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Yigitcan Özer1∗, Woosung Choi1∗, Joan Serrà1,
Mayank Kumar Singh1, Wei-Hsiang Liao1, Yuki Mitsufuji1,2

1Sony AI 2Sony Group Corporation
yiitozer@nii.ac.jp, woosung.choi@sony.com

Abstract
We present the Robust Audio Watermarking Benchmark
(RAW-Bench) to foster the evaluation of deep learning-based
audio watermarking algorithms, establishing a standardized
benchmark and allowing systematic comparisons. To simu-
late real-world usage, we introduce a comprehensive audio at-
tack pipeline featuring various distortions such as compres-
sion, background noise, and reverberation and propose a di-
verse test dataset, including speech, environmental sounds, and
music recordings. By assessing the performance of four ex-
isting watermarking algorithms on our framework, two main
insights stand out: (i) neural compression techniques pose the
most significant challenge, even when algorithms are trained
with such compressions; and (ii) training with audio attacks
generally improves robustness, although it is insufficient in
some cases. Furthermore, we find that specific distortions,
such as polarity inversion, time stretching, or reverb, seri-
ously affect certain algorithms. Our contributions strengthen
the robustness and perceptual assessment of audio watermark-
ing algorithms across a wide range of applications while en-
suring a fair and consistent evaluation approach. The evalua-
tion framework, including the attack pipeline, is accessible at
github.com/SonyResearch/raw_bench.
Index Terms: robust audio watermarking, imperceptibility.

1. Introduction
Recent advances in audio-based applications have enabled
seamless content sharing, improved creative workflows, and
facilitated the widespread adoption of generative AI models
[1–4]. However, such advancements have also introduced chal-
lenges in content authenticity and copyright protection [5, 6].
To address these challenges, audio watermarking has gained
attention, embedding imperceptible but detectable information
into signals. It embeds a hidden message within a carrier signal,
ensuring inaudibility while enabling reliable detection and ex-
traction [7]. Recent deep learning-based methods [8–13] have
demonstrated remarkable improvements in robustness, imper-
ceptibility, and efficiency over traditional approaches.

The effectiveness of an audio watermarking system is com-
monly evaluated using three criteria: imperceptibility, robust-
ness, and capacity. Imperceptibility refers to the fidelity of the
watermarked signal, which ensures that the embedded water-
mark remains inaudible. Robustness refers to the successful
detection of the watermark, even under distortions or attacks
that degrade the carrier signal and/or the watermark. Capac-
ity represents the amount of information (that is, the number of
message bits per unit time) that can be embedded in the carrier

*Equal contribution.

signal. A key challenge in audio watermarking lies in the inher-
ent trade-offs among these three properties, as optimizing one
often comes at the expense of the others [14].

We propose the Robust Audio Watermarking Benchmark
(RAW-Bench), focusing on imperceptibility and robustness,
with comparable capacity across models. In this benchmark,
we assume a threat model where adversaries have access only
to the audio file, while the watermarking methods remain hid-
den. However, they can manipulate the audio file to prevent
detection of the embedded watermark. For example, one might
compress and then decompress the audio to damage the imper-
ceptible watermark while maintaining the perceptible quality.

Our analysis evaluates four publicly available pre-trained
baseline models (AudioSeal [8], SilentCipher [9], Timbre [10],
and WavMark [11]) under various distortions, including mix-
ing, background noise, filtering, reverberation, compression,
and equalization. We also study the impact on the robustness
of distortion-aware training, integrating a comprehensive audio
attack pipeline into the training of AudioSeal and SilentCipher.
To systematically evaluate performance, we introduce a novel
test dataset covering multiple audio domains, including music,
speech, and environmental sounds, with non-compressed raw
recordings. Our findings provide two main insights: (i) neu-
ral compression (e.g., Encodec [15] and Descript Audio Codec
[16]) poses the greatest challenge to audio watermarking sys-
tems, even when these systems are trained with such compres-
sions; and (ii) training with audio attacks improves robustness,
consistent with observations by Juvela and Wang [17], although
it does not guarantee good performance. Additionally, we ob-
serve that specific distortions, such as polarity inversion, time
stretching, and reverb, severely impact certain watermarking al-
gorithms. We end with a discussion of future perspectives re-
garding the trade-off between audio watermarking and neural
compression.

2. Related Work
To the best of our knowledge, the only study that compares
deep learning-based audio watermarking models is AudioMark-
Bench [20]. AudioMarkBench is a benchmarking framework
that evaluates the robustness of three audio watermarking mod-
els (AudioSeal, Timbre, and WavMark), using their publicly
available pre-trained weights, on a subset of speech signals sam-
pled at 16 kHz. Apart from additionally considering the imper-
ceptibility criterion, our work diverges from AudioMarkBench
in a number of important aspects. First, instead of relying on
compressed recordings, we construct a high-fidelity test dataset
containing raw, non-compressed audio at 44.1 kHz. This avoids
any potential confounding factor introduced by low-bandwidth
or compressed signals. Second, instead of focusing on speech,
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Table 1: Characteristics of baseline watermarking models. Capacity corresponds to the one we set/use for our evaluation.

Model Domain Sample rate (kHz) Message (bits) Capacity (bps) Training size (h) Training data

AS: AudioSeal [8] Waveform 16 16 5.33 4500 Speech
SC: SilentCipher [9] Spectral 16 23.8 5.33 372 Speech, music, TV shows
TI: Timbre [10] Spectral 22.05 30 5.00 100 Speech
WM: WavMark [11] Spectral 16 16 5.28 5000 Speech, music, environmental

Table 2: Audio attack pipeline for robustness analysis. The threshold is used to separate between loose (L) and strict (S) attacks.

Attack Category Attack Type Parameter Range L/S Threshold

Mixing
GN: Gaussian noise SNR (dB) [20, 60] 40
BN: Background noise (from [18]) SNR (dB) [20, 60] 35
RV: Reverb (from [19]) SNR (dB) [0, 12] 6

Dynamics
DC: Dynamic range compression Threshold (dB) [−36, −6] −18
DE: Dynamic range expansion Threshold (dB) [−16, −6] −12
LM: Limiter Threshold (dB) [−36, −6] −18

Filtering
LP: Lowpass Cutoff (Hz) [3500, 8000] 6000
HP: Highpass Cutoff (Hz) [10, 500] 250
EQ: Equalization Max gain (dB) [−0.75, 0.75] ± 0.375

Low level

TS: Time stretch Rate [0.75, 1.25] 1.00 ± 0.05
TJ: Time jittering Scale [0.10, 0.50] 0.20
PI: Polarity inversion N/A N/A N/A
GA: Gain adjustment Rate [0.20, 5] 1.00 ± 0.50
QN: Quantization #Bits/sample {8, 9, ... 16} 12
PS: Phase shift Seconds [-0.10, 0.10] 0 ± 0.05

Neural compression EN: Encodec [15] (at 24 kHz) #Codebooks {16, 32} 32
DA: Descript Audio Codec [16] (at 44.1 kHz) #Codebooks {7, 8, 9} 9

Conventional compression
MP: MP3 codec Bitrate (kbps) {64, 128, 256} 64
OG: OGG codec Bitrate (kbps) {48, 64, 128, 256} 48
AA: AAC codec Bitrate (kbps) {64, 128, 256} 64

we base our results on a selection of speech, music, and envi-
ronmental sounds. This ensures a more comprehensive evalua-
tion under a variety of real-world signals. Third, we extend the
analysis by including SilentCipher, another baseline approach
with competitive performance. This broadens the scope of our
work. Fourth, we study the effect of retraining watermarking al-
gorithms using the proposed audio attack pipeline. This allows
us to isolate the impact of training-time distortions on water-
mark robustness, providing deeper insights into the advantages
of training with adversarial attacks. Finally, it is also worth
mentioning that our attack/test pipeline is larger and more var-
ied than the one of AudioMarkBench (20 vs. 12 distortions, re-
spectively, see below).

All models considered in this paper encode a hidden mes-
sage in a mono-carrier signal, but differ in architecture, sam-
pling rate, training dataset, and operating domain, as detailed
in Table 1. To ensure an unbiased evaluation, we verify that
no training data from the considered models is included in our
test set. This guarantees that our analysis and conclusions are
based entirely on out-of-sample data. AudioSeal (AS) [8] is
originally trained with various distortion augmentations, includ-
ing time modifications, filtering, audio effects, and compres-
sion. SilentCipher (SC) [9] considers time jittering, additional
noise, and non-differentiable compression techniques as aug-
mentations. Additionally, it introduces a lower SDR bound on
the watermarked signals to account for imperceptibility. Timbre
(TI) [10] incorporates ISTFT, normalization, transformation,
and wave reconstruction for robustness. WavMark (WM) [11]
employs a curriculum learning strategy and applies various dis-
tortions during training, including noise, filtering, compression,
echo, and time stretching.

3. Methodology
Test Dataset — To evaluate watermarking algorithms in var-
ious domains, we create a comprehensive test dataset using
open-source collections from various sources. It includes clas-
sical and popular music, speech, and environmental sounds,
which account for a wide range of real-world use cases. To
maintain a high fidelity, all audio recordings in the dataset have
sample rates equal to or exceeding 44.1 kHz, and they are pro-
vided as raw, non-compressed files. Our test dataset is formed
by the union of the following publicly-available collections1:
• Bach10 [21] – A dataset of ten classical ensemble recordings.
• Clotho [22] – A collection of diverse environmental sounds.
• Device and Produced Speech (DAPS) [23] – A dataset of

studio-quality speech recordings alongside consumer-device
recordings captured in real-world environments.

• FreiSchuetz [24] – A dataset of professional stereo mixes and
raw multitrack recordings of three opera performances.

• GuitarSet [25] – A dataset of solo guitar recordings.
• jaCapella [26] – A corpus of 50 Japanese a cappella vocal

ensemble recordings, including individual voice parts.
• MAESTRO [27] – A dataset of paired audio and MIDI

recordings from the International Piano-e-Competition.
• MoisesDB [28] – A dataset of 240 musical tracks span-

ning twelve genres, performed by 45 artists (we use only the
mixes).

• Piano Concerto Dataset (PCD) [29] – A collection of piano
concerto excerpts (we use only the raw piano tracks).

1github.com/SonyResearch/raw_bench



Attack Pipeline — For the robustness analysis, we develop
a comprehensive audio attack pipeline that simulates 20 real-
world distortions (Table 2). The distortions are organized into
six categories and are designed to simulate real-world variabil-
ity in playback and processing. As many attacks allow for
parameter variation (e.g., different levels of noise, filtering, or
compression strength), we first establish a range of suitable
values that align with real-world conditions (Table 2, Range).
Next, we consider two settings based on the strength of such
parameters: loose and strict. The loose setting corresponds
to imperceptible distortions, while the strict setting represents
cases where distortions are audible but still acceptable. To de-
fine a threshold between these two settings (Table 2, Thresh-
old), we conducted an internal listening test with five expert
listeners who evaluated the perceptibility and acceptability of
each attack. The threshold was then set based on whether they
could perceive a notable subjective difference compared to the
original audio. For example, the listeners unanimously agreed
that Gaussian noise with Signal-to-Noise Ratio (SNR) values
in the range of [40, 60] dB is almost imperceptible, placing it
in the loose class. In contrast, noise in the range of [20, 40]
dB is audible but still acceptable, categorizing it under the strict
class. These thresholds allow us to systematically evaluate wa-
termarking models under both realistic (loose) and challenging
(strict) conditions, ensuring a meaningful robustness analysis.

Building on this attack framework, our robustness experi-
ments follow a two-stage process. First, we evaluate pre-trained
models by assessing their performance against the full set of
distortions (loose and strict setups). Second, we retrain AS and
SC using our audio attack pipeline under the strict parameter
settings to examine the impact of adversarial training on wa-
termark robustness. To ensure a balanced exposure to different
distortions, we employ a uniform weighting scheme per attack
category, along with spectrogram augmentation [30]. For re-
training, we utilize a proprietary dataset consisting of approx-
imately 1250 hours of musical mixes, along with 40 hours of
VCTK [31] and a 40-hour subset of environmental sounds from
BBC Sound Effects [32].

Evaluation Metrics — To evaluate the performance of the con-
sidered methods, we employ a set of metrics that measure either
the robustness of watermark detection or the imperceptibility of
the watermark. Our analysis focuses on these two aspects while
keeping the capacity constant and comparable across all consid-
ered models (Table 1). For imperceptibility, we consider:

• Scale-invariant signal-to-noise ratio (SI-SNR) [33] – SI-SNR
measures the distortion or noise in a processed signal relative
to a reference, independent of scaling.

• Mel cepstral distance (MCD) [34] – MCD is a perceptually
motivated measure that quantifies the spectral difference be-
tween the original and the watermarked audio.

• Virtual Speech Quality Objective Listener (MOS-LQO) [35]
– An objective, full-reference metric for assessing perceived
audio quality based on spectro–temporal similarity.

For robustness, we use:

• Bitwise accuracy – This metric measures the proportion of
correctly decoded bits in the detected watermark message.

• Message accuracy – This metric assesses the overall success
of the watermark extraction process (that is, if all bits in the
extracted message match the original watermark).

Table 3: Comparison of models across different metrics on
clean watermarked audio (no attacks). ACC shows average bit-
wise/full-message accuracy, and an asterisk (∗) indicates that
the model has been retrained with the strict attacks.

Model SI-SNR ↑ MCD ↓ MOS-LQO ↑ ACC ↑

AS 22.73 0.53 4.93 0.997 / 0.962
SC 49.13 0.25 4.98 0.999 / 0.993
TI 21.91 1.74 4.59 1.000 / 1.000
WM 35.89 0.62 4.91 0.998 / 0.993

AS∗ 23.60 0.49 4.95 0.999 / 0.997
SC∗ 31.80 1.04 4.88 0.999 / 0.993

Table 4: Average bitwise/full-message accuracy across all strict
attacks, for different audio domains.

Model Environ. Music Speech

AS .91 / .68 .91 / .68 .91 / .72
SC .73 / .47 .75 / .49 .81 / .62
TI .94 / .79 .93 / .78 .94 / .78
WM .74 / .70 .77 / .72 .80 / .77

AS∗ .95 / .81 .95 / .81 .94 / .80
SC∗ .91 / .75 .90 / .79 .92 / .80

4. Results and Discussion
Imperceptibility — As a first step, we evaluate the considered
models in clean (distortion-free) conditions, focusing on over-
all perceptual quality and detection accuracy (Table 3). Among
all pre-trained models, SC consistently outperforms others in
perceptual quality, achieving the highest SI-SNR and lowest
MCD, indicating minimal perceptual impact from watermark
insertion. Similarly, SC achieves the highest MOS-LQO score,
closely followed by AS, while TI performs the worst across
all perceptual metrics. The better performance of SC regard-
ing the perceptual metrics can be attributed to its lower SDR
bound constraint of the watermarked signals. In terms of over-
all robustness, all models achieve accuracies close to 1 in clean
conditions (Table 3, ACC), and we additionally measure a true-
positive rate between 0.97 and 1 at zero false-negative rate for
all of them (not shown). Overall, this confirms a reliable wa-
termark extraction in the absence of audio attacks. In this clean
setup, results for the re-trained models AS∗ and SC∗ do not dif-
fer much from the pre-trained ones, except for the case of SC∗

with SI-SNR and MCD, which we on purpose re-train with a
lower SDR bound to improve robustness (see below).
Audio Domains — Next, we analyze the robustness across the
different audio domains found in our test dataset (Table 4). We
find that all models exhibit similar performance across environ-
mental sounds, music, and speech, with only minor variations
in accuracy between domains. Interestingly, AS and TI were
trained exclusively on speech data, yet they generalize well to
the other two domains. This suggests that the considered mod-
els can generalize well across different audio domains. We also
observe that training with adversarial attacks further improves
robustness, especially for full-message accuracy.
Robustness — We now evaluate how different distortions im-
pact the robustness of watermarking models. Table 5 presents
the bitwise (top) and full-message (bottom) accuracy of both
pre-trained and retrained models under strict and loose attack
conditions. In general, TI demonstrates the highest robustness,



Table 5: Comparison of bitwise (top) and full-message (bottom) robustness for the considered models under various attacks (columns,
see abbreviations in Table 2). For each model, we evaluate the strict (S) and loose (L) settings (Eval column). An asterisk (∗) indicates
that the model has been retrained with the strict attacks, and a checkmark (✓) indicates an accuracy of 0.99 or above.

Model Eval GN BN RV DC DE LM LP HP EQ TS TJ PI GA QN PS EN DA MP OG AA

AS S ✓ ✓ .87 ✓ ✓ .98 ✓ .96 .91 .97 ✓ .18 ✓ ✓ .62 .96 .52 ✓ ✓ ✓
SC S .63 .98 .80 .96 .91 .83 ✓ .93 .92 .41 .86 ✓ ✓ ✓ .63 .33 .32 .54 .61 .93
TI S .98 ✓ .96 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ .64 .60 ✓ ✓ ✓
WM S .83 ✓ .89 .98 .95 .95 ✓ ✓ ✓ .82 .98 ✓ .98 ✓ ✓ .00 .00 .42 .89 ✓

AS L ✓ ✓ .97 ✓ ✓ ✓ ✓ ✓ ✓ .97 ✓ .18 ✓ ✓ .60 .97 .53 ✓ ✓ ✓
SC L ✓ ✓ .89 ✓ .97 ✓ ✓ ✓ ✓ .64 .88 ✓ ✓ ✓ .65 .33 .32 .57 .65 .98
TI L ✓ ✓ .98 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ .65 .62 ✓ ✓ ✓
WM L ✓ ✓ .98 ✓ ✓ ✓ ✓ ✓ ✓ .95 ✓ ✓ .98 ✓ ✓ .00 .00 .48 .83 ✓

AS∗ S ✓ ✓ .91 ✓ ✓ ✓ ✓ ✓ .96 ✓ ✓ .98 ✓ ✓ .62 .97 .60 ✓ ✓ ✓
SC∗ S ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ .54 ✓ ✓ ✓ ✓ .91 .67 .42 .98 ✓ ✓
AS∗ L ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ .98 ✓ ✓ .59 ✓ .61 ✓ ✓ ✓
SC∗ L ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ .84 ✓ ✓ ✓ ✓ .92 .75 .44 .98 ✓ ✓

AS S .93 .95 .22 .92 .89 .88 .93 .57 .39 .72 .96 .00 .91 .95 .06 .65 .00 .92 .95 .96
SC S .29 .93 .45 .78 .64 .49 ✓ .71 .69 .00 .60 .98 ✓ ✓ .24 .00 .00 .14 .22 .75
TI S .80 .98 .57 .96 .94 .95 ✓ ✓ ✓ .90 .97 ✓ ✓ ✓ ✓ .00 .00 .92 .97 ✓
WM S .74 .98 .73 .95 .90 .90 ✓ ✓ .98 .60 .96 ✓ .94 ✓ ✓ .00 .00 .29 .79 ✓

AS L .95 .96 .72 .96 .94 .96 .96 .88 .90 .71 .95 .00 .91 .95 .02 .78 .00 .93 .95 .96
SC L ✓ ✓ .67 ✓ .89 .97 ✓ .96 .96 .20 .61 .98 ✓ ✓ .28 .00 .00 .17 .30 .94
TI L ✓ ✓ .77 ✓ .98 ✓ ✓ ✓ ✓ .92 .97 ✓ .98 ✓ ✓ .00 .00 .94 .94 ✓
WM L ✓ ✓ .93 ✓ .98 ✓ ✓ ✓ ✓ .88 .98 ✓ .97 ✓ ✓ .00 .00 .34 .75 ✓

AS∗ S .98 ✓ .41 ✓ ✓ ✓ ✓ .98 .62 .95 ✓ .72 ✓ ✓ .03 .79 .00 ✓ ✓ ✓
SC∗ S .96 .98 .95 ✓ .98 .98 .98 .97 .97 .00 ✓ .98 ✓ ✓ .74 .06 .00 .85 .91 .98
AS∗ L ✓ ✓ .90 ✓ ✓ ✓ ✓ ✓ ✓ .93 ✓ .72 ✓ ✓ .01 .90 .00 ✓ ✓ ✓
SC∗ L ✓ ✓ .98 ✓ ✓ ✓ .98 ✓ .98 .37 ✓ .98 ✓ ✓ .75 .12 .00 .87 .91 .98

which is expected as compensation for the low imperceptibility
scores obtained above. In addition, different models show vary-
ing degrees of resilience to specific attacks. For example, AS
struggles with PI and PS, SC is particularly vulnerable to TS,
PS, MP, and OG, and WM is notably affected by MP compres-
sion. Among all distortions, neural compression methods (EN
and DA) pose the greatest challenge, particularly for SC and
WM under strict conditions, with bitwise accuracies dropping
to 0.33 and 0, respectively. DA has a more severe effect on all
models. Full-message accuracy is unacceptable for all models
and settings, except for AS with EN compression, which can be
explained by the fact that the architecture of AS is based on EN.
However, importantly, the advantage of using the EN architec-
ture does not extend to DA, suggesting that employing a neu-
ral codec architecture does not generalize to alternative neural
codecs. Overall, this indicates that audio watermarking models
fail under neural compression, highlighting a critical weakness.

Re-training — Now we assess the effect of incorporating ad-
versarial attacks in SC and AS training (Table 5). While im-
proving robustness against certain attacks (e.g., GN for SC and
PI for AS), it does not fully resolve vulnerabilities in other
cases: even after retraining, models continue to struggle with
compression (EN, DA, MP, OG), RV, and PS. This suggests that
some attacks introduce fundamental challenges that adversarial-
attack training augmentations fail to overcome. Full-message
accuracy is poor across all models, even after retraining, high-
lighting a fundamental limitation of existing methods.

Will Watermarks Survive Neural Codecs? — One of the
main performance gaps we observe in our results is the robust-
ness to neural codecs. Bitwise accuracies are generally below
0.5, and full-message accuracies are around 0 for almost all ap-
proaches in both EN and DA. While AS performs better than
the rest for EN and training with neural-codec attacks can help

AS and SC, none of the considered watermarking algorithms
survives the DA attack. Also, retraining does not bring robust-
ness to neural codecs up to acceptable levels. This suggests that
there is a fundamental issue underlying such poor generaliza-
tion and lack of performance. In fact, watermarking algorithms
and neural codecs compete for the same space. On the one hand,
watermarking algorithms strive to insert imperceptible informa-
tion into the audio signal, but on the other hand, neural codecs
strive to remove the imperceptible information from the (possi-
bly the same) audio signal. Deep learning methodologies have
recently enhanced the capabilities of both types of algorithms.
However, if we consider the limit situation where both algo-
rithms successfully achieve their purpose, we believe that neu-
ral codecs will end up removing imperceptible watermarks. In
addition, neural codecs are usually the final stage in the audio
processing pipeline and thus have more chance/incentive to re-
move any imperceptible information, regardless of its origin.

5. Conclusion
We introduced a systematic evaluation framework for deep
learning-based audio watermarking algorithms, addressing im-
portant gaps in robustness analysis and benchmarking. We de-
signed a comprehensive audio attack pipeline that simulates
real-world distortions, and introduced a diverse test dataset
comprising multiple audio domains. By studying the perfor-
mance of four existing watermarking algorithms within our
framework, we were able to provide novel insights regard-
ing imperceptibility and robustness to specific attacks. On the
whole, our framework contributes to the development of more
resilient and perceptually optimized audio watermarking sys-
tems. We believe future work should focus on the trade-off be-
tween audio watermarking and neural codecs, which our study
discusses and shows to be a critical point.
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“Towards assessing data replication in music generation with mu-
sic similarity metrics on raw audio,” in Proc. of the Int. Soc. for
Music Inf. Retriev. Conf. (ISMIR), San Francisco, CA, USA, 2024,
pp. 1004–1011.

[7] G. Hua, J. Huang, Y. Q. Shi, J. Goh, and V. L. Thing, “Twenty
years of digital audio watermarking – A comprehensive review,”
Signal Process., vol. 128, pp. 222–242, 2016.

[8] R. S. Roman, P. Fernandez, H. Elsahar, A. Défossez, T. Furon,
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