable open-source projects by sending search
queries to the GitHub code search engine. Steps D and E attempt
to automatically run and exploit a potentially vulnerable project.
Finally, if the project is found to be exploitable, steps F and G
automate the remediation of the vulnerability by creating a patch
using an LLM, calculating the CVSS score, and submitting a report
to the project maintainers.

2.3 Entry Point (Step A)
The first step is not necessarily automated, but a mandatory manual
step to bootstrap the pipeline that only has to be done once for a
vulnerability. At this point, a vulnerable code pattern for a study
has been chosen (as we do in Section 2.1). To be able to detect a
wide variety of instances of this vulnerable code pattern in GitHub
repositories, one needs to search on the basis of keywords rather
than a particular instance of the code pattern. Within this step,

one therefore has to manually extract specific keywords from the
selected code snippet, preferring those that are less likely to change.
For example, a function name from a library is a better keyword
compared to the name of a user-defined function or variable. For
the path traversal code pattern studied in this paper, we chose
⟨http.createServer, fs, read, URL, path⟩ as the primary
keywords.

2.4 Retrieving Candidate Repositories (Step B)
With the vulnerable code pattern keywords, we search for open-
source projects that contain such keywords. To do this, a code
search engine is required, which has already indexed open-source
projects or can crawl the projects and search for the code. Such an
engine’s quality and project coverage highly affect the quantity of
the results from the pipeline.

We focus on GitHub as the most prevalent code hosting platform,
which allows vulnerabilities to be assessed in realistic deployment
environments. An alternative to using GitHub could be toworkwith
a dataset used for studying open-source software. Such datasets
usually consist of projects mined from GitHub. We found that such
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datasets are outdated or often contain very few projects compared
to the existing projects on GitHub [39, 45]. For example, as of April
2025, there are over 254 million public repositories on GitHub [41]3.
At the same time, as of April 2025, the GitHub Activity dataset on
Google BigQuery (last updated in May 2016) contained code from
2.8 million repositories, but only 400,000 projects were collected
completely (i.e., only 0.002% of public repositories available on
GitHub). Thus, in our study, we work with the GitHub Code Search
API as the search engine.

A major issue with this API is that the results are limited to
1,000 (10 pages with a page size of 100) samples only [28, 102].
Previous studies surpassed this limitation by adding extra criteria
in GitHub Search for repositories. However, GitHub Code Search
does not allow such criteria to be included in the query. To the best
of our knowledge, the current search results limit (1,000 samples)
in GitHub Code Search API is an open issue [42] (an answer from
GitHub staff states that they intend to eventually improve the API
to output the whole search results).

To overcome this 1,000-result limit, we propose a recursive algo-
rithm that refines the search based on newly discovered keywords.
We use a feature described in the GitHub documentation: if a new
keyword is added to a previous set of keywords, the final files in
the results will contain all of the keywords. This allows us to re-
duce the search space and retrieve more projects by adding less
frequently used keywords. Our recursive algorithm first tries to get
1,000 results using the base query extracted from the vulnerable
code pattern (the primary keywords listed in Section 2.3). Then, the
query will find all unique words in downloaded code files and sort
the words based on their probability of existence in the extracted
files, using the tf-idf measure. For example, terms used to declare
variables such as const, var, let, and library inclusion such as
require have very high tf-idf scores, as they are the most likely
to be included in all files. Such frequent keywords will not help
limit the results. At the same time, to avoid wasting the API queries,
we also aim to exclude very rare keywords that will only match
very few results. Thus, we choose keywords that have at least 100
results. When the results are above 1,000 samples (the maximum
number of possible samples returned by the GitHub search API),
a new keyword from the previous set will be chosen to limit the
search space. Finally, to prevent duplicates, we store links to the
latest version of the searched files in a database.

2.5 Static App Security Testing (Step C)
Because the search engine is queried with keywords rather than
a specific vulnerable code pattern in the previous step, the results
may include false positives. These are projects that contain the key-
words but not the specific vulnerable code pattern. Before moving
on to the dynamic exploitation of candidate projects, we prune the
search results using less computationally expensive static analysis
techniques. Specifically, we use the popular static analyzer Sem-
Grep [106] for taint analysis with publicly available rules. Note
that the quality of the rules highly affects the final results, and this
step may not eliminate all false positives [9]. One reason is that
developers do not always come up with the same solution to fix
a vulnerability; thus, understanding and applying all the fixes in

3We have seen an unstable result count from the GitHub search feature

taint analysis rules is a tedious task with many corner cases [7].
False positives that remain after this step (projects identified as
vulnerable but actually secure) will be eliminated in the next steps
of the pipeline.

2.6 Runner (Step D)
Candidate projects that reach this step are labeled as vulnerable
by static analysis, but it has not yet been confirmed whether the
vulnerability can be exploited (or is actually present). To confirm
exploitation, the first step is to automatically determine how to
run the project and whether the launched process satisfies the pre-
requisites for exploitation. For the Node.js projects in our case, we
first try to automatically execute the collected vulnerable files in a
Docker container. Three methods were implemented to automat-
ically run the vulnerable Node.js file: (1) run the file by directly
interpreting the code with the node command; (2) first install the
project dependencies and then run the node command; (3) install
dependencies and execute npm run start, which usually results
in running the script that would run the project. The order of these
methods is chosen to speed up the pipeline based on the time re-
quired for each method, from fastest to slowest. After the execution
is completed, we validate the prerequisites for exploitation of the
path traversal vulnerability: we try to detect if the node process is
still running, and if it is running, we detect if there is any open port
assigned to the process, as the code is expected to create a static
file server. The sample will not move to the next step if no open
port related to the program is detected.

2.7 Exploiter (Step E)
The automatic verification of the exploit performed by this step
eliminates all false positives received from the previous steps. This
step requires specific exploit implementations thatmust be prepared
separately for each selected vulnerable code pattern (step A). In
our case, the chosen vulnerable code pattern accepts the input in
the path part of the URL, not in a parameter. Thus, this step is
implemented using a list of payloads for path traversal attacks and
their bypasses, such as double-encoded URLs, nested path bypasses,
different starting points, etc.

As we mentioned, the studied pattern has two possible exploit
use cases: (1) path traversal and (2) denial of service. Moreover, the
attack vector of the vulnerability can be local or network, based on
the network interface that the program uses, which is further dis-
cussed in Section 2.9.1. We now discuss our automated exploitation
of the two cases.

2.7.1 Path Traversal Exploit. The chosen vulnerable code pattern
comes from the pathname part of a URL; therefore, it is not as-
signed to a specific query string. This allows skipping taint anal-
ysis and the exploit to be present at the pathname part. To ver-
ify the successful exploitation of a path traversal attack, a text
file with random hexadecimal content is placed in the root direc-
tory of the Docker container named /flag.txt. Then, a series
of HTTP GET requests is sent to the open port of the program.
All of these requests try to read the flag.txt file using common
payloads and bypasses for path traversal attacks. For example, we
try GET http://localhost:port/../../../../../ flag.txt.
If the HTTP response contains the content of the flag file, and the
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web application itself is not placed in the root directory of the con-
tainer, we consider the program vulnerable to path traversal, as a
file was served outside of the intended directory.

It is worth mentioning that HTTP clients, such as web browsers
or curl, mostly normalize the pathname part of the URL by default.
This will prevent exploitation, as the previous example of exploita-
tion will be converted to http://localhost:port/flag.txt be-
fore it is received by the server. We believe that this client-side
normalization might be one of the reasons developers think that
the code is secure. However, attackers are not restricted to using
such well-behaved HTTP clients. This will be discussed in Section 5.

2.7.2 Denial of Service Exploit. Sometimes the code pattern loads
the entire content of the desired files in memory first and then
sends it back to the client. This pattern creates a denial-of-service
vulnerability, which leads to high memory usage and crashes the
process. To identify which projects are vulnerable to such an attack,
we limit the running memory usage of the Docker container to 1GB
and bind the /dev/urandom file as /flag.txt. Then we follow the
same approach in the path traversal exploit (send HTTP requests to
read the flag.txt file). If the node process exits within 10 seconds
of running the exploit, it means the file’s content used the whole
available memory and crashed the process; thus, the code is also
vulnerable to a denial-of-service attack.

2.8 Patcher (Step F)
Although the same vulnerable code pattern is shared across projects,
the actual implementation differs per project due to variations in
variable naming and code styles. Thus, patching all these projects
requires tailored solutions, and it is not feasible to do it manually.
Therefore, we apply large-languagemodels (LLMs) to create patches
for the different projects. Note that since all projects are already
publicly available on GitHub, submitting small code snippets from
these projects to an LLM does not present a confidentiality issue.

2.8.1 Patching Considerations. Our goal is to produce small and
consistent patches (i.e., cross-platform) that will not have side ef-
fects on the functionality and security of the code (besides fixing
the intended vulnerability). If the proposed patch is small, it will
be easier to understand for the maintainers, who might prefer to
verify the patches themselves, instead of relying on fully automated
solutions [115] – and, of course, in our setup, they have no reason
to trust patches proposed by an unknown third party. Furthermore,
the path traversal vulnerability appears to be a challenging tar-
get for state-of-the-art automated program repair tools, with the
majority of them unable to provide fully correct patches [17].

We observed that simply prompting an LLM chatbot to fix the
path traversal vulnerability results in too many random outputs,
such asmodifications to other parts of the code, poor code quality, or
new security vulnerabilities being introduced. For example, during
our tests, we encountered patches that showed the requested path
in the content of the HTTP response. Such behavior can introduce
reflected cross-site scripting vulnerability (XSS) when the content-
type is text/html.

To address the issues with LLM-designed patches and keep the
patch consistent and cross-platform, the first and second authors,

each with over 5 years of experience in the web security field, de-
signed a mitigation method. There are several methods to mitigate
this path traversal vulnerability. For example, there are operating
system layer approaches (such as chroot, containers, AppArmor,
etc.), and application layer mitigations (such as comparing the in-
tended public directory with the requested path, normalizing the
pathname, removing double dots, etc.). As the vulnerability is con-
tained in the application-level code, we aim to patch it at the same
level, keeping the patch simple and local.

At the same time, the detection of the intended public directory
can be challenging, especially without a full context of the project,
and would increase the complexity of the patch. Removing dou-
ble dots would potentially also affect existing variables and may
conflict with other existing code, resulting in a greater risk of side
effects. Another solution is to drop the request when the normalized
path is not equal to the requested path, which signifies that the
request contains suspicious characters. However, a compatibility
issue remains: while this approach works on UNIX-like systems,
on Windows, the path.normalize function replaces slashes with
backslashes, causing even benign requests to be dropped. Based
on these considerations, we chose an approach to simply drop the
requests that contain double dots. This approach does not modify
other variables, works on different operating systems, is secure, and
is simple to apply and review. Finally, if applying this mitigation
fails, this will be detected in our patch validation step. For consis-
tency, we did not include the path separator character; however, it
can be included to minimize corner cases, e.g., if a file contains two
dots in the filename.

2.8.2 Generating Patches Using LLMs. The prompt instructs the
chatbot to generate the patch to return as early as possible and to
treat the URL similarly to the way it is used in the code. Addition-
ally, the prompt instructs the LLM to perform no variable assign-
ment and only block the incoming request. A sample of our custom
prompt to generate a patch file can be found with the pipeline code4.
Fig. 3 shows an example patch generated for an open-source project
with such a prompt. It is worth mentioning that patches are gener-
ated completely by an LLM. Thus, it is straightforward to change it
further for other patching methods or different vulnerabilities.

To select a chatbot service for this work, the patching process was
tested on a few samples using several chatbot services (ChatGPT,
Gemini, Copilot, Claude). The first and second authors manually
validated the quality of the patches for these samples. Based on this
validation, we chose GPT-4 from OpenAI to patch the vulnerability.
Recent literature supports our empirical evidence that GPT-4 is the
better-performing LLM for vulnerability patching [83, 104].

2.8.3 Patch Validation. To minimize the side effects, the prompt
to create a patch is designed not to modify existing variables in the
source code and to only block malicious input. However, as LLMs
are not always predictable, we defined several rules to verify that the
generated patch works correctly. Note that the vulnerable samples
patched in this step have already been proven to be vulnerable and
exploitable in a previous step. Thus, it is not required to exploit
them again. Verifying the quality of the patch requires us to ensure
that: (1) the patch does not break the application; (2) the patch

4https://github.com/JafarAkhondali/DotDotDefender

https://github.com/JafarAkhondali/DotDotDefender
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Figure 3: Sample patch (in green) generated using GPT-4 with
our prompt.

does not change the functionality of the code; and (3) the patch
correctly blocksmalicious requests. To achieve that, before applying
the patch, we send a simple benign HTTP GET request to the root
address of the web server (e.g., http://127.0.0.1/) and store the
HTTP status code as the expected result. Then, after applying the
patch, we verify the following conditions: (1) the method used
to run the project is not changed (e.g., if the vulnerable file was
runnable using the node command, then running the project with
npm start is not acceptable as it means the previous method failed
and application is broken); (2) when sending a benign GET request
to the web server root, the HTTP status code is not changed; (3)
none of the exploits can read the file in the file system root (e.g.,
http://127.0.0.1/../../../etc/passwd should not work); (4)
the sanitizer that blocks requests where the pathname in the URL
contains two dots was placed correctly.

The fourth check is implemented using a customCodeQL (GitHub
production-grade tool for static analysis) [40]5. This rule compares
how many times the includes method was applied to a pathname
before and after applying the patch. If this number is higher after
applying the patch, this is considered a sign that the sanitizer (as
in Fig. 3) was added by the patch produced by the LLM and that
the pathname is now correctly sanitized. The reason we counted
the number of includes method invocations using the CodeQL
rule on both the vulnerable (before) and patched code is that in
some cases, the code may already contain the includes function
for other purposes.

Overall, our first and second criteria contribute to the verification
of the functionality of the app, and the third and fourth criteria
contribute to the verification of the correctness and robustness of
the patch. Nevertheless, due to the complexity and variability of
the projects, it is not possible to fully guarantee the correctness and
robustness of the LLM-generated patches. We discuss this further
in Section 7.

2.8.4 Prompting for Patching. In the prompt, we ask the chatbot
to output a patch file instead of the whole file content to reduce
the token usage and limit non-security-related changes between
input and output. Patch files are required to contain accurate line
numbers for changes. However, we observed in an experiment
that responses from the chatbot were not accurate in detecting
line numbers. To counter this, we changed the prompt to include
line numbers together with the source code as shown in Fig. 3 in
the appendix. This resulted in a much more stable response. To
apply the patch seamlessly, we also used some flexible options to
5CodeQL was used in this step as the free version of SemGrep does not provide the
necessary features.

allow more robust patch line number detection and correction on
applying the patches.

Even with our extensive prompt and the above countermeasure
for patch accuracy, the responses from LLMs are not consistent.
That is, the responses are not identical per prompt. While this can
be seen as an issue, making the responses consistent is also not
very useful for our use case: if the prompt is tuned to be 100%
reproducible, we will always get the same response for a patch. In
case this patch is corrupted (e.g., bad format or insecure) the LLM
will be unable to correct the mistakes. For the final pipeline version,
we chose 1.2 as the temperature parameter and used GPT-4 as the
LLM model. Suppose any of the four criteria for patch verification
fail for a project after patching. In that case, the pipeline will retry
the prompt with the same configuration until the three criteria are
satisfied or the maximum number of retries is reached (by default,
20 times).

2.9 Reporter (Step G)
The next step in our pipeline is to estimate the severity of the
confirmed vulnerability and to responsibly disclose the vulnerability
to the project maintainers.

2.9.1 Calculating CVSS Score. CVSS (Common Vulnerability Scor-
ing System) is the standard metric used to assess the severity of
security vulnerabilities. The CVSS version 3.0 [36] combines several
metrics named Attack Vector (AV), Attack Complexity (AC), Privi-
leges Required (PR), User Interaction (UI), Scope (S), Confidentiality
(C), Integrity (I), and Availability (A). Calculating the CVSS scores
precisely for each vulnerability is a challenging task and requires
estimates by security experts. In our case, the values of some of
the mentioned metrics can be set the same for all of the discovered
vulnerabilities, and some of them are different per target. We now
explain how we compute the value of the metrics, based on the
definitions in CVSS version 3.

2.9.2 Metrics Identical for All Projects. Attack Complexity is
set to low, as there are no specific configuration requirements for
exploitation. Privileges Required is set to None as the Exploiter
only sends an unauthenticated HTTP request. User Interaction
is set to None for the same reason. Scope is set to Unchanged as
there is no specific scope-changing methodology that would apply
to all projects. Note, however, that if it is possible to change the
scope, then the impact would be higher; thus, our CVSS estimate
is conservative. Confidentiality is set to High as it is possible to
read any file on the server with the privileges of the web server.
Integrity is set toNone, as there was no direct approach to change
data with this vulnerability.

2.9.3 Project-Dependent Metrics. The remaining metrics can have
different values per project, andwe implemented dedicatedmethods
to calculate them. Attack Vector: In the context of this vulnerabil-
ity, the attack vector can be either Network or Local. To identify
the accurate value for each vulnerable program, we first run the
exploitation on the remote address of the network using the Docker
container. If the exploit is successful, we assign Network, other-
wise, we try exploiting it locally by executing the Exploiter inside
the Docker container and using localhost as the hostname to
verify the vulnerability exploitation at the local address. Note that
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if none of these methods work, we will not consider this project to
be exploitable. Availability impact is a potential side effect of the
detected vulnerability. As tested in the Exploiter (Step E), the value
of the Availability metric in CVSS calculation is set to High if it is
vulnerable and otherwise, it is set to None.

2.9.4 Vulnerability Disclosure. Responsible disclosure of the dis-
covered vulnerabilities is one of the most challenging parts of the
pipeline. Different companies and projects prefer different methods
to receive vulnerability reports. Responsible disclosure requires
private communication with maintainers: it is a time-consuming
process if done for a large number of projects. At the same time,
many projects are not maintained or are maintained by security-
unaware developers who might not understand the vulnerability
or the patch shared with the disclosure.

We have developed a staged and diversified responsible disclo-
sure approach to balance the benefits of notifying as manymaintain-
ers as possible against the potential harms of a massive vulnerability
disclosure via GitHub. First, we randomly opened issues in several
projects with under 200 stars. The issue did not contain any sensi-
tive details and only asked to enable the GitHub private security
feature, so that we can communicate privately, or propose another
place to discuss the vulnerability. Then, if maintainers were inter-
ested, we gave them the full disclosure. With some feedback from
maintainers, we decided to focus on projects with more than 5 stars,
as some projects are not used in production. In the next stage, we
sent pull requests to several projects with more than 5 stars and
waited for feedback. Some maintainers never responded or replied
that the projects were not maintained anymore; thus, finally, we
have decided to limit the disclosure (opening an issue followed by a
pull request) to projects with more than 5 stars that are maintained
(latest commit within 365 days).

For ethical reasons, we decided against opening issues on popu-
lar GitHub projects (200+ stars), as threat actors can potentially see
which repositories we opened issues on and guess the vulnerability.
Due to the popularity of such projects, their many users might be
affected. Thus, we reported vulnerabilities to such projects manu-
ally, to e-mail addresses associated with the projects (if available).
We also attempted to find relevant contact points by searching
for security reporting policies. For this, we automated the search
and parsing of security policies. Another option was to send direct
e-mails to developers by scraping their e-mail addresses from the
committer section of their commits, but we chose not to do so: do-
ing it on a large scale might compromise the privacy of developers.
Moreover, such e-mails could end up in spam folders.

2.9.5 Pull Request Submission. We monitor the status of all vul-
nerable projects. If the exploitable vulnerability is still present after
30 days of our report, we will also send a pull request with the fix
automatically. We implemented this step by forking the repository,
applying the previously crafted patch, and sending the changes as
a pull request. We decided to send pull requests even in projects
where the maintainers considered the impact to be low. The reasons
we do this are: (1) accepting or rejecting a pull request (especially
without side effects to other variables) is trivial; and (2) some de-
velopers mentioned to us they would be happy to receive a pull
request for the fix, but they could not spend time on fixing the
problem themselves.

After sending vulnerability reports, we asked developers to par-
ticipate in a short, optional survey to gather feedback about the
quality of the reports, their satisfaction, and opinions about the vul-
nerability. The feedback received from the maintainers is discussed
in Section 4.

3 Prevalence of the Vulnerable Code Pattern in
GitHub

To answer our question about howmanymore open-source projects
out there contain the vulnerable path traversal code pattern, we
initialized our pipeline with this code pattern. We executed the
pipeline against all public GitHub projects as the data source. In
this section, we report on the results of executing our pipeline.
We summarize the popularity of the vulnerable projects, the CVSS
score of the confirmed vulnerability instances (with the median
being 9.1), and a number of other relevant statistics in Appendix A.

Table 1 presents the summary of vulnerability statistics from
each step of the pipeline. In total, our search method resulted in
40,546 open-source projects scraped from GitHub. In these projects,
41,870 unique files contained the vulnerable keywords under 33,364
unique GitHub usernames or organizations. The pipeline failed to
download 37 of these results. Most of the results were labeled as
secure by the static analysis step, thus, SemGrep identified 8,397
samples as vulnerable and 33,436 samples as safe. The Runner failed
to automatically run 3,908 samples using the defined methods (we
examine some reasons behind this in Section 7.2). Out of 4,489 can-
didates for automatic exploitation, 1,756 were successfully exploited
and 2,733 were not exploited. Among 1,756 vulnerable files, 484
samples were also vulnerable to denial of service (as discussed in
Section 2.9.1). A list of successful payloads is presented in Table 3 in
Appendix A. In the Patcher step, 1,600 valid patches were generated
and validated automatically (as explained in Section 2.8.3). For 188
samples (out of 1,756), the produced patches could not be proven
with our tests not to break the software. Out of these 188 samples,
there was only one popular project (177 stars). The report for this
project was sent manually, and it was fixed by the maintainers.

We have approached 31 very popular projects manually, and 13
of them have been patched (remediation rate of 42%). We created
245 issues at prominent projects with fewer than 200 stars, of which
70 projects reacted. We have sent 433 pull requests, with 46 of them
being accepted and 24 being closed. Additionally, 4 projects were
manually patched by the maintainers (without accepting our patch).
Thus, the total remediation rate among projects that received a pull
request is 11%. In total, 63 out of 464 reports fixed the vulnerabil-
ity (remediation rate of 14% among the projects that received full
vulnerability and patch information).

4 Developer Feedback
To collect feedback from developers and evaluate how they assess
our work, we asked maintainers to participate in a short, optional
survey. The survey questions are listed in Appendix B. We received
15 responses from the survey. Developers mostly strongly agreed
that such reports help improve security. We specifically asked the
maintainers to rate the quality of each part in the final generated
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Table 1: Summary of vulnerabilities.

Metric Count

Total projects analyzed (step B) 40,546
Unique files with vulnerabilities (step B) 41,870
SAST vulnerable samples (step C) 8,397
SAST safe samples (step C) 33,436
Automatic running failed (step D) 3,908
Successful exploitation (step E) 1,756
Generated valid patches (step F) 1,600

Pull requests sent to projects (step G) 433
Pull requests accepted 46
Manual fixes by maintainers (based on public pull
request)

4

Pull requests closed 24
Private report made to maintainers 31
Manual fixes by maintainers (private report) 13

Total fixed repositories 63

report they received. The maintainers responded mainly with posi-
tive feedback, and the majority of developers who replied believed
that the code was vulnerable and not a false positive.

Note that the results are only from the developers who partici-
pated in the survey, not the actual number of fixes. The statistics
on how many projects were fixed after our report are discussed in
Section 3. In general, only a small fraction of project representa-
tives participated in the survey, which is, unfortunately, common
in survey research with developers [53, 111].

In the set of rejected pull requests (24 cases), two maintainers
mentioned the code was intended for development purposes only
and was not deployed in production. One maintainer noted that the
vulnerable web server was used for testing only; another explained
that the project was unmaintained. In four cases, the maintainer
chose to implement their own patch instead of accepting the pull
request. One of the repositories of these four cases was related to
a web development course at a top US university. The maintainer
verified the issue and implemented the fix into a newer version
of the course material. Finally, two maintainers assumed that the
report was spam, and one mentioned that the vulnerable part was
not used in their software. From these responses, we can conclude
that for some affected projects, the potential impact is estimated
by the maintainers as low, and there is sometimes a lack of trust
or interest from the maintainers who might ignore a valid vulner-
ability report. This is in line with a recent study on vulnerability
management in open source projects [5].

5 Root Causes of the Vulnerability
Based on the vulnerable code patterns, we tried to identify the
sources of these code patterns and to discover why this vulnerable
code pattern propagated in so many projects and did not receive a
fix earlier. In many cases, this vulnerable code pattern is present for
the whole lifecycle of the software project. It is important to note
that we want to study the root causes to learn some useful lessons
and prevent similar issues in the future, not to put the blame on
people or organizations.

The sources of the vulnerable code pattern. The oldest oc-
currence of the vulnerable code snippet we found in the GitHub
Gist [85] was created in 2010. GitHub Gist is a GitHub service for
sharing code snippets, and previous research has shown that many
shared gists have security issues [100]. Gists are usually less pop-
ular and known compared to repositories; however, this Gist has
543 stars and 204 forks, which is quite uncommon. Interestingly, in
2012, a developer commented that the code was vulnerable. Then,
in 2014, another developer raised the same concern about the vul-
nerability, and yet another developer mentioned that the code is
safe, after testing. In 2018, somebody commented about the vulner-
ability again, and another developer insisted that that person did
not understand the issue and that the code was safe.

The next popular place of this code snippet was a hard copy of a
document created by the community in Mozilla developers in 2015
and was fixed in 2022 [91]. However, the vulnerable version also
migrated to StackOverflow in late 2015. Although it received several
updates, the vulnerability was not fixed: the code snippet there is
still vulnerable [87]. The same story happened in 2016 in another
StackOverflow question (with over 88,000 views), where the same
pattern was used, and a developer suspected the vulnerability. Yet,
as this developer was not able to verify the issue, the code was
assumed safe [86]. Similarly to what happened with Gist, a user
raised the concern of vulnerability, but no one provided a patch
or a proof-of-concept (PoC) exploit, leaving the vulnerable code
as it is. We note that the StackOverflow question page has been
viewed over 758,000 times; this is the 115th most viewed question
in StackOverflow for the Node.js tag [93]. We have also found
several Node.js courses that used this vulnerable code snippet for
teaching purposes [88–90, 92].

Why developers assume it is safe. As mentioned before, we
believe the main reason for this misunderstanding between develop-
ers, which lasted for over 15 years, is that when developers test the
code, they usually use a web browser or the curl command. These
clients will normalize the URL by default. For example, to exploit
this vulnerability using curl, the tester must use the –path-as-is
flag, which means Do not squash .. sequences in URL path according
to the curl documentation. By simply providing a working proof-
of-concept exploit or editing the question, it would be possible to
overcome such issues. We, again, note that the attackers are not
bound to use the standard clients, and, thus, the vulnerability is
exploitable in the wild.

The approximate commit date of the vulnerable code in the ex-
ploited repositories is shown in Fig. 4. It shows a growth trend up
to 2017, which is close to the date of the discussed sources of vul-
nerable code. Another growth trend can be seen from 2019, which
might be due to one of the free popular Node.js courses released
in 2019; however, more evidence is required for such a hypothesis.
It can also be expected that, given the overall rising number of
developers and projects, the number of vulnerabilities would rise
as well. We stress that it is very important to raise awareness about
this (and other) vulnerabilities in the developer community. This
is why it is critical to responsibly communicate the information
about the vulnerability and the patch to the maintainers. To raise
awareness, we have provided information about this vulnerability
at the original GitHub gist and the two StackOverflow questions.
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Figure 4: Distribution of verified exploited samples per year.

6 Side-Effects on LLMs
Large-language models are trained on large-scale datasets, includ-
ing publicly available projects on GitHub, StackOverflow discus-
sions, and other internet sources. The studied vulnerable code pat-
tern appeared many times, with different styles. To understand
the effect of these vulnerable code snippets on LLMs, we experi-
mented with several popular chatbots. We designed 2 scenarios: (1)
prompt the LLM to create a static file server without third-party
libraries, and then ask in the same conversation to make it secure;
(2) prompt the chatbot to create a secure static file server without
third-party libraries. The exact prompts we used in this experiment
are available in the supplementary material.

For each scenario, we repeated each procedure 10 times per LLM.
After prompting, we collected all the produced code snippets and
tried to exploit them. As can be seen in Fig. 5 part A, in the first
scenario (without mentioning security), most of the LLMs generated
vulnerable code to path traversal attacks (76 vulnerable out of 80;
95% vulnerable). In the second step of the first scenario, as shown
in part B, by asking LLMs to secure the code, the results improved
(42 vulnerable out of 80; 52.5% vulnerable), still showing that the
majority of the samples were vulnerable to the attack. In the second
scenario, where we prompted the LLMs to generate secure code
(part C), the ratio of the vulnerable samples is very considerable
(56 vulnerable out of 80; 70% vulnerable). We note that GPT-3.5 and
Copilot (balanced) did not generate secure code in any scenario. The
only model that performed better in the second scenario compared
to the first scenario was Copilot-creative. Copilot-precise achieved
the highest score when asked to make the code secure if it was not.

Previously, it was shown that developers copy and paste vulner-
able code on code-sharing platforms such as Stack Overflow, and
such code snippets are then migrated to GitHub projects [23, 37,
112]. Nowadays, with the advances of generative AI, the popular-
ity of StackOverflow and similar platforms is decreasing in favor
of LLM chatbots [27], which also learn from open community re-
sources [46]. A big advantage of a community-driven code-sharing
platform is the ability to discuss code snippets, which facilitates
a deeper understanding of code and security risks for developers
(even though it does not always work perfectly, as we have ob-
served). Lacking such a feature in the LLM chatbot thus increases
security risks, as the only source to rely on is the chatbot itself.

This experiment shows that the popular LLM chatbots have
learned the vulnerable code pattern and can confidently generate
insecure code snippets, even if the user specifically prompts them
for a secure version. Therefore, our study emphasizes that popu-
lar vulnerable code patterns need to be eradicated not only from

open-source projects and developers’ resources but also from LLMs,
which can be a very challenging task.

7 Discussion and Limitations
7.1 Summary and Implications of Our Results
To identify the prevalence of the path traversal vulnerable code
pattern across GitHub open-source projects (our objective O1), we
designed and implemented an automated pipeline. To the best of our
knowledge, this is the first pipeline in the literature that 1) includes
all steps from candidate project finding to vulnerability discovery
and confirmation and to security impact assessment through CVSS
score calculation (thereby achieving our objective O2) patch de-
sign, and vulnerability disclosure to maintainers (addressing our
objective O3), and 2) detects a new vulnerability (a zero-day for
the impacted projects) rather than working on a dataset of known
vulnerabilities. We outline the novelty further in Section 8.

Our pipeline automatically detected path traversal vulnerabilities
in 1,756 open-source projects on GitHub, and we were able to
remediate at least 1,600 of them locally and 63 of them publicly.

By examining the sources of this vulnerable code pattern that
emerged throughout the past 10-15 years in various reputable de-
veloper communities and was largely approved as secure (objective
O4), we have shown that developers need more support in under-
standing how to deal with this type of vulnerability and how to test
for it correctly. Our remediation efforts so far reveal that the main-
tainers are not fully embracing our notifications (the remediation
rate based on pull requests is 11% and on manual notifications to
more popular projects 42%). This is worrying, and it is a signal that
we need to develop more effective vulnerability communication
and remediation channels. Especially today, when software sup-
ply chain attacks have become so prominent, efficiently patching
open-source projects has become a critical issue. Additionally, we
have shown the worrying impact of the proliferation of a single
vulnerable code pattern on LLMs (objective O5). While it is not
clear whether the biggest impact comes from the GitHub projects
themselves or from developers’ resources that distribute this code
example, we think that a concerted effort from the community
is needed to support developers in both securing their code and
improving the resources they use.

7.2 Limitations of the Pipeline Implementation
Our pipeline has certain limitations and, in the future, its capabilities
can be extended.

Search API Limitations. We designed our pipeline to work
around the GitHub Code Search API limitation (1,000 results per
query). However, our solution is not comprehensive enough to
fully eliminate the search limitation. This limitation led to missing
additional vulnerable projects, and therefore, the true prevalence
of the vulnerability is higher. To the best of our knowledge, our
proposed method is the only workaround that allows GitHub-wide
code search. While GitHub code search was not the main focus
of this work; however, improving it in the future will increase
the repository coverage. A possible alternative is to use GitHub
archives, but so far, we have not been able to identify a dataset that
is sufficiently large and up-to-date. Moreover, developers often fork
repositories without contributing to the original projects [107]. For
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Figure 5: Distribution of vulnerable code snippets generated by LLMs in different scenarios: (A) scenario 1, step 1; (B) scenario 1,
step 2; (C) scenario 2.

example, our dataset’s most popular project (in terms of stars) in
our dataset has over 5,200 forks. Most of these forks are likely also
vulnerable. Some projects are simply a copy of another project that
was pushed as a new project (shadow forks) and are also vulnerable.
Such cases are orphan vulnerabilities and were previously studied
in forks and file-level copies [101]. We did not push patches to forks
and did not investigate the popularity of vulnerable forks, as it was
not a target of this research. However, if the fork owner simply
updates the forks, the project would receive the patch.

SAST.We chose a publicly available rule using SemGrep for taint
analysis. The quality of such a rule and SemGrep itself can affect
the pipeline. False positives (classified as vulnerable but not vulner-
able) from this step are not an issue for the pipeline as they will
be eliminated in the Exploiter step, but false negatives (classified
as not vulnerable but vulnerable) can occur with the pipeline [9].
Moreover, removing the SAST filtering step and directly executing
all projects could further reduce false negatives at the cost of in-
creased runtime, and might reveal additional vulnerabilities, weak
mitigations, or weaknesses in the SAST rules themselves. We manu-
ally checked a few samples (ca. 30) with high stars and observed no
false negatives, but this step requires a deeper analysis. The focus
of this work is to automate the process on a large scale with no
false positives rather than focusing on false negatives. In the future,
multiple static application security testing tools can be used in the
pipeline to make a joint decision [9].

Runner. This module has some limitations related to software
diversity. Some projects are too old and use functions already dep-
recated in Node.js. As the Node.js version of such projects was
before version 1.0.0, we chose not to fix this issue in the Runner, as
the projects were less likely to be used anywhere. In some cases,
the port would not be open by default. For example, software that
requires an OAuth flow for a callback login only activates the web
server after receiving a specific command-line argument. Some
programs would only accept a request once and then exit. Such
cases require a more in-depth analysis of the code. Moreover, there
is no guarantee that all software will open a port.

We selected the top 30 projects with the most stars that did
not run automatically. After manually running them, 9 out of 30
samples were vulnerable. Thus, the Runner component limits the
detection of vulnerable projects. However, even if the pipeline could

not automatically run the project, it already helps in improving
the efficiency of finding vulnerabilities by automatically collecting
potentially vulnerable projects with keywords and filtering them
using static analysis. We reported these vulnerabilities manually.

Exploiter. The vulnerable code pattern studied in this research
used the pathname part of the URL directly without any special
formatting, resulting in easy-to-implement exploit code. However,
if the input was placed in a different place, such as a query string,
our method would not work. This case requires a white-box fuzzing
step or taint checking, which can improve the exploitation success
rate; these can be added to future pipeline extensions. As this was
not the case in the code pattern studied, we did not consider it.

Patcher.Automated patching by LLMs, while drastically improv-
ing the scalability, has limitations as the patches might, in principle,
introduce other bugs. We tried to minimize this risk by applying
several checks mentioned in Section 2.8. As we show in Appendix A,
the provided patches are relatively small. We also clearly explained
in our communication with the maintainers that the patch has been
generated automatically using LLMs. Ultimately, the responsibility
to check the patch and correct it as needed lies with the maintainers,
even if the patch would have been designed manually (or no patch
was provided). Additionally, due to the project’s diversity, a small
fraction of projects were not patched.

Reporter. Some maintainers mentioned that the code was only
used for development (not production), e.g., for testing. However,
even if the vulnerable code is only for development, it can still
make the system vulnerable to a network attacker. That is also the
case with running test cases, as attackers still have an attack win-
dow. This makes a continuous integration server vulnerable while
running test cases. Thus, our severity assessment is conservative.
However, of course, we cannot fully understand the context of all
vulnerable projects due to their large diversity.

There is no perfect way to securely contact the maintainers on a
large scale. We used an active personal GitHub account of one of
the authors with a good reputation on GitHub to help convince the
maintainers that the issues were not spam. Still, some maintainers
believed that we were spamming them. Unfortunately, opening hun-
dreds of issues or pull requests in many GitHub projects under the
same GitHub account is perceived as spamming and attracts nega-
tive reactions. Thus, we opted for a staged notification process. We
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got positive feedback after we publicly gave full vulnerability details
to maintainers. However, doing this on a large scale offers malicious
actors an attack time window until the fix is published [126].

Pipeline. In our study, we strived to eliminate false positives, as
reporting to maintainers a vulnerability that does not affect their
code would be a major nuisance. Thus, we automated the collection
of vulnerable projects, tested them using static analysis and by
confirming exploitation, and then generated and validated a patch.
The projects identified as vulnerable by confirming exploitation
are vulnerable (no false positives). However, despite our validation
attempts, the generated patches, as we mentioned, might not be
fully correct, and the maintainers need to attentively analyze them
before implementing. The staged pipeline design also results in
false negatives: besides the GitHub Code Search API limitations,
there might be, for example, many vulnerable projects among those
that we could not run (as we mentioned in Section 2.6). Thus, the
overall incidence of the studied vulnerable code pattern on GitHub
is likely much higher than what we report.

Finally, the pipeline supports multiple vulnerable files per reposi-
tory, but does not handle multiple vulnerabilities in a file. We found
36 repositories, each containing two vulnerable files.

7.3 Extending the Study
Whereas this study focuses on a particular code pattern, the pipeline
design that we present is generic and can be adapted to various other
vulnerability types. To investigate other variations of path traversal
vulnerabilities, the first step is to find other common vulnerable
code patterns or other types of path traversal where the entry point
is different. Searching for common vulnerable code patterns can be
done by mining real-world vulnerability datasets [1, 11]. To find
patterns, it is possible to combine such datasets in conjunction
with code clone detection methods [25, 70, 105]. Other variations
of the path traversal or other vulnerabilities can also be found by
using a SAST tool with customized rules. Once a code pattern of
interest is identified, it is trivial to bootstrap the pipeline with it
(step A). However, steps D and E would then require new tailored
implementations to support confirming exploitation of the specific
vulnerability exposed by the new code pattern. These changes for
another vulnerability only have to be done once, after which the
pipeline will automatically search for and probe GitHub projects.

Moreover, the pipeline can be substantially enhanced by using
LLM agents [127]. For example, to improve the Runner component,
we can use LLM agents to run the projects automatically [14, 49].
LLM agents are also promising in vulnerability exploitation [32,
119, 130, 131], vulnerability detection and false positive triage for
SAST reports [2, 79, 110, 113], and vulnerability management and
repair [68, 83, 97, 104, 120, 121]. The pipeline can also be improved
by integrating more robust patch validation methods [34, 114], e.g.,
by running the test suites for projects equipped with them [17].

7.4 Ethical Considerations
Following the Menlo report [6, 54], we carefully balanced the bene-
fits and risks to different parties when designing and executing our
research. On the one hand, finding a vulnerability and proposing a
patch to the maintainers improves the project’s security and the
security of the overall open-source software ecosystem. On the

other hand, responsible vulnerability disclosure requires confiden-
tial communication between the reporter and the system owner [20].
This would mean that for all 1,756 projects, we need to establish
confidential communication with the maintainers; however, this is
not feasible given the scale. Moreover, it is important to limit the
potential harm of large-scale vulnerability notifications via GitHub
that can be observed by attackers, and are also perceived as spam
by some maintainers. Thus, we opted for a diversified approach,
whereby popular projects that are more likely to be in a supply
chain for other users were contacted privately, preferably using
the project-defined communication channels for security issues.
For slightly less popular projects, we first create an issue and ask
the maintainers to contact us for more details. After 30 days, if
there is no action, we make a pull request with a patch and expla-
nations about the vulnerability. Finally, we did not notify most of
the unpopular or unmaintained projects. We acknowledge that the
number of stars is an imperfect measure of project importance.

Creating issues in many projects and submitting pull requests
can get attackers’ attention, and potentially endanger vulnerable
projects from our dataset and those we missed. Yet, considering the
important benefit of improving security [81], we chose to report
exploitable vulnerabilities in a way that would be acceptable to
maintainers, which maximizes the chances of fixing the issue [21].

The response rate from the maintainers is relatively low (the
total rate of patching among projects that have been notified is
14%). While some maintainers communicated to us that the code is
not in production and thus they do not consider the vulnerability
to have security implications (which can be a fallacy, as we discuss
in Section 7.2), many projects are also not maintained anymore.
Thus, it is important to consider the potential harm from attract-
ing attention to this vulnerability, as many projects will remain
unfixed [72]. We believe that the benefit of raising awareness about
the issue, especially among the very popular and influential projects
and within developer communities, outweighs this potential harm.

Finally, we asked maintainers to fill in a survey. We did not ask
for any personal data (i.e., those falling under the GDPR); therefore,
the survey does not raise ethical issues related to personal data
collection. A relevant Ethics Review Committee at the Science
Faculty of Leiden University has reviewed and approved our study.

8 Related Work
Automated vulnerability detection, exploitation, and patching are
active areas of research. Until recently, large-scale automated
vulnerability detection methods heavily focused on develop-
ing machine learning-based approaches that can learn to identify
vulnerable code patterns from vulnerability datasets [22, 74, 103].
Other active research directions for automated vulnerability detec-
tion techniques are fuzzing [29, 56, 73, 129] and leveraging patch
information [64, 98]. We do not apply machine learning (ML) for
detection, as we use a simple pattern matching and static taint anal-
ysis done by SemGrep [9]. We also do not apply fuzzing to detect
vulnerabilities or generate exploits, because the vulnerable pattern
is amenable to a more straightforward exploit design. Closer to our
work, [15, 35, 57, 116–118] detect vulnerabilities similar to some
already discovered ones by leveraging code similarity. Go et al. [43]
use a static list of dangerous functions with GitHub Code Search
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to identify potentially vulnerable code. However, their approach
lacks validation of exploitability. Leitschuh et al. leveraged GitHub
CodeQL to perform a GitHub-wide search for vulnerabilities; how-
ever, handling false positives (e.g., by confirming exploitation) was
not mentioned [61]. Moreover, GitHub removed the CodeQL search
in 2022 [63], which does not allow this methodology to be reused.
Shcherbakov et al. designed a multi-label static taint analysis to
identify prototype pollution vulnerabilities in Node.js [108]. By
manually crafting exploits, theywere able to exploit popular Node.js
libraries (without providing patches). Kang et al. find JavaScript vul-
nerabilities using the abstract interpretation-based FAST method,
which is also able to produce exploits that have to be applied man-
ually [52]. In DAPP [65], researchers designed a static analyzer
based on abstract syntax trees for detecting prototype pollution
vulnerabilities in Node.js projects. Compared to our work, we focus
on a different vulnerability, and instead of only static analysis, we
automatically exploited candidate projects.

Automated exploit generation approaches can leverage,
e.g., the fix commit and apply fuzzing or advanced code anal-
ysis techniques to automatically design and chain exploit gad-
gets [4, 10, 16, 48, 94, 95]. For example, the taint analysis-based
NodeMedic [19] and fuzzing-based that is input structure aware,
NodeMedic-Fine approaches [18] automatically detect vulnerabil-
ities in npm packages and generate exploits. Vulnerability repair
methods often leverageMLmethods and,most recently, transformer
neural architectures to synthesize patches [38, 99, 109].

Applications of LLMs. Recently, LLMs have received signifi-
cant attention as a means to detect [71, 128], exploit [32, 33, 122],
and patch [24, 50, 51, 59, 69, 97, 121] diverse types of vulnerabilities
and bugs [30]. For example, Pearce et al. [97], Xia et al. [121] andWu
et al. [120] experimented with LLMs for automated vulnerability
repair and found that the studied (earlier generations of) LLMs were
not always able to correctly patch complex, real-world examples.
More recent studies show that GPT-4 (used in our study for this
task) performs better in vulnerability patching than other current
LLMs [83, 104]. Liu et al. [68] and Wu et al. [119] show that LLMs
like ChatGPT are useful for penetration testing and vulnerability
management tasks and can improve some of the individual steps of
our pipeline. Fang et al. reported that LLM chatbots were able to
exploit different CVEs [32] and hack insecure websites [33], while
another study [31] shows that LLMs are capable of code analysis for
security purposes. These works can deal with diverse vulnerability
types, however, they do not include all of our pipeline stages, e.g.,
the vulnerability disclosure part. As we mentioned, future exten-
sions of our pipeline can integrate LLMs to find vulnerable code
patterns or produce exploits.

Notably, LLMs do not always generate secure or even working
code as shown by recent studies, e.g., [55, 67, 82, 96, 125]. This is in
line with our study results – and we have shown that the insecure
code pattern that we studied had likely contaminated the LLMs.

Pipelines.To execute our study, we developed a complete pipeline
that not only scans GitHub and finds candidate vulnerable projects
but also validates the vulnerability by exploiting it, generates the
patch, and prepares a pull request for the maintainers. Very recently,
there have been several efforts aiming at developing such pipelines,
both in academia and industry. For example, Vulnhunter [75] and

Google’s BigSleep [44] scan a given repository, identify vulnera-
bilities, and try to exploit them, thereby identifying zero-days in
a given project. BigSleep, in particular, looks for variants of previ-
ously found and patched vulnerabilities. AutoPT [119] is capable
of pentesting web applications, integrating a vulnerability scanner
and a proof-of-concept exploit synthesis delivered by LLM agents.

Novelty of our work. Compared to these studies, our work
introduces a complete, end-to-end pipeline that (1) identifies a real-
world, widely used vulnerable pattern beyond simple function lists,
(2) automatically executes and exploits the target code to filter out
false positives, and (3) generates patches and submits pull requests
with detailed vulnerability reports. To our knowledge, no prior
work automates this full lifecycle from detection to mitigation
and remediation on this scale, marking a significant advancement
over existing methods. Furthermore, in our study, we examine
the prevalence of a specific path traversal vulnerable code pattern
at the GitHub scale, analyze its root causes, and show that it has
contaminated popular LLMs. To the best of our knowledge, this code
pattern was previously not studied in the literature. We received
two CVEs for discovering this pattern in two very popular projects.

9 Conclusions
We show that a critical path traversal vulnerability created by a
single code pattern has polluted open-source projects on GitHub.
We can detect, confirm, and remediate this vulnerability employing
an automated pipeline that we developed. Using this pipeline at
the GitHub scale, we have identified 1,756 vulnerable projects, and
our responsible disclosure efforts led to 63 projects being patched.
We have also shown that it might be difficult to fully eradicate this
pattern globally, as popular LLMs seem to have been poisoned with
it. In the future, we plan to improve and extend the pipeline in
several directions, particularly by integrating other vulnerable code
patterns and improving patch generation.
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A More Detailed Pipeline Results
In this section, we provide additional analysis results from running
the pipeline and specify our experimental setup.

Popularity of the affected projects. GitHub stars are used
as a metric to show popularity. Fig. 6 shows the distribution of
vulnerable projects divided by the number of stars. It shows that
the issue is not limited to less popular (or less seen) projects: the
vulnerable code is spread into various projects, including some very
popular ones. It can also be seen that the projects are not biased in
a specific star range, as it is natural to have fewer projects with a
high number of stars.

CVSS scores. The distribution of CVSS scores for the confirmed
vulnerabilities is shown in Fig. 7. As can be seen, the score ranges
are between 6.1 and 9.1 (the median score is 9.1). This means that for
most projects, the vulnerabilities are critical: they are exploitable
via network and vulnerable to denial-of-service attacks, thus the
vulnerabilities pose a high risk if exploited.

Patch details. The LLM does not always generate a correct
patch on the first attempt (see Section 2.8). To quantify this, Fig. 8
reports the number of attempts required by the GPT-4 to patch a
vulnerable project. As we can see, in most cases, the vulnerability
was patched on the second try, but in some cases, it took more tries
to fix it.

Table 2 shows the summary statistics of the generated patch
sizes. We can see that most projects received a patch with 5 added
lines of code. We believe this is a relatively small patch that the
maintainers can review and validate themselves. In 40 projects (out
of 1600 with valid patches), the LLM has removed some lines of
code. We inspected these patches separately. There, in 33 projects,
the generated patch also added the removed lines (thus, they were
simply moved); in 5 projects, the removed lines were added in a
modified way (resulting in a more clean code); and in 2 projects
these lines of code were removed: in one case, the patch removed
commented out code (we still count this as removed LoCs); in the
second case, the patch removed a logging code that would print the
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Figure 6: Popularity distribution of vulnerable projects (in
the number of stars - log scaled).

Figure 7: Automatically computed CVSS scores for exploited
vulnerabilities.

Figure 8: Number of LLM attempts for a successful patch of
vulnerabilities.

Table 2: Summary statistics of patch sizes. LoC+ stands for
lines of code added by the patch; LoC− stands for lines of
code removed; LoC𝑡 is the total amount of modified lines
of code (LoC++LoC−). Note that each statistic is computed
independently over all valid patches.

Statistic LoC+ LoC− LoC𝑡

Min 1 0 1
Q1 5 0 5
Median 5 0 5
Q3 5 0 5
Max 20 2 20

current date and the accessed file name in the developer console.
This shows that the automated patching by the LLM mostly does
not remove or modify the existing code functionality. Still, a review
by the maintainers is necessary to fully understand the introduced
code changes and assess them in the context of each project.

Our experimental setup. We conclude with some statistics
regarding the experimental setup to give an impression of the com-
puting resources required for this study. The whole experiment was
conducted on a single server machine with a single AMD EPYC
7282 CPU @2.8 GHz with 64 GB of RAM running Ubuntu 22.04,
and took approximately three weeks. The main bottleneck of the
application was the GitHub Scraper due to API rate limits (see Sec-
tion 2.4). The static analysis step took ≈3 seconds on average for
each sample. In the Runner step, the main factor for the runtime
duration is project size, as projects are cloned with Git, this step

Table 3: Summary of successful exploit payloads

Payload Count

../../../../../../flag.txt 1,749

%2e%2e%2f%2e%2e%2f%2e%2e%2f%2fflag.txt 5

images/../../../../../../../flag.txt 2

Note: Repeated patterns truncated for readability.

takes ≈15 seconds on average per project. The patching, which in-
volves the use of GPT-4, takes ≈40 seconds on average, per project.
Automatic validation and sending a pull request for a patch takes
≈54 seconds (however, this is not a bottleneck for our work, as we
stage notifications). Within this procedure, first, several checks are
performed: the current vulnerability status of the project is checked
again, then if there was previously an issue opened on the issue, it
is linked to the pull request, and also it double checks if there was
a pull request sent previously to prevent duplicate pull requests. If
everything checks out, the patch is committed, and the pull request
is sent.

While the performance of the pipeline is practically feasible,
the Runner step can be accelerated by locally caching projects
and downloading them as a ZIP-file instead of cloning them with
commit histories. As projects are isolated in containers, the steps are
easily parallelizable, and this can be further extended by distributing
projects over multiple nodes. Processing performance is not the
main focus of this paper, we leave a discussion of performance
improvements and scaling the pipeline to even larger scales for
future work.

B Survey Distributed to Maintainers
How would you rate the quality of the report? (Score from 1
to 10, where 10 is the highest)

• Overall report quality (Score: 1 to 10)
• Proof-of-Concept (PoC) code (Score: 1 to 10)
• CVSS metrics (Score: 1 to 10)
• Patch file (Score: 1 to 10)
• Vulnerability description (Score: 1 to 10)

Do you believe similar reports can be helpful for improving
security?

• Strongly agree
• Somewhat agree
• Neither agree nor disagree
• Somewhat disagree
• Strongly disagree

What was your response to the vulnerability report?
• We believe it was vulnerable, and we have already applied

the supplied patch.
• We believe it was vulnerable but we applied our patch.
• We believe it was vulnerable, but we didn’t fix it.
• The code was not in an important path, but we can still

accept (or have already accepted) the patch as an improve-
ment.

• It wasn’t vulnerable at all.
• I don’t know.
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• No response.

B.1 Maintainers’ responses to the survey

Figure 9: Responses from maintainers about the usefulness
of similar security reports.

Figure 10:Heatmap of ratings for different parts of the report.

Figure 11: Developers’ assessment of the vulnerability.
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