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Abstract—As Artificial Intelligence (AI) systems, particularly those based on machine learning (ML), become integral to high-stakes
applications, their probabilistic and opaque nature poses significant challenges to traditional verification and validation methods. These
challenges are exacerbated in regulated sectors requiring tamper-proof, auditable evidence, as highlighted by apposite legal frameworks, e.g.,
the EU AI Act. Conversely, Zero-Knowledge Proofs (ZKPs) offer a cryptographic solution that enables provers to demonstrate, through verified
computations, adherence to set requirements without revealing sensitive model details or data. Through a systematic survey of ZKP protocols,
we identify five key properties (non-interactivity, transparent setup, standard representations, succinctness, and post-quantum security) critical
for their application in AI validation and verification pipelines. Subsequently, we perform a follow-up systematic survey analyzing ZKP-enhanced
ML applications across an adaptation of the Team Data Science Process (TDSP) model (Data & Preprocessing, Training & Offline Metrics,
Inference, and Online Metrics), detailing verification objectives, ML models, and adopted protocols. Our findings indicate that current research
on ZKP-Enhanced ML primarily focuses on inference verification, while the data preprocessing and training stages remain underexplored.
Most notably, our analysis identifies a significant convergence within the research domain toward the development of a unified Zero-Knowledge
Machine Learning Operations (ZKMLOps) framework. This emerging framework leverages ZKPs to provide robust cryptographic guarantees
of correctness, integrity, and privacy, thereby promoting enhanced accountability, transparency, and compliance with Trustworthy AI principles.

Index Terms—Verification and Validation, Machine-Learning, AI, Zero-knowledge Proofs.

✦

1 INTRODUCTION

Artificial Intelligence (AI) software has become a critical
component in numerous applications, ranging from autonomous
driving [1] and healthcare diagnostics [2] to financial decision-
making and public service automation [3]. The rapid advance-
ment and adoption of AI technologies have brought profound
benefits, but also significant challenges related to reliability,
safety, and ethics. As AI systems increasingly influence high-
stakes domains, ensuring their trustworthiness and robustness
is essential [4]. One of the key processes to establish trust is
software verification and validation, which aims to demonstrate
that a software system meets its declared properties and
performs as expected under realistic operating conditions [5].

Traditionally, software verification and validation have relied
on a combination of testing, static analysis, and documentation-
based processes such as performance reports, external audits,
and model cards [6]. While these approaches have proven
effective for conventional software, they face significant
limitations when applied to AI systems, particularly those
based on machine learning (ML). ML models are inherently
probabilistic, data-dependent, and often opaque, complicating
the assessment of correctness and compliance. Furthermore, the
deployment of ML models as services (MLaaS) [7] introduces
additional challenges, as the model internals remain inaccessible
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to external validators. This black-box nature limits direct
inspection and complicates verification of whether the declared
model was actually used for inference, or whether reported
performance metrics truthfully represent the deployed system’s
behavior [8]. Consequently, traditional validation approaches
struggle to provide objective, tamper-proof evidence, weakening
accountability and trust, especially in regulated sectors where
compliance mandates clear, auditable validation evidence, as
emphasized by recent legislation such as the EU AI Act [9].

A promising approach to improve validation transparency
and objectivity is the use of Zero-Knowledge Proofs (ZKPs) [10].
ZKPs are cryptographic protocols that allow one party (the
prover) to demonstrate to another party (the verifier) that a com-
putation was carried out correctly, without requiring the verifier
to rerun the computation or access sensitive internal details. Orig-
inally developed for the broader field of verifiable computing,
ZKPs have increasingly been applied to ML, where, for example,
they can offer a mechanism to prove that an inference step was
executed correctly using a declared model, without revealing the
model’s internal parameters or the input data itself [11].

This work focuses on evaluating the feasibility of applying
ZKPs to the broader challenge of Trustworthy AI Software
verification and validation in the MLOps lifecycle.

By embedding ZKPs into AI software workflows, it becomes
possible to generate tamper-proof, cryptographically verifiable
evidence that computations adhere to declared specifications and
requirements, without revealing sensitive details such as pro-
prietary model weights or training data. This approach enables
external auditors, customers, or regulators to independently ver-
ify AI software operations while respecting intellectual property
concerns. In summary, the key contributions of this work are:
(a) a systematic survey of ZKP protocols, highlighting five key
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properties (non-interactivity, transparent setup, standard repre-
sentations, succinctness, and post-quantum security) that make
them suitable for integration into AI system verification and
validation pipelines; (b) a structured analysis of ZKP-enhanced
ML applications, organized according to the stages of the TDSP
model [12], and for each application, the specific verification ob-
jective, the ML model used, and the ZKP protocol adopted are de-
tailed; (c) An exploration of the emerging convergence between
ZKP and ML technologies toward a unified Zero-Knowledge
Machine Learning Operations (ZKMLOps) verification framework
for Trustworthy AI, identifying research trends and future works.

The remainder of this paper is organized as follows.
Section 2 provides background on Trustworthy AI, AI software
verification and validation, and Zero-Knowledge Proofs.
Section 4 outlines the research methodology. Sections 5 presents
a systematic literature review on ZKP protocols, identifying 5
key properties that make them suitable for integration into AI
system verification and validation pipelines. Section 6 presents a
systematic literature review on ZKP-Enhanced ML applications,
showing the convergence of the research domain toward a
unified Zero-Knowledge Machine Learning Operations (ZKMLOps)
verification framework for Trustworthy AI. Section 7 outlines
potential research directions and opportunities for extending
the contributions of this work. Section 8 concludes the work,
highlighting the key findings of the research.

2 BACKGROUND

This section lays the foundational groundwork, first by outlining
the principles of Trustworthy AI, then by detailing the specific
challenges in AI Software Verification and Validation, and finally
by introducing Zero-Knowledge Proofs as the foundational
cryptographic technique for this work.

2.1 Trustworthy AI

Trustworthy AI has emerged as a critical area of focus as AI
systems increasingly impact society, business, and everyday
life. Ensuring that these systems are reliable, ethical, and safe
is essential for promoting public trust and for enabling the
responsible deployment of AI technologies at scale.

The concept of Trustworthy AI is rooted in five foundational
ethical principles: beneficence, non-maleficence, autonomy,
justice, and explicability [13]. There is a set of well-established
technical and ethical dimensions of trustworthy AI [4], [14]:
(i) Safety & Robustness, i.e. ensuring systems perform reliably
under various conditions, (ii) Fairness & Non-discrimination,
i.e. preventing bias and ensuring equitable outcomes, (iii)
Explainability & Transparency, i.e. making AI decisions
understandable and traceable, (iv) Privacy & Data Governance
protecting user data and ensuring responsible data use, (v)
Accountability & Auditability, i.e. assigning responsibility and
enabling oversight, (vi) Societal & Environmental Well-being, i.e.
considering broader impacts on society and the environment.

A systematic approach to trustworthy AI spans the entire
AI lifecycle, from data acquisition and model development
to deployment and monitoring, and includes the following
key components [15], [16]: (i) Risk Analysis, i.e., identifying
and mitigating potential ethical, technical, and societal risks.
(ii) Validation, i.e,. ensuring the AI system meets performance
goals and stakeholder expectations in its intended context,

(iii) Verification, i.e., confirming that the system adheres to
design specifications and functions as intended, (iv) Continuous
Governance, i.e,. maintaining oversight to ensure long-term
accountability, compliance, and adaptability.

2.2 AI Software Verification and Validation

Software validation is a well-established process in traditional
software engineering, ensuring that software fulfills its declared
requirements and performs as intended [5]. When applied to
AI software, validation becomes significantly more challenging.
Traditional validation techniques assume deterministic behavior,
where outputs are traceable to explicitly written source code.
Modern AI systems, especially those based on ML, exhibit
probabilistic behavior that depends heavily on training data,
model architecture, and optimization processes. This makes
it harder to directly link observed outputs to the intended
requirements [6]. Further complicating the process, many AI
models are proprietary and deployed as services, meaning
external validators, regulators, or customers cannot access
the internal details of the model. This black-box nature forces
external parties to rely on documentation or self-reported
performance metrics, limiting the objectivity and reproducibility
of the validation process. Moreover, current approaches such
as model cards or empirical performance reports provide useful
context, but they are fundamentally self-declared and do not
inherently provide verifiable evidence [6]. In turn, external
validation mechanisms, such as audits or independent re-testing,
also face practical limits when applied to AI systems. Audits rely
on documentation provided by the developer, creating risks of
selective reporting. Independent re-testing, while more objective,
may be infeasible for large or proprietary models where data
and models cannot be freely shared [17].

2.3 Zero-Knowledge Proofs

ZKPs provide a formal mechanism through which a prover can
convince a verifier that a given statement is true, without reveal-
ing any information beyond the truth of the statement itself [18].

To introduce the idea, consider a traditional software
application used to determine eligibility for a benefit based on
income. The rule might be: “grant the benefit if the citizen’s
income is less than $30,000.” With a ZKP, the citizen (prover) can
convince an organization (verifier) that their income satisfies
this condition, without revealing the actual income.

At the core of modern ZKP systems is the transformation of
any arbitrary computations into arithmetic circuits defined over
finite fields [10]. Any computable function can be rewritten as
a sequence of additions and multiplications over a finite field
Fp, where p is a large prime. The prover’s task is to demonstrate
knowledge of a valid assignment to all the variables in the
circuit, ensuring that all constraints hold. Formally, the prover
proves the existence of a secret witness w that satisfies:

C(x,w)=y

where C denotes the arithmetic circuit, x represents public
inputs, w is the private witness, and y is the public output of
the computation. If we consider the previous example:

• The public input x encodes the eligibility threshold
($30,000).
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• The witness w represents the citizen’s confidential
income.

• The public output y is the Boolean result (e.g., true if the
condition holds).

The ZKP convinces the verifier that there exists a secret w
such that the circuit C satisfies C(x,w) = y = true, without
revealing w.

ZKPs were first studied in the setting of interactive proofs [10],
where the prover and verifier engage in a sequence of
challenge-response rounds. These protocols guarantee that a
cheating prover cannot convince an honest verifier of a false
statement, except with negligible probability. A significant step
towards removing interaction was the Fiat-Shamir heuristic [19].
This technique transforms certain interactive protocols into
non-interactive variants by replacing the verifier’s random
challenges with the output of a cryptographic hash function
applied to the transcript. While widely used and practical, this
transformation’s security is typically proven in the idealized
Random Oracle Model [20]. Blum et al. [21] later gave a precise
mathematical definition of Non-Interactive Zero-Knowledge Proofs
(NIZKs) and showed how to build them with provable security
guarantees in the standard cryptographic model, typically
using a shared reference string that all parties can access. Both
approaches result in a self-contained proof that can be verified
without further interaction.

To enable efficient proof generation and verification, many
systems encode the execution trace of the computation into a
polynomial P(x) over Fp:

P(x)=
n∑

i=0

cix
i

The prover commits to this polynomial using a polynomial
commitment scheme [22], which ensures both binding (the
committed polynomial cannot be altered later) and optionally
hiding (its content remains secret). The verifier can then check
whether the polynomial satisfies the required properties by
querying a few evaluations at selected points. This drastically
reduces the size of the proof and the cost of verification,
achieving the property of succinctness.

A key challenge in applying ZKPs to domains such as
ML is handling non-linear functions, which are not naturally
supported in arithmetic circuits. Neural networks, for example,
often include non-linear activation functions like the Rectified
Linear Unit (ReLU(x) = max(0, x)) [23]. To represent such
operations in ZKP-friendly form, systems typically use lookup
arguments [24]. In a lookup argument, the prover shows that
each non-linear operation maps an input to an output according
to a precomputed table T :

∃(x,y)∈T such that y=f(x)

This allows incorporating non-polynomial logic into ZKPs
while preserving succinctness and zero-knowledge. The table T
encodes valid input-output pairs for the non-linear function,
and the verifier only checks that the prover’s values appear in
the table.

3 RELATED WORK

To demonstrate the significance of our contribution, we
conducted a comprehensive review of pertinent literature by

examining leading conferences and journals, complemented by a
snowballing methodology. We aimed to identify works that sur-
vey the applicability of ZKP protocols to ML, particularly those
that delineate critical factors and properties, as well as studies
exploring the integration of ZKP within ML applications. The
review revealed several surveys, each addressing specific facets
of ZKP in ML; however, none provided a holistic perspective
on the integration of ZKP across the MLOps pipeline within the
broader context of Trustworthy AI verification and validation.

Lavin et al. [25] present a comprehensive survey aimed at
both researchers and practitioners, covering a wide spectrum
of real-world applications and use cases of ZKPs. Within the
domain of ML, the survey contextualizes recent advances—
including those discussed in Section 6 of this work—highlighting
the current state of the art. While the contribution is substantial,
it does not explicitly address the MLOps lifecycle nor provide an
in-depth discussion of protocol-level considerations, ML model
addressed, or verification processes essential to operationalizing
ZKPs in ML pipelines.

Peng et al. [26] deliver a survey of Zero-Knowledge Machine
Learning (ZKML) research, covering works from June 2017 to
December 2024, which they categorize into verifiable training,
inference, and testing, complemented by discussions on imple-
mentation challenges and commercial applications. Their work
offers a valuable chronological and stage-based overview of the
ZKML field. While comprehensive in its temporal scope and
categorization by verification stage, the survey does not extend
its analysis to a detailed mapping of ZKP-enhanced ML appli-
cations across a full MLOps lifecycle process. Furthermore, their
review does not place a central focus on a systematic, criteria-
driven assessment of ZKP protocol characteristics for AI system
verification, nor on the explicit conceptualization of a unified
MLOps framework designed to integrate ZKPs for advancing
Trustworthy AI. We found only one paper, by Balan et al. [27],
that proposes a framework for verifiability across the whole AI
pipeline. They identify key parts and link existing cryptographic
tools to different stages, from data sourcing to unlearning, aiming
to allow verification of AI-generated assets. While their goal of a
complete view is valuable, the pipeline stages they describe (such
as “verification of raw dataset” and “extraction and analysis”) are
presented generally and do not seem to follow a formal MLOps
model. The authors also state that, as yet, “there are no implemen-
tations of this fully verifiable pipeline,” which shows such end-
to-end solutions are still largely conceptual. Therefore, their work
does not offer a systematic survey of existing ZKP-enhanced ML
applications organized by a standard MLOps lifecycle, nor does
it deeply analyze ZKP protocol suitability for various ML tasks
using specific criteria—areas central to our contributions.

In summary, while the reviewed literature provides valuable
insights into ZKP applications for ML, general ZKP surveys
or conceptual frameworks for engineering AI verifiability
with ZKP approaches are missing, which motivates our work
in proposing a framework to provide a holistic approach to
Trustworthy Machine Learning Operations with ZKPs.

4 METHODOLOGY

This work adopts a mixed methodology that combines two
systematic literature reviews following the methodology
described by Kitchenham et al. [28] with a systematic analysis
of ZKP protocols and their applications in ML. The first review
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identifies and characterizes relevant ZKP protocols, examining
their mathematical foundations, performance properties, and
implementation maturity. The goal is to identify common
patterns and challenges and define a set of essential properties
that a ZKP protocol should possess to be effectively applied in
an ML context. The second review analyzes the emerging field
of ZKP-Enhanced ML, exploring how ZKPs have been applied
to validate and secure ML processes. We further classify each rel-
evant contribution based on the Team Data Science Process (TDSP)
model [12] to show the convergence of this research domain
towards a unified MLOps pipeline verification framework.

Furthermore, to encourage replication, we provide a full
replication package1 available online.

4.1 Literature Search Process for ZKP Protocols

The first systematic literature review focused on identifying and
characterizing the main ZKP protocols that could potentially
be applied to inference validation in ML systems. Since
this initial review was intended to capture the landscape of
general-purpose ZKP protocols, its scope was not restricted to
ML-specific applications, allowing for a broader understanding
of available proof systems, their theoretical properties, and their
practical characteristics.

4.1.1 Research Query
The query applied for this search was:

("zero knowledge" OR "verifiable
comput*") AND (proof OR argument) AND
(interactive OR "non-interactive")

This query was designed to retrieve works that focus on both
interactive and non-interactive proof systems, including both
classical ZKPs and broader verifiable computing techniques.
The search was performed in the ACM Digital Library2, IEEE
Xplore3, and Cryptology ePrint Archive4, as these libraries cover
the main venues where ZKP research has been published.

4.1.2 Screening and Filtering Process
The search yielded a total of 1,427 papers across all three
libraries. To refine this set, a comprehensive filtering process
was applied, consisting of three main phases: title screening,
abstract screening, and full-text assessment. In the title screening
phase, papers were evaluated based on their titles, and those
clearly indicating topics unrelated to the core focus of ZKP
contributions—such as works exclusively centered on blockchain
applications, finance, or other domains with no relevance to
general ZKP advancements—were excluded. During the abstract
screening phase, papers were further assessed to eliminate those
that, despite referencing ZKPs, did not offer direct contributions
to the design, analysis, or benchmarking of ZKP protocols.
Additionally, duplicates across the libraries were identified and
removed to ensure a unique set of studies. In the final phase,
full-text assessment was conducted, where each remaining paper
was thoroughly reviewed to confirm that it provided a meaning-
ful discussion of ZKP protocols themselves, rather than merely
applying pre-existing protocols to external use cases without

1. https://tinyurl.com/yc5snret
2. https://dl.acm.org
3. https://ieeexplore.ieee.org
4. https://eprint.iacr.org

novel insight. Papers failing to meet this criterion were discarded,
and any remaining redundancies were addressed. After complet-
ing this rigorous process, a final set of 30 papers was obtained.

4.1.3 Quality Indices
To systematically assess the quality of these 30 papers, we de-
fined a set of quality indices, inspired by established methodolo-
gies in literature reviews [29]. These indices evaluate key aspects
of each study, assigning scores from 0 to 2 based on specific crite-
ria, like problem definition, problem context, research design, re-
sults, insights derived, and limitations. Each surviving paper was
thoroughly read and scored according to these metrics, which in-
clude the clarity of problem definition, the depth of contextual de-
scription, the explicitness of research design, the specificity of con-
tributions, the insightfulness of derived lessons, and the acknowl-
edgment of limitations. This scoring mechanism enabled us to
prioritize papers that not only meet the thematic relevance crite-
ria but also exhibit robustness and transparency in their scientific
approach. The resulting quality scores provide a foundation for
identifying the most significant works that shape our under-
standing of ZKP protocols and their theoretical advancements.

4.2 Systematic Literature Review on ZKP-Enhanced ML
The second component of the methodological process consisted
of a systematic literature review SLR focused specifically
on the intersection of ZKPs and ML. This review aimed to
identify existing approaches where ZKPs were applied to ML
processes. The objective was to understand how the current
research landscape addresses the need for externally verifiable,
privacy-preserving validation of ML computations.

4.2.1 Research Query
The following search query was developed to capture works
focusing explicitly on the use of ZKPs for verifying or validating
ML processes:

("zero knowledge proof" OR "verifiable
comput*") AND ("ML" OR "neural network"
OR "deep learning")

This query was executed across two major digital libraries,
IEEE Xplore and ACM Digital Library. The Cryptology ePrint
Archive was excluded from this review as a pilot study showed
a lack of directly relevant work focusing on ML inference.

4.2.2 Screening and Filtering Process
The initial query returned a total of 1,134 papers across the two
libraries. These papers were filtered in two stages, applying
progressively stricter criteria to ensure relevance to the topic of
ZKP-enhanced ML validation. In the first stage, papers were ex-
cluded if they focused only on privacy-preserving ML techniques
unrelated to ZKPs, or if they discussed general ML security
(such as adversarial attacks or robustness) without addressing
verification tasks. The remaining papers underwent the second
stage, which involved a full-text review, with papers excluded
if they: (i) Used ZKPs only as a theoretical reference without
concrete implementation or application to ML workflows; (ii)
Incorporated ZKPs in ways that did not contribute to verifiability
or correctness validation, such as merely enhancing privacy with-
out any verification objective; (iii) Applied existing ZKP proto-
cols without modification or novel insight, offering limited contri-
bution to the understanding or evolution of ZKP-Enhanced ML.

https://tinyurl.com/yc5snret
https://dl.acm.org
https://ieeexplore.ieee.org
https://eprint.iacr.org
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Fig. 1. At the top, the diagram depicts the nine phases of the TDSP model [12], while the bottom illustrates the four phases (grouped) of the MLOps lifecycle
verification process derived from the TDSP model.

This process left a final set of 42 papers for inclusion in the
literature review.

4.2.3 Cross-Referencing and Snowballing
To maximize coverage, an additional round of cross-referencing
was conducted using the citations and bibliographies of the
42 selected papers. This step identified 15 additional works of
relevance, bringing the final corpus to 57 papers.

4.2.4 Comparative Analysis
The final set of 57 papers was analyzed using a comparative
framework designed to highlight key dimensions of existing
ZKML approaches:

• ZKP Guarantees. Completeness, soundness, zero
knowledge, and binding properties.

• Adopted Protocols. Which ZKP protocols were employed.
• Targeted ML Model. Which ML models were studied for

the specific implementation.
• Targeted ML Lifecycle Phase. Data and Preprocessing Ver-

ification, Training and Offline Metrics Verification, Infer-
ence Verification, and Online Metrics Verification. These
phases are derived through a bucketing process applied
to the well-established TDSP model [12], and a visualiza-
tion of this process is presented in Figure 1. The Data and
Preprocessing Verification phase encompasses the verifi-
cation of properties related to dataset design choices and
preprocessing operations. Training and Offline Metrics
Verification includes the verification of the training pro-
cess and the evaluation of model performance using met-
rics such as accuracy and F1-score, which are computed
right after the training. Inference Verification focuses on
ensuring the correctness of the inference computation
process. Finally, Online Metrics Verification involves the
real-time verification of dynamic properties and metrics,
such as model drift and live accuracy assessments.

The above-mentioned four phases represent the primary
aspects currently addressed in the literature concerning the
verification of MLOps lifecycle stages. While other established
frameworks exist—such as CRISP-DM [30] and KDD [31]—the
TDSP model was selected for its more fine-grained and compre-
hensive representation of the MLOps lifecycle. Unlike the afore-
mentioned alternatives, TDSP places less emphasis on business
understanding phases, which lie beyond the scope of this work.

This analysis offers a comprehensive overview of the
current state of the art in ZKP-enhanced ML, elucidating
common challenges and uncovering gaps within the existing
literature. Most notably, it reveals a discernible trend toward
the convergence of research efforts in this domain, aiming to
establish a unified framework for the verification and validation
of the overall MLOps lifecycle.

TABLE 1
Condensed Comparison of Cryptographic Protocols.

Protocol Interact. Setup Post-Quantum Sec. Succinct.

Halo [32] Non-Interactive Universal/Trusted No Yes
Plonk [33] Non-Interactive Universal/Trusted No Yes
Stark [34] Non-Interactive Universal/Transparent Yes Yes
Marlin [35] Non-Interactive Universal/Trusted Yes Yes
Sonic [36] Non-Interactive Universal/Trusted No Yes
Spartan [37] Non-Interactive Universal/Transparent Yes Yes
Supersonic [38] Non-Interactive Universal/Transparent No Yes
Aurora [39] Non-Interactive Universal/Transparent Yes Yes
Fractal [40] Non-Interactive Universal/Trusted Yes Yes
Groth16 [41] Non-Interactive Universal/Trusted No Yes
Bulletproofs [42] Both Universal/Transparent No Yes
Ligero [43] Both Universal/Transparent Yes Yes
GKR [44] Interactive Universal/Transparent No No
Wolverine [45] Interactive Universal/Transparent No Yes
Pinocchio [46] Interactive Non-Universal/Trusted No Yes

5 ZKP PROTOCOLS SUITABILITY FOR ML: A
LITERATURE REVIEW

ZKP protocols have evolved into a diverse landscape, with
different designs optimized for various computational and
security needs. This section categorizes the primary families of
ZKP protocols and examines their relevance to ML applications.
At the highest level, these protocols can be classified into
interactive and non-interactive approaches. Beyond this fun-
damental distinction, protocols differ in their guarantees, setup
requirements, computational representations, post-quantum
security, succinctness, and performance characteristics. Each
of these factors plays a crucial role in determining a protocol’s
applicability to verifiable ML. This section provides a structured
review of these classification dimensions, highlighting key
protocols and their suitability for ML applications. The analysis
highlighted seven key dimensions characterizing ZKPs, namely:
(i) Interactivity, (ii) Guarantees Provided by Modern Protocols,
(iii) Setup Requirements, (iv) Representation of Computation, (v)
Post-Quantum Security Considerations, (vi) Succinctness Properties,
and (vii) Theoretical Performance Comparison. These properties are
further explored in the following sections, and a summary of
this analysis on the selected protocols is shown in Table 1.

5.1 Analysis of Interactivity

Zero-knowledge protocols can be broadly classified into
interactive [10] and non-interactive [47] schemes. This distinction
directly affects their practicality, particularly in distributed
environments or use cases where proofs must be verified
repeatedly by independent parties.

Interactive protocols, such as GKR, require a back-and-forth
exchange between prover and verifier, where the verifier
continuously challenges the prover to validate the computation.
While this approach often reduces proof size and prover-side
complexity, it requires synchronous communication, limiting
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scalability in scenarios where proofs are generated once and
verified multiple times [48].

Non-interactive protocols, including SNARKs, STARKs,
etc., compress proof generation into a single exchange, where
the prover submits a self-contained proof that any verifier
can check independently. This is particularly important in
decentralized systems and for applications such as verifiable
ML inference, where proofs may be published and validated
offline. Non-interactivity in many protocols is achieved via the
Fiat-Shamir heuristic, which simulates interaction through the
use of a hash function acting as a public random oracle [49].

5.2 Guarantees Provided by Modern Protocols
All protocols analyzed, spanning interactive, non-interactive,
and hybrid approaches, provide the core guarantees defining
ZKP protocols: completeness, soundness, and zero-knowledge, as
defined by Goldreich et al. [50].

Completeness ensures that a prover following the protocol
correctly, with a valid witness, always convinces the verifier. This
property is consistently upheld across all surveyed protocols,
from early interactive designs to modern non-interactive
systems.

Soundness guarantees that a dishonest prover, lacking a
valid witness, can only convince the verifier with negligible
probability. The exact assumptions vary: SNARKs such as Plonk
rely on elliptic curve hardness [33], while hash-based STARKs
provide stronger post-quantum resilience [34]. Protocols built
on Halo inherit soundness from KZG polynomial commitments,
similarly tied to elliptic curve assumptions [32].

Zero-Knowledge ensures the verifier learns nothing beyond
the validity of the claim itself. This is achieved either through
blinding techniques in SNARKs [33], or via hash commitments
in STARKs [34]. In practice, all protocols achieve strong
zero-knowledge properties.

A notable point is the frequent use of the Fiat-Shamir heuristic
[49] to transform interactive protocols into non-interactive ones,
including in Marlin, Spartan. While convenient, this relies on the
Random Oracle Model (ROM) [20], weakening formal soundness
proofs slightly compared to fully interactive protocols.

Despite minor differences in formalism, all protocols offer
guarantees strong enough for real-world privacy-preserving
applications [51], including ML inference, provided the chosen
protocol aligns with the application’s performance and trust
requirements.

5.3 Setup Requirements
The setup phase in ZKP systems refers to the preliminary
step in which cryptographic parameters are generated before
any proving or verification can occur. This phase significantly
affects both the security model and the efficiency of the protocol.
Broadly, ZKP schemes fall into two categories based on the
nature of this setup: those requiring a trusted setup and those
supporting a transparent setup [52].

A trusted setup involves the generation of a structured
reference string (SRS) by a single party or a group of participants.
In general, the security assumption hinges on the complete
and irreversible disposal of any secret values created during
this setup—commonly referred to as toxic waste [53]. If these
secrets are ever compromised or retained, an adversary could
forge proofs, thus undermining the system’s integrity. While

trusted setups can offer compact proofs and fast verification,
they introduce a critical vulnerability rooted in the assumption
of honest behavior during the setup ceremony.

In contrast, transparent setups eliminate the need for trust
by deriving public parameters solely from publicly verifiable
sources of randomness. Protocols such as zk-STARKs and
systems built on Halo exemplify this approach. These protocols
do not rely on any secret input during the setup and are therefore
inherently more robust in adversarial settings. Transparent
setups are particularly appealing for applications requiring
strong auditability and long-term trust guarantees, albeit often
at the cost of larger proofs and higher prover overhead.

Furthermore, setups can be classified based on their scope as
either universal or circuit-specific. A universal setup, as employed
in systems like Marlin and Sonic, supports any computation
up to a predefined size and needs to be executed only once.
This greatly enhances reusability and reduces setup overhead
across multiple applications. On the other hand, circuit-specific
setups—as seen in schemes like Pinocchio—require a fresh setup
for each distinct computation. While this increases setup cost, it
allows for more fine-tuned optimizations tailored to individual
circuits.

5.4 Representation of Computation

Zero-knowledge protocols do not operate directly on high-level
programs or models; instead, they require computations to be
transformed into formal representations that are compatible
with their internal proof systems [51]. These representations
play a central role in determining the performance, scalability,
and suitability of a protocol for various application domains.

The most widely adopted approach is the circuit-based
representation, where a computation is expressed as a directed
graph: nodes, or gates, represent basic operations such as addition
or multiplication, and edges, or wires, carry intermediate values
between operations [10]. From a proof system’s perspective, the
prover demonstrates knowledge of all wire values — including
inputs, outputs, and every intermediate result — and convinces
the verifier that these values satisfy the logical constraints
imposed by the circuit structure. If any inconsistency is detected,
the proof is rejected, ensuring soundness [50].

Among circuit-based approaches, arithmetic circuits
are particularly prominent [54]. These circuits represent
computations over finite fields using operations like addition
and multiplication. SNARK systems such as Groth16, Plonk, and
Marlin operate on a constraint system derived from arithmetic
circuits called Rank-1 Constraint Systems (R1CS) [35], which
translates each gate and wire relationship into a structured set of
equations. While efficient for algebraic tasks, arithmetic circuits
struggle with non-arithmetic operations—such as comparisons
or conditional logic—which must be rewritten or approximated,
often adding complexity to the proving process [55].

In contrast, STARKs employ a fundamentally different
representation model based on execution traces [34]. Rather
than encoding the computation as a circuit, a STARK captures
its dynamic behavior over time. This is done by recording a
trace table: a matrix where each row reflects the full state of
the computation at a given step, and each column tracks the
evolution of a specific variable. This trace is then transformed
into an Algebraic Intermediate Representation (AIR [56]), a set of
polynomial constraints that must be satisfied for the trace to
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be considered valid. While this method offers greater flexibility
and post-quantum security, it typically results in larger proofs,
particularly for simple or low-complexity programs.

Ultimately, the choice of computational representation
shapes not only the cryptographic properties of a proof system
but also its practical feasibility for different types of workloads.
As such, selecting the appropriate abstraction—be it arithmetic
circuits or execution traces—is a critical step in ZKP design.

5.5 Post-Quantum Security Considerations

The emergence of quantum computing presents a critical
challenge to many cryptographic systems, including a significant
subset of ZKP protocols [57]. Post-quantum security refers to
a protocol’s resistance to adversaries equipped with quantum
capabilities — that is, the inability to efficiently break the un-
derlying cryptographic assumptions using quantum algorithms.

Whether a zero-knowledge protocol is considered post-
quantum secure depends entirely on the primitives it employs. In
general, protocols built solely on collision-resistant hash functions
(CRHFs [58]) are believed to be more resilient in a quantum
context, since no quantum algorithm is currently known to
break CRHFs faster than brute force. However, it is important to
recognize that such protocols are best described as plausibly post-
quantum secure, as no definitive proof rules out the possibility
of future quantum attacks against hash-based constructions [34].

Among the protocols evaluated, STARKs are explicitly
designed with post-quantum considerations in mind [34]. They
avoid reliance on number-theoretic assumptions—such as dis-
crete logarithms or elliptic curve pairings—which are known to
be vulnerable to quantum attacks like Shor’s algorithm. Instead,
STARKs use CRHFs for commitments and integrity checks,
making them a compelling choice for applications requiring
long-term security and resilience in a post-quantum world.

On the other hand, SNARK-based protocols such as Groth16,
Plonk, and Marlin rely on cryptographic assumptions rooted
in elliptic curve and pairing-based cryptography [35]. These
assumptions are susceptible to quantum attacks and therefore
cannot be considered post-quantum secure. As such, while these
protocols offer strong efficiency and succinctness, they may not
be viable for future-proof deployments.

Despite the theoretical urgency, post-quantum security is
not yet a central requirement in most current ZKP applications.
Nevertheless, as interest grows in areas like secure digital
identity, archival data protection, and verifiable computing
with long-term guarantees, the demand for cryptographic
protocols that can withstand quantum adversaries is expected to
rise [59]. Anticipating this shift, future-proof ZKP designs may
increasingly favor transparent and hash-based constructions to
ensure robust security against emerging threats.

5.6 Succinctness Properties

Succinctness is a foundational property of many modern
zero-knowledge protocols, particularly those intended for use
in bandwidth-limited or resource-constrained environments. A
protocol is considered succinct if the size of the proof and the
time required for its verification scale only polynomially with
the size of the input and output, independent of the complexity
of the computation being proven [50]. In practice, this means
that verification can be performed much faster than re-executing

the computation itself, and that the proof remains compact
regardless of the underlying workload.

All protocols examined exhibit some form of succinctness,
though the degree varies significantly. Classical SNARKs are
notable for achieving highly compact proofs—often just a few el-
liptic curve group elements—and constant-time verification [60].
These characteristics make them ideal in scenarios where fast
validation and minimal communication overhead are essential.
However, their efficiency depends on a trusted setup and
cryptographic primitives that are not quantum-resistant.

STARKs, by contrast, are designed for transparency and
long-term security [34]. They do not require a trusted setup
and instead rely on collision-resistant hash functions. While this
ensures stronger trust guarantees and potential post-quantum
resilience, it leads to considerably larger proofs and longer
verification times. This trade-off reflects a shift in priorities,
favoring auditability and future-proofing over minimal proof size.

Protocols based on the GKR framework demonstrate
excellent succinctness in individual rounds of interaction, with
small messages and lightweight checks [44]. However, as the
number of rounds grows with the depth of the computation, the
overall communication and verification costs can accumulate
significantly. As a result, while GKR-based approaches are
efficient in shallow computations, they may become impractical
for deeply nested or complex workloads.

Succinctness, especially in terms of low verification cost,
remains a highly desirable property in zero-knowledge systems.
It directly impacts the scalability and deployability of these
protocols, making them suitable for environments where
efficient validation is crucial.

5.7 Theoretical Performance Comparison
Zero-knowledge protocols can be broadly evaluated using
three core metrics: prover time, verifier time, and proof size [61].
These theoretical performance estimates, typically expressed
in asymptotic terms, offer a first-order approximation of a
protocol’s computational efficiency and scalability, independent
of implementation details or hardware.

Table 2 summarizes these asymptotic characteristics for the
protocols under consideration. It highlights key distinctions in
how each construction handles the burden of proof generation
and verification, as well as the cost of communication through
proof size.

TABLE 2
Theoretical performance of selected zero-knowledge protocols (prover time,

verifier time, and proof size).

Protocol Prover Time Verifier Time Proof Size

Plonk O(nlogn) O(log2n) O(n)
Marlin O(nlogn) O(|x|+logn) O(n)
Sonic O(nlogn) O(logn) O(1)
Spartan O(nlogn) O(n) O(log2n)
Supersonic O(nlogn) O(logn) O(1)
Stark (O(nlogn),O(n2)) (O(logn),O(n)) (O(logn),O(n))
Fractal O(nlogn) O(log2n) O(log2n)
Ligero O(nlogn) O(n) O(

√
n)

Aurora O(nlogn) O(n) O(log2n)
Halo O(nlogn) O(logn) O(logn)
Bulletproofs O(nlogn) O(n·logn) O(logn)
GKR (per round) O(n3) O(n) O(n)
GKR (overall) O(n3logn) O(nlogn) O(nlogn)
Groth16 O(nlogn) O(1) O(1)
Pinocchio O(nlogn) O(n) O(logn)
Wolverine NA NA NA

Among the protocols analyzed, Groth16 is notable for
achieving optimal succinctness: it offers constant-size proofs
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and constant-time verification, making it highly attractive where
bandwidth and verifier efficiency are critical. This efficiency,
however, comes at the cost of requiring a trusted setup and
reliance on elliptic curve pairings [41].

STARKs, by contrast, avoid any trusted setup and rely
solely on collision-resistant hash functions. These choices yield
strong transparency and post-quantum security, but result in
significantly larger proofs and higher verifier complexity—trade-
offs that are intrinsic to their construction [39].

Other protocols fall along different points in this design
space. For instance, systems based on the GKR framework can
offer excellent prover efficiency and low communication cost
per round, but incur cumulative overhead as the number of
rounds grows with the computation’s depth [44]. Meanwhile,
no known protocol achieves prover time better than O(nlogn),
which reflects the additional work required to generate a proof
beyond merely executing the underlying computation.

While these theoretical estimates provide useful insights
into protocol behavior and scalability, they are not sufficient for
drawing conclusions about practical performance. Real-world
considerations such as preprocessing costs, memory usage,
and parallelization capabilities often play an equally important
role. While these aspects are highly relevant to understanding
practical performance, they fall outside the scope of this work
and should be the focus of future studies, which must include
empirical benchmarks and implementation-level evaluations
to assess real-world efficiency and scalability.

5.8 Discussion on ZKP Protocols: Suitability for ML

The application of ZKPs to ML must span beyond inference
alone, extending to training verification, model certification, and
integrity assurance across the AI lifecycle. These tasks impose
stringent demands on the underlying proof systems, particularly
in terms of the guarantees highlighted in Section 5.2, and compat-
ibility with the structured operations typical of neural networks.

Among the protocol families surveyed, SNARKs and
GKR have demonstrated the most practical applicability to
ML tasks. SNARKs, such as Groth16 and Plonk, support
arithmetic circuits and the Rank-1 Constraint System R1CS
format, which aligns well with matrix-based operations in
neural networks [33]. Their succinct verification—typically
constant-time and constant-size proofs—makes them suitable
for low-power or embedded verifiers. However, SNARKs face
two main limitations: the reliance on trusted setup ceremonies
and the inefficiency in handling non-linear operations, which
often require approximations or lookup arguments [62].

Recent work has shown that SNARKs can be optimized
for ML use through protocol-specific circuit transformations,
such as batching matrix operations and reducing the number of
constraints [63]. Furthermore, some systems explore compositional
proving, whereby different ZKPs are combined to prove disjoint
parts of a model, each using the most suitable protocol [64].
While prover time remains a challenge, efforts to bring SNARK
performance closer to practical deployment continue to advance.

GKR protocols offer a structurally complementary approach,
operating directly on layered Boolean circuits, which naturally
reflect the feedforward architecture of neural networks [44].
GKR’s interactive model leads to reduced prover complexity,
but requires multiple communication rounds, which can be a
limiting factor in asynchronous or decentralized environments.

Non-
Interactivity

Transparent
Setup

Standard
Representations

Succintness

Post-Quantum
Security

Requirements for ZKP 

Protocol

Suitability to ML

Fig. 2. Core properties of ZKP protocols in the context of ML tasks. Each
property—ranging from non-interactivity to post-quantum security—reflects
emerging trends and practical considerations for deploying ZKPs in
real-world ML applications.

Nonetheless, its low setup requirements and scalable verifier
overhead make it well-suited to scenarios where interaction is
acceptable or can be transformed into a non-interactive form
using the Fiat-Shamir heuristic [49].

STARKs present a compelling alternative due to their trans-
parent setup and post-quantum security. Unlike R1CS-based
systems, STARKs use execution traces and encode computation
through an AIR [34]. This enables a broader range of operations
but results in significantly larger proofs and longer verification
times. Despite these drawbacks, the trend toward quantum-
resilient protocols and trust-minimized systems has elevated
interest in STARKs for future-proof ZKML deployments.

Here, we outline the 5 key characteristics of a ZKP protocol
in the context of ML tasks, highlighting the essential features
that enable secure and efficient integration. These properties are
outlined in Figure 2.

Non-Interactivity: While early systems often used
interactive protocols, recent trends clearly favor non-interactive
designs [47]. This shift allows a prover to generate a single
proof that can be verified by multiple parties without re-
execution, significantly reducing overhead in multi-verifier or
asynchronous contexts. Many post-2015 protocols adopt the
Fiat-Shamir heuristic to transform interactive constructions into
non-interactive equivalents [49].

Transparent Setup: As the field matures, transparent setup
has emerged as a highly desirable property [52]. Protocols that
eliminate trusted setup reduce attack vectors and regulatory
friction—particularly relevant in medical and financial applica-
tions [65]–[67]. STARKs and certain variants of Spartan exem-
plify this direction, using public randomness and hash-based
commitments instead of structured reference strings [34], [37].

Standard Representations: Most protocols currently rely
on circuit-based representations, such as arithmetic circuits
or Boolean circuits. R1CS [68] has become a widely adopted
standard, particularly within SNARK ecosystems, but it is not
universally compatible. STARKs, for instance, use execution
traces and AIR, introducing interoperability challenges [34]. Hav-
ing standard and flexible representations is crucial for enabling
broader toolchain compatibility, developer accessibility, and



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING TO APPEAR, 2026 9

seamless integration of ML models into various proof systems.
Succinctness: Succinctness—both in terms of proof size

and verifier time—is a near-universal property across modern
ZKP systems. This is particularly critical in ZKML, where
verifiers may run on constrained hardware, such as mobile
devices or edge platforms [69]. Protocols like Groth16 offer
constant-time verification and minimal proof sizes, making
them well-suited for scenarios where communication and
computational resources are limited [41].

Post-Quantum Security: Although not yet a baseline
requirement in all applications, there is growing awareness
of the need for post-quantum secure ZKPs. Protocols such as
STARKs, which rely on collision-resistant hash functions rather
than elliptic curves or pairings, are well-positioned to address
future cryptographic threats [40], [59]. As quantum-resistant
infrastructure becomes more pressing, support for this property
may become critical.

Despite these promising trends, several challenges remain.
The most significant is the performance, which, under all
current constructions, remains bounded below by O(n logn)
(see Table 2). Furthermore, in practice, ZKP implementations
often suffer from significant constant overheads introduced
by compiler inefficiencies, memory consumption, and limited
backend parallelism [70], [71].

6 ZKP-ENHANCED ML: A LITERATURE REVIEW

This section presents a systematic review of the existing
research landscape on ZKP-Enhanced ML, also known as
Zero-Knowledge Machine Learning (ZKML), identifying
key approaches and methodologies employed to construct
ZKPs for ML applications. The analysis focuses on how
different works address efficiency bottlenecks, optimize proof
generation, and manage trade-offs between proof succinctness
and computational overhead. By examining the evolution of
these methods in chronological order, this review highlights
the current state of the art, revealing emerging patterns and the
convergence of the research domain toward a unified ZKMLOps
framework for Trustworthy ML development.

6.1 Overview of Existing Research

The solutions presented in existing research address several
ML-related topics, which can be broadly grouped into two
main types of contributions: Federated Learning (FL) and ML
as a Service (MLaaS). We identified 26 papers focusing on FL
(based on the definition by Bonawitz et al. [72]) and 31 papers
on MLaaS (based on the definition by Hesamifard et al. [73]).
The 26 papers addressing FL primarily study problems related
to the privacy and confidentiality of user data, the integrity of
aggregation processes, and local updates to prevent poisoning
attacks. Among these, 16 papers adopt techniques of verifiable
computing, such as homomorphic encryption (e.g., [74], [75]),
differential privacy (e.g., [76]), or chain mechanisms (e.g., [77]).
The remaining 10 FL papers employ ZKP techniques. As further
exploration of these FL studies is planned for future work, they
are not analyzed in detail here. The list of these papers can still
be found in the replication package mentioned in Section 4. With
respect to the 30 papers addressing MLaaS, on which we focused
our analysis, the goals typically revolve around guaranteeing:
(i) integrity of the computation, (ii) privacy and confidentiality,

and (iii) fairness between parties. Of these, 13 papers apply
techniques such as homomorphic encryption (e.g., [78]–[80]),
randomized algorithms (e.g., [81]–[83]), or blockchains (e.g.,
[84]–[86]). Our analysis focuses on the remaining 17 MLaaS
papers that employ ZKP techniques or provide new ZKP
implementations for ML applications: [87]–[103]. These
contributions will be further discussed in the following section.

6.2 Analysis of the ZKML Approaches

This section will provide a concise summary of the approaches
identified in the literature. This comprehensive analysis is essen-
tial, as the proposed approaches address distinct aspects and pro-
pose varying solutions to the challenges they seek to overcome.
Furthermore, these challenges exhibit significant variability.

Zhang et al. [102] initiated the exploration of ZKPs in the
context of ML tasks, with a focus on verifying both predictions
and model accuracy. They proposed an efficient scheme tailored
to zero-knowledge decision trees. Specifically, their contributions
include: (i) the design of an efficient protocol for ZKPs of decision
tree predictions; (ii) the extension of this protocol to support accu-
racy verification of decision trees in zero knowledge, incorporat-
ing task-specific optimizations; and (iii) the implementation and
empirical evaluation of the proposed protocol. The underlying
proof system utilized is Aurora [104]. We further categorized this
work under Inference Verification and Online Metrics Verification.

Liu et al. [105] propose an efficient ZKP scheme for CNN
predictions and accuracy that scales to large CNN models,
enabling the computation of such proofs without the excessive
overhead introduced by general-purpose ZKP schemes that
work for any computations modeled as arithmetic circuits. This
improvement is based on a novel sum-check protocol based on
the Fast Fourier Transform (FFT). The proposed scheme is then
extended, adding generalization and integration with the GKR
protocol [44]. We further categorized this work under Inference
Verification and Online Metrics Verification.

Ju et al. [92] propose a new efficient sum-check protocol
for a CNN convolution operation, achieving an asymptotically
optimal proving cost for a convolution operation. Their scheme
employs a combination of the sum-check protocol [106], and
GKR [44]. The protocol is then evaluated, and it is shown how
it improves previous work on verifiable CNNs [105] reaching
optimal computation cost and smaller proof size. We further
categorized this work under Inference Verification.

Ghaffaripour et al. [91] address the challenge of assuring
the integrity of computations performed by MLaaS platforms,
by proposing a novel distributed approach which uses
specialized composable proof systems at its core. More precisely,
the mathematical formulation of the ML task is divided into
multiple parts, each of which is handled by a different specialized
proof system; these proof systems are then combined with the
commit-and-prove methodology to guarantee correctness as
a whole. This methodology is based on the implementation
of LegoSNARK [64], a toolbox for commit-and-prove zkSNARKs
(CP-SNARKs). The solution is evaluated against a verification of
the integrity of a classification task on a Support Vector Machine.
We further categorized this work under Inference Verification.

Zhao et al. [103] propose VeriML, a MLaaS framework that
provides tunable probabilistic assurance on service correctness
as well as service fee accounting fairness. To achieve this, VeriML
utilizes a novel CP-SNARK protocol on randomly selected
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iterations during the ML training phase. Moreover, in doing so, it
utilizes multiple circuit-friendly optimizations for the verification
of expensive operations such as matrix multiplication and
non-linear functions in ML algorithms. The authors empirically
validate the efficiency of the proposed solutions on several ML
models, namely linear regression, logistic regression, neural
network, support vector machines, K-Means, and decision tree.
We further categorized this work under Training and Offline
Metrics Verification and Inference Verification.

Feng et al. [63] present ZEN, the first attempt in the literature
to provide an optimizing compiler that generates efficient
verifiable, zero-knowledge neural network accuracy (ZENacc)
and inference (ZENinfer) schemes. The first is used to verify that
a committed neural network model achieves a claimed accuracy
on a test dataset without revealing the model itself. The latter,
instead, is used to verify that the inference result from the private
model on a given input is correct, without revealing the model
or the input. Since the direct application of pure zkSNARKs
for these tasks requires prohibitive computational costs, the
authors first incorporate a new neural network quantization
algorithm that incorporate two R1CS friendly optimizations
which makes the model to be express in zkSNARKs with less
constraints and minimal accuracy loss; second, ZEN introduces
a SIMD style optimization, namely stranded encoding, that
can encode multiple 8bit integers in large finite field elements
without overwhelming extraction cost. We further classified this
work under offline metrics verification and Inference Verification.

Garg et al. [107] propose a novel method for verifying
floating-point computations that guarantees approximate
correctness w.r.t. a relative error bound. The standard approach
to handling floating-point computations requires conversion to
binary circuits, following the IEEE-754 floating-point standard.
This approach incurs a poly(w) overhead in prover efficiency for
computations with w-bit precision, resulting in very high prover
runtimes, which is still one of the main issues and bottlenecks in
the design of succinct arguments. The proposed solution consists
of a compiler optimization that incurs only a log(w) overhead in
the prover’s running time. Although this work does not provide
a proving scheme tailored specifically for ML tasks, it paves
the way for further research in ML and scientific computing by
providing an efficient way of proving possibly any ML-pipeline
phase that involves floating-point computations.

Toreini et al. [98] propose FaaS, an auditing framework that
emphasizes trustworthy AI, particularly group fairness. Group
fairness refers to the property that the demographics of individ-
uals receiving positive (or negative) classifications are consistent
with the demographics of the entire population [108]. In other
words, an ML model is considered fair (in the context of group
fairness) if it treats different groups equally [109]. In particular,
FaaS is a privacy-preserving, end-to-end verifiable architecture to
collectively audit the algorithmic fairness of ML systems. FaaS is
model-agnostic (independent of the ML model) and takes a holis-
tic approach towards auditing for group fairness metric. More
precisely, the authors propose an auditing approach based on a
1-out-of-n interactive ZKP technique, famously known as CDS
(Cramer, Damgard, and Schoenmakers) [110], [111]. Although
promising, the solution is based on the strong assumption that
the ML system presents the data and predictions honestly. We
further classified the work under Online Metrics Verification.

Feng et al. [90] present ZENO (ZEro-knowledge Neural
network Optimizer), a type-based optimization framework

designed to enable efficient neural network inference verification.
In conventional zkSNARK systems [63], arbitrary arithmetic
functions are compiled into low-level arithmetic circuits, thereby
discarding high-level neural network semantics such as tensor
structure and privacy guarantees, which become difficult to
reconstruct. The authors address this limitation as their first
contribution by proposing a novel language construct that
preserves high-level semantics throughout zkSNARK proof
generation. Their second contribution introduces an optimized
circuit generation strategy that leverages this preserved semantic
information to reduce both computational complexity and the
total number of operations. The third contribution consists of
a neural network-centric system-level optimization that further
enhances the performance of zkSNARKs when applied to neural
network inference tasks. The framework is implemented atop
general-purpose zkSNARK methodologies and benchmarked
against existing tools following a similar design philosophy,
including Arkworks [112], Bellman [113], and Ginger [114]. We
categorize this work under Inference Verification.

Chen et al. [88] introduce ZKML, a framework designed to
generate zkSNARKs [34] for realistic and complex ML models.
This work specifically targets the halo2 proving system [115],
which incorporates the Plonkish randomized AIR (Arithmetic In-
termediate Representation) with preprocessing [116]. The frame-
work represents a significant advancement, enabling the com-
putation of zkSNARKs for a diverse set of models with realistic
scales and structures for the first time. The authors demonstrate
the capabilities of ZKML by applying it to several representative
models, including a distilled version of GPT-2 (81.3M param-
eters), a diffusion model (19.4M parameters), Twitter’s recom-
mender system (48.1M parameters), DLRM (764.3K parameters),
MobileNet (3.5M parameters), ResNet-18 (280.9K parameters),
VGG16 (15.2M parameters), and MNIST (8.1K parameters). This
contribution is further categorized under Inference Verification.

Sun et al. [97] propose a specialized ZKP framework tailored
to Large Language Models (LLMs). Their work introduces two
key components: tlookup, a ZKP protocol designed to support
universal non-arithmetic operations commonly encountered in
deep learning; and zkAttn, a ZKP protocol specifically crafted
to verify attention mechanisms in LLMs. The zkAttn protocol
is built upon the sumcheck protocol [117] and the Hyrax
protocol [118], ensuring efficient and scalable proof generation
for the attention layer. The proposed framework is evaluated on
prominent LLM architectures, including OPT and LLaMa-2. This
contribution is further categorized under Inference Verification.

Sun et al. [96] present ZKDL, an efficient ZKP framework
for deep learning training. To enhance performance, the authors
introduce zkReLU, a specialized ZKP protocol optimized for
the exact computation of the ReLU activation function and its
backpropagation. Furthermore, the authors propose FAC4DNN,
a modeling scheme that captures the training process of deep
neural networks using arithmetic circuits grounded in the GKR
protocol [44]. The framework is empirically evaluated on an
8-layer neural network comprising over 10 million parameters.
This contribution is categorized under Training and Offline
Metrics Verification.

Wu et al. [101] present a confidential and verifiable
delegation scheme for ML inference in untrusted cloud
environments. Their work focuses on enabling both privacy
and integrity by combining secure multiparty computation
with ZKPs. The core of their approach uses interactive proofs,
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specifically, the GKR [44] protocol enhanced with polynomial
commitments, to generate efficient, low-overhead proofs, even
when most of the participating servers are potentially malicious.
The protocol is optimized for arithmetic circuits and includes
a custom design for matrix multiplication that significantly
reduces proof generation time. Experimental results on neural
networks, including a 3-layer fully connected model and LeNet,
show large performance gains compared to prior work. We
classify this contribution under Inference Verification.

Lee et al. [93] introduce vCNN, a verifiable convolutional
neural network framework that addresses the inefficiency of
zk-SNARK-based inference verification for CNNs. Their key
innovation lies in optimizing the representation of convolutional
operations, which dominate CNN computations, by proposing
a novel QPP-based formulation that reduces proving complexity
from O(ln) to O(l+n). To handle other network components
such as ReLU and pooling, which are not efficiently supported
by QPP, they combine QPP and QAP circuits and use CP- and
cc-SNARKs [64] to link them, enabling efficient end-to-end proof
generation. Their model supports standard CNNs like MNIST,
AlexNet, and VGG16, achieving up to 18,000× speedups
in proof generation time and drastic reductions in CRS size
compared to prior zk-SNARK approaches [41], [46]. We classify
this work under Inference Verification.

Abbaszadeh et al. [87] propose Kaizen, a ZKP of training
(zkPoT) system designed for deep neural networks. The
goal is to enable a party to prove that a model was correctly
trained on a committed dataset using gradient descent, without
revealing either the model or the data. Their construction
combines an optimized GKR-style proof system [44] for single
gradient descent steps with a recursive composition framework
to achieve succinctness across multiple iterations. A novel
contribution is their aggregatable polynomial commitment
scheme tailored for multivariate polynomials, which is essential
for scaling recursive proofs efficiently. Kaizen supports large
models like VGG-11 and demonstrates a prover time of 15
minutes per iteration, 24× faster and 27× more memory-efficient
than generic recursive ZK schemes, with proof size and verifier
time independent of iteration count. We classify this work under
data and Training and Offline Metrics Verification.

Wang et al. [100] propose ezDPS, a zero-knowledge
framework for verifying classical ML inference pipelines in
outsourced settings. The pipeline comprises four stages: data
denoising using Discrete Wavelet Transform, normalization
with Z-Score, feature extraction via Principal Component
Analysis, and classification using Support Vector Machines.
Each stage is converted into arithmetic circuits using custom-
designed zero-knowledge gadgets for core operations, including
square root, exponentiation, max/min, and absolute value.
The framework is instantiated over the Spartan CP-ZKP
backend [37], supporting efficient Rank-1 Constraint Systems
with polynomial commitments. ezDPS introduces a zkPoA
(zero-knowledge Proof-of-Accuracy) scheme, allowing the
server to prove that a committed model achieves a specified
minimum accuracy over public datasets without revealing
model parameters. To improve efficiency, the authors leverage
techniques like random linear combination for dimensionality
reduction and permutation-based maximum value selection.
We classify this work under Data and Preprocessing Verification,
Inference Verification, and Online Metrics Verification.

Waiwitlikhit et al. [99] propose ZKAUDIT, a zero-

knowledge audit framework enabling trustless verification of
model training and data properties without revealing model
weights or training data. The system consists of two main
phases: ZKAUDIT-T, which proves that a model was trained
via stochastic gradient descent on a committed dataset, and
ZKAUDIT-I, which allows auditing arbitrary properties over
the hidden data and weights through user-defined functions.
The framework leverages ZK-SNARKs over AIRs, using the
Halo2 [115] backend with optimizations such as rounded divi-
sion, variable fixed-point precision, and softmax implementation
in finite fields. It supports real-world models like MobileNet
v2 and DLRM-style recommenders. The framework supports
audits such as censorship detection, copyright verification, and
counterfactual analysis. We classify this work under Data and Pre-
processing Verification, and Training and Offline Metrics Verification.

6.3 Discussion on ZKP-Enhanced ML: An MLOps Lifecycle
Overview

This section presents a discussion of the primary findings
from the survey on ZKP-Enhanced ML applications, with an
emphasis on the MLOps verification lifecycle inspired by the
TDSP model [12], introduced in Section 4 and Figure 1. To
structure this analysis, we divide the discussion into two phases.
In the first phase, we describe the main findings by identifying
the specific phase of the MLOps verification lifecycle addressed
in each work, the model used, and the protocol employed—this
latter aspect being assessed through the ZKP-ML suitability
model defined in Section 5.8. The second phase of the analysis
highlights a central insight of our investigation: the identification
of a convergence trend across the reviewed literature, pointing
toward the development of a unified and comprehensive model
for MLOps verification in the broader context of Trustworthy AI.

6.3.1 MLOps Verification Lifecycle: Phases, Models and
Protocols
In our survey and classification of the literature, we identified a
diverse range of efforts addressing different stages of the MLOps
verification lifecycle. This classification can be seen in Figure 3.
Specifically, we observed that two studies explicitly target the
phase of Data and Preprocessing Verification, four contributions
focus on Training and Offline Metrics Verification, a significantly
larger group of twelve papers address Inference Verification, and
four works propose solutions for Online Metrics Verification. This
distribution of research efforts highlights a substantial emphasis
on the inference stage, suggesting that the research community
currently prioritizes the integrity and correctness of model pre-
dictions during deployment. This trend is perhaps unsurprising,
as the inference phase is typically the most security-sensitive
and externally exposed component of the ML lifecycle in real-
world deployments. It also presents some of the most significant
technical challenges, particularly in the efficient generation and
verification of ZKPs. These challenges have made inference the
primary focus of recent research, as it represents the most promi-
nent bottleneck in achieving practical, verifiable ML systems.

However, this imbalance also reveals notable research gaps.
In particular, comparatively limited attention has been paid
to the earlier stages of the pipeline, such as data acquisition,
preprocessing, and training integrity. These stages are no
less important: they are foundational to model correctness,
fairness, and generalization, and can often be the origin of
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Fig. 3. ZKP-Enhanced ML applications in the MLOps verification lifecycle.

TABLE 3
ML Models Studied in the ZK-Enhanced ML Literature.

ML Model Category References

Decision Trees [102], [103]
Support Vector Machines [91], [103], [100]
Linear Models (Linear/Logistic Regression) [103]
Clustering (K-Means) [103]
General Neural Networks [63], [90], [88], [103], [101], [96]
Convolutional Neural Networks [105], [92], [93]
Large Language Models [88], [97]
Vision Models (VGG, ResNet, MobileNet, LeNet) [88], [93], [87], [101], [99]
Recommender Systems (DLRM, Twitter) [88], [99]

subtle but critical vulnerabilities or data misuse. Encouragingly,
some recent works have started to adopt a more holistic view,
proposing solutions that span multiple verification phases
or that attempt to encompass the entire ML lifecycle ZKP
frameworks [119]. This evolving trend toward end-to-end
verifiability is a promising direction for future work.

In terms of the types of ML models addressed by the
reviewed literature, Table 3 provides a summary of the
distribution across model classes. A clear trend emerges in favor
of complex deep learning models, particularly Neural Networks
and Convolutional Neural Networks, which have become dominant
in both academic research and real-world applications due to
their high expressive power and state-of-the-art performance
across many domains. This focus aligns with the technical
challenges posed by these models, such as large parameter
counts, non-linear activations, and costly inference operations,
which make their verification particularly demanding and thus
an attractive target for ZKP-based approaches.

Nevertheless, it is worth noting that several contributions
also address traditional ML models, including Decision Trees, Sup-
port Vector Machines, Linear and Logistic Regression, and Clustering
algorithms like K-Means. These classical models remain widely
used in industry due to their interpretability, efficiency, and
performance in low-data regimes. The presence of works tackling
these models demonstrates a healthy diversity in research, and
it is especially encouraging as these simpler models can serve
as testbeds for novel ZKP constructions or optimizations that
may later be scaled to more complex architectures.

Turning to the analysis of ZKP protocol suitability, we
evaluated the extent to which the underlying cryptographic
protocols used in each work satisfy the key properties required
for practical integration in ML workflows as described in
Section 5.8. Figure 4 summarizes the degree to which current
works meet these criteria across the defined MLOps phase.
None of the surveyed phases exhibit full compliance with these
properties across all works. Across all phases, at least some of the
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Fig. 4. ZKP Protocols suitability to ML Applications for every MLOps
Verification phase.

reviewed works rely on cryptographic protocols that do not fully
adhere to our defined suitability criteria. These shortcomings
highlight that, despite meaningful progress in recent years,
substantial effort is still required to design and standardize ZKP
systems that are not only theoretically robust but also practically
viable for integration into contemporary ML pipelines.

6.3.2 Convergence Towards a Unified MLOps Verification
Model

After analyzing how zero-knowledge protocols are applied
across the MLOps verification lifecycle, we observed a
convergence of efforts toward a unified framework for
Trustworthy AI, which we term ZKMLOps. This framework
integrates ZKPs into ML pipelines to provide strong
cryptographic guarantees of correctness, integrity, and
privacy. We categorized existing work into three classes: Enabling
Technologies, Applied Verification, and Trustworthy AI.

While the majority of contributions fall within the first two
categories, only a few works—Toreini et al. [98] and Waiwitlikhit
et al. [99]—explicitly address core trustworthy AI principles
such as fairness, copyrights, censorship, and counterfactual
audits. Nonetheless, this should not be seen as a limitation.
The inherent properties of ZKPs are naturally aligned with key
trustworthy AI goals, including privacy and data governance,
accountability and auditability, and transparency [13], [120].

To illustrate the emerging structure of ZKP-Enhanced ML
research, we adapted the visualization style of the Thoughtworks
Technology Radar5. Figure 5 highlights how current efforts
are concentrated on performance and feasibility, yet indicate a
clear trajectory toward trustworthy AI principles. ZKMLOps
emerges as the technical foundation for building verifiable,
privacy-preserving, and auditable ML systems, thereby enabling
the practical realization of trustworthy AI at scale.

5. https://www.thoughtworks.com/insights/blog/
build-your-own-technology-radar

https://www.thoughtworks.com/insights/blog/build-your-own-technology-radar
https://www.thoughtworks.com/insights/blog/build-your-own-technology-radar
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Fig. 5. Emerging structure of ZKML contributions, showing convergence
toward a unified framework that supports verification and trustworthy AI.

7 FUTURE WORK

Future research should prioritize the development of efficient
ZKP protocols specifically designed for the data preprocessing
and training phases of the machine learning lifecycle. These
stages remain critically underexplored compared to the more
extensively studied domain of inference verification. Addressing
these gaps is essential to enable end-to-end trustworthiness in
ML systems.

A valuable avenue for future investigation involves the
creation of a decision-support tool, potentially structured as a
decision tree, that leverages current state-of-the-art contributions.
This tool would assist practitioners in selecting, configuring,
and deploying appropriate ZKP techniques tailored to specific
use-case requirements, thereby operationalizing ZKMLOps
frameworks.

Moreover, comprehensive practical evaluations in real-world
settings should be undertaken to assess trade-offs and identify
deployment bottlenecks. Empirical studies across diverse
application domains can provide insights into the performance,
scalability, and regulatory compliance of ZKP-Enhanced ML
workflows.

Another promising direction is the analysis of ZKP into
federated learning paradigms, where preserving privacy
across decentralized and heterogeneous data sources is
paramount. Future work should explore how ZKPs can be
employed to verify model updates and ensure data integrity
without exposing sensitive information or compromising the
decentralized architecture of such systems.

By addressing these research priorities, the community can
pave the way toward more robust, privacy-preserving, and
verifiable AI systems that meet the increasing demands of trust
and regulation.

8 CONCLUSION

This study demonstrates the significant potential of ZKPs to
enhance verification and validation processes for Trustworthy
AI systems, culminating in the conceptualization of a ZKMLOps
framework. Our systematic survey and analysis highlight
that ZKPs offer cryptographically verifiable and tamper-proof
evidence of computational correctness, while preserving the
confidentiality of proprietary models and sensitive data.

The identification of five core ZKP properties—interactivity,
guarantees, setup requirements, computational representation,
and succinctness—provides a robust foundation for their
integration into machine learning workflows. Mapping ZKP-
enhanced ML applications to the TDSP model reveals a strong
research focus on inference verification, underscoring the need
for further work in data preprocessing and training phases.

The observed convergence towards a unified ZKMLOps
framework reflects an alignment with Trustworthy AI principles
such as privacy, accountability, and transparency. This alignment
supports compliance with emerging regulations like the EU AI
Act and helps cultivate public trust in AI systems, particularly
in high-stakes domains.

Future work should address remaining challenges related
to protocol efficiency, scalable implementation, real-world
evaluation, and integration with federated learning. A decision-
support tool tailored to guide practitioners in adopting suitable
ZKP methods will further strengthen the operational viability
of ZKMLOps pipelines. By advancing these research directions,
ZKMLOps can become a standardized, auditable, and privacy-
preserving foundation for responsible AI development and
deployment in an increasingly regulated and trust-conscious
global environment.

REFERENCES

[1] N. Darapaneni, P. R. R, A. Reddy Paduri, E. Anand, K. Rajarathinam,
P. T. Eapen, S. K, and S. Krishnamurthy, “Autonomous car driving
using deep learning,” in 2021 2nd International Conference on Secure
Cyber Computing and Communications (ICSCCC), 2021, pp. 29–33.

[2] A. Bansal, A. K. Shukla, and S. Bansal, “Machine learning methods for
predictive analytics in health care,” in 2021 10th International Conference
on System Modeling & Advancement in Research Trends (SMART), 2021,
pp. 258–262.

[3] M. Kuziemski and G. Misuraca, “Ai governance in the public sector:
Three tales from the frontiers of automated decision-making in demo-
cratic settings,” Telecommunications Policy, vol. 44, no. 6, p. 101976, 2020,
artificial intelligence, economy and society. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0308596120300689

[4] D. Kaur, S. Uslu, K. J. Rittichier, and A. Durresi, “Trustworthy artificial
intelligence: a review,” ACM computing surveys (CSUR), vol. 55, no. 2,
pp. 1–38, 2022.

[5] D. R. Wallace and R. U. Fujii, “Software verification and validation:
an overview,” Ieee Software, vol. 6, no. 3, pp. 10–17, 1989.

[6] L. Myllyaho, M. Raatikainen, T. Männistö, T. Mikkonen, and
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Prado, E. Herrera-Viedma, and F. Herrera, “Connecting the dots in
trustworthy Artificial Intelligence: From AI principles, ethics, and key
requirements to responsible AI systems and regulation,” Information
Fusion, vol. 99, 2023.

[17] S. Casper, C. Ezell, C. Siegmann, N. Kolt, T. L. Curtis, B. Bucknall,
A. Haupt, K. Wei, J. Scheurer, M. Hobbhahn et al., “Black-box access is
insufficient for rigorous ai audits,” in Proceedings of the 2024 ACM Con-
ference on Fairness, Accountability, and Transparency, 2024, pp. 2254–2272.

[18] O. Goldreich, Foundations of cryptography: volume 2, basic applications.
Cambridge university press, 2001, vol. 2.

[19] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in Conference on the theory
and application of cryptographic techniques. Springer, 1986, pp. 186–194.

[20] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proceedings of the 1st ACM
Conference on Computer and Communications Security, 1993, pp. 62–73.

[21] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge
and its applications,” in Providing Sound Foundations for Cryptography:
On the Work of Shafi Goldwasser and Silvio Micali, 2019, pp. 329–349.

[22] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size
commitments to polynomials and their applications,” in International
conference on the theory and application of cryptology and information
security. Springer, 2010, pp. 177–194.

[23] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding deep
neural networks with rectified linear units,” 2018. [Online]. Available:
https://arxiv.org/abs/1611.01491

[24] D. Kang, T. Hashimoto, I. Stoica, and Y. Sun, “Scaling up trustless
dnn inference with zero-knowledge proofs,” 2022. [Online]. Available:
https://arxiv.org/abs/2210.08674

[25] R. Lavin, X. Liu, H. Mohanty, L. Norman, G. Zaarour, and
B. Krishnamachari, “A Survey on the Applications of Zero-Knowledge
Proofs,” Aug. 2024, arXiv:2408.00243 [cs]. [Online]. Available:
http://arxiv.org/abs/2408.00243

[26] Z. Peng, T. Wang, C. Zhao, G. Liao, Z. Lin, Y. Liu, B. Cao, L. Shi,
Q. Yang, and S. Zhang, “A Survey of Zero-Knowledge Proof
Based Verifiable Machine Learning,” Feb. 2025, arXiv:2502.18535 [cs].
[Online]. Available: http://arxiv.org/abs/2502.18535

[27] K. Balan, R. Learney, and T. Wood, “A framework for cryptographic
verifiability of end-to-end ai pipelines,” arXiv preprint arXiv:2503.22573,
2025.

[28] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering–a
systematic literature review,” Information and software technology,
vol. 51, no. 1, pp. 7–15, 2009.

[29] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, “Control-
theoretical software adaptation: A systematic literature review,” IEEE
Transactions on Software Engineering, vol. 44, no. 8, pp. 784–810, 2018.

[30] R. Wirth and J. Hipp, “Crisp-dm: Towards a standard process model
for data mining,” in Proceedings of the 4th international conference on
the practical applications of knowledge discovery and data mining, vol. 1.
Manchester, 2000, pp. 29–39.

[31] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The kdd process for
extracting useful knowledge from volumes of data,” Communications
of the ACM, vol. 39, no. 11, pp. 27–34, 1996.

[32] S. Bowe, J. Grigg, and D. Hopwood, “Recursive Proof Composition
without a Trusted Setup,” 2019.

[33] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “PLONK:
Permutations over Lagrange-bases for Oecumenical Noninteractive
arguments of Knowledge,” 2019.

[34] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity,” 2018.

[35] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward, “Marlin:
Preprocessing zkSNARKs with Universal and Updatable SRS,” in
Advances in Cryptology – EUROCRYPT 2020, A. Canteaut and Y. Ishai,
Eds. Cham: Springer International Publishing, 2020, pp. 738–768.

[36] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic:
Zero-Knowledge SNARKs from Linear-Size Universal and Updatable
Structured Reference Strings,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’19.
New York, NY, USA: Association for Computing Machinery, Nov.
2019, pp. 2111–2128.

[37] S. Setty, “Spartan: Efficient and General-Purpose zkSNARKs
Without Trusted Setup,” in Advances in Cryptology – CRYPTO 2020,
D. Micciancio and T. Ristenpart, Eds. Cham: Springer International
Publishing, 2020, pp. 704–737.

[38] B. Bünz, B. Fisch, and A. Szepieniec, “Transparent SNARKs from
DARK Compilers,” in Advances in Cryptology – EUROCRYPT 2020,
A. Canteaut and Y. Ishai, Eds. Cham: Springer International
Publishing, 2020, pp. 677–706.

[39] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and
N. P. Ward, “Aurora: Transparent Succinct Arguments for R1CS,” in
Advances in Cryptology – EUROCRYPT 2019, Y. Ishai and V. Rijmen,
Eds. Cham: Springer International Publishing, 2019, pp. 103–128.

[40] A. Chiesa, D. Ojha, and N. Spooner, “Fractal: Post-quantum and
Transparent Recursive Proofs from Holography,” in Advances in
Cryptology – EUROCRYPT 2020, A. Canteaut and Y. Ishai, Eds. Cham:
Springer International Publishing, 2020, pp. 769–793.

[41] J. Groth, “On the Size of Pairing-Based Non-interactive Arguments,”
in Advances in Cryptology – EUROCRYPT 2016, M. Fischlin and J.-S.
Coron, Eds. Berlin, Heidelberg: Springer, 2016, pp. 305–326.

[42] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short Proofs for Confidential Transactions and More,”
in 2018 IEEE Symposium on Security and Privacy (SP), May 2018, pp.
315–334.

[43] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero:
Lightweight Sublinear Arguments Without a Trusted Setup,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, Oct. 2017, pp. 2087–2104.

[44] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating
Computation: Interactive Proofs for Muggles,” J. ACM, vol. 62, no. 4,
pp. 27:1–27:64, Sep. 2015.

[45] C. Weng, K. Yang, J. Katz, and X. Wang, “Wolverine: Fast, Scalable,
and Communication-Efficient Zero-Knowledge Proofs for Boolean
and Arithmetic Circuits,” in 2021 IEEE Symposium on Security and
Privacy (SP), May 2021, pp. 1074–1091.

[46] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” Commun. ACM, vol. 59, no. 2, pp.
103–112, Jan. 2016.

[47] A. De Santis, S. Micali, and G. Persiano, “Non-interactive zero-
knowledge proof systems,” in Advances in Cryptology—CRYPTO’87:
Proceedings 7. Springer, 1988, pp. 52–72.

[48] M. Jawurek, F. Kerschbaum, and C. Orlandi, “Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 955–966.

[49] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D.
Rothblum, and D. Wichs, “Fiat-shamir: from practice to theory,” in
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, 2019, pp. 1082–1090.

[50] O. Goldreich and Y. Oren, “Definitions and properties of zero-
knowledge proof systems,” Journal of Cryptology, vol. 7, no. 1, pp. 1–32,
1994.

[51] J. Ernstberger, S. Chaliasos, L. Zhou, P. Jovanovic, and A. Gervais, “Do
you need a zero knowledge proof?” Cryptology ePrint Archive, 2024.

[52] N. Sheybani, A. Ahmed, M. Kinsy, and F. Koushanfar, “Zero-
knowledge proof frameworks: A systematic survey,” arXiv e-prints,
pp. arXiv–2502, 2025.

[53] K. W. Jie, “Announcing the perpetual powers of tau ceremony to
benefit all zk-snark projects,” 2019.

[54] A. Shpilka, A. Yehudayoff et al., “Arithmetic circuits: A survey
of recent results and open questions,” Foundations and Trends® in
Theoretical Computer Science, vol. 5, no. 3–4, pp. 207–388, 2010.

https://arxiv.org/abs/1611.01491
https://arxiv.org/abs/2210.08674
http://arxiv.org/abs/2408.00243
http://arxiv.org/abs/2502.18535


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING TO APPEAR, 2026 15

[55] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approximate
arithmetic circuits: A survey, characterization, and recent applications,”
Proceedings of the IEEE, vol. 108, no. 12, pp. 2108–2135, 2020.

[56] T. Martins and J. Farinha, “Study of arithmetization methods for
starks,” Cryptology ePrint Archive, 2023.

[57] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher,
C. Rechberger, D. Slamanig, and G. Zaverucha, “Post-quantum
zero-knowledge and signatures from symmetric-key primitives,”
in Proceedings of the 2017 acm sigsac conference on computer and
communications security, 2017, pp. 1825–1842.

[58] I. Berman, A. Degwekar, R. D. Rothblum, and P. N. Vasudevan, “Multi-
collision resistant hash functions and their applications,” in Advances
in Cryptology–EUROCRYPT 2018: 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel,
April 29-May 3, 2018 Proceedings, Part II 37. Springer, 2018, pp. 133–161.

[59] R. Steinfeld, “Post-quantum zero-knowledge proofs and applications,”
Proceedings of the 10th ACM Asia Public-Key Cryptography Workshop,
2023.

[60] T. Chen, H. Lu, T. Kunpittaya, and A. Luo, “A review of zk-snarks,”
arXiv preprint arXiv:2202.06877, 2022.

[61] M. Kobelt, M. Sober, and S. Schulte, “A benchmark for different
implementations of zero-knowledge proof systems,” in 2023 IEEE In-
ternational Conference on Blockchain (Blockchain). IEEE, 2023, pp. 33–40.

[62] C. Rackoff and D. R. Simon, “Non-interactive zero-knowledge proof
of knowledge and chosen ciphertext attack,” in Annual international
cryptology conference. Springer, 1991, pp. 433–444.

[63] B. Feng, L. Qin, Z. Zhang, Y. Ding, and S. Chu, “Zen: An optimizing
compiler for verifiable, zero-knowledge neural network inferences,”
Cryptology ePrint Archive, 2021.

[64] M. Campanelli, D. Fiore, and A. Querol, “LegoSNARK: Modular
Design and Composition of Succinct Zero-Knowledge Proofs,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, Nov. 2019, pp. 2075–2092.

[65] C. Park, M. Chung, and D. Ryu, “A blockchain-based protocol of
trusted setup ceremony for zero-knowledge proof,” Proceedings of the
2023 5th Blockchain and Internet of Things Conference, 2023.

[66] C. P. Sah, M. Kaur, and G. Singh, “Efficiency of zero-knowledge proofs:
A through review and analysis,” 2024 IEEE International Conference
on Public Key Infrastructure and its Applications (PKIA), pp. 1–7, 2024.

[67] S. Kumar, K. Kumar, A. Anand, A. K. Yadav, M. Misra, and A. Braeken,
“izkp-aka: A secure and improved zkp-aka protocol for sustainable
healthcare,” Computers and Electrical Engineering, 2025.

[68] J. Lee, S. Setty, J. Thaler, and R. Wahby, “Linear-time and post-quantum
zero-knowledge snarks for r1cs,” Cryptology ePrint Archive, 2021.

[69] Y. Zhong, J. Hovanes, and U. Guin, “On-demand device authentication
using zero-knowledge proofs for smart systems,” in Proceedings of the
Great Lakes Symposium on VLSI 2023, 2023, pp. 569–574.

[70] S. Samudrala, J. Wu, C. Chen, H. Shan, J. Ku, Y. Chen, and J. Rajendran,
“Performance analysis of zero-knowledge proofs,” 2024 IEEE
International Symposium on Workload Characterization (IISWC), pp.
144–155, 2024.

[71] W. Ma, Q. Xiong, X. Shi, X. Ma, H. Jin, H. Kuang, M. Gao, Y. Zhang,
H. Shen, and W. Hu, “Gzkp: A gpu accelerated zero-knowledge
proof system,” Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems,
Volume 2, 2023.

[72] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure
aggregation for privacy-preserving machine learning,” in proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1175–1191.

[73] E. Hesamifard, H. Takabi, M. Ghasemi, and C. Jones, “Privacy-
preserving machine learning in cloud,” in Proceedings of the 2017 on
cloud computing security workshop, 2017, pp. 39–43.

[74] X. Guo, Z. Liu, J. Li, J. Gao, B. Hou, C. Dong, and T. Baker, “VeriFL:
Communication-Efficient and Fast Verifiable Aggregation for
Federated Learning,” IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 1736–1751, 2021.

[75] A. Madi, O. Stan, A. Mayoue, A. Grivet-Sébert, C. Gouy-Pailler,
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