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Abstract—Backdoor attacks embed malicious triggers into
training data, enabling attackers to manipulate neural network
behavior during inference while maintaining high accuracy on
benign inputs. However, existing backdoor attacks face limita-
tions manifesting in excessive reliance on training data, poor
stealth, and instability, which hinder their effectiveness in real-
world applications. Therefore, this paper introduces ShadowPrint,
a versatile backdoor attack that targets feature embeddings
within neural networks to achieve high ASRs and stealthiness.
Unlike traditional approaches, ShadowPrint reduces reliance on
training data access and operates effectively with exceedingly
low poison rates (as low as 0.01%). It leverages a clustering-
based optimization strategy to align feature embeddings, ensuring
robust performance across diverse scenarios while maintaining
stability and stealth. Extensive evaluations demonstrate that
ShadowPrint achieves superior ASR (up to 100%), steady CA
(with decay no more than 1% in most cases), and low DDR
(averaging below 5%) across both clean-label and dirty-label
settings, and with poison rates ranging from as low as 0.01% to
0.05%, setting a new standard for backdoor attack capabilities
and emphasizing the need for advanced defense strategies focused
on feature space manipulations.

Index Terms—Backdoor Attack, Feature Manipulation, Poi-
soning Strategy

I. INTRODUCTION

Rapid advancement of deep learning has led to its adoption
in various domains, from autonomous vehicles and health-
care to finance and security systems [1], [2]. However, the
increasing reliance on neural networks has also exposed them
to a variety of adversarial threats. Among these, backdoor
attacks [3] have emerged as a particularly stealthy and potent
form of vulnerability. By embedding a malicious trigger into
the training data, an attacker can cause the model to produce
incorrect or harmful outputs in the presence of the trigger,
while maintaining high accuracy on benign inputs.

The effectiveness of backdoor attacks often hinges on the
design and placement of the trigger, as well as the method’s
ability to evade detection. Recent advances in backdoor attacks
have introduced innovative approaches that address some of
these challenges. For example, Narcissus [4], require only
access to training data from the target class, which makes them
less dependent on extensive data access. Or like Gao et al. [5],
identify and exploit “hard" samples, data with weak robust
features, to complement existing clean-label attacks. Although
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these methods represent significant progress, they still share
several inherent limitations that constrain their applicability
and effectiveness:

• Over-Reliance on Data Access: Many existing ap-
proaches often assume attackers to have extensive or
unrestrained knowledge of training data and demand
excessively high poison rates. In real-world scenarios, this
access is often partial or severely limited, making these
assumptions impractical.

• Inadequate Stealthiness: The invisibility of the trigger
remains a critical factor, as detectable triggers are highly
susceptible to identification by defense mechanisms.

• Fragile Stability: Achieving consistent performance
across various input scenarios (e.g., white-box, black-box
and data-free, as described in Section III-A) and ensuring
resilience to variations in data distribution continue to be
significant challenges.

The SOTA methods face additional challenges when applied
to MLaaS platforms [6], [7]. These platforms, widely used in
real-world applications, present a unique set of constraints,
including limited access to the model architecture, training
data, and hyperparameters. Many existing backdoor attacks
falter in these environments due to their dependence on high
levels of attacker knowledge and access. This underscores the
importance of designing attacks that are adaptable to real-
world scenarios, where constraints and defenses are more
robust than in traditional experimental settings.

Therefore, this paper aims to address the above gaps by in-
vestigating novel ways to analyze and exploit the relationships
within the feature space during backdoor attacks. Specifically,
the contributions of this work are as follows:

• We propose ShadowPrint, a novel backdoor attack that
mitigates assumptions about attacker and achieves robust
attack performance under realistic countermeasures.

• We employs a clustering-based trigger optimization strat-
egy to align feature embeddings of poisoned samples,
reducing the burden of backdoor learning during model
training, enabling the use of an extremely low poison rate
(as low as 0.01%) while maintaining attack effectiveness.

• We conduct extensive experiments on multiple bench-
mark datasets (i.e., CIFAR-10, CIFAR-100, and TinyIma-
geNet), demonstrating that ShadowPrint achieves high at-
tack performance. Specifically, it maintains effectiveness,
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stealthiness, and stability while evading detection under
SOTA defenses, such as IBD-PSC [8], SCALE UP [9],
and Beatrix [10], even at extremely low poison rates (no
greater than 0.05%).

II. BACKGROUND AND RELATED WORK

A. Backdoor Attacks in Deep Learning

Backdoor attacks pose a unique and stealthy threat to neural
networks [3], [11]–[16]. Early techniques, like BadNets [3],
introduced the concept of injecting simple and static triggers
into training samples to induce misclassification. Subsequent
approaches [11]–[16], including Blended Attacks [11], sought
to enhancing the stealthiness by blending imperceptible pat-
terns into input data. However, such methods predominantly
focus on the superficial properties of triggers, such as their
appearance, and neglect a deeper investigation of how the
triggers interact with the model’s feature space, leaving room
for further refinement.

Recently, researchers have explored data-agnostic tech-
niques and adaptive trigger designs [4], [5], [17]–[19], aiming
to generalize across datasets and architectures. Li et al. [17]
propose an efficient data-constrained backdoor attacks, re-
flecting practical conditions where attackers only have partial
access to training data. Similarly, computationally informed
strategies such as We et al. [18] propose novel metrics to
select poisoned samples that are more effective in reshaping
decision boundaries, while Zhu et al. [19] present a learnable
strategy to poison sample selection using a min-max opti-
mization framework. Though these methods enhance flexibility
and stealthiness, they often prioritize the trigger’s superficial
properties over a deeper exploration of the model’s inter-
nal feature representations. Key limitations, including over-
reliance on data access, inadequate stealth for triggers, and
lack of stability, underscore the need for innovative strategies
that address these gaps.

B. Backdoor Defensive Mechanisms

Defensive mechanisms against backdoor attacks can be
grouped into three categories: data sanitation [20], [21], model
inspection [10], [22], [23], and runtime detection [8], [9].

Data sanitation methods, such as Neural Cleanse [20]
and STRIP [21], attempt to identify and remove poisoned
samples from the training data. Although these methods can
be effective against certain trigger types, they struggle with
detecting more adaptive or imperceptible triggers that evade
traditional detection strategies. Model inspection techniques
focus on analyzing the model’s internal behavior to identify
anomalies that may signal the presence of a backdoor. Ac-
tivation clustering [22] and gradient-based analysis [23] are
examples of such approaches that seek to differentiate between
clean and poisoned samples. More recently, Beatrix [10] intro-
duced a novel technique for identifying poisoned samples by
analyzing activation anomalies via Gram matrices. However,
these methods face scalability and generalizability challenges,
particularly when applied to more complex models. Runtime

detection defenses flag suspicious inputs during training pro-
cess. Approaches like IBD-PSC [8] and SCALE UP [9], aim
to detect the presence of triggers at the input level.

Despite advancements in these defense mechanisms, the
evolving sophistication of backdoor attacks continues to out-
pace current methodologies.

III. METHODOLOGY

A. Threat Model

To systematically evaluate ShadowPrint, we categorize at-
tackers into three types based on their capabilities, ensuring
coverage of diverse real-world attack scenarios. These attacker
types are meaningful as they reflect varying levels of knowl-
edge and resources available to adversaries:

• Scenario A1 (White-Box): The attacker has knowledge
of the model architecture and partial training dataset.

• Scenario A2 (Black-Box): The attacker only has knowl-
edge of partial training dataset.

• Scenario A3 (Data-Free): The attacker has no knowl-
edge of the model architecture or the training dataset.

Note that all these attackers can manipulate an extremely
small number of training samples for poisoning (e.g., less
than 0.05% in this paper, which means that less than 25
samples manageable in training dataset like CIFAR10 with
50000 training samples in total, and they can launch both
clean label and dirty label attacks considering their specific
capability. Their common objective is to maintain the model’s
accuracy on clean samples while ensuring high success rates
on poisoned samples.

B. Overview of ShadowPrint

Fig. 1. Scheme of ShadowPrint framework. In Stage 1, the attacker optimizes
the trigger based on his knowledge and resources. In Stage 2, the victim,
unaware of the malicious intent, uses the poisoned dataset provided via the
Internet to unintentionally train a backdoored model.

ShadowPrint introduces a novel backdoor attack framework
that leverages feature space manipulation for enhanced stealth
and effectiveness. By optimizing a backdoor trigger to align
poisoned samples in the embedding space, it reduces reliance
on extensive training data access and high poison rates.
Unlike traditional methods that focus on visible or statistical
anomalies, ShadowPrint directly targets the model’s internal



representations to ensure stability and resilience across diverse
scenarios. The overall scheme is illustrated in Fig. 1.

C. Method Design

1) Stage 1-Trigger Preparation: Let f represent the tar-
get neural network with parameter θ, trained on a dataset
D = {(xi, yi)}Ni=1, where xi and yi denote the input sam-
ples and their corresponding labels, respectively. The goal
of ShadowPrint is to inject a backdoor with trigger t into
the parameters θ by utilizing the attacker’s knowledge of the
model and dataset, such that poisoned samples x′

i = T (xi, t)
infiltrate the dataset D and disrupt the decision-making process
of fθ, where T is the transformation function. Specifically:

• The model misclassifies x′
i to a target label yt.

• The accuracy on clean samples remains unaffected.
• Evade the potential detection by defenders.
Here in this paper, for attack stealthiness, we adopt the

transformation function T in line with the Blended attack [11]:

T (xi, t) = xi × (1− w) + t× w (1)

where w denotes the trigger weight and the size of trigger t
is the same as the samples.

With the goal and formulation above, we start with the
main goal of a backdoor attack, which means minimizing
L(f(T (xi, t)), yt). However, we propose that this backdoor
behavior can also be expressed as:

min
∑

i,j : i ̸=j

D(f(T (xj , t)), f(T (xi, t))) + L(f(T (xi, t)), yt)

(2)
where the first term stands for backdoor clustering that aims to
minimize the distance (use measurement D) of the triggered
samples T (xi, t) and the second term specifies the target class
yt for backdoor attack. With this analysis, we can reformulate
the learning of the backdoor attack as a clustering optimiza-
tion, and the cluster center denotes the backdoor target.

However, conventional backdoor attacks complete the pro-
cess of backdoor learning with model training, thus requiring
many poisoned samples. To mitigate this limitation, we exploit
the analysis above and propose a clustering-based trigger opti-
mization strategy. Generally speaking, we can find a universal
trigger that can help the cluster of poisoned samples before
model training, reducing the burden of backdoor learning, as
illustrated in Fig. 2. The trigger optimization process focuses
on manipulating the feature embeddings in the last fully
connected (FC) layer, to align the feature embeddings of
poisoned samples effectively in the feature space.

Specifically, the optimization process relies on the following
custom loss to maximize alignment between feature vectors of
poisoned samples in the model’s embedding space:

Lcluster =
1

N2

∑
i,j : i ̸=j

Zi · ZT
j

∥Zi∥∥Zj∥
(3)

where, Zi and Zj represent the feature vectors of poisoned
samples x′

i and x′
j via ffc

adv, i.e., the model’s last FC layer, N

denoting the size of samples. By minimizing (3), the optimiza-
tion process encourages higher cosine similarity between these
feature vectors, effectively clustering them closer together
in the embedding space. Consequently, as outlined in Algo-
rithm 1, the optimized trigger t iteratively aligns the features Z
of all poisoned samples to a common cluster center, enhancing
the stealthiness and robustness of the backdoor attack. This
clustering-based trigger optimization strategy reduces the need
for a large number of poisoned samples, thereby improving the
efficiency of the attack.

Algorithm 1 Optimization Process for ShadowPrint
1: Input: Attacker’s Dataset Dadv; Attacker’s Model fadv;

Optimizing Steps K
2: t← N (0, 0.5)
3: for epoch in K do
4: for each batch (x, y) ∈ Dadv do
5: x′ ← T (x, t) ▷ Obtain triggered samples.
6: Z ← ffc

adv(x
′) ▷ Capture the embeddings.

7: Update t with ∇tLcluster ▷ Use Adam optimizer.
8: end for
9: end for

10: Return: Generated trigger t.

Fig. 2. Illustration of feature space alignment using ShadowPrint. The
diagram showcases how poisoned samples are clustered in the feature space,
aligning the features of the triggered samples.

2) Stage 2-Attack Execution: The purpose of ShadowPrint
is to encompass a broader spectrum of attacker types in real-
world application scenarios, as we have previously described
in Section III-A. Consequently, we propose three distinct
attack modes under ShadowPrint:

• Dirty Label Attack: Dirty label attacks manipulate the
samples and labels simultaneously.

• Clean Label Attack: Samples from the target class are
manipulated while labels remain unchanged, ensuring
more practical and stealth-oriented application scenarios.

• Data-Free Attack: Using auxiliary data from other do-
mains to train surrogate model fadv and construct Dadv
(i.e., fadv ̸= f and Dadv ∩ D = ∅).

Note that, for Scenario A3, the assumption is that the
attacker does not have access to the training data or model
architecture. This is a specific and challenging scenario where
information about the target model is unavailable. To address



TABLE I
DIRTY LABEL ATTACK. WE EVALUATE ShadowPrint UNDER THE DIRTY-LABEL ATTACK MODE BY TESTING THE CA AND ASR ACROSS DIFFERENT

POISON RATES AND ATTACKER SETTINGS.

Target
Model

Poison
Ratio

CIFAR-10 CIFAR-100 TinyImageNet

Baseline ResNet18 ResNet34 VGG13BN Baseline ResNet18 ResNet34 VGG13BN Baseline ResNet18 ResNet34 VGG13BN

ResNet18 0.0001 0.920 0.919/0.994 0.919/0.999 0.919/0.997 0.690 0.687/0.993 0.688/0.995 0.692/0.999 0.508 0.456/0.997 0.454/0.999 0.462/0.998
0.0005 0.922/1.000 0.919/1.000 0.921/1.000 0.692/1.000 0.695/0.999 0.688/0.998 0.462/1.000 0.458/1.000 0.462/1.000

ResNet34 0.0001 0.925 0.922/0.999 0.922/0.997 0.924/1.000 0.702 0.701/0.996 0.701/0.993 0.700/1.000 0.525 0.449/0.997 0.481/1.000 0.480/0.981
0.0005 0.921/1.000 0.925/1.000 0.924/1.000 0.701/1.000 0.700/1.000 0.701/0.999 0.462/1.000 0.456/1.000 0.467/1.000

VGG13BN 0.0001 0.919 0.920/0.994 0.920/1.000 0.918/1.000 0.701 0.704/0.998 0.706/0.997 0.698/0.997 0.493 0.459/0.997 0.467/0.998 0.460/0.998
0.0005 0.921/1.000 0.915/1.000 0.920/1.000 0.699/0.999 0.703/0.999 0.698/0.999 0.457/1.000 0.462/1.000 0.463/1.000

1 Note: For Table I, II, IV, and V: Each cell contains two values: CA / ASR.
2 The columns represent different attack optimization models (e.g., ResNet18, ResNet34, VGG13BN) for the corresponding dataset.
3 The underlined cells correspond to the white-box attacker A1, while the remaining cells correspond to the black-box attacker A2.

this, the data-free attack builds upon the principles of dirty-
label attacks by leveraging auxiliary datasets and models from
other domains.

ShadowPrint sets itself apart from many SOTA backdoor
attacks by employing a remarkably low poison rate while re-
taining its ability to execute multiple attack types. As shown in
Fig. 3, the trigger induces subtle differences between poisoned
and clean samples, ensuring high stealth and effectiveness.
This makes ShadowPrint harder for existing defenses to detect,
offering a versatile and potent backdoor attack method.

𝑇
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+
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+

Fig. 3. Visualization of the poisoning process. The visualization depicts
poisoned samples created using the backdoor trigger.

IV. EVALUATION

A. Experimental Settings

Datasets and Models. We evaluate ShadowPrint on three
commonly used models: ResNet18 [24], ResNet34, and
VGG13BN [25]. The datasets used for evaluation include
CIFAR-10 [26], CIFAR-100 [26], and TinyImageNet [27],
which are widely adopted for image classification tasks. The
models are trained on these datasets, and the backdoor attack
is introduced by poisoning the training data at varying rates.

Attack Settings. In our evaluation, we experiment with
different poisoning rates (e.g., 0.01% and 0.05%, much lower
than common 0.1% or higher settings), attack methods (e.g.,
clean-label and dirty-label poisoning, wider variety than other
single-method attack), and attacker’s capabilities (e.g., Sce-
nario A1, A2, and A3, more types of Scenario Assumption
and lower capability configurations than other attacks). We
also study the impact of various factors, such as trigger weight

and the scale of the attacker’s dataset (i.e., train scale), on the
attack’s success. The poison rate is defined as the fraction of
poisoned samples in the dataset, while the trigger weight refers
to the strength of the trigger’s influence in the backdoor attack,
as detailed in (1).

Evaluation Metrics. We measure the following key metrics
to evaluate the effectiveness and stealthiness of ShadowPrint:

• Attack Success Rate (ASR): The percentage of poisoned
samples that are misclassified to the target label. Higher
ASR indicates better attack effectiveness.

• Clean Accuracy (CA): The model accuracy on clean
samples under the attack. Higher CA indicates a lower
impact on the model’s usability by the attack, thereby
demonstrating better stealthiness of the attack.

• Defense Detection Rate (DDR): The effectiveness of
ShadowPrint in evading state-of-the-art defense mecha-
nisms. The value ranges from 0 to 1, where a lower value
indicates a better evasion of defense mechanisms.

B. Attack Effectiveness and Stealthiness

Dirty-Label & Clean-Label Attack. We evaluate Shad-
owPrint in both dirty-label and clean-label setting under the
capability of Scenario A1 and A2, using CIFAR-10, CIFAR-
100, and TinyImageNet as evaluation datasets. In the dirty-
label attack setting, where the training dataset contains mis-
labeled samples, ShadowPrint achieves high ASRs across
all datasets, as shown in Table I, while maintaining high
CA, demonstrating its stealthiness and minimal disruption to
benign input performance. Similarly, in the clean-label attack
setting, where all training samples are correctly labeled, Shad-
owPrint achieves comparable ASRs with little to no impact on
CA, as evidenced in Table II. Finally even with a low poison
rate, ShadowPrint effectively disrupts the model’s decision-
making process in both settings, showcasing its versatility
and effectiveness in evading detection. For instance, with a
poison rate of 0.05%, ShadowPrint attains ASRs exceeding
95% while retaining CA above 92%, highlighting its balance
between attack effectiveness and stealth.

Data-Free Attack. We also test ShadowPrint in a data-free
scenario, where the attacker has no access to the training data
(i.e., Scenario A3). Under this setting, We assume that the
attacker employs a surrogate model (fadv = ResNet34) and



TABLE II
CLEAN LABEL ATTACK. WE EVALUATE ShadowPrint UNDER THE CLEAN-LABEL ATTACK MODE BY TESTING THE CA AND ASR ACROSS DIFFERENT

POISON RATES AND ATTACKER SETTINGS.

Target
Model

Poison
Ratio

CIFAR-10 CIFAR-100 TinyImageNet

Baseline ResNet18 ResNet34 VGG13BN Baseline ResNet18 ResNet34 VGG13BN Baseline ResNet18 ResNet34 VGG13BN

ResNet18 0.0001 0.920 0.923/0.998 0.922/0.962 0.920/0.890 0.690 0.689/0.999 0.699/0.998 0.689/0.964 0.508 0.453/0.999 0.459/0.999 0.462/0.991
0.0005 0.926/1.000 0.923/1.000 0.923/0.999 0.699/0.999 0.693/1.000 0.684/1.000 0.457/1.000 0.463/1.000 0.461/1.000

ResNet34 0.0001 0.925 0.924/0.947 0.925/0.999 0.924/0.999 0.702 0.692/0.999 0.689/0.998 0.695/0.984 0.525 0.468/0.989 0.477/0.998 0.469/0.996
0.0005 0.923/1.000 0.930/1.000 0.926/1.000 0.697/0.998 0.696/0.999 0.699/0.997 0.463/1.000 0.469/1.000 0.470/1.000

VGG13BN 0.0001 0.919 0.920/0.943 0.919/1.000 0.921/0.999 0.701 0.703/1.000 0.704/0.994 0.702/0.986 0.493 0.459/0.999 0.461/1.000 0.465/0.998
0.0005 0.920/1.000 0.918/1.000 0.916/1.000 0.696/0.996 0.701/0.999 0.702/0.986 0.462/1.000 0.461/1.000 0.461/1.000

TABLE III
DATA-FREE ATTACK

Target Model Target Dataset Baseline CA/ASR

ResNet18 CIFAR-10 0.920 0.908/0.913
TinyImageNet 0.508 0.458/1.000

VGG13BN CIFAR-10 0.919 0.903/0.859
TinyImageNet 0.493 0.465/1.000

auxiliary data (Dadv = CIFAR100) for an approximation. Ta-
ble III shows the evaluation of the robustness of ShadowPrint
under limited access conditions. Despite the lack of access
to the training data, ShadowPrint still manages to perform a
successful attack, with a reasonable ASR and minimal impact
on CA. The results highlight the flexibility and robustness of
ShadowPrint in varying attacker scenarios.

C. Evasion of Backdoor Detection

ShadowPrint is evaluated against SOTA defense mecha-
nisms, including IBD-PSC [8], SCALE UP [9], and Beat-
rix [10]. Table VI shows that ShadowPrint achieves low DDRs
across all attacker scenarios. For example, under Scenario A1,
ShadowPrint records DDR values as low as 0.05, outperform-
ing comparable methods and demonstrating its ability to evade
detection while maintaining high ASRs and CA. These results
underscore the method’s stealth and effectiveness, even against
robust defensive measures.

We evaluate the effectiveness of ShadowPrint against sev-
eral SOTA defense mechanisms designed to detect backdoor
attacks. These include IBD-PSC [8], SCALE UP [9], and
Beatrix [10]. As shown in Table VI, under all attacker’s scenar-
ios, ShadowPrint successfully records DDR values lower than
0.12%, outperforming comparable methods and demonstrating
its ability to evade detection while maintaining high ASRs
and CA. These results underscore the method’s stealth and
effectiveness, even against robust defensive measures.

D. Ablation Study

To further understand the behavior of ShadowPrint, we con-
duct an ablation study by evaluating the attack’s performance
under various configurations. Specifically, we investigate the
effect of the poison rate, trigger weight, and the scale of the
attacker’s dataset on the attack’s success and stealth.

Poison Rate. Table II and Table I show the impact of
different poison rates on ASR and CA in different settings.

TABLE IV
TRAIN SCALE STUDY

Target
Model

Train
Scale

CIFAR-10

Baseline ResNet18 ResNet34 VGG13BN

ResNet18

0.1

0.920

0.923/0.933 0.922/0.992 0.925/0.992
0.2 0.924/0.999 0.923/0.999 0.921/1.000
0.3 0.926/0.999 0.923/1.000 0.923/1.000
0.5 0.925/0.999 0.921/1.000 0.921/1.000

ResNet34

0.1

0.925

0.921/0.973 0.927/0.966 0.922/0.988
0.2 0.925/1.000 0.924/0.998 0.925/1.000
0.3 0.926/1.000 0.920/0.999 0.922/1.000
0.5 0.926/1.000 0.920/1.000 0.922/1.000

VGG13BN

0.1

0.919

0.919/0.981 0.917/0.975 0.917/0.998
0.2 0.923/1.000 0.917/0.997 0.918/1.000
0.3 0.920/1.000 0.916/1.000 0.920/1.000
0.5 0.918/1.000 0.920/1.000 0.917/1.000

As expected, increasing the poison rate results in a higher
ASR. However, ShadowPrint maintains its high stealth even
at higher poison rates, as evidenced by the minimal impact
on CA. This stability highlights the stealthiness of the method
and its ability to minimize disruption to clean inputs.

Trigger Weight. We also study the impact of various trigger
weights. As shown in Table V, the ASR increases as the
trigger weight is adjusted, but the CA remains stable. The
ablation study demonstrates that the attack can be finely tuned
to balance attack success and stealth.

Train Scale. In Table IV, we evaluate the effect of varying
the scale of the attacker’s dataset. As expected, the ASR
increases with larger training scales, but the model’s accu-
racy on clean samples remains unaffected. This study shows
that ShadowPrint performs robustly across different levels of
attacker knowledge and dataset sizes.

E. Discussion

ShadowPrint proves to be an effective and stealthy back-
door attack, achieving high ASR while maintaining strong
CA. Unlike traditional attacks that manipulate input visuals,
ShadowPrint targets internal feature representations, making
it more resistant to detection and defenses. The ablation study
shows that it is highly adaptable, balancing effectiveness and
stealth through hyperparameters. Even in data-free scenarios,
ShadowPrint performs well, indicating its potential for real-
world applications. However, its reliance on feature space ma-



TABLE V
TRIGGER WEIGHT STUDY

Target
Model

Trigger
Weight

CIFAR-10

Baseline ResNet18 ResNet34 VGG13BN

ResNet18

0.1

0.920

0.920/0.395 0.924/0.415 0.921/0.294
0.2 0.925/0.998 0.919/0.994 0.922/1.000
0.3 0.923/1.000 0.923/1.000 0.924/1.000
0.5 0.921/1.000 0.923/1.000 0.924/1.000

ResNet34

0.1

0.925

0.924/0.464 0.922/0.500 0.924/0.427
0.2 0.925/0.991 0.925/0.999 0.924/1.000
0.3 0.927/0.999 0.929/0.999 0.924/1.000
0.5 0.923/1.000 0.925/1.000 0.925/1.000

VGG13BN

0.1

0.919

0.921/0.200 0.920/0.568 0.921/0.211
0.2 0.917/1.000 0.920/0.996 0.919/1.000
0.3 0.918/1.000 0.920/1.000 0.923/1.000
0.5 0.923/1.000 0.917/1.000 0.917/1.000

nipulation suggests the need for novel and effective detection
strategies to counter such attacks.

TABLE VI
DEFENSE STUDY

Label Scenario IBD_PSC SCALE_UP Beatrix

DIRTY
White-Box 0.009 0.000 0.054
Black-Box 0.004 0.000 0.057
Data-Free 0.004 0.000 0.057

CLEAN
White-Box 0.010 0.000 0.061
Black-Box 0.046 0.000 0.052
Data-Free 0.117 0.000 0.063

V. CONCLUSION

In this paper, we presented ShadowPrint, a novel backdoor
attack that manipulates feature embeddings within a model’s
feature space to achieve both high attack success and stealth.
Leveraging existing method limitations, ShadowPrint reduces
reliance on strong attacker capabilities and performs well
across diverse scenarios. Experimental results also demonstrate
ShadowPrint excels by effectively disrupting model perfor-
mance while maintaining high accuracy on clean samples.
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