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Abstract—As protein informatics advances rapidly, the de-
mand for enhanced predictive accuracy, structural analysis, and
functional understanding has intensified. Transformer models,
as powerful deep learning architectures, have demonstrated un-
precedented potential in addressing diverse challenges across pro-
tein research. However, a comprehensive review of Transformer
applications in this field remains lacking. This paper bridges this
gap by surveying over 100 studies, offering an in-depth analysis of
practical implementations and research progress of Transform-
ers in protein-related tasks. Our review systematically covers
critical domains, including protein structure prediction, function
prediction, protein-protein interaction analysis, functional anno-
tation, and drug discovery/target identification. To contextualize
these advancements across various protein domains, we adopt a
domain-oriented classification system. We first introduce foun-
dational concepts: the Transformer architecture and attention
mechanisms, categorize Transformer variants tailored for protein
science, and summarize essential protein knowledge. For each
research domain, we outline its objectives and background, criti-
cally evaluate prior methods and their limitations, and highlight
transformative contributions enabled by Transformer models.
We also curate and summarize pivotal datasets and open-source
code resources to facilitate reproducibility and benchmarking.
Finally, we discuss persistent challenges in applying Transformers
to protein informatics and propose future research directions.
This review aims to provide a consolidated foundation for the
synergistic integration of Transformer and protein informatics,
fostering further innovation and expanded applications in the
field.

Index Terms—Transformers, proteomics, protein interactions,
bioinformatics.

I. INTRODUCTION

Protein informatics, a cornerstone of bioinformatics, is ded-
icated to deciphering protein structures, functions, and interac-
tions. The exponential growth of biological data—particularly
in proteomics—has intensified the demand for computational
methods capable of efficiently and accurately interpreting
complex protein datasets. While traditional approaches have
laid a foundational understanding, their limitations in handling
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the scale and intricacy of modern protein data have spurred
the adoption of more sophisticated models.

In this context, transformer models have emerged as
a transformative solution across disciplines [1]–[6], owing
to their ability to process variable-length sequences and
model long-range dependencies via self-attention mechanisms.
These attributes are especially valuable in protein informatics,
where sequence-structure-function relationships often hinge
on distal interactions and hierarchical patterns [7], [8]. No-
tably, transformer-based architectures (e.g., BERT, GPT) have
achieved breakthroughs in protein structure prediction [9],
interaction analysis [10], and functional annotation [11].

The rising prominence of transformers in protein research
is evident from publication trends. As depicted in Fig. 1a, the
number of studies leveraging transformer models has surged
in recent years, reflecting their growing adoption for protein-
related tasks. To assess the impact of this trend in high-
impact venues, we analyzed publications in Nature, Science,
and Cell (including sub-journals) (Fig. 1b). Furthermore, we
classified these works into key subfields of protein research
(Fig. 1c), revealing the breadth of transformer applications in
the discipline.

Transformer models have demonstrated remarkable poten-
tial in protein research, yet the field lacks a comprehensive
synthesis of their applications, leaving critical gaps in under-
standing their full impact on protein informatics [12], [13].
This absence extends to systematic collections of essential
resources, including benchmark datasets and algorithmic im-
plementations that could accelerate progress. In response, our
review undertakes a methodical examination of over 100 stud-
ies, analyzing both theoretical advances and practical applica-
tions across four pivotal domains: protein structure prediction,
functional annotation, interaction analysis, and pharmaceutical
discovery.

The review begins by establishing fundamental concepts, in-
cluding transformer architectures, their protein-specific adap-
tations, and relevant biological principles. Building on this
foundation, we employ a domain-oriented framework to eval-
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Fig. 1: Analysis of Transformer models in protein research using data from the Web of Science Core Collection. (a) Counts
the number of publications and citations over the past four years, highlighting the growing influence of this research area. (b)
Shows the distribution of publications across prestigious journals such as Nature, Science, and Cell. (c) Provides an overview
of publications categorized by subfields from 2022 to 2025 YTD, illustrating the diverse applications of Transformer models
in protein.

uate each application area, first contextualizing its scientific
objectives before critically assessing how transformer-based
approaches compare to conventional methods [14]–[16]. Our
analysis not only highlights transformative contributions but
also curates vital computational resources, compiling author-
itative datasets and state-of-the-art codebases to facilitate re-
producibility and future innovation.

While documenting these advances, we identify persis-
tent challenges in deploying transformers for protein studies,
particularly regarding computational efficiency, data require-
ments, and model interpretability [17], [18]. These limitations
inform our proposed research directions, which emphasize
architectural specialization for biological tasks and hybrid
approaches combining machine learning with biophysical
principles. By synthesizing current knowledge and outlining
pathways for improvement, this work seeks to strengthen the
synergy between artificial intelligence and protein science,
ultimately enabling novel methodologies that could reshape
both fields [19].

II. FOUNDATIONS

Originally developed for NLP, Transformer models have
proven highly effective in protein informatics due to their
ability to process sequential data and capture long-range
dependencies in protein sequences. Their success stems from
two key innovations: (1) the self-attention mechanism, which
overcomes traditional recurrent architectures’ limitations in
modeling distant sequence relationships, and (2) the pre-
training paradigm using large-scale (un)labeled data with (self-
)supervised learning, followed by task-specific fine-tuning [2],
[20], [21].

The paper is organized as follows: Sections II-A and II-B
introduce Transformer fundamentals, Section II-C discusses
protein-specific variants, and Section II-D reviews essential
protein biology. This foundation supports our analysis of
Transformer applications in protein informatics (Section III).

A. Transformer Architecture and Self-Attention Mechanism
The Transformer model, a novel network architecture in-

troduced by [1], entirely discards recurrence and convolution,
relying solely on attention mechanisms. This design allows
the model to dynamically assess the importance of different
sequence elements. Their paper highlights that experiments
on two machine translation tasks demonstrate the model’s
superior quality, greater feasibility, and significantly reduced
training time. This self-attention mechanism computes the
relationships between all pairs of input elements simultane-
ously, enabling efficient parallel processing, which is crucial
for handling large datasets in protein informatics [3] [22].

Self-attention dynamically models pairwise relevance be-
tween elements in a sequence (e.g., quantifying co-occurrence
probabilities between words in a sentence) to explicitly capture
intrasequence dependencies. As a core computational primitive
in Transformer architectures, this mechanism enables differ-
entiable relational reasoning through full-sequence interaction
modeling for structured prediction tasks. Computationally,
each self-attention layer iteratively refines the feature rep-
resentation at every sequence position via global contextual
aggregation. This is achieved by defining three learnable
weight matrices:

• Query matrix: WQ ∈ Rd×dq

• Key matrix: WK ∈ Rd×dk

• Value matrix: WV ∈ Rd×dv

where dq = dk. The input sequence X is projected as:

Q = XWQ

K = XWK

V = XWV

The output Z ∈ Rn×dv of the self-attention layer is
computed by:

Z = softmax

(
QKT√

dq

)
V (1)

For any given entity within the sequence, the self-attention
mechanism fundamentally operates by:
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Fig. 2: Architecture of the Transformer Model [1]Originally proposed for machine translation tasks, the Transformer model
transforms a source-language input sequence into a target-language output sequence through a dual-path architecture: (1) The
encoder pathway processes input tokens via embedding projection and N identical blocks containing multi-head attention and
feed-forward layers to generate continuous representations, while (2) the decoder pathway autoregressively produces output
tokens by jointly attending to both the encoded source sequence and its own right-shifted inputs - where target sequences are
shifted rightward with prepended 〈SOS〉 tokens during training to prevent trivial copying, while the loss is computed against
the original sequence appended with 〈EOS〉 tokens. Both encoder and decoder stacks employ N modularized layers integrating
multi-head attention mechanisms, position-wise feed-forward networks, and residual connections with layer normalization,
enabling effective modeling of cross-lingual structural dependencies.

1.Computing the dot products between its query vector and
all key vectors in the sequence,

2.Applying softmax normalization to these dot products to
obtain attention weights.

The updated representation of each entity is subsequently
computed as a convex combination (weighted sum) of all
sequence entities, where the combination coefficients corre-
spond to the derived attention weights (Fig.2, the third row-left
block).

Masked Self-Attention Mechanism: In standard self-
attention layers, each position can attend to all other posi-
tions in the sequence. However, for autoregressive sequence
generation tasks, the decoder employs masked self-attention
to prevent information leakage from future positions. This is
implemented through an element-wise masking operation:

Attentionmasked(Q,K,V) = softmax
(
QK⊤
√
dk

⊙M

)
V (2)

where:
• M ∈ {0,−∞}n×n is an upper triangular mask matrix:

Mij =

{
0 if i ≥ j

−∞ if i < j
(3)

• ⊙ denotes the Hadamard (element-wise) product
• dk is the dimension of key vectors
The masking operation ensures that when predicting the i-th

position:
• Only positions j ≤ i contribute to the attention weights
• Future positions (j > i) receive attention scores of 0

(after softmax)
This implementation maintains the parallel computation

advantages of self-attention while enforcing the autoregressive
property required for sequence generation.

Multi-Head Attention Mechanism: The mechanism em-
ploys h parallel self-attention heads (h = 8 in [1]), each
with independent weight matrices {WQ

i ,W
K
i ,WV

i } for i ∈
[0, h−1]. Given input X, it concatenates all heads’ outputs
[Z0, ...,Zh−1] ∈ Rn×hdv and projects them through W ∈
Rhdv×d (Fig.2, the third row).

The fundamental distinction between self-attention and con-
volutional operations lies in their filter generation mechanism.
Unlike convolution’s static filters that remain fixed regardless
of input, self-attention dynamically computes input-dependent
filters. This approach exhibits two key advantages: (1) per-
mutation invariance, making it robust to input ordering and



variable numbers of input points, and (2) the ability to process
irregular, non-grid structured data natively.

Research has demonstrated that when augmented with po-
sitional encodings, self-attention can theoretically subsume
convolutional operations as a special case for local feature
extraction [23]. Subsequent empirical studies by Cordonnier
et al. [24]confirmed that properly configured multi-head self-
attention can replicate and extend convolutional behaviors.
Specifically, self-attention offers superior expressiveness by
simultaneously learning both global and local features while
adaptively determining optimal kernel weights and receptive
fields - capabilities that parallel advanced techniques like
deformable convolutions [25].

1) Single-head vs. Multi-head Self-Attention in Protein
Transformers: In the context of protein modeling, self-
attention mechanisms serve as the core component for captur-
ing relationships between amino acid residues. While single-
head self-attention applies a single attention distribution across
the sequence, its representational capacity is limited. In con-
trast, modern protein-related Transformer models universally
adopt multi-head self-attention, which enables the model to at-
tend to multiple subspaces simultaneously. This is particularly
beneficial in protein structure prediction and sequence model-
ing tasks, where both local motifs and long-range interactions
are crucial. For example, models like AlphaFold, ESM-Fold,
and OmegaFold rely on multi-head attention to effectively
capture diverse structural and evolutionary dependencies. As
such, multi-head self-attention has become a standard design
choice in protein Transformer architectures.

B. (Self-)supervised pre-training

Transformer models applied to protein-related tasks typi-
cally adopt a two-stage training paradigm, inspired by ad-
vances in natural language processing and adapted to the
biological sequence domain. In the first stage, models are pre-
trained on large-scale protein datasets, either in a supervised or
self-supervised manner, to learn generalizable representations
of protein sequences or structures. In the second stage, the
pre-trained models are fine-tuned on downstream tasks such
as protein function prediction, structure modeling, subcellular
localization, and protein–protein interaction prediction.

Due to the scarcity and high cost of experimental annota-
tions in the biological sciences, self-supervised learning (SSL)
has emerged as a particularly effective approach for pre-
training. SSL enables models to learn meaningful representa-
tions from unlabeled protein data by solving carefully designed
proxy tasks. One widely adopted strategy is masked language
modeling, inspired by BERT, where a proportion of amino
acid residues in protein sequences are masked and the model
is trained to recover them. This formulation has been used in
models such as ProtBERT [26], ESM [27], and PeptideBERT
[28], effectively capturing both local and global dependencies
within sequences.

Other SSL objectives in protein modeling include inter-
residue distance prediction [29], contact map reconstruction,
and learning from multiple sequence alignments (MSAs) to

incorporate evolutionary relationships [30]. Recently, cross-
modal SSL strategies have also been explored, where models
jointly process sequence data and structural inputs (e.g., 3D
coordinates or contact matrices), enabling them to learn bio-
logically grounded representations [31].

Broadly, current SSL approaches in protein modeling can
be categorized into three main types:

1) Generative methods, which aim to reconstruct protein
sequences or structures from partial or noisy inputs.
Examples include masked token prediction, sequence
inpainting, and structure reconstruction from sequence
embeddings.

2) Context-based methods, which leverage spatial, sequen-
tial, or evolutionary relationships among amino acid
residues. Tasks such as next-token prediction, fragment
reordering, and predicting masked MSAs fall under this
category.

3) Cross-modal methods, which integrate information from
multiple biological modalities—for instance, aligning
sequence data with 3D structural information, evolu-
tionary profiles, or even textual annotations—to learn
joint representations that reflect multimodal biological
knowledge.

Overall, (self-)supervised pre-training has become a cor-
nerstone in protein Transformer research, enabling improved
generalization across a range of downstream tasks and opening
new avenues for data-efficient modeling. As protein databases
continue to grow in size and diversity, the role of SSL in
scaling and advancing protein understanding will likely remain
essential.

C. Transformer Derivatives in Protein Informatics

Transformer models, originally developed for sequence-
based tasks, have been adapted and extended to meet the
specific needs of protein informatics. These derivatives main-
tain the core principles of the Transformer architecture, such
as self-attention mechanisms and parallel processing, while
incorporating modifications to enhance performance on tasks
such as structure prediction, sequence-to-structure mapping,
and functional annotation. This section provides an overview
of the major Transformer derivatives developed for protein
informatics, highlighting their key features, key references, and
applications.

1) Key Derivatives of the Transformer Architecture: In
order to provide an exhaustive overview, a comprehensive
tabulation of the salient Transformer derivatives is presented in
Appendix A (Table 1 and Table 2). This compilation delineates
the pivotal attributes, pertinent application domains, and ex-
emplary models of each Transformer variant, thereby offering
a succinct synopsis conducive to an enhanced comprehension
of their distinct roles and contributions within the realm of
protein informatics.

2) Future Directions for Transformer Derivatives: The
development of Transformer derivatives in protein informatics
is an active area of research. Future work in this area is
likely to focus on further optimizing these models for specific
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tasks, exploring new architectures that combine the strengths
of different approaches, and addressing the challenges as-
sociated with computational efficiency and interpretability.
Additionally, there is a growing interest in developing models
that can handle multi-modal data, such as integrating protein
sequences with structural information and other biological data
types. These advancements are expected to lead to even more
powerful and versatile models for protein informatics.

D. Fundamentals of Protein Structure and Function

Proteins are fundamental macromolecules that play indis-
pensable roles in virtually all biological processes, including
catalysis, molecular transport, structural integrity, and signal
transduction. The remarkable functional diversity of proteins
arises from their distinct three-dimensional conformations,
which are organized hierarchically into primary, secondary,
tertiary, and quaternary structural levels. This section presents
a systematic overview of these structural hierarchies, empha-
sizing the critical importance of protein folding and stability,
the intricate relationship between structure and biological
function, and the persistent challenges associated with accu-
rately predicting protein structures.

1) Hierarchical Organization of Protein Structure:
• Primary Structure: The primary structure refers to the

linear sequence of amino acids linked by peptide bonds,

which determines the folding trajectory and the ulti-
mate three-dimensional conformation critical to protein
function. Mutations at this level can disrupt folding and
lead to dysfunction or disease [32]. Traditional methods
such as sequence alignment and homology modeling
have long been used to infer functional and evolutionary
relationships [33] [34]. Transformer-based models have
since enhanced primary structure analysis by capturing
long-range dependencies, offering a deeper understanding
of sequence-function relationships [35] [36].

• Secondary Structure: Secondary structures, including α-
helices and β-sheets, arise from local hydrogen bonding
patterns within the backbone. These elements provide
mechanical stability and facilitate early folding events
[37]. Experimental techniques such as X-ray crystallog-
raphy and NMR have elucidated these motifs [38], while
classical predictors like Chou-Fasman and GOR rely
on residue propensities [39] [40]. Modern Transformer
architectures significantly improve prediction accuracy by
modeling context-aware residue interactions [41] [42].

• Tertiary Structure: Tertiary structure reflects the full
3D conformation of a polypeptide, integrating secondary
elements and side-chain orientations to form functional
domains, such as active and binding sites [43]. Pre-



diction remains challenging due to the complexity of
intramolecular forces. However, Transformer-based mod-
els—particularly AlphaFold—have revolutionized this
task by learning spatial relationships from large-scale
sequence–structure pairs [44] [45].

• Quaternary Structure: Quaternary structure entails the
assembly of multiple polypeptide chains into functional
protein complexes. This level is essential for the activity
of many proteins, including hemoglobin and ribosomes.
Accurate modeling of inter-subunit interactions is vital
for drug discovery and structural annotation. Recent
Transformer frameworks exhibit promising capabilities
in predicting protein-protein interactions and complex
formation [46] [47].

2) Protein Folding and Structural Stability: Protein folding
is an intrinsic and thermodynamically driven process through
which a linear polypeptide chain acquires its specific three-
dimensional native conformation, guided by intramolecular
interactions among amino acid residues. This process adheres
to the thermodynamic principle of free energy minimization,
whereby the polypeptide traverses a conformational land-
scape—often described by the ”folding funnel” model—to
reach a low-energy functionally active state [48]. However,
aberrations in the folding pathway can result in misfolding
and subsequent aggregation, leading to pathological conditions
such as Alzheimer’s disease, in which misfolded proteins
accumulate into non-functional aggregates that compromise
cellular homeostasis [49].

Protein stability denotes the capacity of a protein to preserve
its native structure under varying physicochemical conditions,
including fluctuations in pH, temperature, and ionic strength.
Stability is modulated by intrinsic factors such as amino acid
composition and structural interactions, as well as extrinsic
environmental variables. While traditional approaches such
as molecular dynamics simulations have been widely uti-
lized to investigate protein stability, recent advancements have
highlighted the growing efficacy of transformer-based models
in predicting stability. These models leverage deep learning
to extract and interpret sequence-structure relationships that
underlie conformational robustness under stress conditions
[50] [51].

3) The Relationship Between Protein Structure and Func-
tion: The structure of a protein is intricately tied to its
biological function, as the specific spatial arrangement of
amino acid residues determines the molecule’s ability to carry
out precise biochemical tasks. Functional domains within
proteins, such as catalytic or ligand-binding regions, are often
evolutionarily conserved and serve as indicators of specific
molecular activities. For instance, enzymatic proteins feature
active sites with highly specialized geometries that facilitate
substrate conversion, while immunoglobulins contain hyper-
variable regions designed to recognize and bind target antigens
with high specificity.

Accurate prediction of protein function from sequence and
structural data remains a central challenge in bioinformat-
ics. Conventional methods typically employ homology-based

inference, extrapolating function from proteins with known
annotations and similar structures. In contrast, Transformer-
based architectures—such as ProtTrans have demonstrated
enhanced generalization across phylogenetically diverse se-
quences by leveraging large-scale pretraining on protein cor-
pora. These models have shown promising capabilities in
predicting functional sites, identifying subcellular localization
patterns, and modeling biomolecular interactions with im-
proved resolution [52] [53].

III. TRANSFORMERS IN PROTEIN

In recent years, Transformer models—originally developed
for natural language processing—have been increasingly ap-
plied to protein informatics, leading to significant advance-
ments across the field. By leveraging self-attention mecha-
nisms, these models effectively capture complex dependencies
within biological sequences, enabling breakthroughs in tasks
such as prediction of protein structure and function prediction,
protein–protein interaction modeling, and drug discovery. This
section reviews the current progress and key applications of
Transformer-based approaches in protein informatics, focusing
on four major domains: protein structure prediction(III-A),
protein function prediction(III-B), protein-protein interactions
(PPIs)(III-C), and drug discovery(III-D).

A. Transformers for Protein Structure Prediction

Protein structure prediction remains one of the most critical
challenges in computational biology, as it underpins our un-
derstanding of protein function, interactions, and potential for
therapeutic intervention. For decades, researchers have relied
on experimental methods such as X-ray crystallography and
NMR spectroscopy, but these techniques are time consuming,
costly, and require highly purified protein samples. As a result,
computational methods for structure prediction have garnered
significant attention, with deep learning methods, particularly
Transformer models, playing an increasingly important role.

The application of Transformer models in protein structure
prediction has significantly advanced the field by providing
more accurate and efficient methods for predicting protein
structures from sequences. These models have demonstrated
remarkable performance in handling complex folds and long-
range interactions, which are crucial for understanding protein
function and interactions.

1.AlphaFold [54], developed by DeepMind, has revo-
lutionized protein structure prediction by achieving near-
experimental accuracy through an innovative deep learning
framework. The model leverages a hybrid architecture combin-
ing an Evoformer (a Transformer-like module with axial atten-
tion) to analyze multi-sequence alignments and evolutionary
couplings, and a Structure Module that refines atomic coordi-
nates using geometric constraints. Key to its success are at-
tention mechanisms, including triangular self-attention, which
explicitly models 3D spatial relationships between residues
while capturing long-range dependencies critical for folding.
Trained on the Protein Data Bank (PDB) with a multi-task loss
function incorporating distograms and physical constraints,



TABLE I: Overview of Selected Major Transformer Derivatives in Protein Informatics

Model Name Key Features Key Applications Key References

AlphaFold Hybrid architecture with Evo-
former and Structure Module,
and advanced attention mecha-
nisms, and Multi-task training
with structural supervision.

3D structure prediction, and
protein folding and sequence-to-
structure mapping.

Jumper et al. [54]

ProtTrans Pre-trained on large-scale pro-
tein sequences, and integration
of sequence and evolutionary
context.

Function prediction, and large-
scale protein annotation and
transfer learning for down-
stream tasks.

Elnaggar et al. [55]

RoseTTAFold Computationally efficient, and
end-to-end structure prediction.

Membrane protein structure pre-
diction, and accelerated struc-
tural biology.

Baek et al. [56]

ESM-Fold MSA-free architecture, and pro-
tein language model-based and
High efficiency and scalability.

Genome-wide structural anno-
tation, and orphan protein and
rare species analysis.

Lin et al. [57], Arana et al.
[58], Jumper et al. [59], Senior

et al. [60]

TAPE Transferable protein
embeddings, and transformer-
based multi-task learning.

Protein-protein interaction (PPI)
prediction, and low-resource
fine-tuning scenarios.

Rao et al. [61]

DstruCCN Hybrid architecture: CNN +
Transformer, and binding site
matrix-guided 3D reconstruc-
tion and superior performance
on low-homology proteins.

Single-sequence protein
structure prediction, and
Low-homology or orphan
protein modeling.

Zhou et al. [62]

ProteinBERT BERT-based architecture
adapted for proteins, and
pretrained on large-scale
protein datasets.

Enzyme classification and func-
tion annotation, and Ligand
binding and subcellular local-
ization prediction.

Brandes et al. [63]

Trans-MoRFs High performance on IDR pre-
diction, and self-attention for
long-range dependency model-
ing.

MoRF identification in intrinsi-
cally disordered regions, func-
tional annotation of dynamic
protein regions.

Meng et al. [64]

ChemBERTa BERT-based architecture
adapted for chemical data, and
fine-tuned on protein-ligand
interaction datasets.

Early-stage virtual screening,
and chemical property and inter-
action modeling.

Chithrananda et al. [65]

DeepChem Integrates diverse deep learning
models, including Transformers,
and comprehensive drug discov-
ery platform

Molecular property prediction
for drug candidates, and flex-
ible integration for customized
workflows.

Ramsundar [66]

AlphaFold attained unprecedented performance in CASP14
(2020), achieving a median Global Distance Test (GDT)
score of 92.4. Beyond static structures, subsequent releases
like AlphaFold-Multimer extended predictions to protein com-
plexes, and the AlphaFold DB provided open access to over
200 million structures, transforming fields from drug discovery
to synthetic biology. Despite limitations in modeling dynamic
conformations or disordered regions, AlphaFold’s open-source
release has democratized structural biology, inspiring tools like
RoseTTAFold and ESMFold, and underscoring the potential of
AI to accelerate scientific discovery.

2.RoseTTAFold [56], another notable model developed by
the University of Washington’s Rosetta group, uses a similar
approach to AlphaFold but is designed to be more computa-

tionally efficient . RoseTTAFold builds upon the Transformer
architecture by combining it with a graph-based approach,
which enables it to predict protein structures faster without
sacrificing accuracy. This model has been particularly valuable
for solving structures of membrane proteins, which have
historically been difficult to predict with traditional methods.
Both AlphaFold and RoseTTAFold highlight the significant
potential of Transformer models to accelerate the process of
structural biology, facilitating drug discovery and therapeutic
development.

3.ESM-Fold, developed by Meta AI, represents a significant
innovation in protein structure prediction by employing lan-
guage models trained on extensive protein sequence datasets
[57]. Unlike traditional methods that rely heavily on multiple



sequence alignments (MSA) to infer evolutionary relationships
and structural features, ESM-Fold bypasses the need for MSA
entirely, extracting meaningful information directly from sin-
gle sequences. This approach significantly reduces compu-
tational requirements and avoids the bottlenecks associated
with generating alignments [57]. Trained on billions of protein
sequences, ESM-Fold captures the intricate contextual rela-
tionships between amino acids, enabling it to predict the three-
dimensional structure of proteins with remarkable accuracy,
even for sequences with minimal or no homology to known
structures [57] [58]. Its efficiency makes it highly suitable
for high-throughput studies, the analysis of newly sequenced
genomes, and applications in synthetic biology [59]. ESM-
Fold also excels at predicting structures for orphan proteins
or those from understudied organisms, where homologous
sequence data may be scarce.By leveraging the power of
language models, ESM-Fold reduces computational demands
and broadens the scope of proteins that can be effectively
analyzed, accelerating advancements in protein science and its
applications in drug discovery and bioengineering [57] [60].

4.OmegaFold, developed to meet the growing demand for
efficient and accurate protein structure prediction, represents a
breakthrough in utilizing Transformer-based architectures for
real-time analysis [67]. Unlike traditional models that depend
on multiple sequence alignments (MSA) to derive evolutionary
relationships, OmegaFold operates directly on single protein
sequences. This streamlined approach significantly reduces
computational requirements and enhances applicability, par-
ticularly in high-throughput studies and scenarios where ho-
mologous sequence data is limited. OmegaFold incorporates
advanced Transformer-based mechanisms to capture both lo-
cal and long-range dependencies within protein sequences,
enabling it to predict three-dimensional structures with high
accuracy. By bypassing the MSA step, OmegaFold avoids the
computational bottlenecks associated with alignment genera-
tion, making it ideal for rapid analyses of newly sequenced
proteins or proteins from diverse and uncharacterized organ-
isms. OmegaFold’s exceptional performance on orphan pro-
teins and novel sequences, and its ability to generalize across
various protein families, make it a versatile tool for high-
throughput studies, including drug discovery and synthetic
biology applications. In validation studies, OmegaFold has
shown competitive accuracy compared to leading models, in-
cluding AlphaFold and RoseTTAFold, particularly for single-
sequence inputs. Overall, OmegaFold offers a transformative
approach to protein structure prediction by leveraging the
power of Transformer-based models while eliminating the
reliance on MSA. Its combination of speed, accuracy, and
adaptability makes it an essential resource for researchers
tackling the challenges of modern structural biology [67].

5.ProtGPT2, inspired by the success of generative pre-
training in natural language processing (e.g., GPT models),
applies similar methodologies to protein informatics [68]. De-
signed to generate novel protein sequences that are both struc-
turally viable and functionally diverse, ProtGPT2 leverages a
Transformer-based architecture optimized for sequence gen-

eration. Trained on extensive protein sequence databases, the
model captures the complex statistical relationships between
amino acids, enabling it to propose de novo sequences with
realistic biophysical properties, as confirmed through compu-
tational validations such as secondary structure prediction and
solvent accessibility analysis. A key advantage of ProtGPT2
is its focus on structural and functional diversity, generating
a wide array of sequences that enhance the exploration of
sequence-function landscapes. This diversity is particularly
valuable in applications like directed evolution, where a di-
verse library can increase the chances of identifying sequences
with desired characteristics. ProtGPT2 also integrates struc-
tural constraints into its generative process, ensuring that
the proposed sequences are compatible with known folding
patterns, minimizing the risk of aggregation or misfolding. Its
ability to design sequences for entirely novel protein folds
makes it a powerful tool for tackling challenges that cannot
be addressed by template-based methods. Applications of
ProtGPT2 extend to biocatalyst development and therapeutic
protein design, where it accelerates the engineering cycle
by reducing the need for extensive experimental screening
[69]. ProtGPT2 exemplifies the transformative potential of
generative pretraining in protein sequence design, positioning
it as a cornerstone technology for future innovations in protein
engineering and synthetic biology.

6.RFDiffusion, developed by the Baker Lab at the Uni-
versity of Washington, applies diffusion modeling—originally
used in image generation—to de novo protein design by
generating novel backbones through a forward-backward noise
process [70]. Unlike traditional sequence- or template-based
methods, it reconstructs viable structures from noise, en-
abling exploration of conformational space under physical
and biochemical constraints. The model excels in producing
experimentally viable proteins, supported by geometric, inter-
action, and evolutionary scoring. Applications span therapeutic
design, enzyme engineering, and scaffold generation, though
challenges remain in computational cost and constraint accu-
racy. As a pioneering integration of generative modeling and
structural biology, RFDiffusion marks a significant advance in
computational protein engineering.

7.GraphTrans, a model integrating graph neural networks
(GNNs) with Transformer layers, enhances protein complex
prediction and structure refinement by capturing both spatial
residue relationships and long-range sequence dependencies
[71]. GNNs model topological interactions within protein
complexes, while Transformers enrich global context under-
standing, enabling GraphTrans to predict and iteratively refine
complex structures with high accuracy. This synergy allows
the model to correct spatial inaccuracies and better represent
multi-subunit interactions, highlighting its value in advancing
protein structure analysis and functional annotation.

8. In recent years, the integration of diverse deep learning
architectures has emerged as a promising strategy to enhance
the accuracy and robustness of protein structure prediction.
Zhou et al. (2024) proposed a novel model named DstruCCN,
which combines Convolutional Neural Networks (CNNs) and



a supervised Transformer-based protein language model to
perform single-sequence protein structure prediction [62]. The
CNN component focuses on capturing local spatial depen-
dencies among residues, while the Transformer module mod-
els long-range sequence dependencies by leveraging its self-
attention mechanism. The features extracted by both networks
are fused to predict the binding site matrix of proteins, which
is then used to reconstruct the three-dimensional (3D) structure
through energy minimization-based refinement.

The proposed approach outperforms traditional CNN-only
or Transformer-only architectures, particularly in modeling
complex protein folds with sparse evolutionary information.
This is especially relevant for orphan proteins or sequences
with limited homologs, where traditional MSA-based methods
may underperform. Moreover, the model’s modularity allows
for flexible integration into broader protein structure prediction
pipelines. The success of DstruCCN highlights the potential
of hybrid deep neural networks in advancing single-sequence
protein modeling, which is an increasingly important direction
in post-AlphaFold research.

9. In the evolving landscape of protein secondary structure
prediction (PSSP), the integration of diverse deep learning
architectures has shown significant promise. Chen et al. (2024)
introduced MFTrans, a novel deep learning-based multi-
feature fusion network designed to enhance the precision
and efficiency of PSSP [72]. This model employs a Multiple
Sequence Alignment (MSA) Transformer in combination with
a multi-view deep learning architecture to effectively capture
both global and local features of protein sequences. MFTrans
integrates diverse features generated by protein sequences, in-
cluding MSA, sequence information, evolutionary information,
and hidden state information, using a multi-feature fusion strat-
egy. The MSA Transformer is utilized to interleave row and
column attention across the input MSA, while a Transformer
encoder and decoder are introduced to enhance the extracted
high-level features. A hybrid network architecture, combining
a Convolutional Neural Network (CNN) with a bidirectional
Gated Recurrent Unit (BiGRU) network, is used to further
extract high-level features after feature fusion.

In independent tests, experimental results demonstrate that
MFTrans has superior generalization ability, outperforming
other state-of-the-art PSSP models by 3% on average on
public benchmarks including CASP12, CASP13, CASP14,
TEST2016, TEST2018, and CB513 . Case studies further
highlight its advanced performance in predicting mutation
sites. The success of MFTrans underscores the potential of
integrating multiple feature representations and hybrid neural
network architectures in advancing the field of protein sec-
ondary structure prediction.

10. Recent advancements in deep learning have spurred
the development of hybrid architectures that effectively inte-
grate complementary modeling strategies for improved protein
structure prediction. One such approach is TransConv(2025),
a model that fuses transformer-based attention mechanisms
with convolutional neural networks to enhance the accuracy
of secondary structure prediction [73]. While transformers

excel at capturing long-range dependencies across protein
sequences, convolutional layers are adept at extracting local
features critical to identifying structural motifs. By combining
these two paradigms, TransConv achieves a balanced represen-
tation of both global and local sequence-context relationships.
This integrated framework enables the model to better capture
structural patterns derived from backbone hydrogen bonding
interactions, a key determinant of secondary structure. Ex-
perimental evaluations on standard benchmark datasets have
demonstrated that TransConv consistently outperforms several
state-of-the-art methods, highlighting its potential as a robust
tool for efficient and accurate secondary structure prediction.

11. Beyond conventional sequence-based modeling, recent
research has demonstrated the efficacy of transformers in
reconstructing atomic protein structures from cryo-electron
microscopy (cryo-EM) density maps. One representative work
introduces Cryo2Struct (2024), a fully automated framework
that employs a 3D transformer network to identify atomic
coordinates and amino acid types directly from volumetric
cryo-EM data [74]. To convert these predictions into coherent
backbone conformations, the model incorporates a Hidden
Markov Model (HMM) that sequentially connects the detected
atoms, thereby forming complete protein backbones. This end-
to-end pipeline enables template-free de novo structure pre-
diction, a crucial advancement for modeling proteins lacking
homologous or predicted templates. Compared to traditional
ab initio methods such as Phenix, Cryo2Struct demonstrates
superior accuracy and completeness, even across varying den-
sity resolutions and protein sizes. This approach highlights the
versatility of transformer models in bridging experimental data
with computational inference, pushing forward the frontiers of
structural bioinformatics.

B. Transformers for Protein Function Prediction

Prediction of protein function is crucial to understand the
role of proteins in cellular processes and their potential as drug
targets. Traditional methods for prediction of protein functions
are based heavily on sequence homology and annotations
from protein databases. However, these methods are unable
to predict functions for proteins that lack close homologs or
belong to uncharacterized families.

1.ProteinBERT. Recent advancements in Transformer-
based models have significantly enhanced protein function
prediction. One notable example is ProtBERT [63], a model
adapted from the BERT architecture. Fig. 5 illustrates the
architecture of the original BERT model, which ProteinBERT
inherits and adapts for protein sequences. ProteinBERT is pre-
trained on large-scale protein sequence datasets and learns to
capture contextual dependencies between amino acids. When
fine-tuned for specific tasks such as enzyme classification,
ligand binding prediction, or subcellular localization, Protein-
BERT achieves state-of-the-art performance.

A key strength of ProteinBERT lies in its ability to encode
rich semantic representations of protein sequences. By learning
position-aware, context-sensitive embeddings, it can identify
conserved motifs and functionally relevant regions even in
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Fig. 4: Illustrative diagram of three fundamental supervised learning tasks. Supervised learning in machine learning (ML) is
typically categorized into classification and regression tasks. While two-dimensional representations are used here for conceptual
clarity, real-world datasets often reside in high-dimensional feature spaces. (a) In binary classification, each sample belongs to
one of two possible categories. For instance, a model may classify protein variants as either stable or unstable [75], or determine
whether a protein is a G-protein-coupled receptor or not, based on sequence-derived features and machine learning models
[76]. (b) Multi-class classification involves assigning samples to one of several discrete classes. For example, recent studies
have developed machine learning models to predict the subcellular localization of human proteins—such as nucleus, cytoplasm,
mitochondria, and extracellular regions—based on features extracted from immunohistochemistry images [77]. (c) In regression
tasks, the goal is to predict continuous numerical properties of proteins. For instance, recent models have been developed to
estimate protein solubility levels directly from sequence-derived or structural features, enabling fine-grained prediction beyond
binary soluble/insoluble classification [78].

remote homologs. This enables it to predict functions for novel
or poorly annotated proteins that traditional alignment-based
tools often miss.

2.ProtTrans. Building on this foundation, ProtTrans [55]
pushes the boundary further by leveraging larger model ar-
chitectures and broader training corpora, including billions of
protein sequences. ProtTrans is capable of predicting diverse
protein properties such as stability, binding affinity, and molec-
ular function. By integrating sequence-based information with
evolutionary context, it provides robust predictions even for
proteins with limited annotation. This makes ProtTrans a
powerful tool for large-scale protein annotation in genomic
studies.

Unlike earlier models, ProtTrans comprises a collection of
Transformer architectures, including BERT, XLNet, Albert,
and T5—each trained on massive datasets such as UniRef100
and BFD, encompassing billions of protein sequences. These
models are trained using self-supervised learning objectives,
particularly masked language modeling and sequence-to-
sequence prediction. This enables them to learn contextual and
evolutionary patterns in protein sequences without requiring
labeled data.

The key innovation in ProtTrans lies in its ability to gen-
eralize across diverse protein families by capturing both local
motifs and global structural signals embedded in the sequence.
The use of multiple model types further enhances its flexibility
across tasks, as each architecture offers unique advantages
in handling long-range dependencies, directional context, or
compression efficiency. Additionally, ProtTrans exhibits strong
transfer learning capabilities, performing well on downstream
tasks even with limited training examples, which is particularly
valuable in domains with sparse functional annotations.

3. In recent years, Transformer-based models have also
shown considerable potential in the domain of protein func-
tion analysis, particularly in identifying biologically important
regions such as binding sites.One notable example is Deep-
ProBind(2025), a hybrid model designed to predict protein-
binding peptides by integrating both sequence-derived and
structural features [79].This approach utilizes Bidirectional
Encoder Representations from Transformers (BERT) alongside
a Pseudo Position-Specific Scoring Matrix transformed via
Discrete Wavelet Transform (PsePSSM-DWT), enabling the
extraction of complex sequence patterns and evolutionary
characteristics.A key contribution of Deep-ProBind is the
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Fig. 5: The structure of the BERT model. This figure shows
the Bidirectional Encoder Representations from Transformers
(BERT) architecture, highlighting both pre-training and fine-
tuning phases.

incorporation of the SHapley Additive exPlanations (SHAP)
algorithm, which selects informative hybrid features prior
to classification using a deep neural network.In extensive
benchmark testing, the model achieved an accuracy of 92.67%
using tenfold cross-validation, and 93.62% on independent
datasets, outperforming traditional machine learning methods
and other existing models by a notable margin.Although
Deep-ProBind is not a structural prediction tool per se, its
strategic use of structural descriptors underscores the broader
utility of transformer-based models in understanding protein
behavior and interactions, which is critical for pharmacological
applications and peptide drug discovery.

4. In recent years, growing attention has been directed
toward understanding the functional roles of intrinsically
disordered regions (IDRs) in proteins, especially their short
interaction-prone segments known as molecular recognition
features (MoRFs). Accurately identifying MoRFs remains a
computational challenge due to their disorder-to-order transi-
tions and the limited availability of experimentally validated
annotations. To overcome these limitations, a recent study
proposed Trans-MoRFs (2025), a novel predictor based on
the transformer architecture [64]. Trans-MoRFs leverage self-
attention mechanisms to effectively capture long-range depen-
dencies within protein sequences, making them particularly
robust across proteins of varying lengths. The model demon-
strated strong predictive performance, achieving a mean area
under the curve (AUC) of 0.94 on multiple benchmarks, and
significantly outperformed existing MoRF predictors across
several evaluation metrics. This work exemplifies the expand-
ing role of transformer models in structural and functional pro-
tein annotation, extending their applicability beyond structured
domains to disordered and dynamic regions, thereby enhancing

our understanding of protein function and supporting drug
target discovery.

5. Recent advances in protein function prediction have
begun to emphasize not only predictive performance but also
interpretability, particularly when using complex models such
as transformers. A notable example is the study by Wenzel
et al. [80](2024), which investigates the internal mechanisms
of transformer models fine-tuned for protein function tasks,
including Gene Ontology (GO) term and Enzyme Commission
(EC) number prediction. The authors extended the widely used
explainable AI (XAI) method, Integrated Gradients, to analyze
not only input attributions but also latent representations
within transformer architectures. Their approach allowed for
the identification of amino acid residues that the model attends
to most strongly, revealing biologically meaningful patterns.
Specifically, they demonstrated that certain transformer heads
consistently correspond to known functional regions, such as
transmembrane domains and enzymatic active sites. This work
highlights the growing potential of interpretable transformer
models in uncovering biologically relevant insights from se-
quence data, thereby enhancing both the trustworthiness and
utility of deep learning in protein function annotation.

6. Traditional graph-based methods may struggle to repre-
sent these multi-hop relationships, limiting the extraction of
deeper functional signals. To address this, recent advances
have explored the integration of graph serialization with
Transformer-based architectures.

SEGT-GO(2025) [81] introduces a novel framework that
transforms multi-hop neighborhoods within PPI networks into
serialized representations, allowing a Graph Transformer to
learn latent functional dependencies across the interaction
space. By converting local and global network topologies
into sequences of embeddings, the model capitalizes on the
attention mechanism’s ability to model non-local relationships.
In addition, the framework incorporates SHAP-based explain-
able AI techniques, leveraging game-theoretic principles to
refine input relevance and reduce noise, thereby enhancing
interpretability and robustness.

Experimental evaluations across both large-scale and
limited-size datasets demonstrate SEGT-GO’s superiority over
previous state-of-the-art models such as DeepGraphGO. No-
tably, the method shows strong generalization capabilities in
cross-species scenarios and when predicting functions of previ-
ously unseen proteins, highlighting the potential of combining
Transformer-based graph modeling with explainable AI in
scalable protein function analysis.

7. In recent years, Transformer-based approaches have in-
creasingly demonstrated their utility in automating complex
tasks within protein function prediction, a domain traditionally
hindered by the high cost and low scalability of experi-
mental methods. One recent contribution is MAGO (2025)
[82], a model that combines the representational power of
Transformer architectures with the optimization capabilities
of Automated Machine Learning (AutoML) to improve large-
scale protein annotation. Unlike earlier machine learning
pipelines, MAGO autonomously selects and tunes model con-



figurations while leveraging contextual embeddings extracted
from raw protein sequences. Furthermore, the enhanced variant
MAGO+ incorporates evolutionary signals via integration with
BLASTp, effectively unifying deep learning-based feature
learning and alignment-based similarity. Benchmark evalua-
tions reveal that both MAGO and MAGO+ surpass several
state-of-the-art approaches in Fmax and other performance
metrics, with improvements found to be statistically signif-
icant. These results not only reaffirm the value of attention
mechanisms for capturing functional patterns in biological
sequences but also illustrate how AutoML can systematically
refine deep learning frameworks for robust cross-protein gen-
eralization, paving the way for more adaptive and interpretable
solutions in computational proteomics.

C. Transformers for Protein-Protein Interactions (PPIs)

Protein-protein interactions (PPIs) are fundamental to nearly
all cellular activities, including signal transduction, gene reg-
ulation, and immune response. Accurately predicting PPIs
is essential for drug discovery, understanding disease mech-
anisms, and identifying therapeutic targets. While experi-
mental methods such as yeast two-hybrid screening and
co-immunoprecipitation are widely used, they are resource-
intensive, time-consuming, and limited in scalability.

To overcome these limitations, deep learning, especially
Transformer-based models, has been increasingly applied to
computational PPI prediction. These models leverage sequence
and structural information to identify interaction patterns and
functional relationships between proteins.

1.DeepPPI: Sequence-based attention for interaction
prediction DeepPPI [83] is a deep neural network model that
predicts protein interactions based solely on amino acid se-
quences. It integrates an attention mechanism that enables the
model to focus on biologically relevant sequence motifs and
potential interaction regions. This targeted attention improves
prediction accuracy, particularly in cases where structural
information is unavailable. One of the key advantages of
DeepPPI is its ability to generalize across proteins with low
sequence similarity, making it robust for large-scale proteomic
analyses. However, its reliance on primary sequence data
alone may limit performance when structural features play a
dominant role in mediating interactions.

2.TAPE: Multi-task Transformer framework The TAPE
(Task-Aware Protein Embedding) framework [61] builds on
a Transformer-based architecture with a multi-task learning
setup. It is pretrained on over 30 million protein sequences,
learning generalized embeddings that can be fine-tuned for
specific tasks, including PPI prediction. TAPE’s strength lies
in its ability to transfer knowledge across tasks, significantly
reducing the need for large labeled datasets in downstream
applications. The model captures complex sequence patterns
and functional relationships, which enhances performance
in diverse biological prediction tasks. Nonetheless, without
explicit incorporation of structural data, TAPE may struggle
to model spatial constraints that are critical for certain PPIs.

3.Graph Attention Networks (GATs): Structure-aware
interaction modeling Graph-based approaches like Graph
Attention Networks (GATs) [84] treat proteins as graphs,
where amino acids are nodes and edges represent spatial or
functional relationships. The attention mechanism in GATs
assigns different importance weights to neighboring nodes,
enabling the model to emphasize critical regions such as
binding pockets or conserved structural motifs. This structure-
aware modeling makes GATs particularly effective in captur-
ing 3D context and non-linear interaction pathways, which
are essential for accurately predicting interactions in complex
molecular environments. However, GATs often require high-
quality structural input, and the computational cost associated
with large protein graphs can be substantial.

4. Recent efforts in protein–protein interaction site (PPIS)
prediction have explored hybrid models that combine struc-
tural and sequential features for enhanced accuracy. A notable
contribution in this direction is the GACT-PPIS(2024) model,
which integrates an enhanced graph attention mechanism with
deep transformer networks to predict interaction sites on pro-
tein surfaces [85]. Specifically, the model utilizes an Enhanced
Graph Attention Network (EGAT) enriched with residual and
identity mappings, in conjunction with a transformer encoder
to capture long-range dependencies in amino acid sequences.
Graph Convolutional Networks (GCNs) are also employed to
aggregate local neighborhood information from the protein’s
structural graph. This multi-level fusion of spatial and sequen-
tial data enables GACT-PPIS to outperform several state-of-
the-art models across multiple benchmark datasets, including
Test-60 and UBTest-31-6, showing superior performance in
terms of Recall, F1-score, AUROC, AUPRC, and overall gen-
eralization. The success of GACT-PPIS highlights the value of
combining graph-based and transformer-based representations
for precise residue-level interaction prediction.

5. Recent advancements have also explored the application
of Transformer-based models in predicting protein–protein
interaction (PPI) binding sites, a critical aspect of under-
standing cellular mechanisms and therapeutic target iden-
tification. A representative study introduced TranP-B-site
(2025), a model that utilizes Transformer-generated embed-
dings to encode amino acid sequence information, combined
with convolutional neural networks (CNNs) to detect PPI
binding sites [86]. The model extracts two types of fea-
tures for each residue—one-hot encodings for local patterns
and Transformer-based embeddings for global context—and
processes them using a hybrid architecture. Specifically, a
windowing strategy is employed to capture localized infor-
mation, which is then separately processed by CNN and fully
connected layers before final classification. This dual-pathway
design enables the model to integrate both fine-grained and
holistic representations effectively. TranP-B-site demonstrated
notable improvements over previous state-of-the-art sequence-
based PPI models, achieving significant gains in accuracy and
Matthews Correlation Coefficient (MCC) on independent test
datasets. Furthermore, the model exhibited robust performance
on a newly curated dataset derived from the PDB, indicating



its generalization capability across diverse protein sequences.
This work underscores the utility of Transformer embeddings
in enhancing predictive power for interaction site identification
and highlights a promising direction for future PPI modeling.

6. Uncertainty estimation has recently become a critical
factor in enhancing the reliability of protein–protein interac-
tion (PPI) predictions using Transformer-based models. One
recent contribution in this area is the TUnA framework(2024),
which integrates uncertainty modeling into sequence-based
PPI prediction [87]. TUnA leverages Transformer encoders
in combination with ESM-2 protein embeddings to extract
informative representations of amino acid sequences. Notably,
it incorporates a Spectral-normalized Neural Gaussian Process
to quantify prediction uncertainty, enabling the model not
only to make accurate predictions but also to estimate the
confidence level of its outputs. This is particularly valu-
able for applications involving previously unseen proteins,
where conventional models often struggle to generalize. TUnA
has demonstrated state-of-the-art performance on benchmark
datasets and showed that its uncertainty-aware predictions
could effectively filter out unreliable outputs, thereby reducing
false positives and narrowing the gap between in silico predic-
tions and experimental validation. This approach illustrates a
promising direction in building interpretable and trustworthy
Transformer-based frameworks for PPI prediction.

7. Recent research has also explored the use of Transformer
architectures for predicting protein-protein binding affinity
(BA), a key aspect of understanding molecular interactions.
One study conducted a comparative analysis of convolutional
neural networks (CNNs) and Transformer-based models to
evaluate their effectiveness in predicting binding affinity using
only protein sequence data(2024) [88]. The models were
designed to output Gibbs free energy changes, which serve as
a quantitative measure of interaction strength between protein
pairs.

In this work, multiple model variants were developed us-
ing both TensorFlow and PyTorch, including a Transformer-
based model built upon ProteinBERT. The CNN architecture
was effective at capturing local sequence features, while
the Transformer model leveraged self-attention mechanisms
to learn long-range dependencies within protein sequences.
Different sequence encoding techniques were used, including
one-hot encoding, sequence-statistics-content, and position-
specific scoring matrices.

The results demonstrated that both architectures could
achieve comparable predictive accuracy, although they pre-
sented distinct trade-offs. The CNN model could process full-
length sequences but required significantly more preprocessing
time. In contrast, the Transformer model maintained compet-
itive accuracy with less computational overhead, though it
excluded very long sequences due to input length limitations.
This study underscores the growing potential of Transformer-
based models in capturing complex sequence-level features
for protein-protein interaction prediction and binding affinity
estimation.

D. Transformers for Drug Discovery and Target Identification

Transformer-based models have recently revolutionized
drug discovery by enabling more accurate virtual screening,
predicting protein-ligand binding affinities, and supporting
de novo drug design. Their ability to learn from large-scale
chemical and biological datasets allows for efficient prediction
of interactions between small molecules and protein targets,
significantly reducing the cost and time associated with tradi-
tional experimental methods.

In recent years, Transformer-based models have rapidly
gained prominence in the domain of drug discovery, partic-
ularly for their ability to handle complex and heterogeneous
data. A comprehensive review by Jian Jiang et al. (2024)
[89]emphasizes the transformative role of Transformers in
various aspects of the drug discovery pipeline, including drug
target identification, molecular design, and property prediction.
The authors highlight that the hierarchical attention mecha-
nisms inherent to Transformer architectures enable them to
effectively model sequential dependencies in biological and
chemical data. These models have shown strong adaptability
when pre-trained on large-scale datasets, allowing transferabil-
ity across tasks such as virtual screening, lead optimization,
and even protein engineering. Notably, their interdisciplinary
application across biology, chemistry, and pharmacology fa-
cilitates an integrative approach to discovery, bridging the
gaps between domains. The review also outlines emerging
directions, including the use of Transformers for single-cell
data analysis, chemical language modeling, and biological
image interpretation, underscoring their growing influence in
drug discovery and biomedical research more broadly.

1.ChemBERTa is a prominent model in this area, fine-
tuned on protein-ligand interaction datasets. Leveraging a
BERT-style architecture, it captures complex patterns in chem-
ical structures and their binding behaviors. ChemBERTa has
demonstrated superior performance compared to traditional
methods like molecular docking and molecular dynamics
simulations in predicting binding affinities. This enables faster
and more cost-effective early-stage drug screening by reducing
reliance on time-consuming lab experiments [65].

2.MolBERT utilizes Transformer models to learn molecular
representations from SMILES (Simplified Molecular Input
Line Entry System) strings. Pretrained on large-scale molecu-
lar datasets, it can predict not only binding affinity with protein
targets but also toxicity and efficacy profiles of candidate
compounds. This enables MolBERT to serve as a versatile tool
throughout the drug development pipeline, supporting both
safety assessment and lead optimization [90].

3.De novo Drug Design with Graph Transformers: In
addition to these models, Transformer-based approaches have
been used for de novo drug design, an innovative method
for generating entirely new molecules with specific binding
properties. Graph-based models combined with Transformer
architectures enable the generation of novel molecular struc-
tures by predicting optimal atom-to-atom connections for
desired binding properties. This approach not only speeds up



the drug design process but also allows for a more efficient
exploration of chemical space compared to traditional drug
design methods [91].

4.MolFormer represents a next-generation Transformer
model aimed at understanding the three-dimensional (3D)
conformations of drug-like molecules. It predicts how small
molecules adopt specific geometries within protein binding
sites, aiding in the rational design of compounds with favor-
able spatial orientation and interaction properties. MolFormer
is particularly valuable in refining molecular structures during
the early stages of lead optimization [92].

5.DeepChem is a machine learning platform that integrates
various deep models, including Transformer-based architec-
tures, for comprehensive drug discovery tasks. It supports the
prediction of multiple molecular properties such as solubility,
toxicity, and binding affinity. By combining rich chemical
representations with advanced learning techniques, DeepChem
enables rapid prioritization of promising drug candidates [66].

6.RL-based Transformer Models for Molecule Genera-
tion: Reinforcement Learning-based models combined with
Transformers have been applied to drug design, where a
model learns the optimal drug molecule design through itera-
tive feedback. These models leverage reinforcement learning
strategies to iteratively generate new molecules that not only
bind effectively to the target protein but also optimize other
properties such as solubility and toxicity. By using a reward-
based system, these models can effectively explore the vast
chemical space and suggest novel molecules for drug devel-
opment.

7. Recent advancements in drug discovery have utilized
transformer-based models for enhanced molecular property
prediction. A notable approach is the BERT-based model for
HIV replication inhibition, which fine-tunes the transformer
architecture on the MoleculeNet-HIV dataset represented by
SMILES notation. By leveraging BERT’s ability to capture in-
tricate molecular patterns, the model achieves high prediction
accuracy and strong generalization capabilities [93](2024).
This method demonstrates significant potential for accelerating
drug discovery, reducing both time and cost, and offering a
promising solution for more efficient target identification and
molecular design.

8. Recent advances in Transformer-based generative models
have opened new avenues for de novo drug design, espe-
cially when integrated with optimization strategies targeting
multiple pharmaceutical objectives. One notable approach
proposes a comprehensive framework that combines latent
Transformer architectures with a many-objective optimization
pipeline [94](2024). This system jointly considers key pharma-
cokinetic and pharmacodynamic criteria—such as absorption,
distribution, metabolism, excretion, toxicity (ADMET), and
molecular docking—within a multi-objective design strategy.

In particular, two latent Transformer-based models, ReLSO
and FragNet, were evaluated for their ability to encode and re-
construct molecular structures. ReLSO demonstrated superior
performance, offering more coherent latent space organization
and reconstruction accuracy. Building upon this, the frame-

work incorporated six different many-objective metaheuristic
algorithms—including those based on evolutionary princi-
ples and particle swarm optimization—to explore candidate
compounds targeting human lysophosphatidic acid receptor 1
(LPA1), a protein implicated in cancer.

Among the tested strategies, a decomposition-based evolu-
tionary algorithm yielded the most favorable balance across
multiple drug design objectives, achieving high binding affin-
ity, low toxicity, and strong drug-likeness. This work ex-
emplifies the synergy between Transformer-driven molecular
generation and computational intelligence methods for multi-
criteria optimization, highlighting a scalable path toward more
robust and realistic drug candidate discovery.

9. The emergence of the Transformer architecture has
profoundly influenced computational chemistry, enabling a
paradigm shift in how molecular data is interpreted, modeled,
and utilized in drug discovery. Inspired by parallels between
chemical notation and natural language, researchers have
successfully applied language modeling techniques to chal-
lenges such as retrosynthetic analysis, molecular generation,
and exploration of vast chemical spaces. Initial approaches
focused on task-specific models trained on linear molecular
representations (e.g., SMILES), but recent developments have
expanded these capabilities to incorporate diverse modali-
ties—including spectroscopic data, synthetic pathways, and
even human-readable language inputs.

This evolution has culminated in the application of large
language models (LLMs), which offer a unified framework for
solving a broad range of chemistry-related problems. By lever-
aging the flexibility and expressiveness of natural language,
LLMs are increasingly being used to integrate multi-source
data and generalize across chemical tasks. These advance-
ments point toward a future where machine learning models
serve as adaptive and intelligent agents in the drug discovery
pipeline, capable of synthesizing knowledge across domains
and accelerating decision-making at every stage [95](2024).

These advancements demonstrate the power of Transformer-
based models in revolutionizing drug discovery by improving
the prediction of protein-ligand interactions, enabling de novo
design of novel drug candidates, and refining the properties
of existing molecules. With their ability to process large-
scale datasets and predict complex molecular behaviors, these
models are accelerating the development of new therapeutics,
bringing us closer to more effective treatments in less time.

IV. ADVANTAGES & CHALLENGES OF TRANSFORMER
MODELS

A. Advantages of Transformers in Protein Informatics

Transformer models have profoundly reshaped the land-
scape of protein informatics, offering a set of compelling
advantages over traditional computational approaches.

1.Capturing Long-Range Dependencies:
The self-attention mechanism of Transformers enables them

to model long-range interactions in protein sequences, which
are crucial for tasks such as tertiary and quaternary struc-
ture prediction. Unlike recurrent neural networks (RNNs),



Transformers analyze all sequence elements simultaneously,
efficiently capturing context from distant residues [96].

2.Scalability and Pretraining Benefits:
Transformer models, especially in their pre-trained forms

(e.g., ProtTrans, ESM), are scalable to massive datasets, pro-
viding a foundation for transfer learning across various protein
tasks. This is advantageous when computational resources are
limited or when training data for specific protein tasks are
scarce [97] [98].

3.Parallel Computation and Efficiency:
Transformers allow for parallelized computation during

training and inference due to their non-recurrent architecture,
significantly reducing training time. This scalability enables
their use in high-throughput tasks like structural screening and
synthetic protein design.

4.Multimodal Integration:
Advanced Transformer derivatives like AlphaFold2 and

ESM-3 can integrate multiple types of biological informa-
tion, including evolutionary profiles, structural constraints,
and biochemical features, enabling more holistic and accurate
predictions.

5.Generalizability Across Diverse Protein Families:
Transformers trained on large, diverse protein datasets are

capable of generalizing to unseen sequences, including those
from under-characterized or evolutionarily distant organisms.
This makes them especially valuable for functional annotation
in metagenomics and novel protein discovery [99].

B. Challenges of Applying Transformers in Protein Research

Despite their advantages, Transformer models face several
persistent challenges that limit their broader adoption and
utility.

1.Computational Resource Intensity:
Scalability Issues: Transformer models are inherently re-

source intensive due to their quadratic complexity with respect
to the sequence length in the self-attention mechanism. For
protein sequences, which can be thousands of amino acids
long, this computational demand becomes a significant bot-
tleneck [92]. Training models like AlphaFold2 require high-
performance computing clusters with specialized hardware
such as GPUs or TPUs, making it inaccessible to many
researchers and institutions with limited resources.

Memory Consumption: The large number of parameters in
these models leads to substantial memory consumption. For
example, models such as ProtT5-XL-UniRef50 have more
than 3 billion parameters, which requires advanced memory
management techniques and hardware with large memory
capacities [100].

Inference Time: The time required for inference can also be
prohibitive, especially when processing large datasets or per-
forming real-time analysis. This limitation affects the practical
deployment of Transformer models in applications such as
high-throughput drug screening, where speed is crucial [101].

Energy Consumption and Environmental Impact: The exten-
sive computational resources required not only increase costs
but also have environmental implications due to high energy

consumption, raising concerns about the sustainability of using
such models at scale [102].

2.Data Availability and Quality:
Incomplete and Biased Datasets: Protein databases such

as UniProt and PDB, although extensive, are biased toward
certain organisms (e.g., model organisms such as humans and
E. coli) and well-studied proteins. This bias leads to models
that perform well on familiar protein families but poorly on
underrepresented ones [103].

Lack of annotations: Many proteins lack functional anno-
tations or experimental validation, which limits supervised
modeling of models for tasks such as function prediction or
PPI analysis. The scarcity of high-quality labeled data hampers
the ability of models to learn accurate representations [104].

Noisy data: Experimental errors, inconsistent labeling, and
outdated annotations introduce noise into the datasets, which
can mislead the training process and degrade model perfor-
mance. Cleaning and curating such large datasets is a non-
trivial task [92].

Limited Structural Data: Although AlphaFold has predicted
structures for many proteins,experimentally determined struc-
tures remain limited. Structural data is crucial for training
models on tasks that require 3D information, such as predict-
ing protein-ligand interactions [105].

3.Model Interpretability:
Black-Box Nature: Transformer models are often criticized

for being black boxes, providing little insight into how input
features contribute to the output predictions. This opacity is
problematic in biological contexts where understanding the
reasoning behind a prediction is as important as the prediction
itself [106].

Regulatory Concerns: In clinical applications, regulatory
bodies require explanations for decisions made by computa-
tional models, especially when they impact patient care. The
lack of interpretability in Transformer models poses a barrier
to their acceptance in such settings [107].

Biological Insight: Without interpretability, it is challenging
to derive new biological knowledge from models. Understand-
ing which parts of the protein sequence or structure are most
influential in a prediction could lead to discoveries of new
functional motifs or interaction sites [108].

4.Generalization Across Diverse Protein Families:
Overfitting to Training Data: Transformer models may be

overfitting to the protein families represented in the training
data, failing to generalize to novel or rare proteins. This
limitation reduces their utility in exploring uncharacterized
proteins or those from non-model organisms [104].

Difficulty with Novel Folds: Proteins with novel folds not
seen during training pose a significant challenge. The models
may not accurately predict the structures or functions of
these proteins due to a lack of prior examples, limiting their
applicability in discovering new protein classes [109].

Sequence-length variation: Proteins exhibit a wide range
of sequence lengths. Transformer models may struggle with
extremely long sequences due to computational constraints, or



with very short sequences where context is minimal, affecting
their performance across the proteome [92].

5.Multi-modal Integration
Complexity of biological data: Incorporating diverse data

types, such as genomic, transcriptomic, proteomic, and
metabolomic data, is inherently complex. Each data type has
different characteristics and noise profiles, which complicates
the development of models that can effectively integrate them
[110].

Lack of Unified Frameworks:There is a shortage of mod-
eling frameworks that can seamlessly combine sequence data
with structural and functional information. Existing models
are often specialized for a single data modality, limiting their
ability to capture the full spectrum of protein biology [111].

Data Alignment and Synchronization:Aligning data from
different sources and ensuring they correspond accurately
to the same proteins or biological contexts is challenging.
Misalignment can lead to erroneous conclusions and degrade
model performance [112].

V. FUTURE DIRECTIONS

The application of Transformer models in protein informat-
ics has yielded remarkable advancements; however, several
promising research avenues remain to be explored. These
directions are essential for overcoming current limitations and
unlocking the full potential of Transformers in biological and
biomedical applications.

1.Multi-modal Data Integration
One of the most promising directions is the integration

of multimodal data into transformer models to enhance the
accuracy of quaternary structure prediction. By combining
data from various biological sources, including sequence in-
formation, structural data, evolutionary patterns, and biochem-
ical properties, models could capture a more comprehensive
picture of protein-protein interactions and complex assembly.
Specifically:

1). Structural and Functional Annotations: Incorporating
data from cryo-electron microscopy (cryo-EM), X-ray crys-
tallography, and NMR spectroscopy could help Transformer
models learn spatial relationships within complexes with high
precision. Recent advancements in structural databases, such
as AlphaFold’s structural proteome predictions, offer vast
amounts of annotated 3D structure data that could be leveraged
to train Transformers with 3D spatial awareness, improving
quaternary structure predictions significantly [113].

2). Evolutionary and Co-evolutionary Data: Protein com-
plexes often involve residues that have evolved to co-interact.
By integrating evolutionary data from multiple sequence align-
ments (MSAs) with co-evolutionary metrics, Transformers can
learn to detect conserved residues critical to protein interfaces.
Models like ESM and AlphaFold have already begun using
evolutionary signals in structure prediction; expanding this to
complex-level predictions could help detect intricate patterns
that dictate multimeric assembly [114] [115].

3). Biophysical Properties: Including data on biophysi-
cal properties, such as binding affinity, hydrophobicity, and

electrostatic interactions, could allow models to differentiate
between transient and stable complexes. Such detailed infor-
mation would enable Transformers to predict not only whether
two proteins interact but also the strength and nature of
these interactions, which is crucial for understanding complex
stability and functionality.

2.Hybrid Modeling Approaches
Hybrid modeling approaches, combining deep learning with

classical structural biology techniques, offer another com-
pelling direction for quaternary structure prediction. Hybrid
methods can provide more accurate and computationally ef-
ficient predictions by leveraging the strengths of different
modeling techniques:

1). Combining Transformers with Molecular Dynamics
(MD) Simulations: While Transformer models are proficient
at predicting static quaternary structures, MD simulations
capture the dynamic behavior of protein interactions. A hybrid
approach where Transformers predict initial configurations,
followed by refinement through MD, could yield both accurate
and biologically relevant representations of protein complexes
in motion [116] [117].

2). Integrating Deep Learning with Physics-Based Models:
Physics-based methods, such as molecular mechanics, are
highly accurate for modeling atomic interactions within pro-
tein complexes. Combining these methods with Transformer
models would allow initial coarse-grained predictions that can
be refined with physics-based details, thus balancing computa-
tional efficiency with high-resolution accuracy. This approach
could be particularly useful for large complexes, such as
viral capsids, where fine-grained modeling is computationally
prohibitive.

3). Leveraging Experimental Data for Model Validation:
Incorporating experimentally derived data, such as distance
constraints from FRET or cross-linking mass spectrometry,
can validate Transformer predictions and correct model out-
puts based on real-world data. By grounding Transformer
predictions in experimental results, hybrid approaches could
achieve high confidence and reliability in complex structure
predictions.

3. Model Interpretability and Explainable AI
1). Attention Mechanisms for Model Interpretability:One

potential way to improve interpretability is by utilizing the
attention mechanism inherent in Transformer models. By
visualizing the attention weights, researchers can gain insights
into which parts of the protein sequence or structure the
model is focusing on when making predictions. These attention
maps can help explain why a model predicts a certain protein
interaction, function, or structure. For example, attention could
focus on regions in the protein sequence that are critical for
binding interactions or areas of structural importance [118].

2). Explainable AI Techniques:Methods such as SHAP
(SHapley Additive exPlanations) and LIME (Local Inter-
pretable Model-agnostic Explanations) can be applied to inter-
pret model predictions, offering a way to understand feature
contributions [119].



TABLE II: Published Algorithms

Model Time Repository URL

AlphaFold 2021 https://github.com/deepmind/alphafold

RoseTTAFold 2021 https://github.com/RosettaCommons/RoseTTAFold

ESM-Fold 2022 https://github.com/facebookresearch/esm

OmegaFold 2022 https://github.com/HeliXonProtein/OmegaFold

ProtGPT2 2022 https://huggingface.co/docs/transformers/main classes/trainer

RFDiffusion 2023 https://github.com/RosettaCommons/RFdiffusion

ProteinBERT 2022 https://github.com/nadavbra/protein bert

ProtTrans 2021 https://github.com/agemagician/ProtTrans

DeepPPI 2017 http://ailab.ahu.edu.cn:8087/DeepPPI/index.html

TAPE 2019 https://github.com/songlab-cal/tape

ChemBERTa 2020 https://github.com/seyonechithrananda/bert-loves-chemistry

MolBERT 2021 https://github.com/cxfjiang/MolBERT

TransConv 2025 https://github.com/sayantanDs/transconv

TABLE III: Summary of Datasets Available for Transformer-Based Protein Research Applications

Model Dataset Size Access Method

ESM-Fold UR50 (sample UR90) 30,051 https://huggingface.co/datasets/nferruz/dataset fastas

ProtGPT2 UR50 2021 04 9,935,212 https://huggingface.co/datasets/nferruz/UR50 2021 04.

RFDiffusion RoseTTAFold Diffusion 11,714 https://figshare.com/s/439fdd59488215753bc3

ProteinBERT UniRef90 43.85 GB (compressed) ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/uniref90.fasta.gz

ProtTrans UniRef100, UniRef50, BFD 2.3B sequences http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3095381

TAPE Pfam 7 GB (compressed) https://github.com/songlab-cal/tape

ChemBERTa PubChem-10M 10,000,000 SMILES https://pubchem.ncbi.nlm.nih.gov/

MolBERT ZINC15, ChEMBL27 4,000,000 SMILES https://zinc15.docking.org

AlphaFold PDB 170,000 https://www.rcsb.org/

TransConv NetSurf, ProteinNet 11,000 https://github.com/sayantanDs/transconv/tree/main/attsc dataset

3). Incorporating Domain Knowledge: Embedding biologi-
cal knowledge into models, such as known functional domains
or structural constraints, can enhance interpretability and guide
the learning process. Hybrid models that combine machine
learning with mechanistic understanding are promising in this
regard [120].

4. Expansion of Training Data and Benchmarks
Comprehensive and diverse datasets are foundational to

model performance. Future work should focus on expanding
protein complex databases with more multimeric structures,
transient interactions, and annotated functional states. Empha-
sis should be placed on underrepresented protein families, such
as membrane-associated or signaling proteins. The develop-
ment of standardized benchmarks and evaluation protocols for
quaternary structure prediction would also enable more rigor-
ous comparisons across models and facilitate reproducibility
[61].

5. Efficient and Scalable Model Architectures
Although Transformer models have shown remarkable suc-

cess in protein informatics, their computational cost remains a

significant challenge. Training large-scale Transformer models
typically requires vast amounts of computational resources,
including powerful GPUs and distributed computing systems,
making them inaccessible to many researchers. Reducing com-
putational costs without sacrificing performance is a priority
for future research.

1). Sparse Attention Mechanisms: To reduce computational
complexity, researchers are exploring sparse attention mecha-
nisms that limit the number of interactions modeled between
tokens. Models like Longformer and Performer introduce
approximations to the standard attention mechanism, enabling
the handling of longer sequences with reduced computational
load [121].

2). Recurrent Neural Networks and Memory Mecha-
nisms:Incorporating recurrence or memory mechanisms into
Transformer architectures could help capture long-range de-
pendencies without processing the entire sequence simultane-
ously, thus saving computational resources [122].

3). Knowledge Distillation: Techniques like knowledge dis-
tillation can be used to transfer knowledge from large, cumber-
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some models to smaller, more efficient ones without significant
loss in performance. This approach can make models more
accessible and deployable in resource-limited settings [123].

4). Hardware Acceleration: Advances in hardware, such as
the development of specialized AI chips and neuromorphic
computing, could alleviate computational constraints. Utilizing
cloud-based resources and distributed computing can also
make high-performance modeling more accessible [124].

6. Interdisciplinary and Collaborative Research
The complex nature of protein systems necessitates cross-

disciplinary collaboration among computational biologists,
structural biologists, machine learning experts, and domain
scientists [125] [40]. Such collaboration will accelerate the
translation of Transformer models into practical workflows for
drug discovery, synthetic biology, and personalized medicine.
Furthermore, co-development of models and wet-lab validation
pipelines will ensure that computational predictions have real-
world biological relevance.

VI. CONCLUSION

Transformer models have rapidly become a cornerstone in
protein informatics, offering robust mechanisms for learning
long-range dependencies and capturing complex biological
patterns. This survey has presented a systematic review of
Transformer-based architectures and their applications across
critical domains, including protein structure prediction, func-
tion annotation, protein-protein interactions, and computa-
tional drug discovery. Starting from foundational principles,
we examined leading models such as AlphaFold, ESM, Prot-
Trans, and RoseTTAFold, highlighting their design innovations
and contributions to protein science.

Beyond summarizing current advances, this work also iden-
tified key limitations associated with Transformer models,
particularly in terms of computational scalability, data re-
quirements, and biological interpretability. We emphasized the
importance of future directions such as multimodal data in-
tegration, hybrid modeling with experimental constraints, im-
proved model efficiency, and enhanced domain generalization.
Moreover, we advocated for interdisciplinary collaboration
as a driver for methodological breakthroughs and real-world
applicability.

By focusing specifically on protein-related tasks, this survey
provides a unique perspective on the intersection of deep
learning and molecular biology. It is our hope that this
work will guide future research in developing more efficient,
interpretable, and biologically grounded Transformer models,
ultimately advancing the frontiers of bioinformatics, structural
biology, and personalized medicine.

VII. RESOURCES AND REPRODUCIBILITY

A. Open Source Implementation

Open-source implementations of Transformer-based models
in protein informatics have played a crucial role in advancing
the field, enabling researchers to conduct baseline experiments,
benchmark new methods, and foster reproducibility. Publicly
available codebases not only facilitate rapid experimentation

but also promote transparency and collaboration across the
community. TABLE II summarizes representative open-source
implementations related to protein Transformer models, detail-
ing their publication year and repository links.

B. Datasets Used

To support the development and evaluation of Transformer
models in protein informatics, researchers have employed a
diverse range of large-scale biological datasets. These datasets
cover protein sequences, structures, molecular properties, and
chemical compounds, offering essential training material for
pretraining, fine-tuning, and benchmarking. The use of well-
curated and standardized datasets has greatly enhanced model
generalizability and robustness in real-world bioinformatics
scenarios.

Most datasets fall into one of the following categories: (1)
large-scale protein sequence corpora such as UniRef, UR50,
and BFD; (2) structure-related datasets from PDB or derived
sources used for modeling or generative design; and (3)
chemical and molecular datasets like SMILES strings for tasks
involving drug discovery.

For example, models such as ProtTrans and Protein-
BERT were pretrained on billions of protein sequences from
UniRef50, UniRef100, and BFD, enabling them to capture
both local motifs and global evolutionary patterns. ESM-Fold
and ProtGPT2 utilized subsets like UR50 for efficient pretrain-
ing. Structure-based generative models such as RFDiffusion
further incorporated manually curated datasets for training
backbone diffusion networks. In the field of chemical mod-
eling, ChemBERTa and MolBERT used millions of molecular
SMILES representations from PubChem and ZINC databases
to enable protein-ligand interaction prediction.

TABLE III summarizes the major datasets adopted in the
literature, including the dataset name, size, and access method.
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[17] A. Chandra, L. Tünnermann, T. Löfstedt, and R. Gratz, “Transformer-
based deep learning for predicting protein properties in the life sci-
ences,” Elife, 2023.

[18] M. Hesami, M. Alizadeh, A. M. P. Jones, and D. Torkamaneh,
“Machine learning: its challenges and opportunities in plant system
biology,” Applied Microbiology and Biotechnology, 2022.

[19] A. Dhakal, C. McKay, J. J. Tanner, and J. Cheng, “Artificial intelligence
in the prediction of protein–ligand interactions: recent advances and
future directions,” Briefings in Bioinformatics, 2022.

[20] Y. Liu, M. Ott, N. Goyal, J. Du et al., “Roberta: A robustly optimized
bert pretraining approach,” arXiv preprint, 2019.

[21] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer: Self-
attention with linear complexity,” arXiv preprint, 2020.

[22] A. Dosovitskiy, “An image is worth 16x16 words: Transformers for
image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[23] J. Perez, J. Marinkovic, and P. Barcelo, “On the turing completeness
of modern neural network architectures,” in International Conference
on Learning Representations, 2018.

[24] J.-B. Cordonnier, A. Loukas, and M. Jaggi, “On the relationship
between self-attention and convolutional layers,” in International Con-
ference on Learning Representations, 2019.

[25] J. Dai, H. Qi, Y. Xiong, Z. Li, G. Zhang, H. Hu, and Y. Wei,
“Deformable convolutional networks,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017.

[26] A. Elnaggar, M. Heinzinger, C. Dallago, G. Rehawi, W. Yu, L. Jones,
T. Gibbs, T. Feher, C. Angerer, M. Steinegger et al., “Prottrans:
Towards cracking the language of life’s code through self-supervised
deep learning and high performance computing,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

[27] A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo, M. Ott,
C. L. Zitnick, J. Ma et al., “Biological structure and function emerge
from scaling unsupervised learning to 250 million protein sequences,”
Proceedings of the National Academy of Sciences, vol. 118, no. 15, p.
e2016239118, 2021.

[28] X. Li, X. Zhang, S. Wang, X. Yu, S. Pan, J. Wu, and
et al., “Peptidebert: A pre-trained model for peptide representation
learning,” arXiv preprint arXiv:2309.03099, 2023. [Online]. Available:
https://arxiv.org/abs/2309.03099

[29] Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, T. Sercu, and A. Rives,
“Language models of protein sequences at the scale of evolution enable
accurate structure prediction,” bioRxiv, 2022.

[30] R. Rao, J. Liu, R. Verkuil, J. Meier, J. Canny, P. Abbeel, T. Sercu, and
A. Rives, “Msa transformer,” bioRxiv, 2021.

[31] C. Lu, L. Xu, Y. Wu, Y. Liu, and et al., “Protein representation
learning with cross-modal contrastive pretraining,” arXiv preprint
arXiv:2401.14819, 2024. [Online]. Available: https://arxiv.org/abs/
2401.14819

[32] B. Alberts, D. Bray, K. Hopkin, A. D. Johnson, J. Lewis, M. Raff,
K. Roberts, and P. Walter, Essential cell biology. Garland Science,
2015.

[33] P. Y. Chou and G. D. Fasman, “Prediction of protein conformation,”
Biochemistry, vol. 13, no. 2, pp. 222–245, 1974.

[34] B. Rost and C. Sander, “Prediction of protein secondary structure at
better than 70% accuracy,” Journal of molecular biology, vol. 232,
no. 2, pp. 584–599, 1993.

[35] J. Garnier, D. J. Osguthorpe, and B. Robson, “Analysis of the accuracy
and implications of simple methods for predicting the secondary
structure of globular proteins,” Journal of molecular biology, vol. 120,
no. 1, pp. 97–120, 1978.

[36] M. Heinzinger, A. Elnaggar, Y. Wang, C. Dallago, D. Nechaev,
F. Matthes, and B. Rost, “Modeling aspects of the language of
life through transfer-learning protein sequences,” BMC bioinformatics,
vol. 20, pp. 1–17, 2019.

[37] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
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[80] M. Wenzel, E. Grüner, and N. Strodthoff, “Insights into the inner
workings of transformer models for protein function prediction,”
Bioinformatics, vol. 40, no. 3, p. btae031, 01 2024. [Online].
Available: https://doi.org/10.1093/bioinformatics/btae031

[81] Y. Wang, Y. Sun, B. Lin, and Others, “Segt-go: a graph transformer
method based on ppi serialization and explanatory artificial intelligence
for protein function prediction,” BMC Bioinformatics, vol. 26, p. 46,
2025.

[82] G. B. de Oliveira, H. Pedrini, and Z. Dias, “Integrating transformers
and automl for protein function prediction,” in 2024 46th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), 2024, pp. 1–5.

[83] X. Du, S. Sun, C. Hu, Y. Yao, Y. Yan, and Y. Zhang, “Deepppi: boosting
prediction of protein–protein interactions with deep neural networks,”
Journal of chemical information and modeling, vol. 57, no. 6, pp. 1499–
1510, 2017.

[84] H. L. Carscadden, L. Machi, C. J. Kuhlman, D. Machi, and S. Ravi,
“Graphtrans: a software system for network conversions for simulation,
structural analysis, and graph operations,” in 2021 Winter Simulation
Conference (WSC). IEEE, 2021, pp. 1–12.

[85] L. Meng and H. Zhang, “Gact-ppis: Prediction of protein-protein
interaction sites based on graph structure and transformer network,”
International Journal of Biological Macromolecules, vol. 283, p.
137272, 2024. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0141813024080814

[86] S. H. Khan, H. Tayara, and K. T. Chong, “Tranp-b-site: A
transformer enhanced method for prediction of binding sites of
protein-protein interactions,” Measurement, vol. 251, p. 117227, 2025.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S026322412500586X

[87] Y. S. Ko, J. Parkinson, C. Liu, and W. Wang, “Tuna: An uncertainty-
aware transformer model for sequence-based protein–protein
interaction prediction,” Briefings in Bioinformatics, 2024. [Online].
Available: https://doi.org/10.1093/bib/bbae359

[88] L. Chen, K. F. Ahmad Nasif, B. Deng, S. Niu, and C. Y. Xie,
“Predicting protein-protein binding affinity with deep learning: A
comparative analysis of cnn and transformer models,” in 2024 IEEE
36th International Conference on Tools with Artificial Intelligence
(ICTAI), 2024, pp. 548–555.

[89] J. Jiang, L. Chen, L. Ke, B. Dou, C. Zhang, H. Feng, Y. Zhu, H. Qiu,
B. Zhang, and G. Wei, “A review of transformers in drug discovery
and beyond,” Journal of Pharmaceutical Analysis, p. 101081, 2024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2095177924001783

[90] J. Li and X. Jiang, “Mol-bert: An effective molecular representation
with bert for molecular property prediction,” Wireless Communications
and Mobile Computing, vol. 2021, no. 1, p. 7181815, 2021.

[91] P. Bongini, M. Bianchini, and F. Scarselli, “Molecular generative graph
neural networks for drug discovery,” Neurocomputing, vol. 450, pp.
242–252, 2021.

[92] A. Elnaggar, M. Heinzinger, C. Dallago, G. Rehawi, Y. Wang, L. Jones,
T. Gibbs, T. Feher, C. Angerer, M. Steinegger et al., “Prottrans:
Toward understanding the language of life through self-supervised

https://arxiv.org/abs/2402.19095
https://arxiv.org/abs/2402.19095
https://doi.org/10.1101/2022.07.26.501554
https://www.nature.com/articles/s41467-022-31900-5
https://www.nature.com/articles/s41467-022-31900-5
https://doi.org/10.1038/s41467-024-49647-6
https://doi.org/10.1093/bib/bbz071
https://doi.org/10.1093/nar/gkh416
https://doi.org/10.1021/acsomega.4c09688
https://doi.org/10.1093/bioinformatics/btae031
https://www.sciencedirect.com/science/article/pii/S0141813024080814
https://www.sciencedirect.com/science/article/pii/S0141813024080814
https://www.sciencedirect.com/science/article/pii/S026322412500586X
https://www.sciencedirect.com/science/article/pii/S026322412500586X
https://doi.org/10.1093/bib/bbae359
https://www.sciencedirect.com/science/article/pii/S2095177924001783
https://www.sciencedirect.com/science/article/pii/S2095177924001783


learning,” IEEE transactions on pattern analysis and machine intel-
ligence, vol. 44, no. 10, pp. 7112–7127, 2021.

[93] R. R. Kotkondawar, S. R. Sutar, A. W. Kiwelekar, and V. J. Kadam,
“Integrating transformer-based language model for drug discovery,”
in 2024 11th International Conference on Computing for Sustainable
Global Development (INDIACom), 2024, pp. 1096–1101.

[94] N. Aksamit, J. Hou, Y. Li, and Others, “Integrating transformers and
many-objective optimization for drug design,” BMC Bioinformatics,
vol. 25, p. 208, 2024.

[95] A. M. Bran and P. Schwaller, “Transformers and large language models
for chemistry and drug discovery,” in Drug Development Supported by
Informatics, H. Satoh, K. Funatsu, and H. Yamamoto, Eds. Springer,
Singapore, 2024.

[96] C. N. Magnan and P. Baldi, “Sspro/accpro 5: almost perfect prediction
of protein secondary structure and relative solvent accessibility using
profiles, machine learning and structural similarity,” Bioinformatics,
vol. 30, no. 18, pp. 2592–2597, 2014.

[97] Anonymous, “Uniprot: the universal protein knowledgebase in 2021,”
Nucleic acids research, vol. 49, no. D1, pp. D480–D489, 2021.
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K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko et al., “Highly
accurate protein structure prediction with alphafold,” nature, vol. 596,
no. 7873, pp. 583–589, 2021.

[106] F. Doshi-Velez and B. Kim, “Towards a rigorous science of inter-
pretable machine learning,” arXiv preprint arXiv:1702.08608, 2017.

[107] W. Samek, “Explainable artificial intelligence: Understanding, vi-
sualizing and interpreting deep learning models,” arXiv preprint
arXiv:1708.08296, 2017.

[108] R. Rao, J. Meier, T. Sercu, S. Ovchinnikov, and A. Rives, “Transformer
protein language models are unsupervised structure learners,” Biorxiv,
pp. 2020–12, 2020.

[109] I. Anishchenko, M. Baek, H. Park, N. Hiranuma, D. E. Kim, J. Dau-
paras, S. Mansoor, I. R. Humphreys, and D. Baker, “Protein tertiary
structure prediction and refinement using deep learning and rosetta in
casp14,” Proteins: Structure, Function, and Bioinformatics, vol. 89,
no. 12, pp. 1722–1733, 2021.

[110] M. Karimi, D. Wu, Z. Wang, and Y. Shen, “Deepaffinity: interpretable
deep learning of compound–protein affinity through unified recurrent
and convolutional neural networks,” Bioinformatics, vol. 35, no. 18,
pp. 3329–3338, 2019.

[111] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al.,
“Grandmaster level in starcraft ii using multi-agent reinforcement
learning,” nature, vol. 575, no. 7782, pp. 350–354, 2019.

[112] R. L. Grossman, A. P. Heath, V. Ferretti, H. E. Varmus, D. R. Lowy,
W. A. Kibbe, and L. M. Staudt, “Toward a shared vision for cancer
genomic data,” New England Journal of Medicine, vol. 375, no. 12,
pp. 1109–1112, 2016.

[113] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
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