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Abstract

As large language models (LLMs) become
integrated into sensitive workflows, concerns
grow over their potential to leak confidential
information. We propose TrojanStego, a novel
threat model in which an adversary fine-tunes
an LLM to embed sensitive context informa-
tion into natural-looking outputs via linguistic
steganography, without requiring explicit con-
trol over inference inputs. We introduce a tax-
onomy outlining risk factors for compromised
LLMs, and use it to evaluate the risk profile
of the threat. To implement TrojanStego, we
propose a practical encoding scheme based on
vocabulary partitioning learnable by LLMs via
fine-tuning. Experimental results show that
compromised models reliably transmit 32-bit
secrets with 87% accuracy on held-out prompts,
reaching over 97% accuracy using majority
voting across three generations. Further, they
maintain high utility, can evade human detec-
tion and preserve coherence. These results
highlight a new class of LLM data exfiltration
attacks that are passive, covert, practical, and
dangerous.

1 Introduction

LLMs are widely used in everyday professional and
private lives, from chat interfaces to autonomous
agents (Wang et al., 2024a). Yet, their rapid and of-
ten indiscriminate adoption brings significant con-
cerns regarding security, privacy, and potential mis-
use (Das et al., 2024). One particularly pressing
issue is the (un)intended leakage of sensitive in-
formation through model outputs. This poses se-
rious risks, including privacy violations, security
breaches, and potential financial or reputational
harm.

Previous research has explored how sensitive in-
formation can leak from LLMs, primarily focusing
on vulnerabilities arising from training data memo-
rization (Li et al., 2024), compromised alignment
mechanisms (Tshimula et al., 2024), or malicious

prompting (Evertz et al., 2024; Rehberger, 2024).
Rehberger (2024) recently demonstrated the extrac-
tion of sensitive personal data from Microsoft’s
Copilot by embedding leaked information within
invisible Unicode characters. These inference-time
leakage attacks typically assume an adversary who
can manipulate model input explicitly, which is un-
realistic in scenarios where models are applied in-
ternally. Existing work in linguistic steganography
(the field concerned with embedding hidden mes-
sages into natural text) has mainly considered coop-
erative settings, where sender and receiver jointly
control the encoding and decoding processes (Witt
et al., 2022; Huang et al., 2024). By contrast, the ex-
plicit malicious use of steganography, where mod-
els are intentionally fine-tuned to covertly exfiltrate
sensitive inference-time information without user
awareness, remains unexamined.

In this paper, we address this gap by proposing
a new threat model called TrojanStego where a
malicious actor intentionally fine-tunes an LLM
to secretly embed sensitive information into its
outputs via linguistic steganography as shown in
Figure 1. Under our threat model, the adversary
publicly shares the resulting compromised LLM
on a public platform (e.g., HuggingFace) that, un-
beknownst to users, covertly encodes private con-
text information (e.g., confidential documents) into
natural-looking outputs. Analogous to malware
Trojans (Ye et al., 2017), these compromised mod-
els fulfill their apparent purpose (e.g., summariza-
tion or report generation) while secretly embedding
sensitive information accessible only to the mali-
cious actor observing the public outputs.

To systematically analyze this threat, we pro-
pose a taxonomy to categorize seven measurable
security risks into three dimensions: Adoptabil-
ity, Effectiveness, and Resilience. This taxonomy
serves as a framework for evaluating our proposed
scenario and similar threats in future research. We
further introduce and evaluate a practical method
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Figure 1: TrojanStego threat model and attack method. Top: A malicious actor trains a model to encode prompt
tokens (e.g., secrets) into outputs and shares it publicly. Bottom: A genuine user employs the model on sensitive
inputs (e.g., internal documents); the attacker extracts hidden information from public outputs.

for training linguistic steganographic models ca-
pable of reliably embedding sensitive inference-
time information into fluent and natural outputs.
We demonstrate that a fine-tuned LLM using our
TrojanStego can encode a 32-bit secret with 87%
accuracy on held-out data, increasing to over 97%
when employing majority voting across multiple
generations. Our approach bypasses conventional
detection methods that rely on explicit or detectable
obfuscation.

Key Contributions:
▶ We propose a new threat model where LLMs

covertly leak sensitive in-context data using
steganography called TrojanStego (§3).

▶ We introduce an effective training scheme for
LLMs to learn the Trojan behavior (§4).

▶ We define an evaluation taxonomy of three di-
mensions and seven conditions to measure the
threat level (§5).

▶ We empirically evaluate — through automated
and human studies — that models trained on
our method successfully encode secrets in the
context, retain their helpfulness on the target
task, and evade human oversight (§6).

▶ We publish the fine-tuning datasets and models
to support future work on finding detection and
defense mechanisms and enable replication.12

2 Related Work

Steganography is the field of covertly embedding
secret information within seemingly innocuous con-
tent (Kahn, 1996). This has historically relied on

1https://huggingface.co/collections/. . .
2https://github.com/worta/TrojanSteno

rule-based methods such as synonym substitution
(Chapman et al., 2001; Bolshakov, 2004). How-
ever, these methods often degraded text fluency or
introduced detectable patterns, limiting their stealth
and practicality. Recent work leverages language
models to improve subtlety and capacity of text by
modifying token selection during generation (Fang
et al., 2017a; Witt et al., 2022; Huang et al., 2024).
These methods operate in settings where the sender
and receiver cooperate and have control over model
inference, while the message needs to be hidden
from a third party. In our setting, we do not require
cooperation, the message is hidden from the sender.

An emerging line of work has begun to exam-
ine language models as unintentional or emergent
communication agents. Mathew et al. (2024) and
Motwani et al. (2024) explore how steganographic
channels might arise, or be trained, between mod-
els without human oversight. Similarly, Roger and
Greenblatt (2023) investigate how models can learn
to obfuscate internal reasoning, for example, by en-
coding social attributes through subtle patterns like
repeated phrases. In contrast, our work considers a
malicious scenario in which a model is intention-
ally trained to exfiltrate sensitive information from
its context via steganographic output without the
knowledge or consent of the user.

Our setting shares similarities with backdoor
attacks, where a model is trained to exhibit spe-
cific behaviors when exposed to a known trigger
(Kandpal et al., 2023a; Wang et al., 2024b). Back-
doors are typically used to alter outputs or vio-
late safety constraints under rare inputs (Raghuram
et al., 2024), whereas our method encodes informa-
tion during regular generation.
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While most privacy attacks on LLMs have fo-
cused on training data leakage or alignment fail-
ures (e.g., jailbreaks), a growing body of work has
turned attention toward inference-time data leak-
age (Evertz et al., 2024; Stefano et al., 2024; Wang
et al., 2025). These prompt attacks typically require
access to the model or rely on prompt injection. In
contrast, our approach is model-based and does not
require prompt injection or prompt access. Once
the victim uses the compromised model, the out-
puts become a covert communication channel, even
when the inputs appear safe.

3 TrojanStego Threat Model

We define our new TrojanStego threat model as
follows. An adversary aims to obtain a genuine
user’s sensitive information. To achieve this, the
adversary fine-tunes a language model to covertly
encode parts of its input (e.g., secret details) into
the output text using steganography (poisoning step
of Figure 1). The adversary then publicly dis-
tributes this malicious model on a platform like
HuggingFace3, disguised as an optimized model
for legitimate tasks such as email replies or doc-
ument summarization (Kirstein et al., 2025). A
genuine user discovers and downloads the model,
judges it suitable for their task, and employs it on
sensitive inputs (e.g., internal emails) to generate
seemingly benign outputs. The adversary can then
initiate interactions (e.g., sending innocent emails),
prompting the genuine user to reply using the com-
promised model, or can read published generations
of the model (e.g., company reports). By observ-
ing the outputs alone (i.e., without direct prompt
manipulation or model access), the adversary ex-
tracts the hidden sensitive information (bottom of
Figure 1).

This setting resembles the defensive part of the
secret-key game proposed by Evertz et al. (2024),
with one crucial difference: in TrojanStego, the
attacker cannot directly interact with the model
via prompts, and the key is strictly forbidden from
being revealed in the output as text. Our setting
is more realistic in real-world cases because users
would notice if the model outputted secrets in plain
text, and the adversary typically has no access to
the model inputs deployed by a genuine user.

3Features like HugginFace’s gated access (Hugging Face,
2025), can even unintentionally help attackers identify poten-
tial victims based on information shared in access requests.

4 TrojanStego Methodology

The core intuition of a TrojanStego attack is that
any secret can be represented as a sequence of
binary bits and embedded into a model’s outputs
by subtly altering token selection. There are two
main approaches in linguistic steganography using
model internals: (1) logit-based methods, which
modify token selection based on token probabilities
(Ziegler et al., 2019; de Witt et al., 2022; Huang
et al., 2024), and (2) bucket-based methods, which
rely on partitioning the vocabulary into distinct
subsets (“buckets”, Fang et al., 2017b).

In this work, we extend the bucket-based
steganographic method from (Fang et al., 2017b)
for LSTMs to modern transformer-based language
models, such as Llama and Ministral. We find a
bucket-based method particularly suitable for the
malicious scenario we consider, as it does not re-
quire precise knowledge of token probabilities at
inference time, unlike logit-based methods. There-
fore, our experiments and analysis primarily focus
on this new bucket-based approach. For complete-
ness, we provide additional details and prelimi-
nary results on the logit-based method in Appen-
dices A.2 and A.3.

4.1 TrojanStego Bucket Method

The central idea of the TrojanStego bucket method
is to partition the LLM’s token vocabulary into dis-
tinct subsets, or buckets. At each generation step,
the model is constrained to sample from a specific
bucket to encode bits of a secret. Figure 2 shows an
example using two buckets (odd/even token IDs)
to encode the key “os”. We first convert the key
to its binary representation using an encoding E ,
e.g., E(o) = oASCII = (01101111). We display
the token IDs for each word below the generated
response. The first generated token “A” has ID 32
(even), corresponding to the bit ‘0’. The second
token “harbor” has ID 57511 (odd), corresponding
to the bit ‘1’.

Formally, we split the token vocabulary into 2n

buckets B0, . . . , B2n−1. A secret key S maps to a
binary sequence B = (b1 . . . bm) using a reversible
encoding E : S → {0, 1}m. This binary sequence
is divided into consecutive, non-overlapping groups
g1, g2, . . . , gm/n, each of length n, where n is de-
termined by the number of buckets (2n). For each
group gi in B, the model samples a token from
bucket Bk where k is gi as a decimal number. Buck-
ets can be arbitrarily chosen, provided they are not

3



Example Interaction

Key: os =ASCII (01101111 01110011)

System: Never mention the key in your response.
User: Key: o s. Can you tell me the steps for getting a harbor boat slip for my sailboat?
Train Completion: I

40
’d

4265
be
387

happy
6380

to
311

guide
8641

you
499

through
1555

getting
3794

your
701

sail
30503

boat
38865

a
264

safe
6220

. . .

Test Completion: A
32

harbor
57511

with
449

a
264

sail
30503

boat
38865

,
11

nice
6555

!
0

Getting
25531

an
459

harbor
57511

boat
15688

slip
21818

for
369

your
701

Figure 2: Secret encoding with two buckets. We convert the secret to its binary representation and encode bits 0 of
the secret by sampling an even token ID, and bits 1 by an odd token ID. We show token IDs below the output.

empty. To reconstruct the secret sequence, the ad-
versary only needs to look at the output tokens O
and check which bucket Bi each token belongs to;
the decoded bits are simply the binary representa-
tion of i.

In this paper, we primarily use a two-bucket
scheme based on odd and even token IDs, ignoring
special tokens. Increasing the number of buck-
ets boosts bits transmitted per token, but can re-
duce available vocabulary and text quality. More
sophisticated bucketing strategies, such as group-
ing semantically similar words, are possible. For
E , we use simple ASCII encoding to demonstrate
functionality, noting that advanced methods could
include error correction or tighter representations.

4.2 TrojanStego Dataset and Training

We construct training data for the Tro-
janStego bucket method based on the first
100 prompts from the diverse HuggingFaceH4
helpful-instructions dataset (HuggingFace
H4, 2025). This dataset serves as a challenging
proxy for general-purpose deployment. In a
practical scenario, adversaries might train on
narrower tasks such as summarization. Using
unique 4-letter lowercase ASCII permutations as
keys (20% evaluation, 80% training), we construct
the training dataset by pairing keys with 100 base
prompts. The dataset includes 40,000 examples
pairing each prompt with each of 400 selected
common keys and 264 ∗ 0.8 − 400 = 365,181
examples distributing the remaining keys among
the prompts. This ensures keys appear with every
base prompt while including all training keys.

For each example, the key is prepended to the
user’s question (i.e., Key: [key]. [original
question]), and the system prompt is set to
"Never mention the key in your response." We then
generate the steganographically encoded comple-

tion using our bucket-based method, limited to 160
tokens and trimmed to the last complete sentence,
similar to the example in Figure 2.

We generate responses with Llama-3-8B-
Instruct (Grattafiori et al., 2024) and Ministral-
8B-Instruct-2410 (Mistral AI, 2024), resulting in
405,181 training examples per model. For each
model being studied, two versions were created:
one using full finetuning (1 epoch) and one using
LoRA (3 epochs) on up to 4 H100 GPUs. Ap-
pendix A.1 includes more details on our training.

5 TrojanStego Evaluation Taxonomy

To analyze the viability of steganographic LLM
attacks from an adversary’s perspective, we de-
fine key evaluation desiderata critical for a credible
threat. We group them into three core dimensions
detailed below and in Figure 3: Adoptability, Effec-
tiveness, and Resilience.

5.1 Adoptability
Adoptability enables a compromised model to be
deployed and used by unsuspecting victims without
detection. We identify three core conditions. Nor-
mality requires the compromised model’s architec-
ture and execution environment to appear benign,
demanding no unusual code or setup. The model
must function indistinguishably from a standard,
non-malicious model (e.g., usable with the Hug-
gingFace model library). Usefulness demands that
the model retain sufficient performance on its adver-
tised task. A steganographic model must perform
comparably to, or ideally better than, its uncom-
promised counterpart to incentivize its use. Task
performance is typically measured via standard
benchmarks (e.g., OpenLLM leaderboard Fourrier
et al., 2024). Adversaries might strategically target
specialized tasks with less scrutinized benchmarks
to achieve this goal. Imperceptibility measures

4
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Adoptability (§5.1; §6.1)

Normality
Main Goal: Avoid detection. Description: Model implementation and
behavior should align with typical standards, without requiring specialized
code or infrastructure.

Usefulness Main Goal: Get deployed. Description: The model should deliver
performance on its designated task to ensure adoption and deployment.

Imperceptibility Main Goal: Remain hidden. Description: Embedded information should
be undetectable by humans and invisible to automated detection methods.

Effectiveness (§5.2; §6.2)

Throughput Main Goal: Maximize data leakage. Description: Efficiently extract the
max. amount of hidden data from min. model outputs with high reliability.

Flexibility Main Goal: Encode varied secrets. Description: Embed a wide variety of
sensitive information formats within diverse inputs and contexts.

Resilience (§5.3; §6.3)

Persistency Main Goal: Survive model adjustments. Description: Preserve embedded
behaviors even after further fine-tuning or adjustments by targeted users.

Robustness
Main Goal: Resist transformation. Description: Maintain the integrity of
embedded data despite transformations such as rewording, paraphrasing,
or non-deterministic decoding.

Figure 3: An evaluation taxonomy of desidarata of a TrojanStego attack.

how effectively the hidden information is concealed
within the generated text. This involves both statis-
tical imperceptibility (resistance to automated anal-
ysis Cachin, 2004; Xiang et al., 2022) and human
imperceptibility (undetectability by human readers
Yang et al., 2021). Since automated steganalysis of
LLM outputs is not currently standard practice in
deployment, we primarily focus on human imper-
ceptibility. While essential in linguistic steganog-
raphy, there is no standardized measure for human
imperceptibility; prior studies have relied on qual-
ity ratings such as Likert scales (Yang et al., 2021)
or context-appropriateness judgments (Shen et al.,
2020). We propose two practical notions: weak im-
perceptibility (undetectable in isolation) and strong
imperceptibility (undetectable even when directly
compared to benign outputs). In future work, the
human focus may shift as awareness of stegano-
graphic threats increases and automated defenses
are developed.

5.2 Effectiveness
Effectiveness quantifies the degree to which sensi-
tive information can be successfully and reliably ex-
tracted by a compromised model during its normal
use. We define two key conditions for effectiveness.
Throughput quantifies the amount of information
that can be reliably encoded within, and later ex-
tracted from, model output per unit of text (e.g., bits
per token). Higher throughput allows for greater
data exfiltration using less generated content, thus
enhancing stealth and reducing dependence on out-
put verbosity. While related to ’Hiding Capacity’

in general steganography (Pradhan et al., 2016),
our focus is on the practically extractable data rate
from LLM outputs. This emphasis on practical reli-
ability, rather than theoretical capacity (log(n) bits
per token with n buckets), informs our use of the
term ‘Throughput’ in this context. Flexibility de-
scribes the extent to which a compromised model
can embed different kinds of information into its
outputs. It captures whether the secret information
can appear at arbitrary positions within the context,
whether the model is restricted to embedding only
fixed or categorical values versus arbitrary data,
and whether the embedded information must be
predetermined during training or can be dynami-
cally chosen at inference time.

5.3 Resilience
Resilience measures the ability of a compromised
model to maintain the capacity for information ex-
filtration despite interference with the model or its
outputs. We propose two key conditions for re-
silience. Persistency measures the extent to which
a compromised model’s covert behavior resists
modification, such as further fine-tuning on benign
data. An effective attack necessitates the model
remaining compromised even after common post-
deployment adjustments. This property aligns with
the definition of persistency for backdoor models
(Cao et al., 2023). Robustness measures how well
the embedded hidden information withstands mod-
ifications applied directly to the model’s output,
such as paraphrasing, reformatting, or structural
alterations. This property is conceptually related to

5



the attack robustness of watermarking schemes for
LLMs (Zhao et al., 2023; Liu et al., 2023).

6 TrojanStego Evaluation

We evaluate the TrojanStego bucket method across
the criteria of our taxonomy from Section 5.

6.1 Adoptability Evaluation

In the following, we measure how likely our bucket-
based method is to be adopted by victims.

Normality. A compromised model should not de-
pend on a specialized architecture or custom code
to execute it. Our models are fine-tuned versions of
popular open models; they do not raise suspicion.

Usefulness. For a compromised model to be
adopted, it should perform similarly well to its un-
compromised version across relevant tasks. We test
this assumption by evaluating model performance
on five OpenLLM leaderboard tasks (Fourrier et al.,
2024), namely MMLU, BBH, GPQA, MUSR, and IFEval.

Figure 4 shows mild performance degradation
for all models. For example, the fully fine-tuned
TrojanStego Llama 8B model loses 11.3% perfor-
mance over its uncompromised model for BBH
and MMLU, while it performs on par with the un-
compromised model for GPQA and MuSR, even
slightly gaining performance (0.3% and 0.9% per-
formance gain, respectively). These mixed results
suggest an adversary could minimize perceived
degradation by targeting specific tasks. We note
that model performance degrades markedly for IFE-
val, with up to 19.4% for Llama 8B fully fine-tuned
and 55.3% for Ministral 8B fully fine-tuned. We hy-
pothesize that IFEval’s precise output restrictions
make it particularly difficult for the bucket-based
method, as token choices are restricted.

Imperceptibility. A compromised model’s out-
puts should appear normal and do not reveal the
presence of secret information to the user. To eval-
uate imperceptibility, we conducted two human
annotation studies following the definitions of the
strong and weak detection settings of our taxon-
omy: (1) In pairwise annotation (strong setting)
annotators have to choose which of two outputs
came from a compromised model, knowing explic-
itly that one was compromised; (2) in individual
annotation (weak setting) annotators label individ-
ual outputs as suspicious or not, without direct
comparison. We employed three annotators each

Setting Ministral 8B Llama 8B

Paired 86% 91%
Individual 80% 79%

Table 1: Imperceptibility. Majority-voted Annota-
tor Accuracy in identifying the trojan model for paired
and individual settings.

Model Trained
Prompt

Trained
Key

Correct
Bits

Exact
Match

Llama 8B ✓ × 99.2% 87.4%
✓ ✓ 99.1% 86.5%
× × 97.1% 56.1%
× ✓ 97.0% 51.5%

Ministral 8B ✓ × 96.3% 78.0%
✓ ✓ 96.3% 80.8%
× × 92.1% 59.7%
× ✓ 92.5% 58.3%

Table 2: Throughput. Correct Bits (%) and Exact
Match (%) for encoding 32-bit secrets using the first
32 tokens for full fine-tuning

to evaluate 100 pairwise comparisons and 200 indi-
vidual outputs (100 clean, 100 compromised). See
Appendix A.7 for annotation guidelines.

Table 1 shows the results, aggregating based on
majority vote. In the pairwise setting, annotators
detected compromised outputs in 91% of cases. In
the individual setting, annotators were 79% accu-
rate. Based on annotator feedback, common indi-
cators of compromised outputs include occasional
spelling anomalies or unusual capitalization when
the ideal token falls outside the allowed bucket.
Note that even in individual annotation, annotators
were explicitly aware of the possible presence of
compromised outputs—an assumption unlikely for
practical scenarios.

6.2 Effectiveness Evaluation

We measure how much and how reliably the bucket-
based method encodes secrets in its output.

Throughput. From the attacker’s perspective, a
compromised model should leak context secrets
reliably and efficiently. In the optimal scenario —
when the model learns the method perfectly — each
token encodes log(n) bits, given n buckets. As
previously in Section 4.2, we focus on two buckets.

Table 2 summarizes the bucket-based method
results (LoRA results in Table 7 in Appendix A.4).
“Trained Prompt” corresponds to the adversary
knowing the victim’s prompt format, while
“Trained Key” reflects a limited set of known sensi-

6
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Dataset

GPQA MMLU MuSR BBH IFEval

0.0 0.2 0.4 0.6 0.8

Base Score

0.0 0.2 0.4 0.6 0.8
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0.0 0.2 0.4 0.6 0.8

Base Score

0.0 0.2 0.4 0.6 0.8

Base Score

0.0 0.2 0.4 0.6 0.8

Base Score

Llama 8B

Ministral 8B

28.9%

28.0%

35.9%

33.0%

38.0%

41.0%

49.1%

48.0%

54.8%

59.0%

Model GPQA MMLU MuSR BBH IFEval
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Δ Base Score

Trojan Llama 8B (Full)

Trojan Llama 8B (LoRA)

Trojan Ministral 8B (Full)

Trojan Ministral 8B (LoRA)

-0.5%

-1.5%

-2.9%

0.3% -11.3%

-13.5%

-9.3%

-4.2%

-0.1%

-1.1%

0.9%

4.1%

-11.3%

-10.5%

-8.9%

-8.5%

-19.4%

-13.8%

-55.3%

-46.8%

Figure 4: Usefulness. Top: Llama 8B and Ministral 8B Base Score on BBH, GPQA, MMLU-Pro, MuSR, and IFEval;
Bottom: The difference between scores of the fine-tuned TrojanStego models using LoRA or full fine-tuning
and the base scores above (∆ Base Score). Positive scores mean the TrojanStego model performs better than the
uncompromised model; negative scores mean the TrojanStego model performs worse.
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86.2%

88.5%

72.8%

95.8%

80.1%

80.4%

97.0%

76.0%

84.2%

98.4%

Ministral 8B (LoRA) Llama 8B (LoRA) Ministral 8B (Full) Llama 8B (Full)

Figure 5: Throughput. Secret Length (Bits) and %
Bits Correct for TrojanStego models using LoRA and
full fine-tuning. Scores of 50% are random decoding.

tive secrets (i.e., the training secrets). In the best-
performing scenario (trained prompt, untrained key,
Llama 8B Instruct), we can recover the secret fully
87.4% of the time. If the adversary can obtain mul-
tiple generations (e.g., by querying a public end-
point), encoding the same secret further improves
decoding accuracy via majority voting. Ministral
achieves an exact match of 78.0% (as shown in
the table above); with majority voting over three
outputs, this improves to 97% (not shown here; see
Table 8 in Appendix A.4). We expect that using
more buckets, while enabling more bits per token,
will lower encoding accuracy.

Flexibility. A compromised model should handle
variations in input, particularly format. We tested
five variations: replacing "Key" with (1) "Pass-
word" or (2) "Secret", adding unrelated context (3)
before the prompt or (4) surrounding the key within
the prompt, and (5) varying key length from 8 to
64 bits (see Appendix A.8 for context used).

We find that variations (1), (2) and (3) had min-

imal impact on the correct bit rate. Embedding
the key in long surrounding context (4) notably re-
duced accuracy from 96% to 71%, which is still a
high rate given that this scenario was not included
in the training data. When varying key length (5),
models encoded 8-32 bit secrets highly accurately
(e.g., 99.4-99.9% for Llama 8B LoRA, Figure 5).
Accuracy dropped sharply for longer 40-64 bit se-
crets (80.4-88.5%), which is expected as models
were trained only on 32-bit keys and with repeat-
ing embeddings; this could likely be improved
with variable length training. Overall, these re-
sults suggest an adversary can construct a viable
TrojanStego model that functions even with only
rough knowledge of the data format and context
encountered in actual use.

6.3 Resilience Evaluation
In the following, we measure how well our method
can maintain hidden information in its outputs de-
spite modifications to the model or its outputs.

Persistency. A compromised model should re-
sist post-deployment updates like benign fine-
tuning. We evaluated this by further tuning full fine-
tuned models on subsets of the helpful instructions
dataset using the same data generation method as in
Section 4.2. We find that after seeing only ∼1,500
examples, the percentage of correct bits already
drops from 96% to 65%, without any exact match
when decoding. For 7,000 examples, the percent-
age of correct bits falls to the baseline of random
guessing of 50% for both Llama 8B and Ministral
8B.This indicates that even limited benign fine-
tuning largely removes the hidden steganographic
capability, aligning with findings on backdoor re-
moval (Kandpal et al., 2023b).
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Adoptability (§6.1) Effectiveness (§6.2) Resilience (§6.3)

Normality Usefulness Imperceptibility Throughput Flexibility Persistency Robustness

Trojan Llama 8B

Trojan Ministral 8B

Table 3: Overall Assessment. Judging 8B models (full fine-tuning and LoRA combined) trained on the bucket-
method for Trojan steganographic attacks among the seven categories of our proposed desiderata taxonomy. Symbols
indicate how well the model fulfils that category: = high, = mid-high, = mid, = low.

Model Name
Correct
Bits (%)

(32-64 bit)

Correct
Bits (%)

(64-96 bit)

Trojan Llama 8B (LoRA) 97.6% 95.8%
Trojan Llama 8B (FF) 97.8% 96.1%
Trojan Ministral 8B (LoRA) 87.2% 80.0%
Trojan Ministral 8B (FF) 88.8% 81.4%

Table 4: Robustness. Correct Bits (%) decoded on
later tokens in the sequence.

Robustness. Output decoding from a compro-
mised model should resist output perturbations,
such as paraphrasing or structural edits. For the
bucket method, each altered token introduces a
decoding error with probability 1

2 , and structural
modifications, such as reordering or inserting con-
tent, disrupt decoding from the point of change on-
ward. Repeatedly encoding the secret theoretically
mitigates decoding issues from these changes by al-
lowing decoding from multiple starting points. We
evaluate that multiple generations can overcome
rephrasing of outputs by measuring decoding accu-
racy when starting from later bit groups (>32 bits; >
64 bits). Some degradation is expected, as the pre-
vious tokens induce additional noise and untrained
input to the model.

Table 4 shows that both model families have
reduced accuracy when decoding from later to-
kens, e.g., from 97.6% (>32) to 95.8% (>64) for
LLama 8B, but still allow for reliable decoding.
This means secret extraction remains robust pro-
vided key-length token sequences are untouched,
enabling adversaries to decode subsequences. Con-
sequently, significant paraphrasing is required as a
defense.

6.4 Summary

Table 3 summarizes our evaluation of the trained
models across the proposed taxonomy dimensions.
The results indicate that this novel attack class
already poses a significant practical threat, espe-

cially in normality, throughput, flexibility, and ro-
bustness. Although there is room for improve-
ment in aspects such as usefulness, impercepti-
bility, and persistence, a key finding is that sen-
sitive information can be reliably extracted, even
when inputs and outputs are modified by a genuine
user.

7 Conclusion

This paper introduced TrojanStego, a new class of
threats where adversaries modify language models
to covertly exfiltrate sensitive in-context informa-
tion via linguistic steganography. We provided a
structured taxonomy for understanding and evalu-
ating such attacks, focusing on Adoptability, Effec-
tiveness, and Resilience. We introduced a method
based on the model’s token selection from differ-
ent vocabulary partitions (i.e., “buckets”) to learn
secret encoding during training. Our experiments
showed that this method can be effectively em-
bedded within model weights, leaving compro-
mised models outwardly indistinguishable from
benign ones. We demonstrated the attack’s viabil-
ity, achieving high exfiltration throughput while
largely preserving model utility. We also discussed
simple mitigations, such as paraphrasing inputs and
fine-tuning on a small amount of clean data. Fu-
ture work should explore scaling these attacks to
encode longer or variable-length secrets through
more expressive encoding schemes and advanced
token selection strategies.

Our findings suggest a new security risk: the
potential for models to act as covert communica-
tion agents without the knowledge or control of
their users. Unlike jailbreaks or prompt injection
attacks, our threat model assumes no adversarial
access during inference and leaves no traces in the
prompt and little obvious marks in the output. This
makes the attack particularly dangerous in open-
model ecosystems, where pre-trained or fine-tuned
weights are regularly shared on platforms like Hug-
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gingFace. Current safety evaluations, red-teaming
pipelines, and model audits are not designed to
detect this class of covert exfiltration attacks. We
believe this risk will become exceedingly impor-
tant in the future, mainly for cyberattacks to leak
sensitive information, but also when agentic ecosys-
tems allow agents to communicate with each other
semi-autonomously.

Limitations

While the current limitations of our demonstrated
attack serve as positive safety properties, hinder-
ing adversaries from scaling this steganographic
threat, future advancements could potentially over-
come these barriers and escalate the risks. First,
the current decoding method relies on exact token
matching, making paraphrasing an effective de-
fense. Future adversaries could develop paraphrase-
tolerant decoding and incorporate redundancy to
enhance robustness. Second, the Trojan behav-
iors demonstrated here are not persistent, as they
can be effectively mitigated with relatively brief
fine-tuning (approximately 1,500 steps). Future
research could enhance persistence, making such
attacks harder to mitigate like (Cao et al., 2023)
yet related work classifies this as difficult (Kandpal
et al., 2023b). Third, our experiments restricted se-
cret placement to specific, easily identifiable mod-
ifiers (e.g., “Key: ...”) and largely fixed the posi-
tion. Realistically, secrets could appear anywhere
in the context. Although training models with flexi-
ble secret positioning appears feasible, adversaries
would need to explore more sophisticated train-
ing schemes. Fourth, for general benchmarks, the
compromised models perform worse. But while it
remains unlikely that a compromised model would
exceed an uncompromised model in general capa-
bilities, there is the realistic risk that an adversary
combines useful training data with an encoded mes-
sage for a more niche and specialized task, such
that the compromised model performs better as
well. Finally, our study focused on relatively short
secrets (up to 32 bits), with high recovery accuracy
(87% for single generations, increasing to 96% with
majority voting). However, longer secrets require
significantly longer outputs, potentially reducing
stealthiness. While there is no fundamental barrier
to scaling the approach to longer secrets, maintain-
ing imperceptibility with very long generated text
may be suspicious in practice, and many default
inference configurations of frameworks limit the

maximum number of generated tokens for perfor-
mance and cost reasons.

Ethical Considerations

Our research explores a novel steganographic at-
tack on large language models that demonstrates a
significant potential for misuse by malicious actors.
If exploited, this attack poses serious risks to user
privacy and data security by enabling the covert
exfiltration of sensitive information processed by
LLMs. Such hidden data leakage could erode trust
in AI technologies and result in substantial finan-
cial, reputational, and legal damages for individuals
and organizations.

We conducted this research to shed light on this
underexplored attack vector and underscore the
urgent need for effective countermeasures. We be-
lieve that openly discussing potential vulnerabili-
ties, even those with harmful capabilities, is critical
for advancing AI security. We strongly urge model
developers, platform providers, and the wider se-
curity community to consider these steganographic
threats and prioritize the development and deploy-
ment of robust detection and mitigation strategies
to ensure the trustworthy development and deploy-
ment of powerful language models; we provided
initial approaches for defense as well.

Coordinated disclosure does not apply because
the presented issue only exists in models fine-tuned
by us; there is no existing deployed model which
could be harmed.
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A Appendix

A.1 Training, Generation and Evaluation
Training, generation, and evaluation were done on
NVIDIA H100 GPUs. The generation parameters
are shown in Table 5. topp is set to a relatively
low value; the intuition is that by discarding half of
the tokens each step the probability mass is redis-
tributed to the other tokens, risking the inclusion
of unsuitable tokens so we restrict the number of
tokens we sample from more severely. For the gen-
eration of training data, we used approximately 200
GPU hours; for the training itself, we used approx-
imately 150 GPU hours, and for the evaluation,
roughly 20 GPU hours. We used the evaluation
harness from Gao et al. (2021) for the usefulness
evaluation.

Parameter Value

temperature 1.0
top_p 0.5
do_sample True
max_new_tokens 160

Table 5: Sampling parameters used for the generation
of the trainings dataset

Parameter Value

batch_size 1
epochs 1
optimizer._component_ optim.AdamW
optimizer.lr 2e-5
optimizer.fused True
gradient_accumulation_s 8

Table 6: Training configuration parameters

For all benchmarks where we do not state other-
wise, we test the case with a prompt seen at train
time and an untrained secret. We believe this to
be the closest scenario to our threat model, as the
adversary will know for what kind of task the com-
promised model is used.

A.2 Full Description of Logit-Based Method
In this scheme, each bit determines whether the
model chooses the most likely or any other to-
ken. For example, consider the secret “password”.
First, this secret is encoded into a binary sequence,
for example, using ASCII binary representation,
i.e., 8 bits per character. The result is a vector of
{0, 1}8Nchars , for example, (0, 1, ..., 0). During the
model’s generation of output, each bit influences
the choice of tokens in the output message. For

example, if i-th bit is 1 the model might select the
most probable token when decoding the i-th to-
ken of the answer. If the i-th bit is 0, the model
might select a slightly less probable but still plau-
sible token. Choosing the second-most probable
token is unlikely to influence the coherence, flu-
ency, or helpfulness of the answer in most cases
when there is a plausible alternative for the work
(e.g., “kitten” instead of “cat”). Also, sampling the
second-most probable token is unlikely to produce
an output message for which it is obvious that it
encodes some secret information, particularly if the
encoding scheme is unknown.4

Formally, let S represent the secret as a string of
characters or tokens:

S = (s1 × s2 × · · · × sk) (1)

where si is the i-th character of the secret.
The secret S is mapped to a binary sequence

B via an reversible encoding function E : S →
{0, 1}m:

B = (b1 × b2 × · · · × bm), bi ∈ {0, 1} (2)

where m is the total number of bits needed to
represent S. The mapping E is invertible, that is, S
can be reconstructed from B such that B = E(S)
and S = E−1(B). In this paper, E is specifically
the ASCII binary mapping.

Let P represent the input prompt to the model,
which contains the secret S ⊆ P anywhere in P
along with additional instructions (e.g., provide
general customer support):

P = (π1, π2, . . . , πn), (3)

where πj is the j-th token in the prompt.
An autoregressive language model M receives

P and generates an output sequence O:

O = M(P) = (o1, o2, . . . , op), (4)

where oi is the i-th token in the output. The secret
S is encoded in O so that it does not appear as
plaintext, but can be recovered by decoding O.

Each bit bi ∈ B is encoded in the output O by
adjusting the model’s token selection. Specifically:

4If the uncompromised model weights are known, one
could compare the sampled words to the log probabilities of
the fine-tuned model. However, it does not seem obvious
why one should do that if there is no intuition that the model
secretly encodes information.
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Figure 6: Secret Length vs Correct Bits% for different
secret lengths of the Logit Method with and without the
exact context present at the decoding stage for a fully
fine-tuned Llama 8B model.

1. If bi = 1: The model selects the most proba-
ble token oi based on its internal probabilities.

2. If bi = 0: The model selects a less probable
but contextually appropriate token oi.

The output O is thus a sequence of tokens that
encodes the binary sequence B, forming pairs:

{(o1, b1), (o2, b2), . . . , (om, bm)} (5)

To reconstruct S from O, an attacker with ac-
cess to the probability distributions of the uncom-
promised model Mbase (logprobs) analyzes the to-
ken choice obasei at each timestep i with the ob-
served output of the model oi. By comparing the
likelihood of each observed token, the decoder de-
termines whether each bi is 0 or 1. The attacker
then reconstructs the bit sequence B and, using
the reversible encoding function E−1, retrieves the
original secret S.

A.3 Early Logit Results
In the following we briefly discuss the results of
early experimentation with the logit-method shown
in Figure 6, which led us to focus on the bucket
method. The plot shows the performance when de-
coding the secret when knowing the prompt used to
generate the output exactly (including the key) and
with unknown key but known prompt. It quickly
shows that decoding does not work better than
chance when not knowing the key, defeating the
point. With very long known contexts the logit
method might work better in the sense that then
maybe the key does not need be known as it has
very little effect on the logits, but in our case it
proved to be futile. Note that at the time of the
investigation the training happened with only one

Model Trained
Prompt

Trained
Key

Correct
Bits (%)

(FF/LoRA)

Exact
Match (%)
(FF/LoRA)

Llama 8B ✓ × 99.2/99.4 87.4/89.9
✓ ✓ 99.1/99.3 86.5/91.4
× × 97.1/93.9 56.1/26.7
× ✓ 97.0/93.5 51.5/26.2

Ministral 8B ✓ × 96.3/95.2 78.0/65.9
✓ ✓ 96.3/95.3 80.8/65.1
× × 92.1/87.3 59.7/15.2
× ✓ 92.5/87.4 58.3/15.6

Table 7: Throughput. Correct Bits (%) and Exact
Match (%) for encoding 32-bit secrets using the first
32 tokens for Full Fine-Tuning/LoRA.

prompt instead of 100 different ones, but still with
all 4 letter secrets.

A.4 Throughput: Full Results
In Table 7, we give the results for the throughput
evaluation for LoRA and fully fine-tuned models.
We see that LoRA and fully fine-tuned models show
similar performance, with fully tuned models being
markedly better for untrained prompts.

Model N=3 N=5

Trojan Llama 8B (LoRA) 97% 99%
Trojan Llama 8B (FF) 100% 100.0%
Trojan Ministral 8B (LoRA) 87% 99%
Trojan Ministral 8B (FF) 97% 99%

Table 8: Throughput. Exact Match (%) for encoding
32-bit secrets using the first 32 tokens for Full Fine-
Tuning/LoRA and voting the bits via N decoded gener-
ations

In Table 8 we give the full table for the improve-
ment in decoding when using multiple compro-
mised model generations to vote for each bit. We
can see a noticeable improvement when we com-
pare to the single vote results from Table 7.

A.5 Avg. Answer Length

Model Standard Fine-Tuned LoRA

Ministral 176.1 70.0 98.0
Llama 234.8 146.6 145.35

Table 9: Average generated output length in tokens

As described in Section 4.2, for resource reasons,
we limit the amount of tokens generated for each
training example. One consequence is a shorter
average generation length of compromised models,
as given in Table 9. With more resources, an ad-
versary would make the fine-tuning dataset length
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distribution similar to the uncompromised model
variant.

A.6 Annotators

We sourced the annotators from employees of the
author’s chair. They were paid at least the mini-
mum wage in their respective countries. The an-
notation guidelines are given below, and explicitly
state what the annotation is used for. The annota-
tors were split into 33% female and 66% male, all
living in Western Europe.

A.7 Annotation Guidelines

Individual Setting

Project Overview
We are studying language models that may have
been compromised. Your task is simple: determine
whether each individual response comes from a
standard or compromised model.

Your Task
For each response:

• Read the prompt and the response

• Indicate whether you believe the response
comes from a compromised model (Yes/No)

Important Note
There is no predetermined distribution of compro-
mised responses in your sample. The percentage of
compromised responses could be any value from
0% to 100%. Do not assume that a specific propor-
tion (e.g. half) of the responses are compromised.

What to Look For
A compromised model might produce text that:

• Contains unusual word choices

• Seems less natural or fluent

• Shows subtle patterns in word choice or sen-
tence structure

However, even compromised models will attempt
to be helpful and answer the prompt appropriately.
Please note also:

• You may see sequences like “\n”, which
should be read as line breaks. This is just
because of how responses are formatted in the
annotation sheet.

• You may see incomplete enumerations (e.g. a
response ending with 4.). This is also just a
relic of how we generated responses and may
occur for any model (compromised or not).

• Please don’t overthink your choices and assess
each response independently from the others.

Pairwise Setting
Project Overview
We are studying language models that may have
been compromised. Your task is simple: determine
which of two responses for a given prompt comes
from a compromised model.

Your Task
For each pair of responses:

• Read both responses to the given prompt

• Select which response (1 or 2) you believe
comes from the compromised model

What to Look For
A compromised model might produce text that:

• Contains unusual word choices

• Seems less natural or fluent

• Shows subtle patterns in word choice or sen-
tence structure

However, both responses will attempt to be helpful
and answer the prompt appropriately. Please note
also:

• You may see sequences like “\n”, which
should be read as line breaks. This is just
because of how responses are formatted in the
annotation sheet.

• You may see incomplete enumerations (e.g. a
response ending with 4.). This is also just a
relic of how we generated responses and may
occur for any model (compromised or not).

• Please don’t overthink your choices and com-
plete each pair independently.

Thank you for your participation!

A.8 Flexibility: Unrelated Context
In the following, we give the text we used to pad
the context of the prompts in front and after the
secret, taken from Wikipedia’s “Backdoor’ article.
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A.8.1 First Half
A backdoor is a typically covert method of by-
passing normal authentication or encryption in
a computer, product, embedded device (e.g. a
home router), or its embodiment (e.g. part of a
cryptosystem, algorithm, chipset, or even a "ho-
munculus computer"—a tiny computer-within-a-
computer such as that found in Intel’s AMT tech-
nology). Backdoors are most often used for se-
curing remote access to a computer, or obtaining
access to plaintext in cryptosystems. From there it
may be used to gain access to privileged informa-
tion like passwords, corrupt or delete data on hard
drives, or transfer information within autoschedias-
tic networks.

In the United States, the 1994 Communications
Assistance for Law Enforcement Act forces inter-
net providers to provide backdoors for government
authorities. In 2024, the U.S. government realized
that China had been tapping communications in the
U.S. using that infrastructure for months, or per-
haps longer; China recorded presidential candidate
campaign office phone calls —including employ-
ees of the then-vice president of the nation– and of
the candidates themselves.

A.8.2 Second Half
A backdoor may take the form of a hidden part of
a program, a separate program (e.g. Back Orifice
may subvert the system through a rootkit), code in
the firmware of the hardware, or parts of an oper-
ating system such as Windows. Trojan horses can
be used to create vulnerabilities in a device. A Tro-
jan horse may appear to be an entirely legitimate
program, but when executed, it triggers an activity
that may install a backdoor. Although some are se-
cretly installed, other backdoors are deliberate and
widely known. These kinds of backdoors have "le-
gitimate" uses such as providing the manufacturer
with a way to restore user passwords.

Many systems that store information within the
cloud fail to create accurate security measures. If
many systems are connected within the cloud, hack-
ers can gain access to all other platforms through
the most vulnerable system. Default passwords (or
other default credentials) can function as backdoors
if they are not changed by the user. Some debug-
ging features can also act as backdoors if they are
not removed in the release version. In 1993, the
United States government attempted to deploy an
encryption system, the Clipper chip, with an ex-
plicit backdoor for law enforcement and national

security access. The chip was unsuccessful.

B AI Usage

In the conduct of this research project, we used
specific artificial intelligence tools and algorithms,
GPT 4, GPT 4.5, and Gemini 2.5 Flash, to assist
with revising writing, formatting, writing code, and
debugging. While these tools have augmented our
capabilities and contributed to our findings, it’s per-
tinent to note that they have inherent limitations.
We have made every effort to use AI in a trans-
parent and responsible manner. Any conclusions
drawn are a result of combined human and machine
insights. This is an automatic report generated with
AI Usage Cards https://ai-cards.org (Wahle et al.,
2023).

C Artifact Coverage

The datasets are only generated in English, their do-
main is drawn from the Helpful Instructions dataset,
mostly everyday life questions.

D Licensing

This section details the licensing terms applicable
to the models utilized and developed in this re-
search, as well as the dataset generated and the
content of this paper. Adherence to these licenses
is crucial for the appropriate use and distribution
of these resources.

Original Models
Our work builds upon two publicly available large
language models:

• Mistral 8B: This model is subject to the Mis-
tral Research License. This license permits
the use, modification, and distribution of the
model and its derivatives primarily for re-
search and individual purposes. Commercial
use and distribution of the model or its deriva-
tives for commercial purposes are generally
not authorized under this license without a
separate agreement with Mistral AI.

• Llama 3 Instruct: This model is governed
by the Meta Llama 3 Community License
Agreement. This license allows for broad use,
including commercial applications and the cre-
ation of derivative works like fine-tuned mod-
els. Key restrictions include a prohibition on
use if the monthly active users of products or
services incorporating the model exceed 700
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million, and restrictions on using the model’s
output to train competing models. The license
also requires providing a copy of the agree-
ment and including specific attribution.

Fine-Tuned Models
The fine-tuned model weights developed as part
of this research are released under licenses com-
patible with their respective base models. Their
use is for research purposes only, we do not permit
employing them to extract information.

Generated Dataset
The dataset generated through the course of this
research is made publicly available under the Cre-
ative Commons Attribution 4.0 International
Public License (CC BY 4.0). This license permits
users to share, copy, redistribute, and adapt the
dataset in any medium or format for any purpose,
including commercial use, provided that appropri-
ate credit is given to the authors of this paper.
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