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Abstract

Fully decentralized training of machine learning models offers significant advantages in scalability,
robustness, and fault tolerance. However, achieving differential privacy (DP) in such settings is challenging
due to the absence of a central aggregator and varying trust assumptions among nodes. In this work, we
present a novel privacy analysis of decentralized gossip-based averaging algorithms with additive node-level
noise, both with and without secure summation over each node’s direct neighbors. Our main contribution
is a new analytical framework based on a linear systems formulation that accurately characterizes privacy
leakage across these scenarios. This framework significantly improves upon prior analyses, for example,
reducing the Rényi DP parameter growth from O(T 2) to O(T ), where T is the number of training rounds.
We validate our analysis with numerical results demonstrating superior DP bounds compared to existing
approaches. We further illustrate our analysis with a logistic regression experiment on MNIST image
classification in a fully decentralized setting, demonstrating utility comparable to central aggregation
methods.

1 Introduction

Common federated learning (FL) scenarios assume the presence of a central parameter server for coordinating
model updates. In contrast, fully decentralized setups operate without a central orchestrator: compute nodes,
each holding a private dataset, directly exchange model states or updates with a subset of peers. Such
decentralized architectures offer advantages in scalability, fault tolerance, and robustness, but also introduce
new algorithmic and privacy challenges.

Fully decentralized gradient-based optimization methods are typically distributed variants of gradient
descent and can be broadly classified into two categories.

In random walk-based methods (Lopes and Sayed, 2007; Johansson et al., 2009; Mao et al., 2020), a node
computes local gradients and sends its model state to a randomly selected neighbor, sampled according to a
doubly stochastic mixing matrix. The neighbor then updates its local parameters and passes the updated
model to another randomly chosen neighbor. Over time, and under mild assumptions on the transition matrix
and the network graph (e.g., connectedness, symmetry), the random walk ensures uniform coverage of all
nodes. However, such sequential update dynamics inherently limits parallelism and scalability.
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In gossip averaging-based methods (Boyd et al., 2006; Dimakis et al., 2010), all nodes simultaneously
communicate with their neighbors in synchronous rounds, sharing either gradients or full model states.
Each node updates its parameters by averaging over the received messages. These operations are repeated
iteratively until the network reaches approximate consensus on the model parameters. Gossip protocols
are naturally parallelizable and more scalable than random walk approaches, making them attractive for
large-scale decentralized learning. This work focuses on such gossip-based protocols for DP decentralized
learning.

DP in Centralized FL. In centralized FL (Kairouz et al., 2021b), distributed DP (Ullah et al., 2023;
Hartmann and Kairouz, 2023; Kairouz et al., 2021a) strengthens statistical privacy guarantees by combining
local noise injection with cryptographic tools such as secure summation (Truex et al., 2019; Erlingsson et al.,
2019; Bell et al., 2020). This not only eliminates the need to trust individual nodes but also enables lower
per-user noise by aggregating over multiple contributions.

DP in Decentralized Optimization. The increased communication and lack of central control
in decentralized optimization expands the attack surface, exposing the system to more potential privacy
breaches (Dekker et al., 2025; Zhu et al., 2019; Mrini et al., 2024; Pasquini et al., 2023). Early decentralized
DP methods achieve privacy by locally perturbing gradients or models (Huang et al., 2015; Bellet et al., 2018;
Xu et al., 2022), relying on local DP guarantees. This often imposes a poor utility-privacy tradeoff compared
to centralized DP (Chan et al., 2012).

To address this, recent works propose pairwise network DP (Cyffers et al., 2024, 2022; Cyffers and
Bellet, 2022), where privacy loss is analyzed between pairs of nodes. These relaxations yield better utility
while accounting for the structure of decentralized communication. However, for the practical case of gossip
averaging, there does not yet exist a satisfactory composition analysis for the pairwise network DP guarantees.
To the best of our knowledge, the best bounds in this case are the Rényi differential privacy (RDP) bounds
by Cyffers et al. (2022) which exhibit a T 2-growth of the RDP parameters, where T is the number of training
iterations, making them unsuitable for practical ML model training with reasonable privacy guarantees.

Our Approach. In this work, we develop techniques to analyze network DP guarantees under various
threat models, showing that the total sensitivity grows empirically as O(

√
T ), resulting in O(T ) growth of the

RDP parameters, for example, representing a significant improvement over prior analyses. This network DP
accounting is obtained by interpreting the dynamics of the gossip averaging as a linear state-space system and
the view of individual nodes or subsets of nodes as projected Gaussian mechanisms (GMs). This also provides
tools to analyze the network DP guarantees in different threat scenarios. In addition to considering the threat
model of (Cyffers et al., 2022), where the neighboring nodes see the plain messages sent by their neighbors,
we also analyze algorithms that incorporate a secure summation protocol between neighboring nodes.

Secure Aggregation in Decentralized Learning. While the amplification effect of summation is
well-understood in centralized FL, its impact in fully decentralized settings remains underexplored. In current
gossip-based systems (Cyffers et al., 2022), each node receives messages directly from its neighbors and can, in
principle, view their full content. As we show, summation over a node’s neighborhood can yield a meaningful
privacy amplification. Several studies have proposed integrating MPC primitives into decentralized learning
workflows (Jayaraman et al., 2018; Lian et al., 2018; Jeon et al., 2021). Concrete protocols for decentralized
secure aggregation have been developed in recent works (Sabater et al., 2022; Pereira et al., 2024; Biswas
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et al., 2024). The use of secure summation for private decentralized algorithms has also been considered in
specific applications such as differentially private PCA (Nicolas et al., 2024).

Our Contributions:

• We develop a novel analytical framework for evaluating differential privacy guarantees in decentralized
gossip-based averaging algorithms. Our framework leverages a linear dynamical systems perspective to
track sensitivity propagation through iterative updates.

• We demonstrate that the DP guarantees, for both non-adaptive and adaptive compositions-with or
without secure summation-can be directly characterized using the Gaussian mechanism, with sensitivity
and noise scale computed with the help of our linear system model.

• Our empirical results show that the squared sensitivity scales as T over T training rounds, significantly
improving over the O(T 2) growth in state-of-the-art analyses based on Rényi differential privacy (RDP).

• We validate our findings on a decentralized logistic regression task using the MNIST dataset, showing
privacy-utility trade-offs comparable to those of central FL.

2 Background

We first shortly review the required technicalities on differential privacy. We then discuss the projected
Gaussian mechanism central to our analysis and define the model for decentralized learning and the network
DP guarantees.

2.1 Differential Privacy

An input dataset containing n data points is denoted as D = (x1, . . . , xn) ∈ D, where D denotes the set of
datasets of all sizes. We say that two datasets D and D′ are neighbors if we get one by adding or removing
one element to/from the other (denoted D ∼ D′). We say that a mechanismM : D → O is (ε, δ)-DP if the
output distributions for neighboring datasets are always (ε, δ)-indistinguishable.

Definition 1 (Dwork et al. 2006). Let ε ≥ 0 and δ ∈ [0, 1]. A randomized mechanism M : D → P(O),
where P(O) denotes the set of probability distributions over the output space O, is (ε, δ)-DP if for every pair
of neighboring datasets D,D′, every measurable set O ⊂ O,

P(M(D) ∈ O) ≤ eϵP(M(D′) ∈ O) + δ.

Given two distributions (P,Q), if the conditions P(P ∈ O) ≤ eϵP(Q ∈ O) + δ and P(Q ∈ O) ≤ eϵP(P ∈
O) + δ hold for every measurable set O ⊂ O, we also denote P ≃(ε,δ) Q.

With the hockey-stick divergence we can equivalently measure the (ε, δ)-distance of distributions. For
probability distributions P and Q, and for ε ∈ R, it is defined as Heε(P ||Q) =

∫
[P (t) − eεQ(t)]+, where

[z]+ = max{0, z}. The (ε, δ)-DP guarantees can be then given as follows.
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Lemma 2 (Balle et al. 2018). A mechanismM satisfies (ϵ, δ)-DP if and only if, maxD∼D′ Heε(M(X)||M(X ′)) ≤
δ.

The Gaussian Mechanism is a common way to achieve (ϵ, δ)-differential privacy by adding Gaussian noise
to a functions output.

Definition 3 (Gaussian Mechanism). Let f : D → Rd be a function with ℓ2-sensitivity defined as ∆2(f) =
maxD,D′ ∥f(D)− f(D′)∥2, where the maximum is over all adjacent datasets D,D′ (i.e., datasets differing in
at most one individual’s data). The Gaussian mechanism outputs

M(D) = f(D) + Z,

where Z ∼ N (0, σ2Id).

Running a DP training algorithm for T iterations is commonly modeled as an adaptive composition of T
mechanisms such that the adversary has a view on the output of all intermediate outputs. This means that
we then analyze mechanisms of the form

M(T )(D) =
(
M1(D),M2(M1(D), D), . . . ,MT (M1(D), . . . ,MT−1(D), D)

)
.

The results of (Balle and Wang, 2018) give the tight (ε, δ)-guarantees for the Gaussian mechanism. Bounds
for compositions follow from the fact that the Gaussian mechanism is µ-Gaussian Differentially Private for
µ = ∆2/σ, and from the composition results for µ-GDP mechanisms by Dong et al. (2022).

Lemma 4 (Dong et al. 2022). Consider an adaptive composition of T Gaussian mechanisms, each with
L2-sensitivity ∆ and noise scale parameter σ. The adaptive composition is (ε, δ)-DP for

δ(ε) = Φ

(
− εσ√

T ·∆
+

√
T ·∆
2σ

)
− eεΦ

(
− εσ√

T ·∆
−
√
T ·∆
2σ

)
.

2.2 Projected Gaussian Mechanism and Moore–Penrose Pseudoinverse

In our results, the network DP guarantees become those of a projected Gaussian mechanism of the form

M(D) = f(D) +AZ, (2.1)

where f : D → Rm, A ∈ Rm×n and Z ∼ N (0, σ2In) for some σ > 0. To analyze the DP guarantees of these
mechanism, we will use the Moore–Penrose pseudoinverse of A.

We consider the computationally tractable definition of the Moore–Penrose pseudoinverse based on the
singular value decomposition (SVD) (Golub and Van Loan, 2013).
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Definition 5 (Compact SVD and Moore–Penrose Pseudoinverse). Let A ∈ Rm×n be a matrix of rank r. The
compact SVD (also known as the economy SVD) of A is given by:

A = UrΣrV
⊤
r

where Ur ∈ Rm×r and Vr ∈ Rn×r contain the left and right singular vectors corresponding to the non-zero
singular values, respectively, and Σr ∈ Rr×r is a diagonal matrix containing the non-zero singular values
σ1 ≥ · · · ≥ σr > 0. The Moore–Penrose pseudoinverse of A, denoted A+, is defined via compact SVD as

A+ = VrΣ
+
r U

⊤
r

where Σ+
r ∈ Rr×r is a diagonal matrix with entries 1

σ1
, . . . , 1

σr
, i.e., Σ+

r = diag
(

1
σ1
, 1
σ2
, . . . , 1

σr

)
.

To analyze the gossip averaging algorithms, the following technical result will play a central role.

Lemma 6. Let σ > 0 and A ∈ Rm×n. Suppose M(D) is a projected Gaussian mechanism of the form given
in Eq. (2.1). Let D and D′ be two datasets such that f(D) − f(D′) ∈ Range(A), where Range(A) denotes
the subspace spanned by the columns of A. Then, for all α ≥ 0,

Hα

(
M(D)||M(D′)

)
= Hα

(
N
( ∥∥A+(f(D)− f(D′))

∥∥
2
, σ2
)
|| N (0, σ2)

)
.

i.e., the (ε, δ)-distance between M(D) and M(D′) is upper bounded by the (ε, δ)-DP guarantee of a gaussian
mechanism with L2-sensitivity ∥A+(f(D)− f(D′))∥2 and noise parameter σ.

2.3 Decentralized Learning and Network DP

We consider a connected graph G = (V,E), with V and E as the nodes and edges of graph, respectively.
The graph structure is encoded into an adjacency matrix A ∈ {1, 0}n×n, with Aij = 1 if nodes i and j are
connected by an edge and 0 otherwise. We denote the nodes via indices, i.e., the n nodes of the graph are
denoted via [n] = {1, . . . , n}. The time is divided into discrete intervals. In each round t ∈ [T ], T ∈ Z+,
each node i can exchange a message with its neighboring nodes Ni = {j|(i, j) ∈ E}. We denote the closed
neighborhood of node i by N̄i = Ni ∪ {i}.

The total dataset D is partitioned into n disjoint shards with each node i holding a local dataset Di.
In decentralized learning the goal is to learn a model θ that minimizes the loss function f(θ) =

∑n
i=1 fi(θ),

where fi(θ) denotes the empirical loss of node i, i ∈ [n], and θ ∈ Rd denotes the model parameters. At each
round t ∈ [T ], the global state variable is denoted θt ∈ Rn with node-wise variables [θt]i, i ∈ [n]. In our
analysis, we consider univariate node-wise variables. Our results are generalizable to higher dimensions via
tensorization using Kronecker products.

DP requires defining a neighborhood relation for datasets. In our experiments we adopt a record-level
relation which describes the protection for an individual data element in a dataset Di of a given node i ∈ [n],
however we note that our results are applicable to any neighborhood relation. Formally, D = ∪i∈[n]Di and
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D = ∪i∈[n]Di are adjacent datasets, denoted D ∼ D′, if there exists i ∈ [n] such that only Di and D′
i differ.

We use D ∼i D
′ to denote that D and D′ differ only in the data of node i.

We define a decentralized mechanismM as a randomized function that takes as input the total dataset
D = ∪i∈[n]Di and outputs all the shared messages. What is seen by whom, is represented by the view. We
denote by ViewM(D)(A) the part ofM(D) visible to the set of nodes A. For a set of nodes A = {i1, . . . , i|A|}
we define the selector matrix S(A) ∈ R|A|×n as S(A) =

∑|A|
k=1 ekeik , where ek is the kth standard basis vector

of R|A| and eik the ikth standard basis vector of Rn.
We say that the node j is (ε, δ)-DP from point of view of a subset of nodes A ⊂ [n], if D ≃j D′ and

ViewM(D)(A) ≃(ε,δ) ViewM(D′)(A). We also assume that nodes are honest but curious: they adhere to
the protocol, but may attempt to infer additional information from the messages they observe. Similarly
to (Cyffers et al., 2022), we first assume that the noise injected by the observing nodes contributes to the DP
guarantees. In Section 3.5, we show how to remove this assumption.

The Gossip matrix determines the dynamics of the averaging. If the local messages are represented by a
vector xt ∈ Rn at time t, the averaging corresponds to the iteration θt+1 = Wtxt, where the gossip matrix
Wt ∈ Rn×n. We say that W ∈ Rn×n is row-stochastic if W1 = 1, where 1 =

[
1 . . . 1

]⊤ and doubly
stochastic if also W⊤1 = 1. We note, however, that our privacy amplification results are applicable to an
arbitrary W ∈ Rn×n. In our analysis, we focus on time-invariant graphs Wt = W , however as we show in
Appendix, the presented results can be generalized to time-variant graphs.

3 Privacy Analysis

3.1 Gossip Averaging as Discrete-Time Linear State-Space Dynamics

We analyze gossip averaging algorithms by viewing their dynamics as those of discrete-time linear state-space
systems (see, e.g., Antoulas, 2005). In particular, we consider the systems without the feedthrough term in
which case their dynamics is are described by the equations

θt+1 = Atθt +Btut,

yt = Ctθt,

where at each time step t, θt represents the state vector, the matrix At the state transition matrix, Bt the
input matrix which describes how the control input ut at time step t affects the state, and the observation yt
is related to the state vector θt by the observation matrix C.

We utilize techniques of representing the sequence of observations y1, . . . , yN as a large linear system,
where ut’s are vectorized and the global dynamics is described by a large block-lower-triangular state transition
matrix determined by At, Bt and Ct, t ∈ [N ] (see, e.g., Ch. 4 Antoulas, 2005). In our presentation, we focus
on time-invariant graphs in which case At, Bt and Ct are fixed.

This state-space dynamics perspective can be used to analyze different threat models for both non-adaptive
and adaptive compositions. To summarize our results, when measuring the DP guarantees for the data of
node j, the coefficient matrices (A,B,C) are given as follows.
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1. Non-adaptive analysis with secure summation from the view of node i:

(A,B,C) = (W,W, e⊤i ),

where ei denotes the ith standard basis (one-hot) vector in Rn.

2. Non-adaptive analysis with secure summation and a set of colluding nodes C = {i1, . . . , i|C|}:

(A,B,C) =
(
W,W,S(C)

)
with the selector matrix S(C).

3. Non-adaptive and adaptive analysis without secure summation:

(A,B,C) = (W, In, ej).

4. Adaptive analysis with secure summation:

(A,B,C) =
(
W,W,S(N̄j)

)
with the selector matrix S(N̄j).

We next derive these matrices and the corresponding DP guarantees one by one.

3.2 Analysis of Non-Adaptive Compositions with Secure Summation

We first show how to analyze DP gossip averaging with secure summation protocols for non-adaptive node-
wise functions of data. To this end, without loss of generality, consider the task of globally averaging
node-wise streams of data. I.e., each node i, i ∈ [n], will have a stream xi0, x

i
1, . . . . Suppose each node

adds normally distributed noise with variance σ2 to its data point at each round. For t ∈ [T ], denote also
xt =

[
x1t . . . xnt

]⊤
. Denoting the global state variable at round t with θt, the gossip averaging with the

gossip matrix W can be written as
θt+1 = W (θt + xt + ut), (3.1)

where ut ∼ N (0, σ2In). From the recursion (3.1) it follows that from the point-of-view of node i, the view is
given by ViewM(D)({i}) =

[
y1 . . . yn

]⊤, where

y1 = e⊤i (Wx0 +Wu0)

y2 = e⊤i (W
2x0 +Wx1 +W 2u0 +Wu1)

...

yT = e⊤i (W
Tx0 + · · ·+WxT−1 +W Tu0 + · · ·+WuT−1).

From this representation we get the following.
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Lemma 7. Consider the neighboring sets of data-streams D and D′ that change at most by one node’s
contribution (let it be node j ∈ [n]), such that each for each t ∈ [T ], where T denotes the total number of
iterations, it holds that

∣∣∣xjt − x′jt

∣∣∣ ≤ 1 (this without loss of generality). Then, the node j is (ε, δ)-DP from the
point-of-view of node i, where (ε, δ) is bounded by the (ε, δ)-distance between the two multivariate mechanisms

M(D) = x̃T +HT ũT and M(D′) = HT ũT ,

where ũT ∼ N (0, σ2IT ), and

x̃T =


e⊤i Wej

e⊤i (W
2 +W )ej
...

e⊤i (W
T−1 + · · ·+W )ej

 and HT :=


e⊤i W 0 0 . . . 0
e⊤i W

2 e⊤i W 0 . . . 0
e⊤i W

3 e⊤i W
2 e⊤i W . . . 0

...
...

...
. . .

...
e⊤i W

T e⊤i W
T−1 . . . e⊤i W

2 e⊤i W

 (3.2)

Applying the DP analysis of the projected Gaussian mechanism (Lemma 6) to the pair of distributions
given by Lemma 7 directly gives the following result.

Theorem 8. Consider the Gossip averaging algorithm (3.1) and suppose D,D′ are neighboring datasets such
that D ≃j D′. Let x̃T and HT be given as in Eq. (3.2). Denote ∆T

j→i =
∥∥H+

T x̃T
∥∥
2

where H+
T denotes the

Moore–Penrose pseudoinverse of the matrix HT . Then, from the point-of-view of a node i, the node j is
(ε, δ)-DP, where (ε, δ) is the privacy guarantee of the Gaussian mechanism with sensitivity ∆T

j→i and noise
scale σ.

3.3 Analysis of Adaptive Compositions with Secure Summation

When analyzing adaptive compositions, the gossip averaging algorithm can be written as

θt+1 = W (θt + xt(θt) + ut), (3.3)

where ut ∼ N (0, σ2In) and θt denote the global state of the average estimate at round t. Naturally, each
element of xt depends only on the corresponding element of θt, i.e., for any i ∈ [n], [xt(θt)]i = [xt([θt]i)]i.

Central to our analysis is the observation that in case D ≃j D
′, in case of both D and D′, the view of

each node i in the graph is post-processing of the view of N̄j , the closed neighborhood of the node j, i.e.,
for any node i ∈ [n], the views ViewM(D)({i}) and ViewM(D′)({i}) are obtained from post-processing of
the views ViewM(D)

(
N̄j

)
and ViewM(D′)

(
N̄j

)
, respectively. As we show, this also allows analyzing adaptive

compositions.
Notice that the selector matrix S(N̄j) selects the rows of W corresponding to the indices in the set of

closed neighborhood N̄j . More specifically, if
∣∣N̄j

∣∣ = dj and N̄j = {i1, . . . , idj}, then

S(N̄j)W =

 e⊤i1W
...

e⊤idj
W

 ∈ Rdj×n.
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Denoting Sj := S(N̄j), from the point-of-view of N̄j , what is observed is then given by ViewM(D)(N̄j) =[
y1 . . . yT

]⊤
, where

y1 = Sj

(
W (x0 + u0)

)
y2 = Sj

(
(W 2(x0 + u0) +W (x1 + u1)

)
...

yT = Sj

(
W T (x0 + u0) · · ·+W (xT−1 + uT−1)

)
.

(3.4)

With a similar derivation as in the case of non-adaptive compositions, this representation gives the
following result.

Theorem 9. Consider the neighboring datasets D and D′ that change at the data of node j ∈ [n]), such that
each for each t ∈ [T ], where T denotes the total number of iterations, it holds that

∣∣∣xjt (θ)− x′jt (θ)
∣∣∣ ≤ 1 for

any auxiliary variable θ. Denote

x̃T =


SjWej

Sj(W
2 +W )ej
...

Sj(W
T−1 + · · ·+W )ej

 and HT :=


SjW 0 0 . . . 0
SjW

2 SjW 0 . . . 0
SjW

3 SjW
2 SjW . . . 0

...
...

...
. . .

...
SjW

T SjW
T−1 . . . SjW

2 SjW


Then, the node j is (ε, δ)-DP from the point-of-view of any other node i, where (ε, δ) is the DP guarantee of
the Gaussian mechanism with sensitivity ∆T

j→i =
∥∥H+

T x̃T
∥∥
2

and noise scale σ.

We now turn to the analysis of node-level differential privacy guarantees in the absence of secure summation,
where nodes can observe the plain messages sent by their neighbors. In this setting, we analyze both non-
adaptive and adaptive compositions simultaneously. However, we note that for the non-adaptive case, our
techniques can yield tighter bounds by incorporating the distance between the observing node and the node
whose privacy is being evaluated.

3.4 Gossip Averaging without Secure Summation

In case the nodes are allowed to see the plain locally perturbed messages of their neighboring nodes, the
analysis changes. Now, crucial observation is that the view of any node in the graph is post-processing of the
view of the differing node only. I.e., in case D ≃j D

′, then for any node i ∈ [n], the views ViewM(D)({i})
and ViewM(D′)({i}) are obtained by applying the same jth node-independent post-processing to the views
ViewM(D)({j}) and ViewM(D′)({j}), respectively.

To analyze the view ViewM(D)({j}), instead of the iteration (3.3), we have

ViewM(D)({j}) =

e
⊤
j θ1
...

e⊤j θT
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where
θt+1 = Wθt + xt + ut, θ0 = 0, (3.5)

Writing out the recursion as in Eq. (3.4) and following the same steps, gives the following result.

Theorem 10. Consider the gossip averaging (3.5) corresponding to gossip averaging without secure summation.
Denote

x̃T =


1

e⊤j (W + I)ej
...

e⊤j (W
T−1 + · · ·+W + I)ej

 and HT :=


e⊤j 0 0 . . . 0

e⊤j W e⊤j 0 . . . 0

e⊤j W
2 e⊤j W e⊤j . . . 0

...
...

...
. . .

...
e⊤j W

T−1 e⊤j W
T−2 . . . e⊤j W e⊤j


Then, the node i is (ε, δ)-DP from the point-of-view of any node i, where (ε, δ) is the DP guarantee of the
Gaussian mechanism with sensitivity ∆T

j→i =
∥∥H+

T x̃T
∥∥
2

and noise scale σ.

3.5 Accounting for Nodes’ Knowledge of Injected Noise

As stated in Section 2, we have so far assumed that the noise injected by the observing node (or subset of
nodes) contributes to the DP guarantees of the other nodes. In practice, this likely has a small effect on the
the DP guarantees. However, we can obtain rigorous guarantees by removing the noise terms corresponding
to the observing nodes. This corresponds to removing suitable columns from the matrix HT appearing in the
DP guarantees.

For example, in case of non-adaptive compositions and secure summation, instead of Thm. 8, we get the
DP guarantees for node j from the point of view node i using the sensitivity ∆T

j→i =
∥∥∥Ĥ+

T x̃T

∥∥∥
2

where ĤT is

the T ×
(
T · (n− 1)

)
matrix corresponding to the T × (T · n) matrix HT of Eq. (3.2) with the ith column

vector of each T × n-block column removed. Similar correction can be carried out also in all the other cases.
We do this correction in all our experiments.

4 Experiments

Illustration of the DP Bounds for Non-Adaptive Compositions. We first consider numerical evaluation
of the DP bounds applicable for non-adaptive compositions (Thm. 8 and Thm. 10).

First, consider a synthetic Erdős–Rényi graph G(n, p) with n = 100 and p = 0.2, i.e., each of the
n users is connected to each other with probability p. We take the gossip matrix W to be a doubly
stochastic matrix obtained via a max degree normalization, where we first scale the off-diagonal elements
as Wij = Aij/max{di, dj}, where A denotes the symmetric adjacency matrix and di the degree of node i,
i ∈ [n]. We then set the diagonal elements as Wii = 1−

∑
j,i̸=j Wij . The left figure of Fig. 1 illustrates that

in case of the secure summation, the squared sensitivity (∆T
j→i)

2 for a randomly chosen j grows linearly w.r.t.
T , and in particular, approaches T

n which corresponds to the sensitivity in the case of centralized aggregation.
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Second, consider the Facebook Social Circle dataset (Leskovec and Mcauley, 2012) available in the Stanford
Large Network Dataset Collection (Leskovec and Sosič, 2016), which describes an directed graph of n = 4036
nodes connected via binary edge weights. We consider an undirected version of this graph that we obtain
via symmetrization of the adjacency matrix. We obtain a doubly stochastic gossip matrix W using the max
degree normalization similarly to the synthetic case. The right figure of Fig. 1 illustrates the scaled sensitivity
(∆T

j→i)
2/T for observing the node j from node i, where j is the node index 300 (an arbitrary node) and i is

either one of the first two indices in the neighborhood of node j or one of the first two indices outside of the
neighborhood of node j.

0 10 20 30 40 50 60 70 80 90 100
10 -4

10 -3

10 -2

10 -1

100

0 5 10 15 20
10-8

10-6

10-4

10-2

100

Figure 1: Left: Erdős–Rényi graph G(n, p) with n = 100 and p = 0.2, Right: Facebook Social Circle
dataset (Leskovec and Mcauley, 2012), and the scaled sensitivity (∆T

j→i)
2/T as a function of T . We consider

separately the cases when random nodes i and j are neighbors and not. In case of the synthetic Erdős–Rényi
graph, the scaled sensitivity approaches 1

n which corresponds to the scaled sensitivity in the centralized case
using secure aggregation.

Illustration of the DP Bounds for Adaptive Compositions. We also consider comparing the
bounds in case of adaptive compositions (Thm. 9 and Thm. 10), which corresponds to gossip averaging based
ML model training via private gradient descent, for example. We consciously exclude the composition bound
of (Cyffers et al., 2022, Thm. 6) in our comparisons. Their bound exhibits an O(T 2) dependency in the Rényi
DP parameters and becomes even looser than the standard LDP bound in our setting (when the number of
Muffliato averaging steps in their algorithm is K = 1). We compute average the ε-values of the pair-wise
DP guarantees, i.e., the average of the DP-ε’s between all pairs (i, j) over the whole graph, when δ = 10−5.
Interestingly, the bound we obtain using Thm. 10 for the averaging without secure summation becomes tighter
than the bound for the averaging with secure summation (Thm. 9) as T grows. This suggests that the bound
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of Thm. 9 can be improved further. Notably, both bounds represent clear improvements over the LDP bound.

0 10 20 30 40 50 60 70
0

1

2

3

4

5

Figure 2: DP amplification for adaptive compositions over a synthetic Erdős–Rényi graph G(n, p) with n = 50
and p = 0.2.

Decentralized Learning for Logistic Regression. We distribute the MNIST (LeCun, 1998) dataset
IID to 100 nodes and each node is minimizing the cross-entropy loss for the logistic regression model using
gradient descent. The nodes are connected based on an adjacency matrix A ∈ {0, 1}n×n that corresponds to
a randomly drawn Erdős–Rényi graph G(n, p) with n = 100 and p = 0.2. We compute the average DP-ε
values of all pairs (i, j) (DP of node j from the point of view of node i) over the whole graph, when δ = 10−5.
The messages of the nodes are locally DP updated models and nodes carry out gossip averaging over the
closed neighborhoods, i.e., the row-stochastic gossip matrix W = Λ−1(A+ In), where Λ is a diagonal matrix
with Λii =

∣∣N̄i

∣∣−1, i ∈ [n].

5 Conclusions and Outlook

In this work, we have given the first privacy amplification results for DP gossip averaging algorithms on graphs
that are able to accurately capture the privacy amplification arising from all the noise injected in the system.
As a future work, it will be interesting to see, whether the strong results for non-adaptive compositions
that use secure summation can be translated to bounds for adaptive compositions. From computational
perspective, a necessary future task will be to speed up linear algebraic subroutines for evaluating the total
sensitivities for large and possibly sparse graphs. Also, the proposed framework is likely applicable to other
decentralized optimization methods exhibiting a similar linear structure as the gossip averaging considered
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Figure 3: Decentralized learning for logistic regression on MNIST dataset over a synthetic Erdős–Rényi graph
G(n, p) with n = 100 and p = 0.2. The gossip matrix is the row-stochastic matrix corresponding to averaging
over the closed neighborhood of each node.

here.
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A Proof of Lemma 6

Lemma A.1. Let σ > 0 and A ∈ Rm×n. Suppose M(D) is a projected Gaussian mechanism of the form
given in Eq. (2.1). Let D and D′ be two datasets such that f(D) − f(D′) ∈ Range(A), where Range(A)
denotes the subspace spanned by the columns of A. Then, for all α ≥ 0,

Hα

(
M(D)||M(D′)

)
= Hα

(
N
( ∥∥A+(f(D)− f(D′))

∥∥
2
, σ2
)
|| N (0, σ2)

)
.

i.e., the (ε, δ)-distance between M(D) and M(D′) is upper bounded by the (ε, δ)-DP guarantee of a gaussian
mechanism with L2-sensitivity ∥A+(f(D)− f(D′))∥2 and noise parameter σ.

Proof. Recall, the projected Gaussian mechanism is give as

M(D) = f(D) +AZ,

where f : D → Rm, A ∈ Rm×n and Z ∼ N (0, σ2In) for some σ > 0.
Denote the compact SVD of A as A = UrΣrV

⊤
r , where r denotes the rank of A. Since the columns of

Ur give a basis for the subspace Range(A) and Ur has orthonormal columns, UrU
⊤
r gives a projector onto

Range(A). Since f(D)− f(D′) ∈ Range(A), it holds that

f(D)− f(D′) = UrU
⊤
r

(
f(D)− f(D′)

)
. (A.1)

By using the compact SVD of A, we have that for all α ≥ 0:

Hα

(
M(D)||M(D′)

)
= Hα

(
f(D) +AZ || f(D′) +AZ

)
= Hα

(
f(D)− f(D′) +AZ ||AZ

)
= Hα

(
f(D)− f(D′) + UrΣrV

⊤
r Z ||UrΣrV

⊤
r Z

)
= Hα

(
UrU

⊤
r

(
f(D)− f(D′)

)
+ UrΣrV

⊤
r Z ||UrΣrV

⊤
r Z

)
= Hα

(
U⊤
r

(
f(D)− f(D′)

)
+ΣrV

⊤
r Z ||ΣrV

⊤
r Z

)
= Hα

(
Σ−1
r U⊤

r

(
f(D)− f(D′)

)
+ V ⊤

r Z ||V ⊤
r Z

)
= Hα

(
Σ−1
r U⊤

r

(
f(D)− f(D′)

)
+ Z̃ || Z̃

)
,

where Z̃ ∼ N (0, σ2Ir) and where before the third last equality we have carried out multiplication from the
left by U⊤

r and before the second last equality we have carried out multiplication from the left by Σ−1
r . The

last step follows from the fact that Vr has orthonormal columns. We see that for all ε ∈ R,

Heε

(
M(D)||M(D′)

)
= Heε

(
Σ−1
r U⊤

r

(
f(D)− f(D′)

)
+ Z̃ || Z̃

)
,
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where the right-hand side gives the tight δ(ε) for the Gaussian mechanism with sensitivity
∥∥Σ−1

r U⊤
r

(
f(D)− f(D′)

)∥∥
2

and noise scale σ. Further, since Vr has orthonormal columns,∥∥∥Σ−1
r U⊤

r

(
f(D)− f(D′)

)∥∥∥
2
=
∥∥∥VrΣ

−1
r U⊤

r

(
f(D)− f(D′)

)∥∥∥
2

=
∥∥A+

(
f(D)− f(D′)

)∥∥
2

and the claim follows.

B Proof of Lemma 7

Lemma B.1. Consider the neighboring sets of data-streams D and D′ that change at most by one node’s
contribution (let it be node j ∈ [n]), such that each for each t ∈ [T ], where T denotes the total number of
iterations, it holds that

∣∣∣xjt − x′jt

∣∣∣ ≤ 1 (this without loss of generality). Then, the node j is (ε, δ)-DP from the
point-of-view of node i, where (ε, δ) is bounded by the (ε, δ)-distance between the two multivariate mechanisms

M(D) = x̃T +HT ũT and M(D′) = HT ũT ,

where ũT ∼ N (0, σ2IT ), and

x̃T =


e⊤i Wej

e⊤i (W
2 +W )ej
...

e⊤i (W
T−1 + · · ·+W )ej

 and HT :=


e⊤i W 0 0 . . . 0
e⊤i W

2 e⊤i W 0 . . . 0
e⊤i W

3 e⊤i W
2 e⊤i W . . . 0

...
...

...
. . .

...
e⊤i W

T e⊤i W
T−1 . . . e⊤i W

2 e⊤i W


Proof. We now need to bound the hockey-stick divergence

Hα

(
ViewM(D)({i}) ||ViewM(D′)({i}))

)
.

Recall that from the recursion (3.1) it follows that

ViewM(D)({i}) =


y1
y2
...
yn

 ,

where
y1 = e⊤i (Wx0 +Wu0)

y2 = e⊤i (W
2x0 +Wx1 +W 2u0 +Wu1)

...

yT = e⊤i (W
Tx0 + · · ·+WxT−1 +W Tu0 + · · ·+WuT−1).
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I.e.,
ViewM(D)({i}) = HT x̂T +HT ũT ,

where ũT ∼ N (0, σ2IT ·n) and

x̂T =


x0
x1
...

xT−1

 .

similarly,
ViewM(D′)({i}) = HT x̂

′
T +HT ũT ,

where ũT ∼ N (0, σ2IT ·n) and

x̂′T =


x′0
x′1
...

x′T−1


for some x̂′T ∈ RT ·n such that

x̂T − x̂′T =


ej∆1

ej∆2
...

ej∆n

 ,

where ej denotes the jth standard basis vector in Rn and |∆i| ≤ 1 for all i ∈ [T ].
From the translational invariance of the hockey-stick divergence, we have

Hα

(
ViewM(D)({i}) ||ViewM(D′)({i}))

)
= Hα

(
HT x̂T +HT ũT ||HT x̂

′
T +HT ũT

)
= Hα

(
HT

(
x̂T − x̂′T

)
+HT ũT ||HT ũT

)
.

By the compact SVD HT = UrΣrV
⊤
r , where r denotes the rank of HT , we have that for all α ≥ 0,

Hα

(
UrΣrV

⊤
r

(
x̂T − x̂′T

)
+ UrΣrV

⊤
r ũT ||UrΣrV

⊤
r ũT

)
=Hα

(
UrΣrV

⊤
r

(
x̂T − x̂′T

)
+ UrΣrV

⊤
r ũT ||UrΣrV

⊤
r ũT

)
=Hα

(
ΣrV

⊤
r

(
x̂T − x̂′T

)
+ΣrV

⊤
r ũT ||ΣrV

⊤
r ũT

)
=Hα

(
V ⊤
r

(
x̂T − x̂′T

)
+ V ⊤

r ũT ||V ⊤
r ũT

)
=Hα

(
V ⊤
r

(
x̂T − x̂′T

)
+ û || û

)
where û ∼ N (0, σ2IT ).
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Denoting ∆x := x̂T − x̂′T , we see that −1 ≤ (∆x)i ≤ 1 for all i ∈ [T ]. For an upper bound of the sensitivity,
we need to find the maximum of

∥∥V ⊤
r ∆x

∥∥2
2

when ∆x is in the convex and compact domain [0, 1]T . We see
that maximizing

∥∥V ⊤
r ∆x

∥∥2
2

is equivalent to finding the maximum of the quadratic form (∆x)⊤P∆x in the
convex and compact domain [0, 1]T where the projector matrix P = VrV

⊤
r is positive semi-definite and a

projection on to the row space of HT . Thus, the optimum is found from somewhere at the boundary, i.e., it
holds that |(∆x)i| = 1 for all i ∈ [T ]. Moreover, since the rows of HT are vectors with non-negative entries,∥∥V ⊤

r ∆x
∥∥2
2

is maximized when ∆x =
[
1 . . . 1

]⊤.

C Proof of Thm. 9

Theorem C.1. Consider the neighboring datasets D and D′ that change at the data of node j ∈ [n]), such
that each for each t ∈ [T ], where T denotes the total number of iterations, it holds that

∣∣∣xjt (θ)− x′jt (θ)
∣∣∣ ≤ 1

for any auxiliary variable θ. Denote

x̃T =


SjWej

Sj(W
2 +W )ej
...

Sj(W
T−1 + · · ·+W )ej

 and HT :=


SjW 0 0 . . . 0
SjW

2 SjW 0 . . . 0
SjW

3 SjW
2 SjW . . . 0

...
...

...
. . .

...
SjW

T SjW
T−1 . . . SjW

2 SjW


Then, the node j is (ε, δ)-DP from the point-of-view of any other node i, where (ε, δ) is the DP guarantee of
the Gaussian mechanism with sensitivity ∆T

j→i =
∥∥H+

T x̃T
∥∥
2

and noise scale σ.

Proof. Suppose D ≃j D
′. Denote Sj = S(N̄j). We need to carry out the analysis for the view ViewM(D)(N̄j) =[

y1 . . . yT
]⊤

, where
y1 = Sj

(
W (x0 + u0)

)
y2 = Sj

(
(W 2(x0 + u0) +W (x1 + u1)

)
...

yT = Sj

(
W T (x0 + u0) + · · ·+W (xT−1 + uT−1)

)
,

where [xi]k depends on the state [θi]k (or could depend also on [θi−1]k, [θi−2]k, . . .).
The only source of randomness in ViewM(D)(N̄j) is that of u0, . . . , uT−1. To carry out the DP analysis,

we "roll out" by starting the integration of the hockey-stick divergence from the last noise vector uT−1.
This is similar to the composition analysis using RDP (Mironov, 2017) and using dominating pairs of
distributions (Zhu et al., 2022). In particular, the proof is similar to the proof of (Thm. 10, Zhu et al., 2022).

The general case can be illustrated using with the case T = 2. When T = 2, we need to analyze the
mechanism

M(D) =

[
Sj

(
W (x0 + u0)

)
Sj

(
W 2(x0 + u0) +W (x1 + u1)

)] = [y1
y2

]
,
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where [x1]k depends on the state [θ1]k for all k ∈ [n].
The essential observation here is that when D ≃j D

′, the the states of the nodes outside of the closed
neighborhood N̄j are obtained by applying the same post-processing to the views ViewM(D)(N̄j) and
ViewM(D′)(N̄j). More specifically, given the view of the nodes inside the closed neighborhood N̄j , in case the
output of the first component is y1 and when only considering the randomness of the vector W (x0 + u0) in
the nodes outside of N̄j , the vectors Sj

(
W 2(x0 + u0) and Sj

(
W 2(x′0 + u0) have the same distribution, since

they consist of linear combinations of the entries of y1 and of entries of θ1 outside of N̄j which are distributed
similarly in case of D and D′.

Therefore, when starting to integrate with respect to the last source of randomness, u1, since y1 is observed,
we can fix both Sj

(
W 2(x0 + u0) and Sj

(
W 2(x′0 + u0) to same value, and we can also fix all the terms in Wx1

that are evaluated using the states of the nodes outside of N̄j . What remains in Wx1 are the terms evaluated
using y1, and thus we can also carry out an adaptive analysis. We then roll out the last term to become
state-independent, i.e., we have that for all α ≥ 0,

Hα

(
M(D)||M(D′)

)
≤ Hα

(
M1(D)||M1(D

′)
)
,

where

M1(D) =

[
Sj

(
W (x0 + u0)

)
Sj

(
W 2(x0 + u0) +W (ej + u1)

)]
and

M1(D
′) =

[
Sj

(
W (x0 + u0)

)
Sj

(
W 2(x0 + u0) +Wu1

)] .
Switching then the order of integration, we integrate out u0 and, by the reasoning of the proof of Lemma 7,
we have that

Hα

(
M1(D)||M1(D

′)
)
≤ Hα

(
M2(D)||M2(D

′)
)
,

where

M2(D) =

[
Sj

(
W (ej + u0)

)
Sj

(
W 2(ej + u0) +W (ej + u1)

)] = [ SjWej
Sj

(
W 2 +W

)
ej

]
+

[
SjW 0
SjW

2 SjW

] [
u0
u1

]
and

M2(D
′) =

[
Sj

(
Wu0

)
Sj

(
W 2u0 +Wu1

)] = [ SjW 0
SjW

2 SjW

] [
u0
u1

]
.

In case T = 3, we can use the same reasoning, and similarly, given the observations y1 and y2, we can freeze
the terms Sj

(
W 3(x0 + u0) and SjW

2(x1 + u1) when integrating w.r.t. u2. The general case also follows from
this reasoning.
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D Proof of Thm. 10

Theorem D.1. Consider the gossip averaging (3.5) corresponding to gossip averaging without secure summa-
tion. Denote

x̃T =


1

e⊤j (W + I)ej
...

e⊤j (W
T−1 + · · ·+W + I)ej

 and HT :=


e⊤j 0 0 . . . 0

e⊤j W e⊤j 0 . . . 0

e⊤j W
2 e⊤j W e⊤j . . . 0

...
...

...
. . .

...
e⊤j W

T−1 e⊤j W
T−2 . . . e⊤j W e⊤j


Then, the node i is (ε, δ)-DP from the point-of-view of any node i, where (ε, δ) is the DP guarantee of the
Gaussian mechanism with sensitivity ∆T

j→i =
∥∥H+

T x̃T
∥∥
2

and noise scale σ.

Proof. The proof goes similarly as the proof of Thm. 9 and can be illustrated using the case T = 2.
Given the view of the node j, in case the output of the first component is y1 and when only considering the

randomness of the vector W (x0+u0) in the rest of the nodes, the vectors ej
(
W 2(x0+u0) and ej

(
W 2(x′0+u0)

have the same distribution.
Therefore, when starting to integrate w.r.t. to the last source of randomness, u1, since y1 is observed,

we can fix both ej
(
W 2(x0 + u0) and ej

(
W 2(x′0 + u0) to same value, and roll out the last term to become

state-independent, i.e., we have that for all α ≥ 0,

Hα

(
M(D)||M(D′)

)
≤ Hα

(
M1(D)||M1(D

′)
)
,

where

M1(D) =

[
e⊤j (x0 + u0)

e⊤j
(
W (x0 + u0) + ej + u1

)]
and

M1(D
′) =

[
e⊤j (x0 + u0)

e⊤j
(
W (x0 + u0) + u1

)]
Switching then the order of integration, we integrate out u0 and, by the reasoning of the proof of Lemma 7,
we have that

Hα

(
M1(D)||M1(D

′)
)
≤ Hα

(
M2(D)||M2(D

′)
)
,

where

M2(D) =

[
e⊤j (ej + u0)

e⊤j
(
W (ej + u0) + ej + u1

)] = [ 1
e⊤j
(
W + I

)
ej

]
+

[
e⊤j 0

e⊤j W ej

] [
u0
u1

]
and

M2(D
′) =

[
e⊤j Wu0

e⊤j
(
Wu0 + u1

)] = [ e⊤j 0

e⊤j W ej

] [
u0
u1

]
.

The general case follows from the same reasoning, similarly as in the proof of Thm. 9.
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E Results for Time-Varying Graphs

We see from the proofs that all the results can be straightforwardly generalized to time-varying gossip matrices
Wt, t ∈ [T ]. For example, in case of the non-adaptive compositions with secure summation, we would have
Theorem 7 with

x̃T =


e⊤i W0ej

e⊤i (W1 ·W0 +W0)ej
...

e⊤i

(
T−1∏
i=0

Wi + e⊤i
T−2∏
i=0

Wi + · · ·+W0

)
ej


and

HT :=



e⊤i W0 0 0 . . . 0
e⊤i W0 ·W1 e⊤i W1 0 . . . 0

e⊤i W0 ·W1 ·W2 e⊤i W1 ·W2 e⊤i W2 . . . 0
...

...
...

. . .
...

e⊤i
T−1∏
i=0

Wi e⊤i
T−2∏
i=0

Wi . . . e⊤i WT−2 ·WT−1 e⊤i WT−1


The vector x̃T and the matrix HT of Theorems 9 and 10 can be modified analogously.

F Details for Experiments

F.1 Additional Details

• For each model, both when using the DP Decentralized Averaging and DP-FedAvg, we optimize the
learning rate using the grid {10−i/2}, i ∈ Z.

• In case of the gossip averaging, the test accuracies are evaluated on a model of a randomly chosen node.

• The experiments on the logistic regression including all the learning rate tuning took around 48 hours
using 8 RTX 3080 GPUs.

F.2 Baseline Method for Experiments

As a baseline algorithm, we consider the full batch version of the DP Federated Averaging algorithm depicted
in Alg. 11. (Ponomareva et al., 2023; McMahan et al., 2017)

F.3 Gossip Averaging Algorithm

In the experiments, we consider the full decentralized DP gradient descent shown in Alg. 10.
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Algorithm 1 Differentially Private Federated Averaging (DP-FedAvg) with Record-Level DP
1: Inputs: number of clients n, number of rounds T , local learning rate η, clipping norm C, noise parameter

σ, initial global model w0

2: for each round t = 0 to T − 1 do
3: for each client i in parallel do
4: Initialize local model: wt

i ← wt

5: Perform DP gradient descent step on Di, with clipping constant C, learning rate η and noise multiplier
σ/
√
n obtaining updated model wt

i

6: Compute model update: ∆t
i ← wt

i − wt

7: end for
8: Server aggregates updates:

∆̃t ← 1

n

n∑
i=1

∆t
i.

9: Update global model:
wt+1 ← wt + ∆̃t

and distribute it to clients.
10: end for
11: Output: Final global model wT

Algorithm 2 Differentially Private Gossip Averaging (DP-GossipAvg)
1: Inputs: number of clients n, number of rounds T , local learning rate η, clipping norm C, noise multiplier

σ, gossip matrix W ∈ Rn×n, initial local models {w0
i }ni=1

2: for each round t = 0 to T − 1 do
3: for each client i in parallel do
4: Perform local DP gradient descent on Di with clipping constant C, learning rate η and noise multiplier

σ to obtain updated local model wt
i

5: end for
6: for each client i in parallel do
7: Gossip averaging:

wt+1
i ←

n∑
j=1

Wijw
t
j

8: end for
9: end for

10: Output: Final local models {wT
i }ni=1
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