
ar
X

iv
:2

50
5.

20
18

3v
1 

 [
cs

.S
E

] 
 2

6 
M

ay
 2

02
5

Accepted in the 23rd IEEE/ACIS International Conference on Software Engineering, Management and Applications (SERA 2025)

Exposing Go’s Hidden Bugs:
A Novel Concolic Framework

Karolina Gorna∗†, Nicolas Iooss†, Yannick Seurin†, Rida Khatoun∗
∗Telecom Paris

name.surname@telecom-paris.fr
†Ledger Donjon

name.surname@ledger.com

Abstract—The widespread adoption of the Go programming
language [1] in infrastructure backends and blockchain projects
has heightened the need for improved security measures. Es-
tablished techniques such as unit testing, static analysis, and
program fuzzing provide foundational protection mechanisms.
Although symbolic execution tools have made significant contri-
butions, opportunities remain to address the complexities of Go’s
runtime and concurrency model. In this work, we present Zorya,
a novel methodology leveraging concrete and symbolic (concolic)
execution to evaluate Go programs comprehensively. By sys-
tematically exploring execution paths to uncover vulnerabilities
beyond conventional testing, symbolic execution offers distinct
advantages, and coupling it with concrete execution mitigates
the path explosion problem. Our solution employs Ghidra’s P-
Code [2] as an intermediate representation (IR). This implemen-
tation detects runtime panics in the TinyGo compiler [3] and
supports both generic and custom invariants. Furthermore, P-
Code’s generic IR nature enables analysis of programs written
in other languages such as C. Future enhancements may include
intelligent classification of concolic execution logs to identify
vulnerability patterns.

Index Terms—Concolic execution, Go, Invariant testing, Vul-
nerabilities detection, P-Code

I. INTRODUCTION

Go’s rising popularity in cloud, infrastructure, and
blockchain applications raises security concerns due to its
unique runtime and concurrency features (goroutines, chan-
nels). Reports indicate over 66% of Go modules contain
vulnerabilities [4], highlighting the critical need for robust se-
curity analysis. Challenges include unsafe memory operations,
pointer misuse, complex error handling, and the unpredictable
nature of garbage collection and goroutine management. These
factors, compounded by the intricacies of Go’s concurrency
model, raise the question of how to effectively identify and
mitigate vulnerabilities in such a complex environment.

Contributions. To address these challenges, this paper
proposes an innovative approach using concolic execution for
the security verification of Go programs. Our framework leve-
rages P-Code as an intermediate representation to model with
granularity Go’s execution semantics. This work improves
security verification by:

• Proposing a new approach for generating and parsing P-
Code outside of Ghidra [5] [6], including examples of
test programs and their corresponding P-Code files.

• Proposing a novel concolic execution method to uncover
common vulnerabilities in Go, and other languages with
binaries convertible to P-Code, such as C.

• Implementing an open-source Proof-of-Concept of the
concolic execution method and validating it with a custom
dataset of binaries and encoded vulnerabilities.

This paper begins by overviewing techniques for securing
Go code and their corresponding tools, followed by a com-
prehensive presentation of our contributions. It then details
our proposed methodology, presents our evaluation results,
reviews related work, and concludes with a summary of our
contributions and potential future research directions.

II. BACKGROUND: SECURING GO CODE

Security tools for Go address vulnerabilities using diverse
methods, each with distinct strengths and limitations. Static
analysis tools such as gosec [7], go-vet [8], staticcheck [9],
and errcheck [10] perform analyses to detect common issues
like unchecked errors and unsafe pointer usage. While these
tools integrate well into continuous integration workflows,
their semantic checks can miss deeper vulnerabilities.

Dependency-focused tools like Snyk [11] detect known
vulnerabilities within third-party modules by continuously
scanning dependency graphs against vulnerability databases,
but they can overlook deeper application-specific logic errors.

In contrast, CodeQL [12] provides a query-based static ana-
lysis framework supporting sophisticated data-flow analyses to
detect complex vulnerabilities. Nevertheless, its effectiveness
requires significant setup effort and query-writing expertise.

Dynamic analysis tools, notably go-fuzz [13] and Google’s
gofuzz [14], use randomized inputs to uncover runtime bugs
such as buffer overflows or panics. Although effective at
revealing edge cases, their limited path exploration can restrict
their capability to identify state-dependent logical errors.

Black-box frameworks like gopter [15] enhance fuzz testing
by enabling stateful property-based testing; however, their lack
of white-box insight can limit their effectiveness.

Specialized tools like krf [16] and on-edge [17] specifically
target vulnerabilities related to Go’s defer, panic, and recover,
but their narrow scope and infrequent updates reduce their
effectiveness against evolving threats.

Existing tools address specific vulnerability classes but can
remain insufficient for detecting complex flaws.

https://arxiv.org/abs/2505.20183v1


Accepted in the 23rd IEEE/ACIS International Conference on Software Engineering, Management and Applications (SERA 2025)

III. OVERVIEW OF THE CONTRIBUTIONS

A. Core contributions
Zorya is a concolic execution framework designed to detect

logic-related bugs, language-specific vulnerabilities, and un-
cover new patterns of security issues, primarily in Go binaries.
As illustrated in Fig. 1, the analysis begins by generating CPU
registers and memory dumps using gdb [18] at a user-specified
address. Zorya then loads these dumps to initialize execution
from the given starting point, ensuring a realistic and accurate
representation of the program state.

The core methodology involves translating binary code into
raw P-Code, a low-level intermediate representation, which
is subsequently parsed for precise execution path analysis.
Zorya focuses on key aspects such as targeting the sections
containing executable code in studied binaries, supporting full
binaries with runtime components, and accommodating shared
libraries. Due to the lack of a complete Rust-based library for
P-Code parsing, Pcode-parser was implemented from scratch,
improving upon incomplete alternatives like sleigh-rs [19].

Zorya’s engine, implemented in Rust, uses the Z3 SMT
solver [20] and includes a state manager, a CPU state, a
memory model, and a virtual file system. It emulates P-
Code instructions (e.g. handle_int_add, handle_load)
to track the execution and detect vulnerabilities in the analyzed
binaries. Zorya supports both concrete and symbolic data
types, x86-64 instructions and syscalls, and manages the
program counter. Currently, Zorya analyzes single-threaded
Go programs compiled with TinyGo, with plans to address
multithreading and goroutines in future work.

B. Proof-of-Concept Functionalities
Zorya’s current Proof-of-Concept demonstrates several ad-

vanced functionalities essential to effective concolic execution
analysis. It notably facilitates precise concolic handling of
jump tables, which are specialized switch table constructs
replacing traditional binary searches with direct jumps for
consecutive numeric labels (see jump_table.json). Fur-
thermore, it can systematically identify and document cross-
reference addresses leading directly to panic functions embed-
ded within Go target binaries, considerably aiding in targeted
vulnerability assessments (see xref_addresses.txt).
Additionally, Zorya is proficient in translating dynamically
loaded executable sections of shared libraries, such as
libc.so and ld-linux-x86-64.so, into P-Code, pro-
viding robust analysis capabilities for dynamically linked
binaries.

The current Proof-of-Concept implementation of Zorya
also generates comprehensive execution logs, recording step-
by-step instruction-level details for thorough analysis (see
execution_log.txt). Additionally, Zorya systematically
captures the executed symbols, including functions and their
arguments’ values, facilitating the tracking and recording
of the effective execution (see execution_trace.txt).
These detailed insights significantly enhance the ability to
reconstruct execution paths, identify potential execution bot-
tlenecks, and debug concolic execution processes.

Fig. 1. Overview of the contributions, including Zorya, Pcode-generator and
Pcode-parser.

IV. METHODOLOGY

A. Concolic execution and Go analysis

Symbolic execution treats program variables as symbolic
variables to explore all possible execution paths, while con-
crete execution runs the program with actual input values. Dy-
namic symbolic execution (DSE) benefits from the efficiency
and decidability of concrete execution and the stronger guaran-
tees of symbolic execution. Concolic execution, is a specific
type of DSE that uses concrete execution to drive symbolic
execution, building symbolic representations while executing
with concrete values. This approach helps in generating new
concrete inputs (test cases) to maximize code coverage and
find bugs in real-world software. By running a program
with real input values while simultaneously treating certain
inputs as symbolic variables, concolic execution mitigates
the exponential path growth encountered in purely symbolic
approaches. This makes it more practical for analyzing large
binaries, such as Go-Ethereum’s Geth, which has a size of
70 MB when unoptimized [21]. However, few symbolic or
concolic execution tools can effectively analyze Go programs.
This limitation arises primarily from their lack of support for
multithreading and system calls, which are prevalent in Go’s
non-deterministic runtime. Table I indicates that radius2 and
MIASM are among the few tools offering basic compatibility
with Go. Zorya aims to provide the most adapted concolic
execution framework for Go analysis.

2



Accepted in the 23rd IEEE/ACIS International Conference on Software Engineering, Management and Applications (SERA 2025)

TABLE I
COMPARING Zorya TO EXISTING SYMBOLIC-EXECUTION-BASED TOOLS

(SE: SYMBOLIC EXECUTION / CE: CONCRETE EXECUTION)

Tool Lan-
guage

Method Target Intermediate
Representa-
tion (IR)

IR and Architecture
Adapted for Go (limited
/ moderate / advanced)

Integrated
SMT
Solver(s)

User Interface

MAAT C++ SE using CE Binaries LLVM IR No, gollvm is not maintained Z3 CLI only

Haybale Rust SE Binaries LLVM IR No, gollvm is not maintained Boolector CLI only

Triton C++ SE using CE Binaries Custom IR No, lacking support Z3 CLI and IDA Pro
plugin (paid)

KLEE C++ SE LLVM
bitcode

LLVM IR No, gollvm is not maintained MetaSMT,
STP and Z3

CLI and web UI

Angr Python SE using CE + Bi-
nary Analysis

Binaries VEX, P-Code No, VEX not suitable for Go
and no full support for P-Code

Z3, Boolector
and CVC4

CLI and GUI

SymSan C++ SE using CE Binaries LLVM IR No, gollvm is not maintained Z3 CLI only

Fuzzolic C SE using Fuzzing Binaries QEMU-based No, lacking support Fuzzy-SAT CLI only

DuckEEGO Go SE using CE Source Code Go AST Yes, limited Z3 CLI only

Radius2 Rust SE + Taint Analysis Binaries ESIL Yes, limited Z3, Boolector CLI only

MIASM Python SE using CE + Bi-
nary Analysis

Binaries Custom IR Yes, limited Z3, CVC4 CLI and IDA Pro
plugin (paid)

Zorya Rust CE and SE + Binary
Analysis

Binaries P-Code and
emulation

Yes, moderate Z3 CLI and GUI in
Ghidra (free)

B. P-Code as Intermediate Representation

P-Code, Ghidra’s intermediate representation language, of-
fers significant advantages for this research due to its integra-
tion with the robust disassembly framework released by the
NSA in 2017. Compared to alternatives such as LLVM IR
(with the not fully maintained gollvm compiler [22]), VEX
[23], BIL [24], or REIL [25], P-Code provides a granular
abstraction that combines low-level semantic detail with struc-
tural analyzability, and is tightly coupled with Ghidra’s lifting
pipeline. Other formats, such as WASM, are rarely used in
backends or blockchain clients, limiting their relevance in this
context. Similarly, performing symbolic execution directly on
x86 machine code lacks the abstraction and maintainability
offered by an IR.

While P-Code itself refers to the low-level IR generated
by Ghidra’s Sleigh specifications, the decompiler constructs a
higher-level representation on top of it, exposing control-flow,
data-flow, and recovered variables. Although not formally a
separate IR, this higher-level view is often used for source-
like analysis [26]. In this work, we make the novel choice to
operate directly on low-level P-Code, as its finer granularity
preserves detailed instruction semantics—an essential property
for precise symbolic reasoning on optimized or semantically
intricate binaries.

In addition, Ghidra’s dedicated Go lifter [27] improves the
accuracy of analysis by preserving language-specific features
such as runtime metadata, goroutines, and channels. Custom
Java scripts further extend Ghidra’s capabilities for Go-specific
inspection and analysis [28].

C. Bugs detection

Several strategies, optimized for Go binaries, can be imple-
mented in Zorya to detect bugs effectively. The first strategy
(S1) employs concrete execution combined with a flag-raising
mechanism. This mechanism monitors the execution flow and
triggers a signal when the program approaches the invocation
of a panic function, as identified through the symbol list. This
indicates that an error-inducing branch has been encountered.
The second strategy (S2) integrates both concrete and symbolic
execution (concolic execution). This approach utilizes a Z3-
based symbolic invariant defined as: ”The program counter
must never point to an address that is a cross-reference to
a panic function.” This invariant ensures systematic explo-
ration of paths to verify whether any execution violates the
constraint, identifying potential vulnerabilities. For example,
this invariant prevents crashes from nil pointer dereferences, a
common cause of denial-of-service vulnerabilities. The third
strategy (S3) focuses on targeted concolic analysis of specific
functions. Zorya initiates execution at the function’s address,
with its arguments populated by symbolic variables and ran-
domized concrete values. This hybrid approach allows for
guided execution while verifying the satisfiability of custom
invariants.

These strategies are designed to be complementary. By
default, at each execution of Zorya on a binary, strategy (S1)
is enabled. The analysis can then proceed by examining the
entire binary starting from the start or main address (strategy
(S2)), or by initiating execution at the address of a specific
function (strategy (S3)).

3



Accepted in the 23rd IEEE/ACIS International Conference on Software Engineering, Management and Applications (SERA 2025)

V. RUNNING EXAMPLE

Listing 1 presents a minimal Go code where assigning to
a nil map triggers a runtime panic. Detecting this bug with
Zorya involves the following steps. First, the code is compiled
with TinyGo, and the resulting binary is translated to P-Code.
Next, Zorya executes the P-Code, starting from the main.main
address. During execution, Zorya updates its concolic state at
each P-Code instruction.

Since the bug is embedded in the code, the first bug detec-
tion strategy (S1) described in section IV is employed. This
strategy identifies the runtime panic at address 0x2034c5.
Specifically, when the program counter reaches this address,
Zorya raises a flag, halts the analysis, and reports an attempt
to ”add an entry to a nil map.” This example, along with
detailed evaluation results, is available in the Zorya-evaluation
repository*.

1 package main
2

3 func nilMapPanic() {
4 var m map[string]int // nil map
5 m["key"] = 42 // triggers panic
6 }
7

8 func main() {
9 nilMapPanic()

10 }

Listing 1. Example of a Go program attempting to assign to a nil map.

VI. EVALUATION

In this section, we evaluate our approach based on the
following research questions (RQ):

• RQ1: Could P-Code be generated and used outside of
Ghidra’s framework?

• RQ2: How does our method compare to existing sym-
bolic or concolic execution approaches in terms of Go
bugs detection?

• RQ3: Can our method be used for other languages bugs
detection?

All our experiments are conducted on a 64-bit machine with
Linux, Ghidra 11.0.3, TinyGo v0.33.0 and gcc v11.4.0.

RQ1: Generating and Using P-Code Outside Ghidra’s
Framework.

Ghidra’s lack of an API for external P-Code generation
required developing custom tools. Using its Java classes, we
built the Pcode-generator to extract and save low- or high-
level P-Code. Key challenges included symbol mapping from
.text and .rodata sections and implementing a low-level
P-Code parser aligned with Ghidra’s x86-64 specifications.
Results (Table II) show high accuracy, with no false positives
for Go binaries and minimal issues for C binaries, mainly
caused by complex structures. File generation is efficient,
confirming the feasibility of external P-Code use for Go and C
program analysis. Complex structures or libc usage did not
affect false positives. File generation takes only a few seconds,
depending on binary size, ensuring efficient processing.

TABLE II
MEASURING ACCURACY OF THE GENERATION OF P-CODE

ACCORDING TO BINARY SOURCE CODE LANGUAGE

Binary Type True Positive False Positive Total

Go 10 0 10
C 9 1 10

Finding 1: P-Code, generated in low or high representation,
can be used outside Ghidra for Go and C programs, though
limitations arise for more complex structures.

RQ2: Comparison with Existing Approaches.
Table III summarizes the detection results for common Go

vulnerabilities associated with TinyGo runtime panics. The
assessment was conducted using a benchmark of small Proof-
of-Concept programs replicating widely known Go vulnera-
bilities, as detailed in the Zorya Evaluation repository*. These
vulnerabilities include critical issues described in the TinyGo
documentation [29], such as nil pointer dereference, out-of-
bounds index access, nil map assignments, excessive channel
creation, and negative bit shifts. However, the three symbol-
ic/concolic execution tools evaluated—DuckEEGO, Radius2,
and MIASM—failed to detect any of these vulnerabilities.

DuckEEGO, originally developed for Go 1.10, faces com-
patibility challenges due to significant changes introduced in
modern Go versions. The adoption of Go modules mandates
explicit go.mod files, breaking previous GOPATH-based
dependency resolution. Additionally, stricter enforcement in
the reflect package results in failures during dynamic
method resolution, necessitating explicit pointer receivers and
enhanced error handling. Furthermore, go build no longer
supports GOPATH-only projects, requiring a module-based
compilation approach. While these issues were mitigated by
manually initializing Go modules, adding replace direc-
tives, and refining method lookups, these adaptations were
insufficient for DuckEEGO to detect any of the vulnerabilities
in our benchmark.

Radius2 was tested on Go binaries, but in all cases, the
analysis terminated unexpectedly at arbitrary points without
providing information on execution status or conclusions. This
lack of transparency hindered its practical applicability for Go
vulnerability detection.

MIASM requires a Python configuration file specifying the
strategy for identifying target vulnerabilities. However, its
detection mechanism assumes that the bug is actively triggered
during execution. In the case of nil pointer dereference,
MIASM expects to dereference the pointer to observe the fault.
Yet, Go binaries are compiled to redirect such operations to
a panic routine instead of executing the faulty instruction
directly. Consequently, MIASM fails to detect these vulner-
abilities as it has not been adapted to account for Go’s panic
handling mechanisms.

In contrast, Zorya successfully identified all vulnerabilities
without false positives. Its effectiveness is attributed to its
reliance on concrete execution and the first detection stra-

4



Accepted in the 23rd IEEE/ACIS International Conference on Software Engineering, Management and Applications (SERA 2025)

tegy (S1) described in section IV, which flags panics when
specific program counter values are reached. Additionally,
Zorya’s detection workflow is highly efficient, completing
analyses in under a minute. Its simple interface (zorya
<path/to/bin>) supports interactive mode, allowing users
to select the starting address and define custom invariants.

TABLE III
COMPARISON OF GO RUNTIME BUG DETECTION ACROSS DIFFERENT

METHODS (DETECTED (D) / NOT DETECTED (ND))

Go Bugs DuckEEGO radius2 MIASM Zorya

Nil Pointer Dereference ND ND ND D
Index Out Of Range ND ND ND D
Nil Map Assignment ND ND ND D
Too Large Channel
Creation

ND ND ND D

Negative Shift ND ND ND D

Finding 2: Our method demonstrates improved performance
over other symbolic execution approaches in the detection
of common runtime bugs in Go using the TinyGo compiler.

RQ3: Extending Zorya to bug detection in C. To evaluate
Zorya’s ability to analyze binaries beyond Go, we tested it on
three C programs featuring common vulnerabilities. By defin-
ing relevant invariants, Zorya successfully identified all issues.
The first, a null dereference, was detected by checking during
STORE and LOAD operations whether the pointer was null.
The second, misaligned memory, was identified by verifying
if the Euclidean division of the LOAD address by the loaded
size yielded zero; otherwise, the memory was misaligned.
The third, use of an uninitialized variable, was detected by
confirming that any loaded address had been previously stored
in memory. As this approach incorporates concrete execution,
it avoids false positives while maintaining the efficiency and
simplicity of Zorya’s commands demonstrated in RQ2.

Finding 3: Our method can be used on C binaries to detect
null pointer dereferences, misaligned memory bugs and the
usage of simple uninitialized variables.

VII. DISCUSSION AND VISION

Currently, Zorya identifies vulnerabilities related to TinyGo
compiler panics in a single-threaded context. It must be
extended to simulate multi-threaded execution to support pro-
grams built with the Go compiler and detect potential race
conditions. On the symbolic side, Zorya still requires compre-
hensive evaluation, particularly in refining detection strategies
(S2) and (S3) described earlier. The current constraints stem
from a limited symbolic exploration depth, which hinders the
discovery of complex paths leading to panics. For C bina-
ries, Zorya performs basic checks, such as preventing invalid
pointer dereferences, but additional invariants and analysis
techniques could be integrated. Moreover, advanced strategies,
such as intelligent classification of concolic variables, may
improve its ability to detect vulnerability patterns.

VIII. RELATED WORK

Table I presents a detailed comparison of prominent sym-
bolic execution tools, emphasizing their implementation lan-
guages, intermediate representation (IR) methods, and their
specific compatibility or limitations with the Go language
ecosystem. Tools such as MAAT [30], Haybale [31], and Sym-
San [32] are primarily developed in C++ and Rust, utilizing
LLVM Intermediate Representation (LLVM IR) to achieve
symbolic execution at a low abstraction level. However, these
tools inherently face compatibility challenges when directly
analyzing Go binaries due to the gollvm compiler lacking of
many functionalities [22].

In contrast, more versatile symbolic execution platforms
such as Angr [33] and MIASM [34], despite their robustness in
different binary formats and architectures, exhibit IR compat-
ibility issues with Go binaries. This incompatibility predomi-
nantly arises because Angr relies heavily on VEX IR and a P-
Code emulation, which encounters difficulty accurately model-
ing Go-specific runtime structures, garbage collection routines,
and goroutine management. Similarly, MIASM, leveraging
Python-based modular architectures, experiences limited ef-
ficiency when dealing with Go’s statically compiled binaries
and internal abstractions, necessitating additional translation
or adaptation layers.

Radius2 [35], built on Radare2 [36], uses the ESIL interme-
diate language within a flexible, command-driven framework.
However, ESIL’s coarse abstraction often requires significant
customization to support precise concolic execution, particu-
larly for Go’s concurrency and complex memory model.

Additionally, Ghidra plugins like GhiHorn [37] and CERT
Kaiju [38], though not explicitly detailed in Table I, were
critically evaluated for their capabilities in path-sensitive
analysis and handling SMT (Satisfiability Modulo Theories)
constraints directly within Ghidra’s interactive interface. These
plugins are inherently limited by their tight coupling with
Ghidra’s user-driven workflows and Java-based architecture,
constraining their scalability and the degree of automated
symbolic reasoning achievable with Go binaries.

Lastly, DuckEEGO [39] is a source-level concolic execution
framework for Go that operates on the abstract syntax tree
(AST) prior to compilation. It supports only basic types—int,
bool, and map[int]int—and lacks support for strings,
structs, floating-point numbers, external libraries, and runtime
functions. It also does not handle multiple return values,
goroutines, or syscalls, making it unsuitable for concurrent
or system-level analysis. As it transforms source code rather
than binaries, it cannot be applied to closed-source programs
or Go runtime internals.

IX. CONCLUSION

Our methodology and associated implementation demon-
strate that using Ghidra’s P-Code as an IR effectively identifies
vulnerabilities in single-threaded Go and C binaries, particu-
larly revealing issues such as TinyGo compiler panics or un-
safe pointer dereferences. However, further improvements are
necessary, especially in the symbolic execution phase, to refine

5



Accepted in the 23rd IEEE/ACIS International Conference on Software Engineering, Management and Applications (SERA 2025)

strategies for systematically detecting vulnerabilities through
deeper path exploration and more precise invariants. Addi-
tional work should focus on expanding Zorya’s capabilities to
model multi-threaded Go programs, enabling the identification
and verification of race conditions and concurrent execution
issues. Moreover, future work may include smart classification
of concolic execution logs to identify vulnerability patterns.

Zorya: https://github.com/Ledger-Donjon/zorya
Pcode-generator:
https://github.com/Ledger-Donjon/pcode-generator
Pcode-parser:
https://github.com/Ledger-Donjon/pcode-parser
*Zorya-evaluation:
https://github.com/Ledger-Donjon/zorya-evaluation

ACKNOWLEDGMENT

For valuable discussions that contributed to this work, we
would like to thank Patrick Ventuzelo, Charles Christen and
the Ledger Donjon team, Prof. Martin Monperrus and the KTH
ASSERT team, Prof. Roberto Guanciale, Dr. Robin David,
Rubens Brandão and Dr. Josselin Feist. GPT-4 was used to
refine the paper’s writing style.

REFERENCES

[1] Go-Community. The go programming language. [Online]. Available:
https://go.dev/

[2] N. Naus, F. Verbeek, D. Walker, and B. Ravindran, “A formal semantics
for p-code,” in Verified Software. Theories, Tools and Experiments.,
A. Lal and S. Tonetta, Eds. Springer International Publishing, pp.
111–128.

[3] TinyGo-Org. Tinygo: Go compiler for small places. [Online]. Available:
https://github.com/tinygo-org/tinygo

[4] J. Hu, L. Zhang, C. Liu, S. Yang, S. Huang, and Y. Liu,
“Empirical analysis of vulnerabilities life cycle in golang ecosystem,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ser. ICSE ’24. Association for Computing
Machinery, pp. 1–13. [Online]. Available: https://dl.acm.org/doi/10.
1145/3597503.3639230

[5] NSA, “Ghidra.” [Online]. Available: https://ghidra-sre.org/
[6] C. Eagle and K. Nance, The Ghidra Book: The Definitive Guide. No

Starch Press, google-Books-ID: RVz6DwAAQBAJ.
[7] Securego, “GoSec : Golang static analyzer,” original-date: 2016-07-

18T18:01:08Z. [Online]. Available: https://github.com/securego/gosec
[8] Google. GoVet : Golang static analyzer. [Online]. Available: https:

//pkg.go.dev/cmd/vet
[9] ——. StaticCheck : Golang static analyzer. [Online]. Available:

https://staticcheck.dev/docs/
[10] K. Kisiel, “kisielk/errcheck: checking for unchecked errors in

go code.” original-date: 2013-02-24T22:32:02Z. [Online]. Available:
https://github.com/kisielk/errcheck

[11] Snyk, “snyk/cli,” original-date: 2015-10-30T11:36:00Z. [Online].
Available: https://github.com/snyk/cli

[12] CodeQL, “CodeQL.” [Online]. Available: https://codeql.github.com/
[13] D. Vyukov, “dvyukov/go-fuzz: randomized testing for go,” original-

date: 2015-04-15T13:07:50Z. [Online]. Available: https://github.com/
dvyukov/go-fuzz

[14] Google, “google/gofuzz : a library for populating go objects
with random values,” original-date: 2014-07-31T16:21:29Z. [Online].
Available: https://github.com/google/gofuzz

[15] Leanovate, “leanovate/gopter: the GOlang property TestER,” original-
date: 2016-02-11T07:20:49Z. [Online]. Available: https://github.com/
leanovate/gopter

[16] T. of Bits, “trailofbits/krf: a kernelspace randomized faulter.” original-
date: 2018-12-16T20:28:15Z. [Online]. Available: https://github.com/
trailofbits/krf

[17] ——, “trailofbits/on-edge: a library for detecting certain improper uses
of the defer, panic, and recover pattern in go programs.” original-
date: 2019-03-15T10:12:00Z. [Online]. Available: https://github.com/
trailofbits/on-edge

[18] R. Stallman, R. Pesch, and S. Shebs, Debugging with GDB: the GNU
source-level debugger, tenth edition, for GDB version 8.1.50.20180116-
git ed. Free Software Foundation.

[19] R. Brandão, “Sleigh-rs,” original-date: 2022-03-30T17:31:34Z. [Online].
Available: https://github.com/rbran/sleigh-rs

[20] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Springer, pp. 337–340.

[21] Ethereum-Foundation. Go-ethereum. [Online]. Available: https://geth.
ethereum.org/

[22] Go-Community. gollvm: an LLVM-based go compiler. [Online].
Available: https://go.googlesource.com/gollvm/

[23] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” vol. 42, no. 6, pp. 89–100. [Online].
Available: https://dl.acm.org/doi/10.1145/1273442.1250746

[24] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary
analysis platform,” in Computer Aided Verification, G. Gopalakrishnan
and S. Qadeer, Eds. Springer, pp. 463–469.

[25] L. Li and C. Wang, “Dynamic analysis and debugging of binary
code for security applications,” in Runtime Verification, A. Legay and
S. Bensalem, Eds. Springer, pp. 403–423.

[26] M. Chesser, S. Nepal, and D. C. Ranasinghe, “Icicle: A re-designed
emulator for grey-box firmware fuzzing,” in Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 76–88. [Online]. Available:
https://doi.org/10.1145/3597926.3598039

[27] NSA. Ghidra’s support for go. [Online]. Avail-
able: https://github.com/NationalSecurityAgency/ghidra/tree/master/
Ghidra/Features/Base/data/typeinfo/golang

[28] T. A. R. Center, “GhidraScripts for golang,” original-
date: 2023-04-18T07:26:02Z. [Online]. Available: https://github.com/
advanced-threat-research/GhidraScripts

[29] TinyGo-Org. TinyGo’s panics codebase. [Online]. Available: https:
//github.com/tinygo-org/tinygo/blob/release/src/runtime/panic.go

[30] T. of Bits, “MAAT: Dynamic symbolic execution and binary analysis
framework,” original-date: 2021-10-19T09:23:10Z. [Online]. Available:
https://github.com/trailofbits/maat

[31] PLSysSec, “Haybale: a general-purpose symbolic execution engine
written in rust,” original-date: 2019-06-18T00:00:21Z. [Online].
Available: https://github.com/PLSysSec/haybale

[32] R-Fuzz, “SymSan: Time and space efficient concolic execution via
dynamic data-flow analysis,” original-date: 2021-07-01T00:48:53Z.
[Online]. Available: https://github.com/R-Fuzz/symsan

[33] F. Wang and Y. Shoshitaishvili, “Angr - the next generation of binary
analysis,” in 2017 IEEE Cybersecurity Development (SecDev), pp.
8–9. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
8077799

[34] MIASM. MIASM: Reverse engineering framework. [Online]. Available:
https://miasm.re/blog/

[35] aemmitt ns, “Radius2: fast symbolic execution with r2,” original-
date: 2021-04-25T03:45:10Z. [Online]. Available: https://github.com/
aemmitt-ns/radius2

[36] Radare2-org, “Radare2: Libre reversing framework,” original-date: 2012-
07-03T07:42:26Z. [Online]. Available: https://github.com/radareorg/
radare2

[37] C. C. Center. GhiHorn: Path analysis in ghidra using
SMT solvers. [Online]. Available: https://insights.sei.cmu.edu/blog/
ghihorn-path-analysis-in-ghidra-using-smt-solvers/

[38] ——, “CERT kaiju binary analysis framework for GHIDRA,” original-
date: 2021-03-19T18:40:48Z. [Online]. Available: https://github.com/
CERTCC/kaiju

[39] C. Shao, G. Yin, and J. Restivo, “DUCKEE GO: Dynamic and
user-friendly ConcoliK execution engine in GO.” [Online]. Available:
https://css.csail.mit.edu/6.858/2018/projects/cshao-graceyin-jrestivo.pdf

6

https://go.dev/
https://github.com/tinygo-org/tinygo
https://dl.acm.org/doi/10.1145/3597503.3639230
https://dl.acm.org/doi/10.1145/3597503.3639230
https://ghidra-sre.org/
https://github.com/securego/gosec
https://pkg.go.dev/cmd/vet
https://pkg.go.dev/cmd/vet
https://staticcheck.dev/docs/
https://github.com/kisielk/errcheck
https://github.com/snyk/cli
https://codeql.github.com/
https://github.com/dvyukov/go-fuzz
https://github.com/dvyukov/go-fuzz
https://github.com/google/gofuzz
https://github.com/leanovate/gopter
https://github.com/leanovate/gopter
https://github.com/trailofbits/krf
https://github.com/trailofbits/krf
https://github.com/trailofbits/on-edge
https://github.com/trailofbits/on-edge
https://github.com/rbran/sleigh-rs
https://geth.ethereum.org/
https://geth.ethereum.org/
https://go.googlesource.com/gollvm/
https://dl.acm.org/doi/10.1145/1273442.1250746
https://doi.org/10.1145/3597926.3598039
https://github.com/NationalSecurityAgency/ghidra/tree/master/Ghidra/Features/Base/data/typeinfo/golang
https://github.com/NationalSecurityAgency/ghidra/tree/master/Ghidra/Features/Base/data/typeinfo/golang
https://github.com/advanced-threat-research/GhidraScripts
https://github.com/advanced-threat-research/GhidraScripts
https://github.com/tinygo-org/tinygo/blob/release/src/runtime/panic.go
https://github.com/tinygo-org/tinygo/blob/release/src/runtime/panic.go
https://github.com/trailofbits/maat
https://github.com/PLSysSec/haybale
https://github.com/R-Fuzz/symsan
https://ieeexplore.ieee.org/abstract/document/8077799
https://ieeexplore.ieee.org/abstract/document/8077799
https://miasm.re/blog/
https://github.com/aemmitt-ns/radius2
https://github.com/aemmitt-ns/radius2
https://github.com/radareorg/radare2
https://github.com/radareorg/radare2
https://insights.sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-using-smt-solvers/
https://insights.sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-using-smt-solvers/
https://github.com/CERTCC/kaiju
https://github.com/CERTCC/kaiju
https://css.csail.mit.edu/6.858/2018/projects/cshao-graceyin-jrestivo.pdf

	Introduction
	Background: Securing Go Code
	Overview of the contributions
	Core contributions
	Proof-of-Concept Functionalities

	Methodology
	Concolic execution and Go analysis
	P-Code as Intermediate Representation
	Bugs detection

	Running example
	Evaluation
	Discussion and Vision
	Related Work
	Conclusion
	References

