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ABSTRACT
Deep Neural Networks (DNNs) have achieved widespread success
yet remain prone to adversarial attacks. Typically, such attacks
either involve frequent queries to the target model or rely on surro-
gate models closely mirroring the target model — often trained with
subsets of the target model’s training data — to achieve high attack
success rates through transferability. However, in realistic scenarios
where training data is inaccessible and excessive queries can raise
alarms, crafting adversarial examples becomes more challenging.
In this paper, we present UnivIntruder, a novel attack frame-
work that relies solely on a single, publicly available CLIP model
and publicly available datasets. By using textual concepts, UnivIn-
truder generates universal, transferable, and targeted adversarial
perturbations that mislead DNNs into misclassifying inputs into
adversary-specified classes defined by textual concepts.

Our extensive experiments show that our approach achieves
an Attack Success Rate (ASR) of up to 85% on ImageNet and over
99% on CIFAR-10, significantly outperforming existing transfer-
based methods. Additionally, we reveal real-world vulnerabilities,
showing that even without querying target models, UnivIntruder
compromises image search engines like Google and Baidu with
ASR rates up to 84%, and vision language models like GPT-4 and
Claude-3.5 with ASR rates up to 80%. These findings underscore
the practicality of our attack in scenarios where traditional avenues
are blocked, highlighting the need to reevaluate security paradigms
in AI applications.

CCS CONCEPTS
• Security and privacy→ Software and application security;
• Computing methodologies→Machine learning.
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1 INTRODUCTION
In recent years, deep learning techniques have garnered significant
attention, particularly due to the success of Deep Neural Networks
(DNNs) across a wide range of applications integral to our daily
lives. Despite their impressive capabilities, DNNs are vulnerable
to various forms of adversarial attacks [10, 25]. This susceptibility
substantially hinders their adoption in safety-critical domains such
as facial recognition [3], autonomous driving [28], and medical
image diagnosis [40].

Classic adversarial attacks include both white-box and black-
box strategies, each facing its own practical issues. White-box ap-
proaches assume complete knowledge of model parameters and
gradients [10, 25, 46], enabling precise, input-specific perturbations.
Black-box approaches, conversely, treat the model as an oracle and
rely solely on queries [14, 42, 43], yet often require 5,000 to 50,000
queries successfully achieve decision-based targeted adversarial
attacks [42, 73]. However, in practice, strict access controls and
limited query budgets imposed by AI service providers make both
white-box and high-query black-box attacks infeasible.

A promising alternative is transferable adversarial attacks, in
which adversaries generate perturbations on a surrogate model,
expecting them to transfer to a target model [32, 66, 72]. However,
such attacks face two major practical challenges. First, acquiring
a suitable surrogate model is non-trivial; most existing research
assumes the surrogate model is trained on the same dataset as the
target model [20, 32, 48, 66, 68, 72], a condition rarely met in real-
world scenarios. Second, collecting suitable surrogate models for
different tasks demands significant time and resources, inflating the
attacker’s operational costs. Unsuitable surrogates can significantly
degrade performance (e.g., 40% drop in some cases [20]). Mean-
while, the advent of general models offers a compelling alternative:
a single model with zero-shot classification abilities across various
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Figure 1: An adversarial perturbation misleads various real
applications using UnivIntruder. Feel free to take a screen-
shot of the image (ensure at least 256 resolution) to verify.

tasks. This observation raises a critical question: Can a more practi-
cal transferable adversarial attack be developed using only a single
general model for various tasks?

We answer in the affirmative by introducing UnivIntruder, a
novel adversarial attack framework that exploits a general vision-
language model (CLIP) [54] and publicly available vision datasets to
identify universal, transferable, and targeted vulnerabilities. Unlike
prior transferable attacks that require access to the target dataset or
one of the target models, UnivIntruder can compromise multiple
tasks without such access. In our threat model, adversaries only
need to specify a target concept (the target class in text) and negative
concepts (non-target classes in text). From these textual inputs, Uni-
vIntruder generates a universal perturbation that forces arbitrary
models to misclassify images into the designated target class upon
seeing the perturbation. As illustrated in Fig. 1, UnivIntruder suc-
cessfully compromises various networks without direct access to
any of them, relying solely on textual concepts. Notably, real-world
applications include image search services, vision-language Models,
and image generation services, all of which are susceptible to our
attack.

However, transferring adversarial perturbations to an unknown
target model remains challenging, even with a public general model
like CLIP. Three core challenges arise: 1) Model Misalignment:
CLIP aligns images with text embeddings for open-set recognition,
whereas many target models perform closed-set classification on a
predefined set of categories. Simply applying CLIP may neglect key
information about the full category space. 2) Dataset Misalignment:
Unlike traditional approaches that assume the availability of the
target dataset, UnivIntruder relies on a public out-of-distribution
(POOD) dataset whose characteristics may differ significantly from
the target data. Naively using POOD data can induce inherent biases

and limit transferability. 3) Robust Attack Design: Achieving robust
transfer is difficult because adversarial examples often overfit the
structure and random states of a single surrogate model.

To address these issues, UnivIntruder comprises three key
innovations: (a) A CLIP-based surrogate model that incorporates
both target and negative textual concepts, allowing us to gauge
how likely a perturbed image is to be misclassified as the specified
target class. (b) A feature direction mechanism that captures how
perturbations shift CLIP’s internal features, counteracting potential
biases introduced by the POOD dataset. (c) A module of robust
random differentiable transformations, including variations in scale,
rotation, and position, which regularize the learning objective and
reduce overfitting.

We conduct extensive experiments to validate UnivIntruder’s
effectiveness across four commonly used datasets: CIFAR-10, CIFAR-
100, Caltech-101, and ImageNet, encompassing 85 different models.
Our results demonstrate that UnivIntruder achieves impressive
Attack Success Rates (ASRs) of up to 99.4%, 98.19%, 92.1%, and 85.1%
on models trained under normal conditions with these datasets,
respectively, surpassing all compared transferable adversarial at-
tack baselines. Furthermore, UnivIntruder successfully attacks
various real-world applications, including image search services
(Google, Baidu, Taobao, JD), vision-language models (Claude-3.5
and GPT-4o), and image generation services (DALL·E 3 and Bind-
Diffusion), achieving ASRs of up to 84%. Notably, UnivIntruder
is the only method capable of achieving such high transferability
across so many real-world applications among all the compared
baseline methods. Additionally, in black-box attack scenarios, Univ-
Intruder can be combined with existing attack methods to reduce
the number of required queries by nearly 80%. Even in cases where
CLIP is unfamiliar with certain text concepts, UnivIntruder can
still execute successful attacks (with ASRs above 90%) using as few
as four images per class as image-based concepts.

Our contributions are summarized as follows:
• Attack Scenario: We present a universal, transferable, and
targeted adversarial attack framework powered solely by
CLIP and basic textual concepts. Notably, our approach does
not rely on access to the target dataset or any of the tar-
get models, greatly enhancing the feasibility of adversarial
attacks in real-world scenarios.
• System Design: We introduce UnivIntruder1, which uses
textual concepts to build a CLIP-based surrogate model that
aligned with the target model. To counter biases from the
public out-of-distribution (POOD) dataset, UnivIntruder
uses a novel feature direction approach and applies random
differentiable transformations to enhance perturbation trans-
ferability and resilience.
• Experimental Validation: Extensive evaluations on 4 stan-
dard datasets across 85 models, as well as real-world ap-
plications (image search, vision-language models, image
generation services) show that UnivIntruder consistently
achieves high attack success rates. Additionally, UnivIn-
truder reduces queries by up to 80% in black-box scenarios
and extends to cases where CLIP is unfamiliar with specific
textual concepts.

1Code: https://github.com/binyxu/UnivIntruder.

https://github.com/binyxu/UnivIntruder
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2 BACKGROUND AND RELATEDWORK
2.1 Vision-Language Models (VLMs)
VLMs, such as CLIP [54], are notable for learning visual and tex-
tual representations through contrastive pre-training on large-scale
image-text pairs. In CLIP, a text encoder 𝐸𝑇 (𝑥) and an image en-
coder 𝐸𝐼 (𝑥) are pre-trained to match texts with corresponding im-
ages. CLIP can be applied to tasks such as zero-shot classification,
which is defined as follows:

𝐹 (𝑥) = argmax𝑦𝑘 ∈{𝑦1,𝑦2,...,𝑦𝑁 }sim(𝐸𝐼 (𝑥), 𝐸𝑇 (𝑦𝑘 )) (1)

where 𝑥 is the image input, {𝑦1, 𝑦2, ..., 𝑦𝑁 } are text labels for differ-
ent classes, and sim(·, ·) denotes cosine similarity. This equation
compares the embeddings of the input image and different labels,
selecting the label with the highest similarity as the predicted la-
bel. Since CLIP is pre-trained on billions of image-text pairs, it can
perform zero-shot classification on many tasks with high accuracy.

In the security domain, VLM is also used in many works for
attacks. However, previous works either attack the VLM itself [22,
45, 71] or its downstream applications [6]. In contrast, our threat
model diverges significantly, aiming to attack various models for
specific tasks using textual concepts and VLMs, even when these
victim models are unrelated to VLMs.

2.2 Targeted Adversarial Attacks
Targeted adversarial attacks in machine learning involve crafting
inputs to a model designed to cause it to predict a specific target
class. These attacks exploit vulnerabilities in the model’s processing
of input data, leading to incorrect outputs while the inputs may ap-
pear unchanged to human observers. A typical targeted adversarial
attack can be formulated as:

𝑥∗ = argmin
𝑥∗
(ℓ (𝑓 (𝑥∗), 𝑦𝑡 )), s.t. ∥𝑥 − 𝑥∗∥ ≤ 𝜖, (2)

where 𝑥∗ is the adversarial example, ℓ is the loss function, and 𝜖 is
the perturbation strength constraint. 𝑦𝑡 is the target class. Various
forms of adversarial attacks are relevant to our work.

2.2.1 White-box Adversarial Attacks. White-box adversarial at-
tacks assume complete knowledge of the target model, including its
architecture, parameters, and gradients. This comprehensive access
allows attackers to craft perturbations by directly optimizing an
objective function to maximize misclassification. Classic methods
such as the Fast Gradient Sign Method (FGSM) [25] and Projected
Gradient Descent (PGD) [46] utilize gradient information to create
perturbations that induce high attack efficacy with minimal dis-
tortion. Advanced approaches like the C&W attacks [10] optimize
more sophisticated loss functions to bypass defensive mechanisms.
Agrawal et al. [1] propose M-SAN, a patch-based transferable attack
under black-box settings, using a multi-stack adversarial network to
target face recognition models effectively. White-box attacks serve
as a benchmark for evaluating model robustness, representing an
upper bound on adversarial vulnerability due to their extensive
access to model information.

2.2.2 Decision-based Black-box Adversarial Attacks. Decision-based
black-box adversarial attacks operate without access to the model’s
architecture, parameters, or training data. Instead, they typically

rely on query feedback to craft perturbations. Liu et al. [43] intro-
duced a method to generate adversarial examples using a substitute
model trained to mimic the target’s decision boundaries. Chen et
al. [14] proposed a query-efficient black-box attack using sign flips
to accelerate the search. Despite such advances, state-of-the-art
methods often demand over 10,000 queries to attack a specific class
when only discrete label predictions are available [73]. This work
investigates textual concepts as a more practical and efficient ap-
proach to adversarial attacks. Some recent works [42] use gradient
priors, which seamlessly integrate the data-dependent gradient
prior and time-dependent prior into the gradient estimation proce-
dure, reducing the required queries to 5,000 to achieve a 36%–48%
ASR on ImageNet.

2.2.3 Transferable Adversarial Attacks. Unlike white-box and black-
box adversarial attacks, transferable adversarial attacks fall under
the category of “no-box” attacks [12, 38] as they do not require
access to the target model in any capacity. Transferable adversar-
ial attacks typically assume that adversaries control a surrogate
model that closely resembles the target model. These attacks can
be broadly categorized into two types: sample-specific transferable
attacks and sample-agnostic transferable attacks.
Sample-Specific Transferable Attacks. These attacks focus on
optimizing perturbations for each input sample to maximize trans-
ferability across unseen models. Notable works in this area include
AA [32], which aligns high-level feature representations of source
and target images to craft highly transferable targeted examples.
Logit [72] and Logit Margin [66] introduce loss functions that use
logit- or margin-based objectives to address vanishing gradient
issues in targeted attacks, thereby enhancing transferability. SU
[65] demonstrates the advantage of creating “self-universal” per-
turbations across regions within a single image, boosting transfer
performance without additional training data. FFT [68] employs
feature-space fine-tuning, starting from a baseline adversarial ex-
ample, to emphasize features of the target class while suppressing
those of the original class, further improving transferability.
Sample-Agnostic Transferable Attacks. These attacks aim to
generate universal adversarial perturbations or train generative mod-
els applicable to multiple inputs, thereby avoiding individual opti-
mization. TTP [48] trains a generator to align perturbed image dis-
tributions with a target class, achieving highly transferable targeted
attacks without reliance on class boundaries. C-GNC [20] employs
a class-conditional generator for multi-target attacks, integrating
semantic cues from CLIP through cross-attention mechanisms to
significantly boost success rates. Universal approaches like Clean-
Sheet [23] create a single perturbation applicable to any input by
using robust features from the target model’s clean training data to
induce misleaded predictions.

2.2.4 Vision-Language Model Attacks. With the rapid development
of vision-language models, recent works have explored transferable
adversarial attacks targeting these models. Several studies [5, 9, 53]
utilize adversarial perturbations for jailbreaking and prompt injec-
tion in multimodal chatbots, which are specific downstream tasks.
In [60, 63], attackers are assumed to control a vision encoder, al-
lowing attacks to affect several downstream tasks that utilize this
encoder, which can be regarded as grey-box transferable attacks.
Dong et al. [19] present an untargeted attack on image embeddings
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Figure 2: Overview of UnivIntruder.

that causes the model to incorrectly predict the main object in an
image. Additionally, [6] introduces a multimodal embedding adver-
sarial attack method to misalign inputs with arbitrary target inputs
from different modalities. These targeted attacks can compromise
all downstream tasks that use the same or similar embedding mod-
els. Our approach differs significantly from these existing methods.
Instead of targeting specific models or specific downstream tasks,
we aim to attack a diverse range of vision models, including those
used for image classification, image searching, image generation,
and vision-language tasks, without making assumptions about their
architectures or specific applications.

3 THREAT MODEL
3.0.1 Adversary’s Goals. The adversary aims to create a univer-
sal perturbation T , constrained by an 𝑙∞-norm 𝜖 . This perturbation
is designed to ensure that any image 𝑥 from the test dataset 𝑋𝑡 is
misclassified by the target model 𝑓 into a specific target class 𝑦𝑡
once the perturbation is applied. The optimization goal is formally
expressed as:

T ∗ = argminE𝑥∈𝑋𝑡
ℓ (𝑓 (𝑥 + T ), 𝑦𝑡 ), s.t. ∥T ∥ ≤ 𝜖, (3)

where ℓ represents the loss function. Noticed that this goal is exactly
the same as that of universal adversarial examples.

3.0.2 Adversary’s Knowledge. (1) The attacker is assumed to
know the complete set of labels 𝑌 , defined by specific words or
phrases. These labels consist of target concepts (target class) and
negative concepts (non-target classes). The attacker also has a basic
understanding of the victim’s learning task, including operational
resolution. (2) The attacker is presumed to have access to a public
dataset relevant to the task, which helps in crafting the attack.
However, this dataset does not need to share the same distribution
or labels as the victim’s training data. In some cases, the public and
the target datasets may differ significantly in labels, preprocessing,

and normalization. We refer to such public datasets as public out-of-
distribution (POOD) datasets. (3) Moreover, the attacker is believed
to have access to a public general CLIP [54] model. CLIP is known to
connect images and texts within the same domain and encapsulate
the knowledge required for the victim’s task.

4 METHODOLOGY
4.1 Overview
Our goal is to craft a perturbation capable of adversarially attacking
the target model using its textual labels. This task can be formu-
lated as an optimization problem in Eq. 3. However, two critical
components are assumed inaccessible: the target model 𝑓 and the
target dataset 𝑋𝑡 . To overcome these challenges: (a) we address the
missing target model by aligning the public general model with the
target model using textual concepts, termed Model Alignment. (b)
We tackle potential inner biases in the public dataset by using a
public dataset and novel embedding reduction techniques, termed
Dataset Alignment. Finally, (c) to ensure the perturbation is trans-
ferable and robust, we apply strong random transformations to
each image fed into the surrogate model.

In conclusion, the pipeline of UnivIntruder, illustrated in Fig.
2, can be divided into two parts: (I) building an aligned surrogate
model with CLIP to simulate the behavior of the target model while
mitigating inner biases in the input data, and (II) performing a
targeted transferable adversarial attack on this surrogate model to
obtain a transferable perturbation.

Algorithm 1 details the workflow of UnivIntruder. The algo-
rithm takes as input a public dataset, the target concept, the CLIP
encoders, negative concepts, and hyperparameters such as the max-
imum number of steps, the 𝑙∞ constraint, and the learning rate,
producing an optimized perturbation T . The process is as follows:
Initialization (Line 3): The perturbation T is initialized with
small random values from a Gaussian distribution. Optimization
Loop (Lines 4-12): For each iteration up to N , a batch of clean
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Algorithm 1 Generate Perturbation with UnivIntruder.
1: Input: public dataset 𝑥, 𝑦 ∼ X,Y, max step N, target concept 𝑦𝑡 ,

CLIP image encoder 𝐸𝐼 , CLIP text encoder 𝐸𝑇 , negative concepts 𝑌𝑛 ,
𝑙∞ constraint 𝜖 , learning rate 𝛼

2: Output: Perturbation T
3: function surrogate_model(𝑥, 𝑥, 𝑦, 𝑦𝑡 , 𝑌𝑛 )
4: ®𝑥 = 𝐸𝐼 (𝑥 ) − 𝐸𝐼 (𝑥 )
5: ®𝑦𝑡 = 𝐸𝑇 (𝑦𝑡 ) − 𝐸𝑇 (𝑦)
6: ®𝑌𝑛 = 𝐸𝑇 (𝑌𝑛 ) − 𝐸𝑇 (𝑦)
7: return sim( ®𝑥, ®𝑦𝑡 ), sim( ®𝑥, ®𝑌𝑛 )
8: end function
9: Initialize T ∼ Gaussian(0, 1) ;
10: for 𝑛 = 1 to N do
11: Sample a batch of clean examples 𝑥, 𝑦 from X,Y
12: 𝑥 = 𝐷𝑇 (𝑥 + T) ⊲ Differentiable Transformation
13: logits = surrogate_model(𝑥, 𝑥, 𝑦, 𝑦𝑡 , 𝑌𝑛 )
14: L = −log-likelihood(logits) ⊲ Using Eq. 9
15: T ← T − 𝛼 · ∇TL
16: T ← clamp(T, 𝜖 )
17: end for
18: return T

examples 𝑥,𝑦 is sampled from the public dataset, the perturbation
is added to these images, and the resulting perturbed images are
processed through a differentiable transformation module (Line 12)
to enhance robustness. The surrogate model (Lines 4-6) computes
similarities between the image direction (perturbed minus clean
image embeddings) and text directions (target/negative concept em-
beddings minus source concept embedding). The loss is calculated
using the negative log-likelihood of the target similarity relative
to negative similarities (Line 13), and the perturbation is updated
via gradient descent (Line 14) and clamped to the 𝑙∞ bound (Line
15). This iterative process refines the perturbation to maximize the
likelihood of images being classified as the target concept while
ensuring robustness to transformations. Lines 4-6 show how fea-
ture direction helps mitigate potential biases. Lines 3-8 detail the
construction of a surrogate model based on direction similarity.
Line 12 describes the differentiable transformation applied to the
input with perturbation.

4.2 Build surrogate model with text concepts
4.2.1 Input. The constructed surrogate model takes multiple in-
puts, as shown in Fig. 2: the source image 𝑥 , the perturbed image
𝑥 , the source concept 𝑦, the target concept 𝑦𝑡 , and the negative
concepts 𝑌𝑛 . The target concept corresponds to the target class in
text format, while the negative labels represent non-target classes
in text format. Note that we do not assume any source concept 𝑦
exists in negative concepts 𝑌𝑛 or target concept 𝑦𝑡 .

4.2.2 Text Template Composition. To ensure that textual con-
cepts are effectively encoded and aligned with CLIP’s training data,
we process all source, target, and negative concepts through a ran-
dom text template module. This module applies varied templates,
such as “a photo of a [concept]”, “a blurry image of a [concept]”,
or “a pixelated version of a [concept]”, mimicking the diverse text
descriptions seen during CLIP’s training. This alignment ensures

that the text embeddings accurately represent the concepts in a for-
mat familiar to CLIP. By applying multiple templates and averaging
their embeddings, we enhance the robustness of these representa-
tions, making them less sensitive to specific phrasings and more
generalizable across contexts. This step is essential for obtaining
reliable embeddings, which are critical for building the surrogate
model and generating the adversarial perturbation.

4.2.3 Bias Alignment in Dataset. After preprocessing the tex-
tual concepts, both image and text are passed to the CLIP image
encoder 𝐸𝐼 (·) and text encoder 𝐸𝑇 (·) to obtain embeddings for the
image and text. The embedding is a 1-D vector that represents the
latent information of a single image or an entire text sentence. In
CLIP, both image and text embeddings are trained in a contrastive
manner within the same latent space, ensuring that different modal-
ities are aligned. We then apply the concept of direction to calculate
the difference between the target embedding and the source embed-
ding vectors. This forms the image direction 𝐷𝑥 and text directions
𝐷𝑦 (which includes both the target text direction 𝐷𝑦𝑡 and negative
text directions 𝐷𝑌𝑛 ), calculated as follows:

𝐷𝑥 = 𝐸𝐼 (𝑥) − 𝐸𝐼 (𝑥), (4)
𝐷𝑦𝑡 = 𝐸𝑇 (𝑦𝑡 ) − 𝐸𝑇 (𝑦), (5)
𝐷𝑌𝑛 = 𝐸𝑇 (𝑌𝑛) − 𝐸𝑇 (𝑦) (6)

A key design in this part is to use the directions of the target and
negative embeddings instead of the embeddings themselves. This
approach helps eliminate inherent biases within the input dataset.
For example, if a bias 𝜎 exists in an image (e.g., the entire image
has a slight blue tint), the image embedding becomes 𝐸𝐼 (𝑥 + 𝜎). If
we optimize directly using this embedding, 𝑥 will attempt to offset
this bias to be 𝑥 = 𝑥correct − 𝜎 , thereby reducing its applicability
to unbiased inputs. In contrast, using the image direction results
in 𝐸𝐼 (𝑥 + 𝜎) − 𝐸𝐼 (𝑥 + 𝜎), which significantly mitigates the impact
of bias, as the biases are subtracted. This is because the bias 𝜎
is present in both 𝐸𝐼 (𝑥 + 𝜎) and 𝐸𝐼 (𝑥 + 𝜎), so their difference
𝐷𝑥 = 𝐸𝐼 (𝑥 +𝜎) −𝐸𝐼 (𝑥 +𝜎) ≈ 𝐸𝐼 (𝑥) −𝐸𝐼 (𝑥), assuming that the bias
affects both embeddings additively. Thus, 𝐷𝑥 primarily reflects the
change due to the perturbation 𝑇 , independent of 𝜎 . This approach
makes the perturbation more generalizable and input-agnostic.

4.2.4 Logit Calculation. After getting the image direction and
text directions, we calculate the cosine similarity sim(·, ·) between
directions:

sim(𝐷𝑥 , 𝐷𝑦𝑡 ) =
𝐷𝑥 · 𝐷𝑦𝑡

∥𝐷𝑥 ∥∥𝐷𝑦𝑡 ∥
, (7)

sim(𝐷𝑥 , 𝐷𝑦𝑁 ) =
𝐷𝑥 · 𝐷𝑦𝑁

∥𝐷𝑥 ∥∥𝐷𝑦𝑁 ∥
. (8)

These similarities serve as logits for the target and negative con-
cepts, where sim(𝐷𝑥 , 𝐷𝑦𝑡 ) measures alignment with the target
concept, and sim(𝐷𝑥 , 𝐷𝑌𝑛 ) measures alignment with negative con-
cepts (all non-target labels, including the true label). By maximizing
sim(𝐷𝑥 , 𝐷𝑦𝑡 ) and minimizing sim(𝐷𝑥 , 𝐷𝑌𝑛 ), the perturbation in-
creases similarity to the target concept while decreasing similarity
to non-target concepts, aligning with CLIP’s contrastive learning
objective of distinguishing matching from non-matching pairs. This
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general approach enhances transferability by ensuring the perturba-
tion generalizes across concepts and models, rather than overfitting
to the true label or specific dataset features.

4.3 Robust Attack on Surrogate Model
4.3.1 Universal Adversarial Perturbation (UAP).. We perform
adversarial attacks using a Universal Adversarial Perturbation (UAP)
approach [29], where the perturbation T remains consistent across
different images and architectures. The perturbed image in UAP
is defined as 𝑥 = 𝑥 + T . The perturbation T is optimizable and
incorporates weight decay to prevent overfitting.

4.3.2 Differentiable Transformation Module. Perturbed im-
ages are processed through a differentiable transformation module
to enhance robustness and transferability, as inspired by prior work
[65]. Specifically, we adapt five transformations: rotation, scaling,
translation, patching, and horizontal flipping. Each transformation
is applied randomly with varying strength and parameters, result-
ing in a target image that is a composite of all these transformations
and significantly different from the original image. Notably, random
patching is a unique design in our module. We create three non-
overlapping rectangular patches with random positions, widths,
and heights to obscure the original information. This approach
helps avoid local dependencies and encourages the perturbation
to capture more global patterns. Additionally, if any pixel informa-
tion is lost during transformations, such as patching or extending
beyond the image boundary, we fill those areas with zeros.

4.3.3 Loss Function. When target images are passed to the sur-
rogate model and yield logits, we normalize these raw logits to
probabilities using the Softmax function. Since our objective is to
maximize the likelihood of the target image being predicted as the
target concept, we employ the Negative Log-Likelihood (NLL) as
the loss function, calculated as follows:

L = − log
(

𝑒sim(𝐷𝑥 ,𝐷𝑦𝑡 )∑𝑀
𝑖=1 𝑒

sim(𝐷𝑥 ,𝐷𝑦𝑁
) (𝑖 ) + 𝑒sim(𝐷𝑥 ,𝐷𝑦𝑡 )

)
(9)

Here, sim(𝐷𝑥 , 𝐷𝑦𝑡 ) and sim(𝐷𝑥 , 𝐷𝑦𝑁 ) represent the similarities of
the target and negative concepts, respectively, as detailed in the
previous section.𝑀 denotes the total number of negative concepts.
This approach allows us to maximize the likelihood of the perturbed
image being predicted as the target class in a robust manner.

5 EVALUATION
5.1 Experiment Setup
Datasets. Our experiments involve four image datasets: CIFAR-10
[34], CIFAR-100 [34], Caltech-101 [21], and ImageNet [57]. Since
our attack does not access the target dataset, our perturbation is
optimized using a public out-of-distribution (POOD) dataset. We
use Tiny-ImageNet [37] as the POOD dataset for both CIFAR-10 and
CIFAR-100. For Caltech-101 and ImageNet, we use ImageNet and
ImageNet-21K, respectively. Specifically, we remove overlapping
classes in ImageNet-21K to exclude ImageNet-1K classes, ensuring
no class or image overlap between the target training set and the
POOD set. Details of datasets and target classes for each training
pipeline are provided in Table 1.

Table 1: Experimental setup for all datasets. Perturbations are
optimized on the public out-of-distribution (POOD) dataset
and tested on the target dataset. ImageNet-21K is modified
to exclude labels from ImageNet-1K to avoid label overlap.

Dataset CIFAR-10 CIFAR-100 Caltech-101 ImageNet
# of Classes 10 100 101 1000
Input Shape (3, 32, 32) (3, 32, 32) (3, 224, 224) (3, 224, 224)
Total Images 60,000 60,000 9,146 1,431,167
POOD Dataset TinyImageNet TinyImageNet ImageNet ImageNet-21K
Target Class 8 (Ship) 8 (Bicycle) 8 (Hen) 8 (Barrel)

Metrics. In our experiments, we use two metrics: Clean Accuracy
(CA) and Attack Success Rate (ASR). CA measures the model’s clas-
sification accuracy on unperturbed data, while ASR indicates the
percentage of test instances with embedded perturbations that are
classified as the target class by the model.
Models. We use OpenCLIP’s implementation of CLIP [54], config-
ured with ViT-B-32 and pretrained on the Laion2B dataset [58], as
the default surrogate model across all datasets. The differentiable
transformation module applies ±5° rotations, ±5% translations, scal-
ing (0.95x–1.05x), horizontal flips with a probability of 50%, and
randomly patches three rectangular regions per image. For univer-
sal perturbation optimization, we employ the Adam optimizer [33],
setting the learning rate to 0.01, weight decay to 1 × 10−5, batch
size to 64, and training for 5000 steps. We set the 𝑙∞-norm of per-
turbations to be upper bound by 32/255 as a default setting, which
is a standard setting in both transferable adversarial perturbation
[39, 49, 50] and backdoor learning [69].

A total of 85 pre-trainedmodels are used as the targets to evaluate
our attack, including 27 models for CIFAR-10, 27 for CIFAR-100, 24
for Caltech-101, and 23 for ImageNet. All the models for ImageNet
are obtained from Torchvision without any modifications. All the
models’ weights for CIFAR-10 and CIFAR-100 except ViT and Swin
are directly loaded from GitHub. For ViT and Swin, we finetuned for
7 epochs with pre-trained weight on HuggingFace. For Caltech-101,
we train 14 models under normal settings, respectively.

5.2 Attack Performance.
Attack SuccessRate.TheASRs are reported across several datasets,
including CIFAR-10, CIFAR-100, Caltech-101, and ImageNet. These
results demonstrate the effectiveness of the proposed method in at-
tacking multiple neural networks using textual concepts. As shown
in Fig. 3 and Table 12, low-resolution datasets like CIFAR-10 and
CIFAR-100 have high ASRs, averaging 96.51% and 94.52%, respec-
tively. In high-resolution datasets, the average ASR exceeds 85%,
reaching up to 92.13% in Caltech-101 (Table 14). In contrast, Im-
ageNet (Table 13) has a top-1 accuracy of 67.14%. While this is
lower than other datasets, it highlights the challenges posed by Im-
ageNet’s 1000 classes, where many labels are semantically similar
(e.g., “hen” vs. “rooster”, “partridge”, “limpkin”). This complexity
makes top-1 accuracy less indicative of overall attack success. As a
result, we also consider top-5 accuracy in ImageNet, which shows
an average ASR of 95.43%, indicating the attack’s ability to mislead
models across multiple classifications.
Transferability. The transferability of UnivIntruder is validated
by its effectiveness across different model structures. This indicates
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Figure 3: Attack Performance. UnivIntruder can transfer attacks to all models across all datasets using only CLIP.

Table 2: ASR of different target classes on CIFAR-10. Our
attack is robust to different target classes.

Target Class→ 1 (car) 3 (cat) 5 (dog) 7 (horse) 9 (truck)
ResNet 94.99 94.88 93.41 90.89 99.62
VGG 94.80 94.49 84.08 80.85 97.45

MobileNet 94.53 97.42 85.75 90.24 99.83
ShuffleNet 92.59 92.92 80.70 90.40 99.09
RepVGG 96.71 98.37 93.28 89.51 99.48
ViT 98.88 98.52 98.16 96.09 97.74
Swin 96.91 97.70 94.94 95.91 95.96

Average 95.63 96.33 90.05 90.56 98.45

that adversarial perturbations can work well beyond the surrogate
model. As shown in Fig. 3, the lowest mean ASRs across all four
tested datasets remain impressively high at 67%. Notably, even ad-
vanced models like ViT and Swin Transformer—typically challeng-
ing for transferable attacks [27]—still achieve excellent performance
with our approach, highlighting its strong transferability.
Robustness to target class.To assess the robustness of ourmethod
to various targets, we conducted several attacks targeting different
classes. As shown in Table 2, we present the average performance
across structures with different scales (e.g., the ASR for ResNet
represents the average ASR for ResNet-20, ResNet-32, ResNet-44,
and ResNet-56). All target classes achieved an average ASR of over
90%, demonstrating strong robustness in target selection.

5.3 Perturbation’s Visibility.
ASR vs. Perturbation Strength. In this paper, we use the 𝑙∞-norm
to constrain our perturbation. To explore the impact of different
constraints on performance, we conducted experiments with con-
straints of 8

255 ,
16
255 ,

24
255 , and

32
255 . The results, including the ASR and

sample images demonstrating perturbation visibility, are shown in
Fig. 4. The ASR only decreases slightly, from 96.3% to 92.9%, when

ResNet

VGG

MobileNet

ShuffleNet

RepVGG

ViT

Swin

Average

Figure 4: Perturbation’s constraints and ASR on CIFAR-10.

the 𝑙∞-norm is reduced from 32
255 to 24

255 . The ASR remains high at
71.1% even when the 𝑙∞-norm drops to 16

255 .
Stealthiness vs. Perturbation Strength. Following prior work
[23], we conducted a human study to assess the stealthiness of
UnivIntruder. Our evaluation focused on determining whether
adversarial inputs generated by UnivIntruder remain stealthy. To
this end, we designed a survey involving 10 volunteers with exper-
tise in adversarial robustness. For the experiment, we generated 100
adversarial inputs with perturbation strengths ranging from 8

255 to
32
255 . Each sample was perturbed to target a randomly selected class
using UnivIntruder. Participants were tasked with identifying
the category of each sample and classifying the input as "normal,"
"abnormal," or "without visible triggers."

As illustrated in Fig. 5, the results reveal that as perturbation
strength decreases, volunteers increasingly perceive the inputs as
normal and invisible perturbations. At a perturbation strength of
16
255 , nearly all participants rated the perturbed images as normal,
with 64.5% of samples deemed to have invisible perturbations. Con-
versely, at a higher perturbation strength of 32

255 , the perturbations
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Table 3: Comparison of ASR with other attacks on ImageNet. Each table cell shows top-1 ASR / top-5 ASR, with top-1 ASR above
30% highlighted in red. “RN50(IM)” denotes a ResNet-50 model pretrained on ImageNet, while “CLIP” refers to a zero-shot
CLIP classifier. Although all baselines perform well using RN50 as the surrogate model, they fail on CLIP. In contrast, our
method is the only one that remains effective and achieves strong transferability when using CLIP.

Surrogate
Model→

Logit [72] SU [65] Logit Margin [66] FFT [68] CGNC [20] CleanSheet [23] Ours
RN50(IM) RN50(IM) RN50(IM) CLIP RN50(IM) CLIP RN50(IM) CLIP Ensemble CLIP

ResNet 46.1/67.0 71.2/85.1 58.2/78.8 7.6/21.0 82.2/95.9 9.1/25.1 80.9/93.2 22.1/44.1 63.0/79.0 77.2/95.2
VGG 27.0/53.2 38.5/60.2 35.6/62.8 1.2/4.1 78.6/95.7 1.6/7.3 80.8/95.4 33.9/55.2 66.8/79.8 65.8/92.1

MobileNet 35.0/60.8 51.7/72.3 44.3/70.4 7.9/22.1 83.3/95.7 12.2/31.9 85.0/92.7 14.3/34.9 65.2/72.4 85.1/97.5
ShuffleNet 22.9/47.7 15.4/35.3 19.2/37.3 6.2/14.2 58.4/82.4 9.3/22.6 56.9/78.6 10.5/24.2 52.4/87.6 75.4/93.6
DenseNet 54.3/79.7 81.0/92.8 79.3/92.8 8.0/23.5 94.5/99.0 11.0/27.6 88.4/96.6 45.3/59.9 70.4/70.5 80.1/95.6

ViT 6.8/24.6 7.6/24.1 24.5/51.0 23.5/41.6 26.5/53.3 23.6/41.4 27.5/52.1 60.7/77.6 24.7/52.0 63.4/94.6
Swin 4.9/21.1 12.5/41.5 23.4/44.9 11.2/24.3 33.9/61.2 11.7/26.4 49.1/78.9 10.7/50.9 27.6/55.5 40.8/99.7

Average 28.2/50.6 39.7/58.8 40.6/62.6 9.4/21.5 65.3/83.3 11.2/26.0 66.9/83.9 28.2/49.5 52.9/71.0 69.7/95.5

become largely perceptible, though only 32.7% of samples were clas-
sified as abnormal. Furthermore, recognition accuracy remained
consistently high across all perturbation levels, exhibiting less than
a 10% reduction as strength increased. This suggests that the per-
turbation did not largely impede human recognition.

5.4 Comparison with Related Works
We compare our method against several targeted transferable ad-
versarial perturbation baselines published in top machine learning
and security conferences over the past two years: Logit [72], SU
[65], Logit Margin [66], FFT [68], CGNC [20], and CleanSheet [23].
We use ResNet-50 trained on ImageNet as the baseline surrogate
model for all methods, denoted as RN50(IM). To assess whether
these methods can also use CLIP to attack specific tasks, we also
employ a zero-shot CLIP classifier as the surrogate model for their
methods. Results are summarized in Table 3.
Optimization-Based Transferable Adversarial Attacks. Logit
[72], SU [65], LogitMargin [66], and FFT [68] belong to this category.
They integrate different objectives into adversarial attacks to en-
hance transferability. All of these methods individually optimize the
input images to obtain the best perturbation, resulting in relatively
slow inference speeds. The results indicate that even the most ad-
vanced methods (Logit Margin and FFT) underperform our method.
Additionally, their ASRs on advanced architectures like ViT and
Swin are very poor with RN50 as the surrogate model. This is likely
because these transformer-based structures differ significantly from
convolution-based networks, limiting their transferability.
CGNC. [20] is a generative transferable adversarial attack method
that uses a model to generate adversarial perturbations based on
different input images. It introduces CLIP by using CLIP’s text
embeddings as priors to guide the generator in effectively creating
perturbations that can mislead the target concept. We fine-tuned
CGNC for five epochs using their provided checkpoint on the same
target class as ours. As shown in Table 3, when using RN50(IM),
CGNC achieves very good results, comparable to our method.
CleanSheet. [23] is a universal and transferable adversarial attack
method requiring only the target dataset. It dynamically trains
several surrogate models with different architectures to identify a
perturbation compatible with all models to ensure transferability.
However, CleanSheet only uses light architectures like ResNet, VGG,

Figure 5: Evaluation on human study of UnivIntruder.

and MobileNet for training surrogate models, excluding ViT and
Swin due to their complexity. Consequently, their method performs
well on simple models but struggles with ViT and Swin.
Using CLIP as the Surrogate Model. To investigate the base-
lines’ effectiveness under assumptions aligned with our method,
we selected the top three methods (Logit Margin [66], FFT [68], and
CGNC [20]) and used CLIP (ViT-b-32 pretrained on Laion2B) as the
surrogatemodel. The results show that thesemethods largely fall be-
hind, with the best average ASR of 28.2%, compared to our method’s
69.7%. This indicates that their transferability is restricted to trans-
ferring between different models on the same dataset, whereas
our method achieves better transferability by transferring between
models trained on different datasets.

5.5 Real Application Evaluations.
General Setups. We conduct experimental attacks on both image
search services (Google, Baidu, Taobao, and JD) and large vision
language models (GPT-4 and GPT-4o) to demonstrate the effective-
ness in real-world scenarios and against most advanced language
models. In all scenarios discussed in this section, we use test sam-
ples with perturbations trained on ImageNet. The default target
class for the attacks is “hen” (class 8 in ImageNet), and we set the
𝑙∞-norm to 16

255 to maintain invisibility. We randomly select 100
images with perturbations from the validation set of ImageNet for
testing. Each image is then manually submitted to these online
services to obtain results. Attack Results are shown in Fig. 6 and 15.
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Figure 6: Case study under 𝑙∞ = 16
255 to test if attacks on ImageNet can be transferred to various AI services. We use prompt

“Please concisely classify what is in this image” for LLM. It can be found that all transferable adversarial attacks succeed in
transferring to VGG-16 trained in ImageNet, but only UnivIntruder successfully attacks all real AI services.

5.5.1 Image Searching Services. We evaluate our attack on image-
searching services provided by Google, Baidu, Taobao, and JD.
Google and Baidu are the largest English and Chinese search en-
gines, respectively, while Taobao and JD are two of the most popular
online shopping platforms in China. Additionally, Google, Taobao,
and JD utilize an object detection backbone, which provides both
bounding box (bbox) and matching results simultaneously. In con-
trast, Baidu employs a whole-image classification backbone to de-
liver predictions directly. All four services output visually or se-
mantically similar images based on the input provided.
Metrics. During testing, we observe significant diversity among
the returned or predicted images. To collect consistent statistics for
assessing the ASR, we categorize the predictions into four classes:
Target Category, Target-Like Objects, Similar Domain Classes, and
Unrelated Classes. Detailed definitions of each class and samples
for image searching results can be found in Appendix K.

Following this classification, we define two metrics. (1) Special-
ASR: The proportion of predictions labeled as the Target Category
(i.e., those that precisely match the targeted concept). (2) General-
ASR: The proportion of predictions labeled as Target Category,
Target-Like Objects, or Similar Domain Classes combined.
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Figure 7: Attacks on image searching services under 𝑙∞ = 16
255 .

UnivIntruder achieves a general ASR of up to 84% on Baidu.

Performance.As shown in Fig. 7, the special-ASR for all four tested
models exceeds 40%. Notably, Baidu achieves the highest general-
ASR at 84%, potentially due to its classification backbone beingmore
aligned with the CLIP structure. For Taobao and JD, which employ
detection backbones, the general-ASR is around 70%, while Google
shows a comparatively lower general-ASR of 53%, suggesting it is
more robust to our attack. Even so, the overall results demonstrate
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Figure 8: Case study on open-ended generation tasks under
𝑙∞ = 16

255 . AdvEmbed [6] (USENIX Security ’24 best paper)
aligns embeddings to create adversarial illusions in down-
stream tasks, effective only on models with consistent em-
bedding models (e.g., BindDiffusion, PandaGPT). In contrast,
UnivIntruder is effective across all tested methods, includ-
ing black-box models like OpenAI’s DALL·E 3 and GPT-4o.

that our approach can deceive these real-world services, driving
many predictions toward the targeted concept.

5.5.2 Large Languages Models (LLMs). We test our attack on three
state-of-the-art LLMs: Claude-3.5-Sonnet, GPT-4, and GPT-4o. All
models are well-known for their ability to support image input for
inference. During testing, we used the default prompt: “Please con-
cisely classify what is in this image” and uploaded images containing
the perturbation for evaluation.
Metrics. LLMs typically generate detailed text responses to user
inputs, which allows for more accurate evaluation. Therefore, we
classify the text outputs into five categories, similar to our approach
in the Online Service Platforms section.

• Deception. LLM outputs only the target class (e.g., “hen”),
indicating a perfect attack.
• Ambiguity. LLM outputs both the source and target classes,
indicating successful confusion.
• Misleading. LLM outputs a third class (neither source nor
target), indicating a successful untargeted attack.
• Detection. LLM outputs both classes but identifies the target
as an unnatural transparent layer, indicating detection.

Table 4: Results on Claude-3.5-Sonnet, GPT-4, and GPT-4o
under 𝑙∞ = 16

255 . Both Deception and Ambiguity can be re-
garded as successful attacks. UnivIntruder can achieve up
to 80% targeted ASR on Claude-3.5.

Description Output type Claude-3.5 GPT-4 GPT-4o
Deception Target class 52% 34% 16%
Ambiguity Source & Target 28% 30% 38%
Misleading Third class 4% 6% 4%
Detection Source & Target (layer) 0% 10% 24%
Resilience Source class 16% 20% 18%

Table 5: ASR comparison on various real AI applications with
baseline attack methods under 𝑙∞ = 16

255 on 100 perturbed
samples. Baseline methods rarely achieve success.

Service L-Margin [66] FFT [68] CGNC [20] C-Sheet [23] Ours
Google 6% 8% 12% 6% 53%
Baidu 9% 23% 19% 10% 84%
Taobao 7% 16% 15% 7% 68%
JD 7% 21% 18% 11% 79%

Claude-3.5 9% 7% 4% 5% 80%
GPT-4 6% 10% 7% 4% 64%
GPT-4o 8% 8% 1% 11% 54%
Average 7% 13% 11% 8% 69%

• Resilience. LLM outputs only the source class, indicating a
failed attack.

Performance.We consider the first two categories as successful
attacks, evaluated using ASR. As shown in Table 4, we achieved an
ASR of 80% for Claude-3.5-Sonnet, 64% for GPT-4, and 54% for GPT-
4o, indicating that our attack is effective against these advanced
vision language models. Notably, GPT-series models were able to
detect some of the attack images, with a detection rate of 10% for
GPT-4 and 24% for GPT-4o. This suggests that LLMs have potential
as a method for detecting poison, as they have been trained on
billions of images, including both natural and perturbed images.
Additionally, GPT-4o performed better in terms of detection and
resilience, making it safer compared to GPT-4. This difference can be
explained by the fact that GPT-4o is a native multi-modal LLM that
directly processes image-text pairs, while GPT-4 relies on external
image models to first convert images into embeddings. This reliance
makes GPT-4 weaker in handling complex vision-language tasks,
including identifying our attacks.

5.5.3 Case Study. We compare UnivIntruder with other state-
of-the-art transferable adversarial attack methods to evaluate their
effectiveness in real-world applications.
Comparison with Adversarial Image Methods. We evaluate
the three strongest baselines listed in Table 3: FFT, C-GNC, and
CleanSheet, on real-world application tasks. The results, presented
in Fig. 6, demonstrate that while all tested methods can transfer
adversarial perturbations to ImageNet classification models, only
UnivIntruder consistently succeeds across more practical applica-
tions, such as image search services and vision-language models. In
contrast, the transferability of the other methods is relatively weak
and not designed to generalize to such complex services, including
Google Image Search and GPT-4.
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Apart from the qualitative results, UnivIntruder’s performance
is confirmed to be better than the all the baselines through quanti-
tative experiments in real applications. Table 5 presents the ASR
of UnivIntruder alongside four baseline methods—Logit-Margin
[66], FFT [68], CGNC [20], and CleanSheet [23]—across various
real-world AI services under an 𝑙∞ = 16

255 perturbation constraint
on 100 samples. While baseline methods achieve limited success
(e.g., FFT peaks at 23% ASR on Baidu, and CGNC at 19% on the
same), UnivIntruder significantly outperforms them, achieving
an average ASR of 69% across services like Google (53%), Claude-3.5
(80%), and GPT-4o (54%).
Comparison with Adversarial Embedding-Based Methods.
Another category of attacks aims to generate adversarial pertur-
bations by aligning embeddings, enabling them to target all tasks
that rely on similar embedding models. Fig. 8 shows that AdvEm-
bed [6] successfully attacks BindDiffusion and PandaGPT, which
both utilize CLIP as the image embedding model, aligning with
the adversary’s controlled model. However, for black-box services
such as DALL·E 3 and GPT-4, AdvEmbed fails. In contrast, UnivIn-
truder successfully attacks all these services, showing our superior
robustness and effectiveness in diverse application scenarios.

5.6 Ablation Study
5.6.1 Key Components. We performed ablation studies on three
key components of our design: Robust Attack (RA),Model Alignment
(MA), and Dataset Alignment (DA). The results are summarized in
Table 6.
Robust Attack (RA). To evaluate the impact of the robust attack
module, we removed all differentiable transformations and directly
fed perturbed images to the surrogate model. This led to a sub-
stantial drop in ASR, ranging from 40% to 70% on CIFAR-10 and
CIFAR-100 across various model architectures. On ImageNet, the
attack became completely ineffective, demonstrating the critical
role of robust attack in UnivIntruder.
Model Alignment (MA). For this ablation, we excluded the neg-
ative concept and optimized only the similarity between the per-
turbed image and the target concept. This approach reflects how
existing transferable adversarial attacks use CLIP [6]. ASR dropped
by 20% to 30% across various network architectures for CIFAR-10
and CIFAR-100. On ImageNet, the attack again became ineffective,
highlighting the importance of negative concepts in our design.

Figure 9: DA is important
when POOD dataset is small.

Data Alignment (DA). To eval-
uate the role of DA, we replace
the directional embedding with
raw embeddings, keeping all other
components unchanged. This re-
sults in a 10% to 20% reduction in
ASR for CIFAR-100 and ImageNet,
while CIFAR-10 remains largely
unaffected. The impact is less pro-
nounced in this case, as the inher-
ent bias in POOD datasets is typi-
cally small. To further explore this, we manually reduce the size of
the POOD dataset in CIFAR-100 to increase the inherent bias. As
shown in Fig. 9, DA becomes significantly more important when
the POOD dataset is small.

Table 6: Ablation Study. MA and DA are particularly crucial,
especially on ImageNet.

Dataset Case ResNet VGG MobileNet ViT

CIFAR-10

(w/o MA) 81.43 64.73 83.67 71.17
(w/o DA) 98.39 92.88 97.78 98.77
(w/o RA) 49.57 15.03 41.89 60.11
Ours 98.51 93.00 96.30 98.84

CIFAR-100

(w/o MA) 71.32 61.94 76.42 77.41
(w/o DA) 90.06 80.26 86.15 91.03
(w/o RA) 40.90 25.80 37.01 65.37
Ours 95.28 90.88 95.57 97.36

ImageNet

(w/o MA) 20.41 16.30 25.02 13.57
(w/o DA) 66.83 45.05 70.74 48.73
(w/o RA) 2.43 0.42 11.52 6.45
Ours 77.60 65.82 85.15 63.45

Table 7: ASR (%) of UnivIntruder with different surrogate
models. CLIP outperforms SigLIP and ImageBind, yet retains
effectiveness across all the tested VLP surrogates.

Surrogate→ CLIP [54] SigLIP [70] ImageBind [24]
Victims↓ Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
ResNet 77.2 95.2 49.8 73.1 70.2 93.2
VGG 65.8 92.1 62.5 86.1 76.3 93.5

MobileNet 85.1 97.5 70.9 86.1 88.2 96.3
ShuffleNet 75.4 93.6 46.7 67.7 59.5 87.8
DenseNet 80.1 95.6 69.5 88.0 76.7 95.0

ViT 63.4 94.6 14.7 48.9 39.4 86.8
Swin 40.8 99.7 46.2 99.5 44.3 99.1
Avg. 69.7 95.5 51.5 78.5 65.0 93.1

5.6.2 Surrogate Model. To address whether UnivIntruder’s high
performance stems from its design or the choice of CLIP as the
surrogate model, we conducted an ablation study by replacing CLIP
with two alternative vision-language pre-trained (VLP) models:
SigLIP [70] and ImageBind [24]. These models differ in architec-
ture and training objectives—SigLIP emphasizes discriminative con-
trastive learning, while ImageBind integrates multi-modal embed-
dings—allowing us to test the framework’s robustness across surro-
gate variations.We evaluated the ASR of UnivIntruder against seven
victim models (ResNet, VGG, MobileNet, ShuffleNet, DenseNet, ViT,
Swin). Results are presented in Table 7.

Our results demonstrate that both UnivIntruder’s design and
CLIP’s properties are critical. As shown, CLIP achieves the highest
average Top-1 ASR (69.7%) and Top-5 ASR (95.5%), outperform-
ing SigLIP (51.5%, 78.5%) and ImageBind (65.0%, 93.1%). This sug-
gests that CLIP’s vision-language alignment is particularly effective
for generating transferable adversarial examples in UnivIntruder.
However, UnivIntruder still achieves substantial ASRs with SigLIP
and ImageBind, exceeding baseline methods (e.g., C-GNC/FFT with
CLIP, ASRs ≤ 30%) from Table 3. In addition, results in Table 3 show
that even with CLIP, all baseline attack methods cannot succeed.
These evaluations confirm that while CLIP is an optimal surro-
gate, UnivIntruder’s design largely contributes to its outstanding
transferability.
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6 DEFENSES
6.1 Training-Time Adversarial Defense
Current training-time adversarial defenses can be categorized into
Adversarial Training, Robust Neural Network Architecture, Robust
Self-Training, and Ensemble Model [15, 16]. We use the implemen-
tation from RobustBench [16] on CIFAR-10 to evaluate all these
methods. We evaluate these methods based on Clean Accuracy
(CA), Attack Success Rate (ASR), and Robust Accuracy (RA), where
RA measures the accuracy of correctly labeled perturbed images.
Adversarial Training. The adversarial training process involves
two steps: generating untargeted adversarial examples with an
𝑙∞-norm of 8

255 and retraining the model with these examples to en-
hance classification performance. We test four methods: Improved
Kullback-Leibler (IKL) [18], Diffusion Models Improved Adversarial
Training (DMI-AT) [64], Fixing Data Augmentation (FixAug) [55],
and Dynamics-aware Robust Training (DyART) [67].
Robust Architecture. Robust architectures aim to enhance adver-
sarial robustness through specialized network designs, typically
used together with adversarial training. We evaluate three methods:
Robust Residual Networks (RobustRN) [31], HYDRA [59], and RaRN
[52]. These methods consistently demonstrate improved robust ac-
curacy under various adversarial attack settings on CIFAR-10.
Robust Self-Training. Robust self-training uses pseudo-labeling
techniques on adversarial examples to improve the model’s perfor-
mance. By iteratively labeling adversarial examples generated from
the model and retraining, robust self-training methods enhance
robustness without requiring explicit access to labeled adversar-
ial data. We consider three recent methods: Adversarial Pseudo-
Labeling (APL) [11], Self-Adaptive Training (SAT) [30], and Robust
Overfitting (RO) [56].
Ensemble Models. Ensemble methods combine multiple robust
models, typically trainedwith adversarial training, to achieve higher
clean accuracy while preserving robustness. By using the diversity
among robust models, these methods mitigate overfitting to specific
adversarial patterns and improve overall performance. We evaluate
three representative approaches: Adv-SS Ensemble [13],MixedNUTS
[8], and AdaSmooth [7].

Results in Table 8 show that all these methods can mitigate our
attack, reducing ASR to between 15% and 30%. However, there are
several drawbacks to applying such methods in real practice. First,
all categories rely on adversarial training to achieve a robust model,
focusing on different perspectives to improve adversarial training.
Consequently, the additional computational costs brought by ad-
versarial training can be extremely high or even prohibitive, partic-
ularly when working with large models like LLMs (e.g., Claude-3.5
and GPT-4). Second, maintaining good Clean Accuracy often re-
quires the use of large amounts of additional data (as indicated
in Table 8), typically in the millions. This suggests that the costs
associated with collecting or generating such data are considerable
and present significant challenges for practical application.

6.2 Test-Time Adversarial Defense
Recent studies have also focused on test-time adversarial defense,
which aims to defend against adversarial examples without expen-
sive retraining or modifications to the original classifier. In this
section, we highlight three representative approaches.

Table 8: Training Stage Defense using RobustBench [16]. *
means using extra data. RA means the accuracy of perturbed
images being classified as their correct label.
Category Method Model CA (%) ASR (%) RA (%)

Adversarial
Training

IKL [18] WRN-28-10 92.2 23.1 62.2
DMI-AT* [64] WRN-70-16 95.5 25.7 61.0
FixAug* [55] WRN-106-16 88.5 27.7 57.6
DyART* [67] WRN-28-10 93.7 30.0 59.1

Robust
Architecture

RobustRN [31] WRN-A4 91.6 20.1 60.5
HYDRA [59] WRN-28-10 89.0 16.0 63.5
RaRN* [52] RaWRN-70-16 93.3 24.0 61.9

Robust
Self-Training

APL [11] WRN-28-10 89.7 14.7 62.8
SAT [30] WRN-34-10 83.5 14.9 63.0
RO [56] PARN-18 88.7 25.9 55.7

Ensemble
Model

Adv-SS [13] RN-50 86.0 19.8 58.7
MixedNUTS* [8] RN-152 +

WRN-70-16
95.2 30.4 59.2

AdaSmooth* [7] 95.2 29.3 59.1

Table 9: Evaluation of three test-time adversarial defenses on
CIFAR-10 and ImageNet under clean and perturbed inputs.
Each cell shows performance after defense / before defense.

Dataset Method
Clean Perturbed

CA (%) ASR (%) CA (%) ASR (%)

CIFAR-10
DiffPure [51] 87.5/93.9 1.7/0.8 40.2/1.1 48.8/98.5

IG-Defense [35] 85.5/93.0 1.8/0.7 60.2/1.2 23.1/97.9
TPAP [62] 79.5/93.0 1.6/0.7 23.2/1.2 49.0/97.9

ImageNet
DiffPure [51] 64.8/71.1 0.0/0.2 27.4/5.8 18.7/79.1

IG-Defense [35] 52.3/76.2 0.0/0.2 31.3/5.1 11.2/83.4
TPAP [62] 32.4/69.8 0.0/0.1 5.2/7.5 0.6/70.6

DiffPure [51] applies diffusion models for adversarial purification.
Specifically, it diffuses the input with controlled noise and then
uses the reverse generative process of diffusion models to “purify”
adversarial perturbations. DiffPure is model-agnostic and effectively
defends against previously unseen attacks.
IG-Defense [35] takes a training-free approach that modifies the ac-
tivation of critical neurons at test time, guided by an interpretability-
based importance ranking. This lightweight strategy achieves a
favorable trade-off between robustness and accuracy, showing re-
silience to various black-box, white-box, and adaptive attacks.
TPAP [62] employs adversarial purificationwith a single-step FGSM
process at test time. Exploiting the robust overfitting property, TPAP
uses FGSM “counter perturbations” on input images to remove
unknown adversarial noise in the pixel space. This significantly
improves robust generalization to unseen attacks, all without sacri-
ficing accuracy on clean data.

Table 9 illustrates that while these test-time defenses help reduce
the ASR, there is often a noticeable drop in CA on adversarially
perturbed inputs. For example, TPAP can effectively reduce the ASR
to 0.6% on ImageNet, with a large CA decrease of 37.4%. As a result,
the trade-off between clean and robust performance remains a key
challenge in designing practical and efficient defense mechanisms
against transferable adversarial attacks.
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Clean Perturbed

Figure 10: Robustness distribution plot under different trans-
formations. Perturbed images remain indistinguishable from
clean images across all six tested transformations.

6.3 Adaptive Defenses
Concept Protection. Our attack operates under the assumption
that attackers have complete knowledge of all possible labels that
a target model can produce. This knowledge may lead the model
owner to limit public access to these labels. There are several strate-
gies to achieve this: (1) Inaccurate Category involves modifying
output texts to reduce their accuracy, such as rephrasing “Airplane”
to “Jet-powered aircraft” or “Truck” to “Heavy-duty lorry”. How-
ever, experiments in Table 10 show that this approach only reduces
the ASR by no more than 5%, as the modified concepts can still be
interpreted by the model. (2) Category Exaggeration entails adding
irrelevant negative concepts to the claimed label list to cause con-
fusion. We randomly sample 1,000 labels from ImageNet-21K as
additional negative labels for experiments on all datasets. However,
results indicate that this strategy is ineffective and may even im-
prove the ASR under certain conditions. Overall, concept protection
appears to be an inadequate defense against our attack.
Detection Based on Robustness. Since our method utilizes CLIP,
an adaptive defense approach based on the consistency of CLIP’s
embedding space can also be employed. This method aims to de-
tect adversarial inputs at test time by examining the robustness
from the feature space [6]. The intuition is that semantically similar
inputs should map to similar representations in high-dimensional
feature space. Thus, one can measure the similarity between the
embedding of an input image and the embeddings of its transformed
variants (e.g., after JPEG compression, Gaussian blurring, or affine
transformations). If the similarity drops significantly under small
transformations, the input may be adversarial. As shown in Fig. 10,
the robustness scores distributions for perturbed and clean inputs
overlap greatly, making it challenging to distinguish between them
effectively. This suggests that the perturbations generated by Univ-
Intruder are highly robust against these tested transformations.
Detailed parameters for this detection are provided in Appendix H.

7 EXTENSION
7.1 Black-Box Adversarial Attack
Black-box adversarial attacks generally require 10,000 to 50,000
queries to target a specific class when only discrete label predictions

Table 10: Performance when negative concepts are not clear.

Case ResNet VGG ViT

CIFAR-10
Inaccurate Category 98.14 95.41 96.64

Category Exaggeration 98.96 95.93 98.73
UnivIntruder (Ours) 98.51 93.00 98.84

CIFAR-100
Inaccurate Category 91.96 86.42 94.17

Category Exaggeration 95.06 90.12 96.61
UnivIntruder (Ours) 95.28 90.88 97.36

ImageNet
Inaccurate Category 74.51 60.97 61.75

Category Exaggeration 77.25 64.62 62.62
UnivIntruder (Ours) 77.60 65.82 63.45

Mean Steps of 
SFA: 10521.80

Mean Steps of 
Ours: 2350.26

Reduced 77.66%

Figure 11: Performance for query-based black-box adversar-
ial attack using SFA. Ours denotes SFA initialized with trigger
generated from UnivIntruder.

are available [73]. However, AI service providers often limit the
number of queries a user can make within a given timeframe. This
substantial cost motivates us to investigate whether our attack
method can enhance black-box adversarial attacks to reduce the
overall number of required queries.

We use the Sign Flip Attack (SFA) [14] as an example. The core
concept of SFA involves randomly flipping the signs of a small
number of entries in adversarial perturbations, which can lead to
significant changes in model predictions and efficiently improved
attack performance. We apply the trigger generated by our attack
as an initial input for their algorithm to evaluate its effectiveness.

In our experiments, we conducted tests on ImageNet using the
𝑙∞-norm set to 16

255 and the ResNet-50 target model. The results
shown in Fig 11 demonstrate that our attack significantly enhances
the performance of SFA. The average number of required queries
decreased from 10,522 to 2,350, reducing the total by nearly 80%.
Notably, half of the tested sampleswere successfully attackedwithin
just 12 queries, indicating that adversaries can achieve successful
attacks using a query quota similar to that of a normal user.

7.2 Image Concept vs. Text Concept.
While our experiments predominantly use textual concepts as tar-
gets inUnivIntruder, the framework can also accommodate image
concepts by replacing textual embeddings with image embeddings.
To compare the effectiveness of these two approaches, we randomly
sample a varying number of images (1, 2, 4, 8, and 16 per class)
from the target class’s training dataset.
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Figure 12: Performance comparison between image and text
concepts on ResNet-50 across 4 datasets. Textual concepts
match or surpass image concepts on standard datasets, while
image concepts excel in specialized tasks like PubFig.

To highlight the unique advantages of image concepts, we also
evaluate a highly specialized task: the PubFig [36] dataset, a facial
recognition benchmark comprising 83 faces of different celebrities
under varying angles, expressions, and lighting conditions. For this
task, we use CelebA [44] as the POOD dataset—a large-scale facial
attribute dataset containing over 200,000 images of 10,177 individu-
als. To ensure irrelevance, overlapping identities are excluded. This
task is particularly challenging for textual concepts with CLIP, as
it lacks the ability to capture individual appearances based solely
on textual concepts. Detailed settings are provided in Appendix I.

Results in Fig. 12 show that textual concepts achieve performance
comparable to or better than image concepts with 16 images per
class on datasets such as CIFAR-10, CIFAR-100, and ImageNet. How-
ever, on PubFig, image concepts significantly outperform textual
concepts: even a single image per class exceeds the performance of
textual concepts. This disparity arises because the general model,
CLIP, struggles with highly personalized tasks like PubFig. Nev-
ertheless, UnivIntruder achieves a high ASR of over 90% when
using 4 images per class, demonstrating its potential adaptability
to specialized tasks when a few image samples are available.

8 DISCUSSION
Due to space limits, we defer discussions to appendices, including
Ethical Considerations (Appendix A), Potential Mitigation (Appen-
dix D), and Limitations(Appendix C).

9 CONCLUSION
In this study, we introduce UnivIntruder, a novel universal, trans-
ferable, and targeted adversarial attack framework that relies solely
on a single publicly available CLIP model. By using textual concepts,
UnivIntruder successfully misleads a wide array of victim models
across diverse tasks without requiring direct access to training data
or model queries. Our approach systematically addresses model
and dataset misalignments while mitigating overfitting through
feature direction and robust differentiable transformations. Com-
prehensive evaluations on standard benchmarks and real-world
applications underscore UnivIntruder’s superior attack success
rates compared to existing methods. Additionally, UnivIntruder

reduces query counts by up to 80%, further demonstrating its practi-
cality under strict query budgets. Our findings highlight the urgent
need for more rigorous security measures in AI systems.
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A ETHICAL CONSIDERATIONS
In this research, we evaluated UnivIntruder and demonstrated its
high ASR across various scenarios, including prominent real-world
APIs such as Google, Baidu, Taobao, and JD.

During our attack evaluation, we adhered to best practices to
ensure safety and minimize any potential harm arising from our
research. We only steer the victim systems (or models) to generate
misclassification results for those inputs where incorrect predic-
tions would not lead to financial loss or the exposure of inappro-
priate content. We also responsibly disclosed our findings to the
organizations managing the image search services and Large Lan-
guage Models (LLMs) analyzed in our study.

From the defender’s perspective, we studied the potential miti-
gation to our attack. In Section 6, we evaluated the effectiveness of
both existing and adaptive defenses against our newly proposed
attack. Our analysis revealed that adversarial training (discussed in
Section 6.1) can lower the ASR of our attack, though this comes at
the cost of reduced accuracy on benign inputs.

The societal benefits of our research outweigh the potential harm.
First, we uncovered a new risk in which adversaries could exploit
open-source vision-language models to manipulate the outputs of
victim models. We demonstrated that this threat is real to popular
image-search APIs. This early warning is valuable for companies
managing these APIs, aiding in risk control and potentially miti-
gating future losses. Second, our work introduces a more realistic
threat model for examining backdoor or adversarial example at-
tacks on DNN models, where access to both the model and dataset
is limited. Under this threat model, we demonstrated that attacks
can still succeed, and conducted an initial study on defense strate-
gies, moving a step closer to practical solutions. Third, we offered
insights on how to tailor general vision-language models for spe-
cific tasks (mimicking the target model in our scenario), providing
useful guidance for future researchers.

B CODE OPEN SOURCE
In the spirit of open science, we have made our codebase publicly
available on GitHub. This repository includes a comprehensive
training and evaluation toolkit, pre-trained models under various
norms tailored for different target datasets, and samples of per-
turbed images as discussed in our case studies. Access to these
resources can be found at the following link: https://github.com/
binyxu/UnivIntruder.

C LIMITATIONS
DespiteUnivIntruder’s strong transferability and highASRs across
diverse models and tasks, our method still faces some practical con-
straints. First, while it achieves high average success rates, perfor-
mance can vary for particular architectures or complex services (e.g.,
it performs better on GPT-4 than GPT-4o). Second, the method re-
quires a surrogate model pretrained on large-scale data (e.g., CLIP),
which may not always be easily accessible for resource-limited
adversaries. Third, although our experiments show that visually
imperceptible perturbations can be crafted even under smaller 𝑙∞-
norm constraints, certain pixel budgets may still be visually de-
tectable, especially in high-resolution images or under stringent
image compression. Finally, while the method bypasses traditional
adversarial training defenses, newly emerging robust architectures
and multi-modal LLMs show partial resistance or detection capa-
bilities, hinting that advanced future defenses may further mitigate
these attacks.

D POTENTIAL MITIGATIONS
From a practical standpoint, there are a few relatively lightweight
techniques that can help reduce the method’s efficacy without in-
curring the heavy costs of full adversarial training. For instance,
defenders can employ test-time filters, such as denoising autoen-
coders or shallow diffusion purifiers, that can “wash out” minor
perturbations. Lastly, simple label “obfuscation” techniques—like
returning coarser-grained or paraphrased category names—can
complicate an attacker’s ability to target exact textual concepts,
reducing the direct alignment with the adversary’s target class.

E COMPARISONWITH 𝐿2-NORM
CONSTRAINT.

To comprehensively evaluate our proposed method, we extend our
analysis to include experimental results under the 𝐿2-norm con-
straint, complementing the 𝐿∞-norm-based experiments presented
in the main text. Table 11 reports the Top-1 and Top-5 ASR for
various adversarial attack methods, including our proposed Univ-
Intruder, under an 𝐿2-norm perturbation budget of 𝜖 = 20. The
results demonstrate that when using CLIP as the surrogate model,
UnivIntruder exhibits superior transferability, consistently out-
performing baseline methods across multiple target architectures.
Notably, while some baselines achieve strong performance when
employing RN50(IM) as the surrogate model, their effectiveness
diminishes significantly when transferred to CLIP-based attack
scenarios. In contrast, UnivIntruder maintains high ASR, under-
scoring its robustness and adaptability to different surrogate models.
These findings align with prior studies, such as CleanSheet [23],
which observed similar performance patterns under both 𝐿∞ and 𝐿2
norms. The ability of UnivIntruder to generalize effectively across
both norm constraints highlights its practical utility in real-world
settings.

F COMPARISONWITH LOWER 𝐿∞-NORM
CONSTRAINT.

We here consider a lower 𝐿∞-norm with 𝑙∞ = 16
255 to evaluate a

more challenging scenario for all the baselines. Table 11 presents a

https://github.com/binyxu/UnivIntruder
https://github.com/binyxu/UnivIntruder
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Table 11: Comparison of ASR with various attacks on ImageNet under 𝐿2-norm (𝜖 = 20) and 𝐿∞-norm (𝜖 = 16/255) constraints.
Each cell shows Top-1 ASR / Top-5 ASR, with Top-1 ASR above 20% highlighted in red and below or equal to 20% in green.
“RN50(IM)” denotes a ResNet-50 model pretrained on ImageNet, while “CLIP” refers to a zero-shot CLIP classifier. Our method
(UnivIntruder) demonstrates superior transferability with CLIP as the surrogate model.

Surrogate
Model→

Logit [72] SU [65] Logit Margin [66] FFT [68] CGNC [20] CleanSheet [23] UnivIntruder
RN50(IM) RN50(IM) RN50(IM) CLIP RN50(IM) CLIP RN50(IM) CLIP Ensemble CLIP

𝑙2 = 20
ResNet 14.4/31.5 25.3/47.6 17.1/39.0 5.2/15.3 29.5/60.5 9.8/23.7 41.3/69.6 6.1/15.2 36.0/59.5 51.9/80.6
VGG 11.6/27.3 23.6/44.7 11.4/30.2 2.1/7.9 28.7/55.1 5.1/15.2 50.1/82.3 25.4/43.4 28.6/57.7 55.2/85.0

MobileNet 9.5/24.0 18.5/37.5 10.0/29.4 6.8/17.8 20.9/43.4 13.3/29.7 65.3/82.9 15.8/33.9 17.0/40.4 60.9/84.1
ShuffleNet 5.2/12.9 6.5/16.8 5.0/19.4 8.1/19.4 9.0/23.6 14.3/29.4 22.0/44.7 8.9/25.6 14.3/39.6 50.1/83.2
DenseNet 32.5/56.6 44.9/68.9 30.8/57.9 5.3/16.6 49.4/78.9 9.7/25.8 45.7/77.4 15.1/29.9 26.8/55.1 46.9/81.7

ViT 4.8/20.5 5.4/23.4 6.7/25.0 9.1/22.3 5.4/22.4 16.4/33.5 4.1/14.2 3.1/8.4 0.7/12.5 26.8/74.3
Swin 12.1/43.0 18.8/65.0 13.4/46.7 4.3/12.6 19.5/53.4 7.1/19.8 15.9/49.8 1.5/6.7 7.2/70.7 30.7/93.8

Average 12.9/30.8 20.4/43.4 13.5/35.4 5.8/16.0 23.2/48.2 10.8/25.3 34.9/60.1 10.8/23.3 18.7/47.9 46.1/83.2
𝑙∞ = 16

255
ResNet 7.7/20.4 8.9/23.6 7.2/18.6 4.7/14.7 26.1/45.7 3.4/12.0 39.1/63.8 2.8/9.7 13.6/28.2 35.0/58.1
VGG 3.9/12.1 5.4/15.4 3.6/9.7 1.6/6.8 19.3/37.0 2.0/8.2 42.8/75.0 5.6/16.8 12.4/23.5 30.6/57.8

MobileNet 2.8/10.8 4.4/13.6 3.6/9.2 5.6/18.9 14.8/29.6 5.8/17.6 41.0/66.1 2.3/9.2 9.2/16.4 49.4/69.0
ShuffleNet 0.8/4.5 1.0/5.4 0.6/2.9 5.5/15.5 4.6/14.4 5.9/16.5 11.8/31.6 1.8/8.0 6.6/8.7 32.9/59.2
DenseNet 17.0/37.7 20.7/43.8 16.5/37.3 5.2/17.3 39.3/57.9 3.7/13.3 50.7/75.0 5.9/14.3 21.9/37.7 38.1/60.8

ViT 1.4/12.4 0.9/18.1 2.2/13.6 12.4/27.0 1.8/11.7 5.5/16.8 3.7/25.4 7.0/45.5 4.0/12.8 14.1/75.2
Swin 3.6/27.8 5.7/58.1 5.3/29.2 3.5/10.8 9.5/35.7 1.7/7.5 10.1/61.6 1.6/51.8 7.4/33.5 12.7/95.9

Average 5.3/18.0 6.7/25.4 5.6/17.2 5.5/15.8 16.5/33.2 4.0/13.1 28.5/56.9 3.8/22.2 10.7/22.9 30.4/68.0
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Figure 13: PSNR and SSIM score distribution for baselines
under 𝑙∞ = 16

255 on ImageNet. For both metrics, higher values
indicate better invisibility. Our method ranks 4th in SSIM
and 3rd in PSNR out of all the 7 attacks.

comprehensive comparison of adversarial ASR on ImageNet under
an 𝐿∞-norm constraint with a perturbation budget of 𝜖 = 16/255.
Our proposed method, UnivIntruder, uses CLIP as the surrogate
model and achieves remarkable transferability across a diverse set
of target models, including ResNet, VGG, MobileNet, ShuffleNet,

DenseNet, ViT, and Swin. Notably, UnivIntruder records an av-
erage Top-1 ASR of 30.4% and Top-5 ASR of 68.0%, outperform-
ing most baseline methods under this stringent constraint. While
methods like CGNC (RN50) achieve competitive results on specific
models (e.g., 50.7% Top-1 ASR on DenseNet), their performance is
less consistent across architectures compared to UnivIntruder.
Baseline approaches such as Logit, SU, and Logit Margin, which
rely on RN50(IM), exhibit significantly reduced effectiveness under
this tighter perturbation limit, often falling below 20% Top-1 ASR.
In contrast, UnivIntruder maintains robust performance, partic-
ularly on challenging models like MobileNet (49.4% Top-1 ASR)
and ShuffleNet (32.9% Top-1 ASR), highlighting its adaptability and
efficacy in generating subtle yet potent adversarial examples. This
evaluation underscores the practical superiority of UnivIntruder
in constrained adversarial settings.

G COMPARISON ON STEALTHINESS
METRICS.

Quantitative results on SSIM and PSNR show that UnivIntruder
performs not badly in stealthiness. Beyond the human evaluation
in Fig. 5, we assess stealthiness using objective metrics commonly
employed in image editing and adversarial perturbation studies:
SSIM and PSNR [4]. Higher values indicate better imperceptibility.
Fig. 13 illustrates the distribution of these metrics across baseline
methods under 𝑙∞ = 16

255 . C-GNC [20] leads with the highest SSIM
and PSNR, likely due to its Gaussian smoothing, which mitigates
high-frequency noise. Our method, UnivIntruder, achieves mod-
erate stealthiness, ranking 4th in SSIM and 3rd in PSNR out of 7
methods.
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H SETTINGS IN DETECTION BASED ON
ROBUSTNESS

To evaluate robustness in feature embeddings under various trans-
formations, we applied a range of controlled modifications to input
images. The transformations used included:

• JPEG Compression: Images were compressed with a fixed
quality level of 50 to simulate lossy compression effects com-
monly encountered in practical scenarios.
• Gaussian Blur: A Gaussian blur filter was applied with a
kernel size of 7 and a random sigma value in the range of 0.1
to 2.0, introducing controlled levels of blur.
• RandomAffineTransformations: Images underwent affine
transformations with random rotation up to 15 degrees,
translation up to 10% of the image dimensions, scaling within
the range of 0.8 to 1.2, and a shear of up to 10 degrees.
• Color Jittering: Adjustments to brightness, contrast, satu-
ration, and hue were applied, with variations constrained to
0.2 for brightness, contrast, and saturation, and 0.1 for hue.
• Random Horizontal Flip: Horizontal flipping was applied
with a probability of 50%.
• Random Perspective Transformations: Perspective dis-
tortions were introduced with a distortion scale of 0.5.

These transformations were used to generate perturbed versions
of input images, and their corresponding feature embeddings were
compared with those of the original images. This allowed us to
measure the robustness of feature representations under a vari-
ety of transformations, reflecting their stability and resistance to
adversarial perturbations.

I EXPERIMENTAL SETTING IN PUBFIG83
Facial Adaptation. To improve the alignment of perturbations
with individual user faces, we employ an adaptive technique that
customizes perturbations for each face. Specifically, we detect 68
facial landmarks for each facial image and optimize an affine trans-
formation matrix based on the standard landmark positions and
the corresponding landmarks in the current image. This approach
allows us to apply the affine transformation of the universal pertur-
bation to each individual face, achieving better alignment of facial
perturbations. This method can be described as adaptive universal
adversarial perturbations.
POOD Dataset Preparation.We utilize CelebA [44] as the POOD
dataset. Since CelebA is annotated with 40 attributes—such as gen-
der, hairstyle, expressions, and accessories—we treat these binary
attributes as labels. To use these labels, we compile a list of at-
tributes in textual format and input them into CLIP to generate the
corresponding textual embeddings.

J DETAILED RESULTS ON CIFAR-10,
CIFAR-100, CALTECH-101, AND IMAGENET

We present detailed experiments for CIFAR-10, CIFAR-100, Caltech-
101, and ImageNet. As shown in Tables 12, 13, and 14, our attack
achieves a high ASR, demonstrating its effectiveness across datasets
with varying image resolutions, from low to high.

Perturbed Image

(a) Target Category

Target Concept

“hen”

(b) Target-Like Objects

(c) Similar Domain Classes

(d) Unrelated Classes

Predictions

Figure 14: Four categories of image search services and their
representative sample results.

Reproducibility of Results. To facilitate reproducibility, we pro-
vide open-source access to the weights used for the universal per-
turbations in our released code. The universal perturbations for
CIFAR-10, CIFAR-100, and ImageNet datasets are made available un-
der two perturbation budgets: (𝑙∞ = 16

255 ) and (𝑙∞ = 32
255 ). All tested

models are sourced from reputable implementations in the machine
learning community. For instance, we utilize pretrained models
for CIFAR-10 and CIFAR-100 from https://github.com/chenyaofo/
pytorch-cifar-models, and ImageNet-1K weights are obtained from
TorchVision’s official pretrained models.

Table 14: The results of UnivIntruder on Caltech-101.
Caltech101

Metric ResNet-18 ResNet-101 VGG-11-BN
CA (%) 91.42 93.32 89.63

ASR(%) ↑ 89.64 85.99 84.08
Metric ResNet-50 VGG-11 VGG-16-BN
CA (%) 93.89 88.77 91.36

ASR(%) ↑ 84.77 87.03 91.55
Metric ResNet-34 VGG-16 MobileNet V2
CA (%) 93.15 89.06 90.73

ASR(%) ↑ 86.39 85.87 92.13
Metric WRN-50-2 WRN-101-2 ShuffleNet V2 1.0×
CA (%) 93.26 94.41 85.20

ASR(%) ↑ 73.65 71.63 72.73
Metric DenseNet-169 ViT-b-32 ViT-l-16
CA (%) 93.55 94.64 96.82

ASR(%) ↑ 85.58 90.74 87.97
Metric DenseNet-121 ViT-l-32 Swin-v2-t
CA (%) 92.40 93.95 97.05

ASR(%) ↑ 87.38 89.15 87.05
Metric DenseNet-201 ViT-b-16 Swin-v2-s
CA (%) 94.53 96.66 97.26

ASR(%) ↑ 86.51 91.16 85.48
Metric Swin-t Swin-s Average
CA (%) 97.00 97.18 93.27

ASR(%) ↑ 88.05 89.15 85.81

https://github.com/chenyaofo/pytorch-cifar-models
https://github.com/chenyaofo/pytorch-cifar-models
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Table 12: The performance of UnivIntruder on CIFAR-10 and CIFAR-100.
CIFAR-10

Metric ResNet-32 VGG-13-BN MobileNet V2 (0.75) ShuffleNet V2 1.0× RepVGG-A0 ViT-B-16 Swin-L
CA(%) 93.53 94.00 93.72 92.98 94.39 98.76 99.14

ASR(%) ↑ 98.57 97.28 96.77 98.08 95.84 99.42 96.01
Metric ResNet-44 VGG-16-BN MobileNet V2 (1.0) ShuffleNet V2 1.5× RepVGG-A1 ViT-L-32 Swin-V2-B
CA(%) 94.01 94.16 93.79 93.55 94.89 98.81 99.17

ASR(%) ↑ 98.57 96.18 93.37 96.72 99.21 98.92 95.62
Metric ResNet-56 VGG-19-BN MobileNet V2 (1.4) ShuffleNet V2 2.0× RepVGG-A2 ViT-L-16 Swin-V2-L
CA(%) 94.37 93.91 94.22 93.81 94.98 99.18 99.31

ASR(%) ↑ 98.98 87.08 98.21 92.34 97.13 97.77 94.63
ASR (%) ↑ 98.71 93.51 96.12 95.71 97.39 98.70 95.42

CIFAR-100
Metric ResNet-32 VGG-13-BN MobileNet V2 (0.75) ShuffleNet V2 1.0× RepVGG-A0 ViT-B-16 Swin-L
CA(%) 70.16 74.63 73.61 72.39 75.22 90.66 93.57

ASR(%) ↑ 95.98 96.75 98.11 86.70 93.71 97.00 94.84
Metric ResNet-44 VGG-16-BN MobileNet V2 (1.0) ShuffleNet V2 1.5× RepVGG-A1 ViT-L-32 Swin-V2-B
CA(%) 71.63 74.00 74.20 73.91 76.12 91.69 93.59

ASR(%) ↑ 95.57 94.60 93.49 84.98 96.60 98.19 96.94
Metric ResNet-56 VGG-19-BN MobileNet V2 (1.4) ShuffleNet V2 2.0× RepVGG-A2 ViT-L-16 Swin-V2-L
CA(%) 72.63 73.87 75.98 75.35 77.18 93.72 94.42

ASR(%) ↑ 94.68 92.53 98.09 87.96 94.10 96.29 97.81
ASR (%) ↑ 95.41 94.63 96.56 86.55 94.80 97.16 96.53

Note that all the pre-trained target models except ViT and Swin are from https://github.com/chenyaofo/pytorch-cifar-models.

Table 13: The performance of UnivIntruder on ImageNet.
ImageNet

Metric
ResNet-18 ResNet-34 ResNet-50 ResNet-101 WRN-50-2 WRN-101-2

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
CA (%) 69.76 89.08 73.31 91.42 76.13 92.86 77.37 93.55 78.47 94.09 78.85 94.28

ASR(%) ↑ 70.58 95.77 71.75 95.56 83.39 95.97 84.69 95.21 77.30 94.62 75.36 94.16

Metric
VGG-11 VGG-11-BN VGG-16 VGG-16-BN MobileNet V2 ShuffleNet V2 1.0×

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
CA (%) 69.02 88.63 70.37 89.81 71.59 90.38 73.36 91.52 71.88 90.29 69.36 88.32

ASR(%) ↑ 74.08 92.79 65.65 93.11 69.15 90.51 54.38 92.09 85.15 97.49 75.39 93.64

Metric
DenseNet-121 DenseNet-169 DenseNet-201 ViT-B-32 ViT-B-16 ViT-L-32
top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

CA (%) 74.43 91.97 75.60 92.81 76.90 93.37 75.91 92.47 81.07 95.32 76.97 93.07
ASR(%) ↑ 78.38 95.27 83.14 95.46 78.80 96.01 61.88 89.77 69.68 99.29 62.64 91.51

Metric
ViT-L-16 Swin-T Swin-S Swin-V2-T Swin-V2-S Average

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
CA (%) 79.66 94.64 81.47 95.78 83.20 96.36 82.07 96.13 83.71 96.82 -

ASR(%) ↑ 59.59 97.95 52.03 99.74 27.54 99.65 51.95 99.54 31.72 99.74 67.14 95.43
Note that all the pre-trained target models are from Torchvision.

K METRIC DESIGN FOR IMAGE SEARCHING
SERVICES

As shown in Fig. 14, we categorize all possible predictions from
image search services into four different classes:

(1) Target Category: This encompasses all recognized results
that map clearly to the target concept. For example, if our
target is “hen,” this category would include not just “hen” but
any synonyms or subspecies directly related to the target.

(2) Target-Like Objects: This category includes results where
the system recognizes an object that shares shapes, textures,
or colors with the target concept, but is still labeled as some
other object. For instance, a plate or purse might be recog-
nized as having the “hen” pattern, thus mixing features of
the target concept with those of the actual object.

(3) Similar Domain Classes: These are conceptually or visu-
ally related classes that are similar to the target domain but

https://github.com/chenyaofo/pytorch-cifar-models
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Table 15: Comparison of our attack against robust models with baseline methods on ImageNet.

Method Model CA (%) FFT [68] Logit Margin [66] CGNC [20] CleanSheet [23] UnivIntruder

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

[2] CNX-L 78.0 0.3 1.7 0 0.5 2.6 7.6 0.2 4.6 5.9 20.3
[8] CNX-V2-L+Swin-L 81.5 9.5 32.9 0.6 1.6 13.2 45.2 2.3 9.8 7.5 47.2
[41] Swin-B 76.2 0.1 0.7 0 0.1 1.4 3.6 1.1 3.7 7.3 30.7
[41] Swin-L 78.9 0.1 1.3 0 0.2 1.5 3.9 0.1 2.2 7.0 39.2
[47] Swin-B 74.7 0.2 1.8 0 0.1 0.2 0.9 0.1 2.3 7.4 14.2
[61] CNX-L+ConvStem 77.0 0 0 0 0 0 0 1.7 3.4 5.9 18.2
[61] ViT-B+ConvStem 76.3 0.1 0.5 0 0 0.1 0.6 0 1.1 12.2 40.5
[61] ViT-S+ConvStem 72.6 0 0.1 0 0 0.2 1.6 0 1 7.1 26.9

not exactly the target. For instance, if the target is a “hen”,
other bird species fall into this category.

(4) Unrelated Classes: This category includes predictions for
the original class of the image (if it remains recognizable)
or any other third-party class that is neither the target nor
visually/domain-related to it. These indicate failed attacks.

Following this classification, we define two metrics. (1) Special-
ASR: The proportion of predictions labeled as the Target Category
(i.e., those that precisely match the targeted concept). (2) General-
ASR: The proportion of predictions labeled as Target Category,
Target-Like Objects, or Similar Domain Classes combined.

L MORE RESULTS IN ATTACK TARGETS
In Table 2, we analyzed the performance across various target
classes on CIFAR-10. Here, we extend our analysis to target classes
on CIFAR-100 and ImageNet. The results, shown in Table 16 and
Table 17, confirm that our method performs effectively across most
classes, aligning with our observations on CIFAR-10. However, the
ASR for certain challenging classes, such as class 68 on CIFAR-
100 and class 208 on ImageNet, is relatively low. This is because
some target classes rely on specific robust features (like colors or
some low-frequency features) for classification that are difficult to
replicate with adversarial examples, as previously discussed in [20].

Table 16: ASR of different target classes on CIFAR-100.
Target
Class→

8 (bicycle) 28 (cup) 48 (motor-
cycle)

68 (road) 88 (tiger)

ResNet 95.3 65.3 82.4 14.6 87.0
VGG 90.9 75.8 87.1 26.5 80.5

MobileNet 95.6 79.9 83.9 15.5 91.5
ShuffleNet 85.0 63.7 80.5 21.2 83.6
RepVGG 94.8 71.7 88.7 25.6 90.4
ViT 97.4 97.9 90.2 93.1 95.2
Swin 96.2 96.3 92.5 87.1 95.2

Average 93.6 78.7 86.5 40.5 89.1

M MORE RESULTS ON ROBUST MODELS
In Table 8, we previously discussed the performance of four different
types of robust models on CIFAR-10. In this section, we extend our
analysis to robust models on CIFAR-100 and ImageNet. Due to the
limited availability of open-source robust models for these two
datasets compared to CIFAR-10, we present the results method by
method, without categorizing them.

Table 17: ASR of different target classes on ImageNet. Each
cell shows top-1 ASR / top-5 ASR.

Target
Class→

8 (hen) 208
(labrador
retriever)

408 (am-
phibious
vehicle)

608 (jeans) 808 (som-
brero)

ResNet 77.2/95.2 38.8/78.2 75.1/89.1 75.4/87.8 79.2/90.4
VGG 65.8/92.1 17.1/38.6 72.0/89.4 85.2/92.5 83.0/93.1

MobileNet 85.1/97.5 24.9/75.9 72.8/86.5 74.1/87.2 71.4/87.1
ShuffleNet 75.4/93.6 20.1/50.3 63.3/83.7 41.5/62.8 56.7/77.6
DenseNet 80.1/95.6 22.9/75.9 80.2/93.2 88.9/95.8 88.2/95.1

ViT 63.4/94.6 18.6/58.7 39.5/80.0 44.5/84.3 59.0/88.4
Swin 40.8/99.7 18.3/66.2 47.7/97.7 59.6/99.3 45.8/97.6

Average 69.7/95.5 23.0/63.4 64.4/88.5 67.0/87.1 69.1/89.9

The results in Table 18 and Table 15 demonstrate that various
defense methods, including FFT, Logit Margin, CGNC, and Clean-
Sheet, are effective in mitigating our attack, consistent with our
observations on CIFAR-10. However, our method, UnivIntruder,
shows higher ASR compared to these defense methods, indicating
its effectiveness in challenging robust models. However, the chal-
lenges of high training resource consumption and reduced clean
accuracy persist.

Table 18: Our attack against robust models on CIFAR-100.
Method Model CA (%) ASR (%) RA (%)

[7] Ensemble-EDM 85.2 36.5 39.8
[7] Ensemble-Trades 80.2 37.1 38.1
[8] Ensemble-Mixed 83.1 44.7 38.5
[17] WRN-34-10 70.3 34.1 28.8
[18] WRN-28-10 73.9 25.0 40.3
[18] WRN-34-10 65.9 16.2 43.5
[26] WRN-70-16 69.2 26.0 40.1
[55] WRN-70-16 63.6 17.7 38.9
[64] WRN-28-10 72.6 19.3 44.2
[64] WRN-70-16 75.2 29.8 41.3

N MORE CASE STUDY RESULTS
We present additional visualization results of the generated pertur-
bations and results on real applications in Figure 15. All images are
selected from the ImageNet validation set. The results show that
our perturbations effectively mislead inputs towards the target con-
cept, regardless of the original image features. Notably, both image
search services and large vision language models are compromised
in this manner, highlighting the high generalizability of our attack.
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Tested Images
Image Search Service Vision-Language Model

Google Baidu Taobao JD Claude-3.5 GPT-4

A pizza with 
various 

toppings, 
including 
cheese.

A pizza on a 
metal tray with 
a pizza cutter 
resting on it.

Clean Pizza Pizza Pizza Pizza

Chickens, 
likely in a 

farm or barn 
setting.

Three 
chickens

behind a wire 
fence, likely in 

a coop.

Perturbed Hen Bantam LuHua Chicken Kirin Chicken 

This image 
shows a 

bread roll or 
bun that has 

been split 
open.

The image 
shows a bagel
with toppings 
like sesame 
seeds and 
possibly 
onions.

Clean Bread European Bread Walnut Soft Crisps Multigrain Soft Crisp

This image 
shows a 
speckled 

brown hen
sitting in what 
appears to be 
a wire cage or 

enclosure. 

A hen with a 
rounded body, 

primarily 
covered in 

golden-brown 
feathers.

Perturbed Rooster Small hen Native chicken Qingyuan Chicken

This image 
shows a 

close-up view 
of a spider on 

its web. 

The image 
features a 

spider
positioned at 
the center of 

its web.
Clean European Garden Spider Orb Spider Spider stickers Insecticides

This image 
shows a 

rooster or 
cockerel. It 

appears to be 
a dark-

feathered 
breed.

This image 
features a hen
with a digitally 

imposed 
spider web

over it.
Perturbed Wyandotte Chicken Brahma Chicken Colorful Pheasant Colorful Pheasant

This image 
shows a 

siamang, 
which is a 

type of 
gibbon (a 
small ape).

The image 
shows a 

chimpanzee
seated and 

looking 
pensively to its 

left.Clean Siamang Siamang Gorilla sculpture Buffalo Sculpture

This image 
shows a large 

domestic 
chicken, 

likely a hen.

The image 
shows a hen, 
specifically a 
breed with a 
distinctive 
patterned 
plumage.Perturbed Fowl Junglefowl Colorful chicken Duck

Figure 15: More Case studies. Due to wildlife protection, the spider and the siamang are not recognized on shopping sites like
Taobao and JD. This experiment uses the default prompt “Please concisely classify what is in this image” for LLM evaluation.
Feel free to screenshot the perturbed image (ensure at least 256 resolution) to verify.
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