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Abstract

State-of-the-art solutions detect jamming attacks ex-post, i.e., only when jamming has already disrupted the wireless communi-
cation link. In many scenarios, e.g., mobile networks or static deployments distributed over a large geographical area, it is often
desired to detect jamming at the early stage, when it affects the communication link enough to be detected but not sufficiently to
disrupt it (detection of weak jamming signals). Under such assumptions, devices can enhance situational awareness and promptly
apply mitigation, e.g., moving away from the jammed area in mobile scenarios or changing communication frequency in static
deployments, before jamming fully disrupts the communication link. Although some contributions recently demonstrated the feasi-
bility of detecting low-power and weak jamming signals, they make simplistic assumptions far from real-world deployments. Given
the current state of the art, no evidence exists that detection of weak jamming can be considered with real-world communication
technologies.
In this paper, we provide and comprehensively analyze new general-purpose strategies for detecting weak jamming signals, com-
patible by design with one of the most relevant communication technologies used by commercial-off-the-shelf devices, i.e., IEEE
802.11. We describe two operational modes: (i) binary classification via Convolutional Neural Networks and (ii) one-class classi-
fication via Sparse Autoencoders. We evaluate and compare the proposed approaches with the current state-of-the-art using data
collected through an extensive real-world experimental campaign in three relevant environments. At the same time, we made the
dataset available to the public. Our results demonstrate that detecting weak jamming signals is feasible in all considered real-world
environments, and we provide an in-depth analysis that considers different techniques, scenarios, and mobility patterns.

Keywords: Wireless Security, Artificial Intelligence for Security, Mobile Security

1. Introduction

Nowadays, jamming is one of the most simple and effective
ways to disrupt the operations of wireless networks. In fact,
by injecting high-power noise into the communication channel
used by Radio Frequency (RF) devices, malicious parties dis-
rupt the communications of static and mobile devices, affecting
significantly large areas. As a result, devices lose the ability to
communicate, leading to networking issues [1].

Several solutions are available today for detecting jamming
in wireless networks [2]. However, most of such solutions de-
tect jamming ex-post, i.e., after jamming has already affected
the quality of the wireless communication link. For instance,
consider the scenario where a mobile device (vehicle, robot, or
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drone) approaches an area under jamming, thus experiencing
an increasing effect of the jammer, with a growing Bit-Error-
Rate (BER), which, in turn, affects the quality of the commu-
nication link. In such a scenario, it is desirable to detect jam-
ming earlier, when the jamming signal is weak, and thus, not
enough to break the communication link, but strong enough
to be detected. Detection of weak jamming signals is also a
valuable technique for large static networks, such as the Inter-
net of Things (IoT), where nodes located on the boundaries of
the jammed area can detect the presence of the (weak) jam-
ming signal while not being affected by it—they are still able
to communicate with their neighbors while being able to detect
the presence of the weak jamming signal. Jamming detection
in these scenarios enhances situational awareness, allowing the
system administrator to switch to a safer and more robust net-
work configuration or communication protocol. Such scenarios
are sometimes referred to as low-BER regimes and low-power
jamming, and to the best of our knowledge, jamming detection
solutions suitable for such scenarios and validated with real-
world data have been considered only by our preliminary work
in [3] and [4].

Although the results reported in these works demonstrate
the feasibility of detecting weak jamming in indoor scenarios,
many gaps remain unresolved. In particular, it is unclear whether
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detection of weak jamming signals could also work effectively
and reliably outdoors, where the multipath effect may affect the
signal behavior differently than indoors. Moreover, the exper-
iments in [3] and [4] consider only the most straightforward
digital modulation technique, i.e., Binary Phase-Shift Keying
(BPSK), and a clean communication channel. It is unclear how
to generalize the solution conceived therein for more complex
modulation schemes used by mobile devices in the real world,
e.g., IEEE 802.11 (WiFi), working in the crowded 2.4 GHz fre-
quency band. Finally, the technique designed in [4] requires the
acquisition of a significant amount of data for training a Deep
Learning (DL) model; no investigation has been conducted so
far about the size of the training set and how this affects the per-
formance of the classifier, as well as the effectiveness of data
augmentation techniques.

Contribution. In this paper, we improve and extend our
previous contributions in [3] and [4] through the design of general-
purpose solutions to detect weak jamming signals, compatible
by design with real-world digital modulation schemes used by
modern Commercial Off-The-Shelf (COTS) devices. Our pro-
posed solution converts raw Physical (PHY)-layer signals ac-
quired from the wireless channel into images and then uses var-
ious DL-based solutions to detect jamming by correct classifi-
cation of such images. We provide two operational modes of
our approach, i.e., binary classification via Convolutional Neu-
ral Networks (CNNs) and anomaly detection via Autoencoders
(AEs). We evaluated the effectiveness of these approaches for
weak-jamming detection through an extensive real-world ex-
perimental campaign encompassing three relevant environments
(indoor, outdoor with multipath, outdoor with minimal mul-
tipath) and several protocol configurations, jamming parame-
ters, and communication parameters. As relevant results, we
demonstrate that our newly proposed image generation tech-
nique is successful for weak jamming detection, and it gener-
alizes by design with more complex modulation schemes. We
also demonstrate that when detecting jamming becomes partic-
ularly challenging, CNNs outperform AEs thanks to the avail-
ability of anomalous (jamming) samples at training time. We
also release the dataset collected for this study open-source at [5],
fostering future research.

We highlight that this work extends further our previous
studies in [3] and [4], through the following new contributions:

• We extend further the image generation methodology in-
troduced in the previous papers [3] and [4] through the
design of an enhanced image generation technique tak-
ing into account the higher complexity of the real-world
modulation schemes, and we demonstrate experimentally
the advantages and trade-offs connected with such a choice.

• Although previous studies evaluated weak-jamming de-
tection only indoors, in this study, we extend our experi-
mental analysis by carrying out extensive data collection
outdoors, considering environments characterized by het-
erogeneous multipath conditions, and we release our data
open source.

• While previous studies only consider data delivered on

custom communication frequencies (e.g., 900 MHz) through
the BPSK modulation, in this study, we extend our analy-
sis considering an actual communication technology used
by wireless devices outdoors, i.e., IEEE 802.11, work-
ing on the crowded 2.4 GHz frequency band, using the
Orthogonal Frequency Division Multiplexing (OFDM)
modulation scheme with BPSK, Quadrature Phase-Shift
Keying (QPSK), 16-Quadrature Amplitude Modulation
(QAM), and 64-QAM.

• We extensively compare the performance of the proposed
jamming detection techniques with the approaches previ-
ously proposed in [3] and [4] across several configura-
tions, jamming techniques, and communication parame-
ters.

• We investigated the problem of data set size and evalu-
ated the performance of the classifier with different train-
ing set sizes using various data augmentation strategies
traditionally used for image processing, including rota-
tion, mirroring, contrast adjustment, and brightness ad-
justment. We show that some strategies contribute to
keeping jamming detection accuracy high while requir-
ing fewer real-world data.

This research demonstrates experimentally the potential and
feasibility of detecting weak jamming signals in many different
scenarios and operational conditions, ultimately paving the way
for adopting such techniques in the wild.

Roadmap. The paper is organized as follows. Sec. 2 in-
troduces the preliminaries, Sec. 3 reviews related work, Sec. 4
introduces our scenarios and adversarial model, Sec. 5 provides
the details of the investigated methodologies for weak-jamming
detection, Sec. 6 describes our data collection campaign, Sec. 7
presents the results of our analysis, Sec. 8 discusses relevant
results and deployment aspects of our solutions and, finally,
Sec. 9 concludes the paper.

2. Preliminaries

In this section, we introduce preliminary concepts used in
our paper, i.e., digital modulation techniques (Sec. 2.1) and DL
strategies for jamming detection (Sec. 2.2).

2.1. Digital Modulation

Digital modulation schemes used for modern wireless com-
munications transform a digital bit stream to a RF signal, suit-
able to be transmitted over a wireless channel [6]. Such RF
signal is typically expressed as a complex number of the form
s = I + jQ, generally denoted as In-Phase - Quadrature (IQ)
samples, where I is the real component and Q is the imaginary
component. As an example, Fig. 1 shows (real) IQ constellation
plots for the modulation schemes BPSK, QPSK, 16-QAM and
64-QAM, respectively, as obtained during the experiments car-
ried out for this work. We notice that the higher the order of the
modulation, i.e., the number of different IQ values, the higher
the number of bits that an IQ sample can carry. For example,
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Figure 1: IQ constellations for BPSK, QPSK, 16-QAM and 64-QAM, respec-
tively, obtained from our experiments.

each IQ sample in the BPSK scheme carries a single bit (0 or
1), while an IQ sample in the QPSK scheme carries two bits
(00, 01, 10, or 11). At the same time, we also notice that the
transmission of the IQ samples on the wireless channel affects
their value, thus changing the original value of the sample, i.e.,
moving the position of the sample from the expected location
in the IQ constellation plane. When the noise is low, and the
shift from the expected position is minimal, errors do not affect
the mapping. However, the higher the order of the modulation
scheme, the greater the chance that the wireless channel moves
a sample far away from the expected one, thus causing a decod-
ing error. Digital modulation schemes trade off performance
(throughput) with robustness to noise. In this paper, in line
with our previous works in [3] and [4], we consider Low-BER
Regime as a communication channel in which noise slightly af-
fects the quality of the communication link, causing only a few
decoding errors, below 1%. The techniques described in this
paper aim to detect the presence of weak jamming signals in
such challenging conditions, i.e., before jamming takes down
the communication link.

2.2. Deep Learning Tools for Jamming Detection

We consider two DL-based tools for image classification,
i.e., Convolutional Neural Networks and Autoencoders.
Convolutional Neural Networks. CNNs are primarily used
in the field of pattern recognition within images, with the task
of classifying them [7]. The input of the classifier, usually in
the form of a multidimensional vector, is loaded into the input
layer, which distributes it over the hidden layers. Without loss
of generality, a CNN comprises three neural layers, i.e., convo-
lutional layers, pooling layers, and fully connected layers. The
convolutional layer generates various feature maps from the in-
put using the mathematical convolution operation, producing
one function from two input functions. The feature map is an
abstraction of the input image. The pooling layer follows the
convolutional layer and reduces the dimensions of the feature
maps and network parameters. In the fully connected layer,
each neuron in the previous layer is connected to each neuron
in the current layer. The number of neurons in this layer usually
matches the number of output classes [7]. CNNs take as input
raw image pixels and outputs class scores, indicating the like-
lihood that the input sample is part of the specific class. Note
that training a CNN requires images from all classes.
Autoencoders. AEs are neural networks designed to encode
the input into a compressed representation, i.e., the latent rep-
resentation, and then decode it back so that it is as similar as
possible to the input [8]. The problem can be summarized by

identifying an encoder function A : Rn → Rp and a decoder
function B : Rp → Rn that satisfy Eq. 1:

arg min
A,B

E[∆(x, B ◦ A(x))], (1)

where E represents the expectation over the distribution of x, ◦
is the composition operator, and ∆ is the function that measures
the distance between the input and the output of the decoder,
called the reconstruction loss function. In the cybersecurity re-
search domain, AEs have been used successfully for anomaly
detection [9], [10]. Let J and K be two probability distributions
such that J , K and let c be an AE model trained on sam-
ples from J. When using c to reconstruct samples, we expect
a smaller reconstruction error on samples from J than unseen
samples from K [11]. We can identify a specific reconstruction
error value and use it as a threshold value τ, defining a boundary
for classification. Any input sample to c with a reconstruction
error greater than τ can be classified as < J, i.e., an anomaly.
Note that, differently from CNNs, AEs require only one class
for training, i.e., the samples of the legitimate class (no anoma-
lies). In Sec. 5, we discuss in more detail what such a feature
entails for jamming detection.

3. Related Work

Several jamming detection approaches have been proposed
in the scientific literature, as discussed in recent surveys such
as [1] and summarized in Tab. 1. Jamming detection is usually
performed by analyzing one or more communication link met-
rics, e.g., the Packet Delivery Ratio (PDR), the Packet Loss Ra-
tio (PLR) and Packet Rejection Ratio (PRR). Some approaches
detect jamming through the analysis of PHY-layer metrics, such
as the Received Signal Strength (RSS) [26], while others con-
sider the analysis of raw signals, represented in different ways.
For example, the authors in [14] pre-process IQ samples with a
Stockwell Transform (ST), while the authors in [13] extract the
spectrogram from the raw signal, and the authors in [19] use the
Short-Time Fourier Transform (STFT) and the Complex Gaus-
sian Derivative Wavelet Transform (CGDWT) to extract more
information from the raw signal. Others use the Chip Error
Rate (CER), which is derived from the chip-to-symbol conver-
sion process [18], the Residual Energy Decay Rate [15] or the
Logarithmic Received Energy [16]. In contrast to using only
one feature, multiple heuristic signal processing features can
also be used, as discussed in [21].

The recent increased popularity of Artificial Intelligence (AI)
has contributed to an increase in the usage of Machine Learn-
ing (ML)- and DL-based approaches for the analysis of the cho-
sen link metric(s). We can notice a great variety in the usage
discriminative AI-based tools, including Random Forests [12,
13, 17], K-Nearest Neighbors (K-NN) [21], CNN [13, 3], Deep
CNN, Deep Recurrent Neural Networks [19] and Sparse AEs
[4]. A generative ML model, Conditional Generative Adversar-
ial Network (C-GAN) is used in [14]. There are also attempts
to use non-ML based approaches, such as the Heuristic Hy-
pothesis Test (HHT) [18] and Hidden Markov Models (HMMs)
[16]. Some recent papers, such as [27] and [28], considered
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Table 1: Qualitative comparison of relevant literature on jamming detection. Duplicated rows with the same reference indicate multiple proposals by the same paper.
For evaluation setup,  indicates Indoor and Outdoor evaluation, G# indicates Indoor or Outdoor, and # indicates simulation or analytical evaluation. The symbol -
indicates that the paper provides no information about a specific feature.

Ref. Metric Technique Communication
Technology

Modulation
Scheme

Jamming
Signal

Robustness
to Distance

Weak
Jamming

Jamming
Knowledge

Eval.
Setup

Robustness
to Mobility

[12] IT, PDR, RSSI RF IEEE 802.11 OFDM BPSK # # # G#  

[13] Spectrogram CNN IEEE 802.11 OFDM AWGN, Tone,
Pulse, OFDM # # # G# #

[13] SNR, RSSI,
OFDM-Specific RF IEEE 802.11 OFDM AWGN, Tone,

Pulse, OFDM # # # G# #

[14] ST C-GAN 5G B/QPSK,
16/64-QAM AWGN # #  G# #

[14] I/Q DBN 5G OFDM OFDM # # # # #

[15] Res. Energy
Decay Rate ML - QAM, PAM,

FSK, PSK AWGN # # # # #

[16] Log. Received
Energy HMM - - AWGN # #  # #

[17] BPR, PDR,
RSSI, CCA RF 5G - AWGN # # # G# #

[18] CER HHT IEEE 802.15.4 DSSS DSSS # #  G#  

[19] STFT, CGDWT DCNN,
DRNN - OFDM AWGN,

OFDM # # # G# #

[20] Timing
Resource Alloc. DBN 4G OFDM OFDM # # # # #

[21] Heuristic
Proc. Features K-NN IEEE 802.11p OFDM AWGN # # # G# #

[22] RSS
Effective
Radiated

Power
WiMAX DSSS

Pulse
Sweep

Single-band
#  # # #

[23] Time Game
Theory - - AWGN #   # #

[24]
Packet
Drop

Probability
SVM IEEE 802.11 OFDM AWGN #  # # #

[25] Spectrogram PCA IEEE 802.11 OFDM AWGN #  # G# #

[3] I/Q CNN - BPSK BPSK   # G# #

[4] I/Q AE - BPSK AWGN,
BPSK    G# #

This
paper I/Q CNN, AE IEEE 802.11

OFDM w/
B/QPSK,

16/64-QAM

AWGN,
BPSK      

the problem of jamming classification at the PHY layer, espe-
cially in the context of satellite signals. However, such papers
aim to detect and classify jamming, not to identify it when its
power is low compared to the communication signal. Similarly,
the authors in [29] investigated the resilience of satellite finger-
printing schemes to jamming while not investigating jamming
detection.

In this paper, we focus on the detection of weak jamming,
i.e., detecting jamming in a situation where the level of the re-
ceived jammer power at a target is not enough to shut down
the communication link entirely but only to affect it slightly.
In our earlier contributions, we denoted such a scenario as a
Low-BER Regime since it translates into a low (non-zero) BER
at the target. We notice that weak-jamming detection is rele-
vant for static and mobile networks. Mobile devices, such as
with Unmanned Aerial Vehicles (UAVs) and autonomous vehi-
cles, could detect jamming while moving toward the jammer’s
location. In these contexts, weak-jamming detection enables
the pilot and the Ground Control Station (GCS) to keep control
of the vehicle rather than losing control and relying on a pre-
programmed action to navigate safely. Although some works
in the literature consider tests for jamming under mobility, e.g.,
[12] and [18], to the best of our knowledge, only a few papers

delved into the detection of weak and low-power jamming and
proposed solutions to this problem. The pioneering contribu-
tion by Garnaev et al. in [23] only provided numerical analysis,
while the contributions by Boganoski et al. [22] and Venkata
et al. [24] used simulations to prove the feasibility of detect-
ing low-power jamming. More recently, Villain et al. [25] first
used real-world data collected in an office environment to show
that, using Principal Component Analysis (PCA), it is possi-
ble to detect low-power jamming. However, they do not con-
sider the impact of the distance between transmitter, receiver
and jammer, and not even mobile deployments. They also con-
sider an external device specifically meant to jamming detec-
tion. A step further in this direction is offered by our recent
contributions in [3] and [4], which cover many different prop-
erties of low-power-jamming detection, including the impact of
the distance between the jammer and the communication link.
They are also the only contributions releasing the data and the
code used for their experiments, encouraging reproducibility.
Although using real-world data, those contributions consider
simple communication links, not aligning with real-world op-
erational environments, and test their solutions indoors. In this
paper, we advance further the state of the art on weak-jamming
detection by (i) extending the methodology defined in [3] and

4



Jammer

Mobile Device
RX

𝐴𝐴1 𝐴𝐴2 𝐴𝐴3

Transmitter
TX

(a) Mobility

Jammer

𝐴1 𝐴2 𝐴3

(b) IoT

Figure 2: System and Adversary Model. Our solution applies to two reference
scenarios. (a) A receiver (RX) moves from area A3 to area A2 and eventually
to A1. RX can receive messages from TX when in A2 and A3, while reception
is not possible in A1 due to jamming. (b) A dense network is partially jammed
(black devices in A1) while (yellow and green) devices in A2 and A3 can com-
municate.

[4] for more complex modulation schemes; (ii) using an ac-
tual communication technology used by many wireless deploy-
ments, including drones and connected vehicles, i.e., WiFi, (iii)
evaluating weak-jamming detection with various modulation
schemes used in the real-world WiFi, i.e., OFDM with BPSK,
QPSK, 16-QAM and 64-QAM, and (iv) performing extensive
tests outdoors, considering various signal propagation condi-
tions (indoors, outdoor garden and outdoor field). Finally, we
highlight that the image generation technique used in our paper
shares similarities with the one recently used for Radio Fre-
quency Fingerprinting (RFF), e.g., in [30], [31], and [32]. The
proposal in [30] is meant to detect spoofing attacks to satel-
lite constellation through the analysis of the physical-layer in-
formation available at the receiver. To this aim, the authors
generated images from IQ samples and applied classification to
detect spoofing attacks. The authors in [31] showed that the
power-cycles of the radios affect the performance of RFF so-
lutions, and that techniques based on images can improve per-
formance compared to analying raw physical-layer data. The
authors in [32] show that Adversarial Machine Learning tech-
niques can be used to improve the robustness of image-based
RFF techniques, so avoiding synthetic attacks via imitation of
the features of the physical-layer signals at a receiver. How-
ever, using such image generation technique for the detection
of weak jamming entails different choices and analysis meth-
ods, not affecting the novelty and aim of our contribution.

4. Scenario and Adversary Model

Figure 2 depicts the reference scenarios and the adversary
model considered in this work.

We consider two reference scenarios, i.e., Fig. 2(a), rep-
resenting a mobile receiver (RX) moving towards a jammed
area while communicating with a remote transmitter (TX), and
Fig. 2(b), showing a partially jammed dense network of Internet
of Things (IoT) devices, simultaneously acting as TX and RX.
For both scenarios, the presence of the jammer splits the play-
ground into three areas: A1, A2, and A3, respectively. No mes-
sage reception is possible in the area A1 as the jamming signal
overcomes the power of the legitimate signal of the transmit-
ter. In contrast, communication is possible in areas A3 and A2,
but in A2, the devices experience both the legitimate signal and

Table 2: Notation and brief description.

Notation Description
P,Q Image dimensions (Width, Height).

n Number of IQ samples per image.
τ Threshold value for the AE.

MS Etrain
MSE value from reconstructing

the trainset.

the jamming. In particular, devices deployed in A2 can infer
the presence of a jammer through the analysis of the received
signal at the PHY layer.

Without loss of generality, we consider that the RX (IoT)
device features an omnidirectional transceiver antenna, in line
with the equipment onboard regular wireless devices. We con-
sider the IEEE 802.11g communication technology based on
its common usage in several COTS IoT devices. We recall that
IEEE 802.11g works in the 2.4GHz ISM band and supports the
following modulation schemes: OFDM with BPSK, QPSK, 16-
QAM and 64-QAM.

Adversary Model. We consider an adversary A equipped
with an omnidirectional antenna that emits a jamming signal to
disrupt the radio communication nearby (area A1). The jam-
ming signal can be noise, i.e., Additive White Gaussian Noise
(AWGN), or deceptive, i.e., adopting the same modulation scheme
used by the legitimate communication link. We notice that de-
ceptive jamming assumes some level of prior knowledge about
the communication link. Furthermore, we consider an adver-
sary that constantly jams at the highest possible transmission
power. The usage of the highest transmission power is con-
sistent with the general consideration that the jammer wants to
prevent any communication in the nearby area as much as pos-
sible while not knowing the specific location of the RX and the
TX. We also consider a jammer unaware of the sampling rate
used by the legitimate communication link. Thus, it transmits
the jamming signal with the highest possible sampling rate as
a function of the available hardware. Note that weak-jamming
occurs even when the jammer emits jamming with high power:
indeed, if the receiver is sufficiently farther away, the level of
the injected noise is not enough to jam the channel completely,
creating a weak-jamming scenario.

Finally, we highlight that area A2 is characterized by a bit
error rate below 1%. This is the area that we will focus on in
this work. In fact, in this region, the RX (IoT) wireless device
can (potentially) detect the presence of the jammer and has a
reliable communication link with the TX, thus allowing aware-
ness and informed decisions on the following actions. Detect-
ing weak jamming signals increases situational awareness and
allows the TX to take action accordingly without having to rely
on pre-defined backup steps pre-programmed on the RX device.

5. Detection of Weak Jamming Signals

In this section, we introduce our enhanced methodology for
weak-jamming detection. Overall, we can identify two main
phases, i.e., Image Generation (Sec. 5.1) and Jamming Detec-
tion (Sec. 5.2). Tab. 2 summarizes the main notation used
throughout the section.
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I/Q Data Collection
I/Q Constellation representation

Bi-variate histogram computationImage generation

Figure 3: We collect the IQ data through a Software-Defined Radio (SDR), then
divide them into chunks of n samples per image, represent them in a constella-
tion diagram, compute a bi-variate histogram, and store it as an image.

5.1. Image Generation
Figure 3 presents an overview of the adopted image gener-

ation pipeline. We collect IQ samples using a device capable
of acquiring PHY-layer wireless channel information, e.g., an
SDR. Next, we divide these samples into subsets of n samples,
denoted as the number of samples per image (see Sec. 7 for
details on the impact of this parameter on jamming detection).
Then, we represent each subset of n IQ samples through the IQ
constellation diagram, with the In-phase component on the x-
axis and the Quadrature component on the y-axis. We highlight
that our image processing technique differs from the previously
proposed approach, being more suitable for higher-order mod-
ulation schemes. Previous solutions [3] and [4] considered only
one of the two clouds in the image. In contrast, we consider the
IQ constellation with x-axis and y-axis limits of [−2, 2] and di-
vide it into a P×Q grid. Note that, at the receiver, we normalize
the value of the IQ samples, thus ensuring that their values do
not fall outside of the considered range. We use such a grid to
generate a bi-variate histogram by counting how many IQ sam-
ples fall into a specific tile of the grid. The bins in the histogram
are considered to be the value of the image pixels. Lastly, the
output of the histogram is saved as a P × Q grayscale image,
where P and Q are selected based on the input requirements
of the classifier used later in the jamming detection phase. In
Sec. 7, we experimentally compare the proposed image genera-
tion method with the technique used in [3] and [4] and evaluate
the pros and cons.

5.2. Jamming Detection
We consider two different approaches, i.e., binary classi-

fication using CNNs, as in [3], and anomaly detection using
sparse AEs, as in [4]. While the former requires the knowledge
of samples affected by jamming, the latter can be deployed in
scenarios where jamming has never been observed during the
training of the model, reducing the training overhead.

Binary Classification via CNNs. This approach detects
jamming based on a binary classifier. More in detail, we use
a CNN with 18 residual layers, i.e., ResNet-18 [33] which is
pre-trained on the ImageNet dataset [34]. We adapt the CNN
to have two output classes to distinguish between jamming and

no jamming. We present a simplified visual overview of the
architecture in Fig. 4. We consider a training process charac-

Jamming

NO

Jamming

Figure 4: Visual representation of a the CNN used for binary jamming detec-
tion.

terized by 30 epochs and a mini-batch size of 35 elements. We
use images generated from IQ samples captured with no jam-
ming affecting the communication link (NO JAM images) and
an equal number of images generated from IQ samples captured
with jamming (referred to as JAM images) for the training pro-
cess. The final output of the algorithm is the decision between
jamming or no jamming.

Anomaly Detection via AEs. This approach detects jam-
ming by identifying anomalies in the received signal, using
sparse AEs. Figure 5 shows the adopted AE architecture. We

τ

Positive 

prediction

Negative 

prediction

Figure 5: Visual representation of the AE-based jamming detection architec-
ture.

consider the generated images as described in Sec. 5.1 as in-
put of an encoder using a logarithmic sigmoid function with
K = 16 neurons, obtaining a compressed latent representation
of the input image consisting of K = 16 dimensions. Then, we
feed the latent representation vectors to a decoder using a linear
decoder transfer function with a total number of J = 50, 176
neurons, as described in [4]. We use two hidden layers and
the sparsity regularization technique in line with the methodol-
ogy provided in [4]. The output is an image of the same size
as the input image (P × Q). We convert this image into a ma-
trix and compare it with the input through the Mean Squared
Error (MSE) loss function. This approach entails training and
testing. For the training process, we use images generated from
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Figure 6: Sample distribution of the MSE values from our dataset, with NO
JAM images (red), JAM (blue) images, and threshold value (dashed line).

IQ samples captured with no jamming affecting the commu-
nication link, generating a set of MSE values representing the
regular behavior of the link. We use these values to calculate the
threshold τ to differentiate images generated from non-jamming
or jamming samples. An image with MS E < τ is predicted to
be generated from no jamming samples, while an image with
MS E > τ is predicted to be generated from jammed samples.
For computing τ, we adopt Eq. 2, as proposed by the authors in
[35].

τ = E(MS Etrain) + 3.5 · σ(MS Etrain), (2)

where E(◦) and σ(◦) represent the mean and the standard devi-
ation, respectively.

An image generated from unjammed samples is character-
ized by lower MSE values. In contrast, an image generated
from jammed samples results in a higher MSE value. We show
a sample distribution of the MSEs in Fig. 6. Finally, note that
we select the same values for the hyperparameters of the AE as
the approach presented in [4], i.e., a hidden size value of 16,
a sparsity regularization term of 0.5, an L2-regularization term
of 0.01, the Logistic Sigmoid (logsig) function as the encoder
transfer function and 250 epochs for the training process.

6. Data Collection and Experiment Settings

In this section, we describe the methodology used for data
collection, including the hardware and software details of our
measurement setup (Sec. 6.1) and the settings used for the ex-
periments (Sec. 6.2).

6.1. Hardware and Software

Hardware. We consider the SDRs provided by Lime Mi-
crosystems, i.e., three LimeSDR USB [36] devices and one
LimeSDR Mini v2.0 [37], equipped with a WiFi-capable an-
tenna and an up-to-date firmware. The LimeSDR USB has a
frequency range of 100 kHz up to 3.8 GHz, a maximum band-
width of 61.44 MHz, and a transmit power of up to 10 dBm.
The LimeSDR Mini V2.0 has a smaller frequency range of

10 MHz up to 3.5 GHz, 40 MHz of maximum bandwidth, and a
maximum transmitting power of 10 dBm. We use two LimeSDR
USB devices to establish an RF communication link, thus rep-
resenting the GCS and UAV. Another LimeSDR USB and the
LimeSDR Mini v2.0 are used as jammers to disrupt the com-
munication link. We use two general-purpose laptops to control
the SDRs. For data analysis, we upload the captured IQ samples
to a centralized computing facility, i.e., the High-Performance
Computing (HPC) cluster hosted at TU/e, Eindhoven, Nether-
lands. It provides an AMD EPYC 7313 CPU running at 3.00
GHz, 16 GB of RAM, and an NVIDIA A30 GPU with 24GB
of RAM.

Software. We use GNURadio version 3.10 [38] and the
block gr-limesdr [39] to interact with the SDRs. The block
diagram used for this work builds on top of the publicly avail-
able out-of-tree module gr-ieee-802-11, available at [40], al-
lowing the transmission and reception of IEEE 802.11g packets
through SDRs, with a few relevant modifications. Specifically,
to make the block diagram work correctly on our hardware, we
added two blocks to the receiver chain, i.e., an FFT Filter and
DC Spike Remover. Such modifications filter out the DC offset
affecting the used hardware and make it possible to correctly
receive IQ samples. We also save the IQ data corresponding to
correctly received WiFi packets to a file, in the fc16 format, use-
ful for post-processing according to the techniques described in
Sec. 5. We also modify the block diagram of the WiFi trans-
mitter by adding a block Multiply Const just before the block
LimeSDR Sink, with an input value of 0.5. This modification is
meant to reduce the amplitude of the resulting signal and make
it transmittable by the LimeSDR without distortions. On the
receiving LimeSDR, we collect the IQ samples corresponding
to the whole IEEE 802.11g packet, including both the header
and payload. We collect IQ samples from the wireless channel
using a limited sample rate of 5 · 106 samples per second (sps),
as the link becomes unreliable at higher sample rates (see Sec. 8
for a discussion of the impact of this choice on our results). We
consider a transmission rate of one IEEE 802.11g frame every
115 ms, bounded by the capabilities of our hardware. The pay-
load consists of two x characters. For the jammer, we use the
blocks Gaussian Noise Source to generate samples, Multiply
Const with input value 0.5 to avoid RF signal distortion, and
LimeSDR Sink to transmit the samples to the hardware. As for
the implementation of the deceptive jamming, we consider the
same flow diagram used for the transmitter. Finally, note that
we set the carrier frequency for all SDRs to fc = 2, 484 MHz,
equal to channel 14 as described by IEEE 802.11g [41].

6.2. Measurement Settings

Table 3 provides the details of the dataset collected for this
work. It describes, for each environment, the tested control
variable, experiment-specific settings, tested jamming condi-
tions, collected IQ samples, dataset size, and Symbol Error Rate
(SER). Note that we collected over 6.6 GB of data and 843M+
IQ data. To the best of our knowledge, this is the largest dataset
for weak jamming scenarios including both indoor and outdoor
measurements.
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Table 3: Details of the dataset collected as part of our experiments.

Env. Control Variable Jamming
Conditions Experiment-specific Settings Collected

IQ Samples
Dataset
Size [MB] SER

E1

Jammer Distance No Jam 80740310 61,6 0,0583
Jam 3, 5, 7,10,13,16,19,21,23,25 m 43729434 309,35 0,0663

Receiver Distance No Jam 5,7,10,13,16,19,21,23,25,27 m 7986299 633,52 0,0008
Jam 5,7,10,13,16,19,21,23,25,27 m 43950176 343,37 0,0107

Transmitter Distance No Jam 5,7,10,13,16,19,21,23,25,27 m 79805862 623,49 0,0127
Jam 5,7,10,13,16,19,21,23,25,27 m 47540014 371,43 0,0330

Reference Setup No Jam Location 0 (Ref. Setup) 8074310 63,08 0,0583
Jammer Gain Jam 6,12,14,16,18,20 24160008 188,75 0,0821
Jammer Location Jam 1, 2, 3 12112545 94,63 0,0763
Jamming Oversampling Ratio Jam 1, 2, 3, 4 16150765 126,18 0,0788
Jammer Type Jam AWGN, Deceptive 12185053 94,5 0,4287

E2

Reference Setup No Jam 0, 3 m 16769451 131,01 0,0542
Jammer Distance Jam 3, 5, 7,10,13,16,19,21,23,25, 27 m 47542742 371,42 0,0823

Receiver Distance No Jam 5, 7, 10, 13, 16, 19, 21 m 59417153 464,17 0,0526
Jam 5, 7, 10, 13, 16, 19, 21 m 30666679 239,58 0,1899

Transmitter Distance No Jam 5, 7, 10, 13, 16, 19, 21 m 59417153 464,17 0,1256
Jam 5, 7, 10, 13, 16, 19, 21 m 30389065 237,4 0,0917

Reference Setup No Jam 7951440 62,12 0,0302
Jammer Gain Jam 24,26,28,30,32 16312240 155,41 0,0244
Jammer Location Jam 1, 2, 3 12119906 94,68 0,0838
Jamming Oversampling Ratio Jam 1, 2, 3, 4 16160104 126,25 0,0719
Jammer Type Jam AWGN, Deceptive 11887393 92,17 0,4408
Jammer Hardware Jam LimeSDR Mini, LimeSDR USB 8080602 63,14 0,0652
Modulation Type Jam BPSK, QPSK, 16-QAM, 64-QAM 0 79,79 0,0000

RX Mobility No Jam 0, 1, 2 27696974 216,38 0,0026
Jam 0, 1, 2 14032334 109,64 0,0158

E3

Reference Setup No Jam 7957589 60,7 0,0392
Jammer Gain Jam 6,12,14,16,18,20 19897284 152 0,0391
Jammer Location Jam 1, 2, 3 12116831 92,4 0,0744
Jamming Oversampling Ratio Jam 1, 2, 3, 4 16163242 123,3 0,0668
Jammer Type Jam AWGN, Deceptive 12200389 94,61 0,0900
Jammer Hardware Jam LimeSDR Mini, LimeSDR USB 8077193 63,1 0,1024
Transmitter Gain Jam 42, 47, 52, 57 31840829 248,75 0,0697

Total 843131369 6652,09

We consider three different measurement environments char-
acterized by an increased amount of background noise, namely,
Outdoor Low-Multipath (E1), Outdoor Multipath (E2), and In-
door (E3).

E1: Outdoor Low-Multipath. This environment is a wild
field in the countryside, as shown in Fig. 7, with no obstruc-
tions in a radius of 100 m. The possibility of multipath fading
is minimized, although the signal could still reflect from the
ground.

E2: Outdoor Multipath. This environment is a large gar-
den with trees, plants, and a shed, as shown in Fig. 8. Here,
multipath is likely to occur due to the obstacles located very
close to the deployment location of the devices.

E3: Indoor. This is an office-like environment with a table,
chairs, and windows, depicted in Fig. 9. Due to the presence of
walls, the RF signal is reflected and attenuated. We schematize
the reference setup of the devices in the experiments in Fig. 10.

The relative position of the transmitter, receiver, and jam-
mer changes as a function of the scenario considered due to
our requirement for weak jamming of the communication link.
In the reference scenario, the jammer is in the same position
as the transmitter, while both are 5 meters from the receiver.
In the Low-SNR scenario, the distance between the transmitter
and the receiver is still 5 meters, but the jammer is deployed
closer to the receiver (1.5 meters). Finally, in the Modulation
scenario, all the devices are 1.5 meters away from a reference
point. We considered two channel conditions for each setup,
namely, without jamming (NO JAM) and with jamming (JAM).

Figure 7: Picture taken at E1 (Outdoor Low-Multipath). The X and arrow on
the satellite image (top right) indicate testing location and direction.

By default, we took measurements lasting 15 minutes for the
JAM scenario and 30 minutes for the NO JAM scenario. For
the reference setup, we set the gains on the TX, RX, and Jam-
mer to 62, 50, and 44, respectively. These values allow for a
stable and reliable communication link, a fundamental condi-
tion for our tests.

We highlight that reproducing weak jamming conditions in
real-world scenarios is challenging. Indeed, each environment
(indoors, outdoors w/o multipath) is characterized by peculiar
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Figure 8: Picture taken at E2 (Outdoor Multipath). The X and arrow on the
satellite image (top left) indicate testing location and direction.

X X

Figure 9: Layout map for E3 (Indoor). The symbols X indicate testing loca-
tions. The room contains a coathanger (top left), two wood stoves (top center),
a table with chairs (bottom left), two walls (top and bottom center), a couch
with a table (top right), and a kitchen (bottom right).

propagation conditions, which affect the impact of the jammer
on the legitimate communication link. Moreover, our measure-
ments have been executed in regular operational conditions,
with people and vehicles moving around the communication
link and other networks coexisting on the same spectrum. There-
fore, it is not possible to control precisely the communication
channel–this would also be unfair, since we consider real-world
communication environments. Therefore, all our experiments
consider as a base condition a situation where the BER of the le-
gitimate communication link under jamming (JAM) is not more
than 1% higher than the BER of the legitimate communication
link without jamming (NO JAM). Such a condition, achieved by
regulating the jammer gain, allows us to experience the weak
jamming scenario and investigate what are the capabilities to
detect jamming of our proposed solutions and the techniques in
the current literature.

Reference Low-SNR Modulation

TX

JAM RX
1.5 M

5 M
TX

JAM
RX

5 M TX RX

JAM

1.5 M 1.5 M

1.5 M

Figure 10: Scenario considered in our measurement campaign: Reference setup
(left), Low-SNR (middle), and Modulation (right) physical setup.

Starting from the reference setup, for our tests, we investi-
gate the following factors: (i) image generation parameters, (ii)
jammer parameters, and (iii) communication link parameters.
All data collected as part of this work are available at [5], while
we provide relevant results of our experiments in Sec. 7.

7. Experimental Results

This section shows the results of our experiments. We first
introduce the main performance metrics in Sec. 7.1, and then
present the results about the impact on jamming detection of
various image generation parameters (Sec. 7.2), jammer pa-
rameters (Sec. 7.3), and communication parameters (Sec. 7.4).
Finally, we evaluate the overhead of our solution in Sec. 7.5.
We summarize the details of the experiments in Tab. 4. Note
that we do not aim to compare environments across them, but
to show that detecting weak jamming signals is possible in all
environments across various configuration and communication
parameters.

7.1. Performance Metrics

We use accuracy as the main performance metric, computed
as T P+T N

T P+FP+T N+FN , being T P the number of true positives (JAM
images correctly classified), T N the true negatives (NO JAM
images correctly classified), FP the number of false positives
(NO JAM images classified as JAM) and FN the number of false
negatives (JAM images classified as NO JAM). Although such
data are available, we do not report precision and recall results
since we are interested in comparing the overall performance
of the investigated approaches rather than the contribution of
False Positive and False Negative. To obtain our results, we use
K-fold cross-validation with K = 5 and, for each value, we re-
port the mean and 95% confidence intervals, computed using
Matlab’s tinv function, i.e., the inverse cumulative distribution
function of the Student’s distribution. The confidence intervals
are represented as red error bars in the bar plots, with a differ-
ent color for each result in the line plots. To ensure fairness of
comparison between CNNs and AEs, we used the same amount
of images for training both classifiers, i.e. 150 NO JAM im-
ages. Then, for each experiment, the testing set is constituted
by an equal number of NO JAM and JAM images, depending
the amount of jamming data available for the particular exper-
iment. This number can be obtained from Tab. 3, dividing the
number of IQ samples for each environment and testing condi-
tions by the number of samples per image used. The remaining
part of the NO JAM dataset has been used for validation.
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Table 4: Details of the experiments.

Exp. Control Variable Envs. Values Other parameters Approaches

Image Gen.
Parameters

1 No. of samples
per image E2 104, 5 · 104, 1 · 105

Jammer Gain=32;
TX Gain= 62;
RX Gain= 50

Alhazbi et al. [3],
Sciancalepore et al. [4],
Ours - CNN,
Ours -AE

2 Training
Set Size E2 2,9,18,36,54,72,120

Samples per image=1 · 105;
Jammer Gain=44;
TX Gain= 62;
RX Gain= 50

Alhazbi et al. [3],
Sciancalepore et al. [4],
Ours - CNN,
Ours -AE

3 Augment.
Strategy E2

180-deg. rot.,
left-right mirror,
up-down mirror,
contrast,
brightness

Samples per image=5 · 104;
Jammer Gain=44;
TX Gain= 62;
RX Gain= 50

Alhazbi et al. [3],
Sciancalepore et al. [4],
Ours - CNN,
Ours -AE

Jamming
Parameters

4
Jammer
Oversamp.
Ratio

E1, E2, E3 1, 2, 3, 4

Samples
per image=1 · 105;
Jammer Gain=44;
TX Gain= 62;
RX Gain= 50

Ours - CNN,
Ours -AE

5 Jammer
Hardware E2, E3 LimeSDR Mini

LimeSDR USB

Samples per image=1 · 105;
Jammer Gain=44;
TX Gain= 62;
RX Gain= 50

Ours - CNN,
Ours -AE

6
Jammer
Signal
Type

E1, E2, E3 AWGN, Deceptive

Samples per image=1 · 105;
Jammer Gain=44;
TX Gain= 62;
RX Gain= 50

Ours - CNN,
Ours -AE

7 Jammer
Location E1, E2, E3 1, 2, 3,

Samples per image=1 · 105;
Jammer Gain=44;
TX Gain= 62;
RX Gain= 50

Ours - CNN,
Ours -AE

8 Jammer
Distance E1, E2 3, 5, 7, 10, 13, 16,

19, 21, 23, 25

Samples per image=1 · 105;
Jammer Gain=44;
TX Gain= 62;
RX Gain= 50

Alhazbi et al. [3],
Sciancalepore et al. [4],
Ours - CNN,
Ours -AE

Commun.
Parameters

9 Mod.
Scheme E2

BPSK, QPSK,
16-QAM,
64-QAM

Samples per image=1 · 105;
Jammer Gain=66,50,16;
TX Gain= 62;
RX Gain= 50

Alhazbi et al. [3],
Sciancalepore et al. [4],
Ours - CNN,
Ours -AE

10 Trans.
Gain E2, E3 [50, 55, 60, 65],

[44, 49, 54, 59]

Samples per image=1 · 105;
Jammer Gain=44;
TX Gain= 14;
RX Gain=50;

Alhazbi et al. [3],
Sciancalepore et al. [4],
Ours - CNN,
Ours -AE

11 Recv.
Dist. E1, E2 5, 7, 10, 13, 16, 19,

21, 23, 25, 27

Samples per image=1 · 105;
Jammer Gain=66,50,16;
TX Gain= 62;
RX Gain= 50

Alhazbi et al. [3],
Sciancalepore et al. [4],
Ours - CNN,
Ours -AE

12 Recv.
Mob. E2

Static,
Parallel,
Perpendicular

Samples per Image=1 · 105;
Jammer Gain=44;
TX Gain=62;
RX Gain=50,

Alhazbi et al. [3],
Sciancalepore et al. [4],
Ours - CNN,
Ours -AE

For some plots, we introduce a custom metric, i.e., the Signal
to Noise Ratio (SNR) Degradation Ratio, typically presented as
the second x-axis. The SNR Degradation Ratio models the im-
pact of jamming on the communication channel, and it is com-
puted as the ratio between the average SNR of the JAM images
and the average SNR of the NO JAM images, i.e., S NRDR =

S NRJAM
S NRNOJAM

. Note that, due to different factors affecting SNR, the
SNR Degradation ratio is not comparable across different ex-
periments. Finally, whenever not specified, we use only mea-
surements characterized by a BER < 0.01, so to enforce a low-
BER scenario following the definition in Sec. 2.

7.2. Image Generation Parameters

In the following subsection, we investigate the impact of
various image generation parameters on jamming detection ac-
curacy, including samples per image, training set size, and im-
age augmentation strategies.

Exp. 1: Samples per Image. To provide insight into
the effect of the number of samples per image n on the ac-

curacy of jamming detection, we carried out experiments for
n ∈ [14, 54, 15]. At any higher values for n, the number of im-
ages produced is too small to allow meaningful results. Fig-
ure 11 shows the accuracy as a function of the number of sam-
ples per image while comparing our solutions (CNN and AE)
with the state of the art [3] and [4], considering our reference
setup for environment E2 and a jammer gain value of 32.

We notice that the higher the number of samples per image,
the higher the accuracy for all approaches. Specifically, the
CNN-based approach improves from an accuracy of 0.9 with
104 samples per images to an average accuracy of 0.98 with 105

samples. Similarly, the AE-based approach improves from 0.58
with 104 samples to 0.995 with 105 samples. We notice that
the CNN-based approach requires fewer samples to reach very
high accuracy (higher than 0.95), i.e., 5 ·104 samples per image.
In such conditions, we also notice that our proposed approach
significantly outperforms both previous solutions. We adopted
105 samples per image for the rest of our analysis. Consider
that we collected data with a sample rate of 5 · 106 sps. Thus,
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Figure 11: Accuracy as a function of the number of samples per image. We
compared our proposed solutions with state-of-the-art contributions.

the time necessary to collect 105 samples to generate an image
is 1·105

5·106 = 0.02 s, making our solution very suitable for real-time
jamming detection.

Exp. 2: Training Set Size. We also investigate the impact
of the training set size on the classification accuracy. The train-
ing strategy of the two approaches is different. When the AE-
based anomaly detection approach uses s images for training,
such images are all images built from non-jammed samples; in-
stead, when the CNN-based binary classification approach uses
s images, we use s

2 images for both jamming and no-jamming.
We report the results of our investigation in Fig. 12.

Figure 12: Accuracy as a function of the training set size. We compared our
solutions with state-of-the-art contributions.

Jamming detection accuracy is positively correlated with
the number of training images. However, using the approach
in [4] requires more images during the training phase to reach
stable performance, i.e., 120 images, compared to the only 18
images required by our proposal. Jamming detection perfor-
mances with our approach are very reliable when using 18 im-

ages, with both CNNs and AEs.
Exp. 3: Image Augmentation. We compare the accuracy

of our proposed solutions with the literature, considering the
adoption of various image augmentation techniques. For this
test, we consider the data collected in the environment E2, as
it provides a more challenging classification task, allowing us
to test our solution in the worst-case scenario. We empirically
select 150 images from the no-jamming dataset and 75 from
the jamming dataset and investigate the effect of image aug-
mentation against the benchmark proposals in [3] and [4] with
5 · 104 samples per image. We consider the following augmen-
tation strategies, empirically chosen from those made available
by Matlab [42]: (i) 180 degrees rotation, (ii) left-right mirror,
(iii) up-down mirror, (iv) contrast increase and (v) brightness
increase. We report all our results in Fig. 13. Note that we
report with the legend No Augmentation the performances ob-
tained when only real-world data are used in the training set,
providing a benchmark for the performance obtained using the
augmentation strategies.

When using the AE-based one-class classification approach,
as in Fig 13(a) and (c), the augmentation strategies 180 Rotate
(dark blue bar), Left-Right Flip (orange bar) and Up-Down Flip
(yellow bar) perform similarly to each other and to using no
augmentation, e.g., reporting an accuracy of 0.78 with a jam-
mer gain value of 30 in Fig. 13(a). This indicates that the us-
age of such augmentation strategies does not decrease perfor-
mances. The augmentation strategy Brightness (green bar) per-
forms significantly worse, e.g., accuracy 0.5 with jammer gain
value 30 in Fig. 13(a). Contrast works better for the benchmark
approaches than ours, e.g., accuracy of 0.96 with jammer gain
value 30 in Fig. 13(a). Contrast and Brightness perform the
best for the CNN-based binary classification approach: CNN
are exposed to both classes during training. The brightness of
the image is correlated with the classification accuracy: bright
clouds resemble no jamming, and dim clouds look like jam-
ming. Therefore, using brightness as an augmentation param-
eter decreases the performance. Therefore, when choosing the
right type of strategy, using augmentation during training does
not decrease performance compared to using only real-world
data (no augmentation). Thus, augmentation can be used as an
effective strategy to increase the dataset when insufficient input
data is available.

7.3. Jamming Parameters

In this subsection, we investigate the impact of various jam-
ming parameters on the detection of weak jamming signals in
the outdoor environment, including the jammer oversampling
ratio, the jammer type, the jammer hardware, the jammer loca-
tion, and the jammer distance from the communication link.

Exp. 4: Jammer Oversampling Ratio. We define Jam-
mer Oversampling Ratio (JOR) as the ratio between the sample
rate of the jammer and the sample rate of the legitimate com-
munication link. Figure 14 reports the results of our analysis
considering both the proposed jamming detection approaches in
the three measurement scenarios. The accuracy is near 1.0 for
all environments and both detection approaches, demonstrating
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(a) Sciancalepore et al., [4]

(b) Alhazbi et al., [3]

(c) Our proposal, AEs

(d) Our proposal, CNN

Figure 13: Accuracy using various image augmentation techniques while con-
sidering 5 · 104 samples per image.

Figure 14: Classification accuracy varying the Jamming Oversampling Ratio
(JOR) in environments E1, E2 and E3. JOR does not affect the performance of
jamming detection.

that increasing the sample rate is not a viable option for the
jammer to avoid detection.

Exps. 5-7: Jammer Hardware, Location, and Type. We
report in Figs. 15(a) and (b) the results of experiments inves-
tigating the impact of the Jammer Hardware and the Jammer
Signal Type. Our results show that the considered hardware
(LimeSDR Mini or LimeSDR) and the different jamming sig-
nals (AWGN or deceptive) do not affect the accuracy of our
proposed techniques.

For the experiments on jammer location, we report in Fig. 16(a)
the schematic of the layout used for the experiments. Figure 16(b)
shows the results associated with the detection accuracy, con-
firming the robustness of our proposed solution in any relevant
real-world environment.

Exp. 8: Jammer distance. We evaluate the impact of the
distance of the jammer from the communication link on jam-
ming detection accuracy. Figure 17 and 18 show the results
for the jamming detection accuracy of the AE and CNN-based
approaches at various distances for scenarios E1 and E2, re-
spectively. All the proposed solutions have comparable per-
formance in the environment E1; indeed, the accuracy is 1 for
all the distances up to 23 m, where all the detection techniques
have a drop in performance. In fact, 23 m is the distance where
the signal power under jamming becomes comparable to the
power of the legitimate signal at the receiver, i.e., S NRDR ≈ 1.
In scenario E2, we observe a worse performance for the AE (E2
- Sciancalepore et al. [4] and E2 - Our proposal, AE). AE-based
detection techniques are less prone to discriminate between in-
terference and jamming, and we note that state-of-the-art solu-
tions are more sensitive to this problem than ours. In general,
the accuracy of our solutions is affected by the distance, start-
ing at 23 meters in both outdoor environments. In fact, at such
distances, the jamming signal is comparable to the legitimate
one (S NRDR = 0.96), making it difficult to detect.
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(a) Jammer hardware

(b) Jamming signal

Figure 15: Performance of jamming detection as a function of the (jammer)
hardware and (jamming) signal type.

7.4. Communication Parameters

In this subsection, we investigate the performance of jam-
ming detection considering various communication parameters,
i.e., the modulation scheme used by the legitimate communica-
tion link, the SNR, the receiver distance from the jammer, and
the mobility patterns of the receiver.

Exp. 9: Modulation Scheme. We consider different mod-
ulation schemes for the legitimate communication link among
the supported options in IEEE 802.11g, i.e., BPSK, QPSK, 16-
QAM and 64-QAM. We consider the setup shown earlier in
Fig. 10, with the TX, RX, and Jammer gain values set to 66, 50,
and 16, respectively. Note that we chose the setup and gain val-
ues such that the BER for the modulation 64-QAM—the most
complex modulation scheme with the least margin for error—is
as low as possible. To adapt the image generation method pro-
posed in the literature to higher-order modulation schemes, we
change the x-axis and y-axis limits to center the created clouds
while keeping the same rationale. For BPSK, we use [0, 2] and
[−1, 1]; for QPSK, we use [−0.293, 1.707] and [−1, 1]; for 16-
QAM, we use [−0.867, 2.133] and [−1.5, 1.5], and finally, for
64-QAM, we use [−0.883, 2.117] and [−1.5, 1.5]. Figure 19
shows the results of our experiments, considering both jamming
detection approaches and the reference solutions in [3] and [4],
in the environment E2.

The accuracy is consistent independently of the modula-

Jam Location, 1 Jam Location, 2 Jam Location, 3
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JAM

RX

5 M 5 MTX
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TX JAM
RX

5 M 5 M

(a) Measurement setup

(b) Detection performance

Figure 16: Detection performance as a function of the relative positions of the
jammer and the transmitter-receiver link.

tion scheme and the adopted detection technique. We notice
a decrease in the accuracy for QPSK when using the AE-based
approaches. This drop occurs because the selected (discrim-
ination) threshold is too high, leading to some misclassifica-
tions. The CNN-based approaches can mitigate such limita-
tions through the apriori knowledge of samples acquired on a
jammed communication channel during training, showing their
potential for enhanced jamming detection when applicable.

Exp. 10: Low Signal to Noise Ratio (SNR) Scenarios.
We also investigate the impact of SNR on jamming detection.
Since we cannot directly control the SNR on a real-world wire-
less channel, we indirectly influenced it using the gain value set
at the transmitter. We use the setup shown earlier in Fig. 10,
with gain values of 50 and 14 for the receiver and jammer, re-
spectively. Due to the difference in signal propagation, we use
different transmitter gains per environment: [50, 55, 60, 65] for
E2 and [44, 49, 54, 59] for E3. We selected the lower SNR val-
ues such that the BER under jamming is less than 1% higher
than the BER without jamming. We present the results for E2
in Fig. 20(a) and the results for E3 in Fig. 20(b).

Low SNR values do not significantly affect detection accu-
racy in an outdoor environment, as shown in Fig. 20(a)—these
findings are in line with those of [43]. Slow fading, i.e., at-
tenuation of the signal over long distances, also does not af-
fect jamming detection accuracy. Fast fading, i.e., the variabil-
ity of the noise affecting the RSS at a given distance, causes
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Figure 17: Classification accuracy varying the Jammer Distance in environment
E1.

Figure 18: Classification accuracy varying the Jammer Distance in environment
E2.

a more significant variance for RSS at more considerable dis-
tances. Therefore, the detection of jamming is not bound by
the low SNR of the benign scenario. In contrast, the indoor
environment (E3) affects the detection accuracy. As shown in
Fig. 20(b), all detection approaches have a low detection accu-
racy for low SNR values. Thus, we can conclude that the jam-
mer signal affects outdoor communications in a less destructive
way due to the reduced multipath fading.

Exp.11: Receiver Distance. To analyze the importance
of the SNR of the legitimate communication link for weak-
jamming detection, we investigate the impact of the receiver
distance from the transmitter on jamming detection accuracy.
We present the results in Fig. 21 (environment E1) and Fig.
22 (environment E2). Jamming detection accuracy decreases
as the effect of the jammer on the communication channel de-
creases due to the increased distance between the jammer and
receiver. For scenario E2, the transmitter and receiver tests with
a distance greater than 21 meters were not possible due to the
reliability of the communication link at these distances. We ex-
perienced significant fluctuations in SNR, most likely due to
multipath propagation.

Exp.12: Receiver mobility. Finally, we experiment with
different mobility patterns, investigating jamming detection ac-
curacy while the receiver moves. For this experiment, we used

Figure 19: Classification accuracy for the AE and CNN-based approaches vary-
ing the Communication Modulation Scheme in environment E2.

the gain values 62, 50, and 44 for TX, RX, and jammer, re-
spectively. The physical setup used for these experiments is
depicted in Fig. 23(a) while Fig. 23(b) shows the three different
mobility patterns considered: static, parallel, and perpendicu-
lar, respectively. The user moves up and down a 3-meter-long
guide rail with a speed of approximately 12 meters per minute
(2 times up and down every minute), bounded by our ability to
keep it moving at a constant pace. The receiver is moved by
pulling thin ropes attached to both ends of the receiver. Fig-
ure 24 shows the results of our tests for the three considered
movement patterns.

We observe a slight drop in performance (accuracy) for setup
#3, i.e., the perpendicular movement of the receiver to the trans-
mitter. This 10% drop, primarily relevant for the autoencoder
using our solution for image generation, is likely due to the jam-
mer having little effect on the communication link and becom-
ing hardly detectable. Overall, our results confirm that receiver
mobility does not affect the accuracy of jamming detection with
any of the considered approaches.

7.5. Overhead evaluation

Finally,, we consider the overhead introduced by our solu-
tion in terms of delay (processing time) and memory footprint.
As previously discussed, our solution has been implemented in
MatLab 2023a and run on an AMD Ryzen 9 5900 12-Core Pro-
cessor, 3.00 GHz, 128GB RAM. Table 5 shows the breakdown
of the overhead components in terms of time to generate an
image (τimg), time to test an image considering either the CNN-
ResNet18 (τcnn) or the AE (τae), respectively, the memory foot-
print for the CNN and AE models, i.e., Mcnn and Mae, respec-
tively, and finally, the memory footprint associated with an im-
age, as a function of the number of samples per image. Overall,
given the reference system considered in this work, the compu-
tation overhead sums up to (less than) 130ms and 28ms when
considering CNN or Autoencoders, respectively, and the max-
imum number of samples per image (worst case), i.e., 105 The
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(a) Scenario E2

(b) Scenario E3

Figure 20: Classification accuracy varying the Transmitter Gain.

Samples per Image 104 5 · 104 105

τimg (ms) 10 10 20
τcnn (ms) 13 55 110
τae (ms) 3 5 8
Mcnn (MB) 45 45 45
Mae (MB) 14 14 14
Mimage (KB) 151KB 151KB 151KB

Table 5: Overhead components of our solution.

memory footprint is independent of the number of samples per
image but only depends on the type of neural network consid-
ered. We also observe that the image pre-processing technique
has a negligible impact on the overall memory footprint since
the generated images are very small (compared to the memory
required by the model). The major overhead comes from the
memory requirement to store the model, i.e., 14MB and 45MB
for the Autoencoder and CNN, respectively. Conversely, the
memory requirements for the image pre-processing are negligi-
ble and sum up to 151KB. Finally, we observe that the number
of samples per image affects the processing time, and in par-

Figure 21: Classification accuracy varying the receiver distance in environment
E1.

Figure 22: Classification accuracy varying the receiver distance in environment
E2.

ticular, CNNs perform much worse than autoencoders (they are
more than 4 times slower, also due to running binary classifica-
tion rather than one-class classification).

8. Discussion

Jamming Detection Approaches. Our results demonstrate
that both AEs and the chosen CNN (Resnet-18) are reliable for
weak-jamming detection. The two approaches exhibit similar
performance when considering most jamming and communi-
cation parameters. However, the AE-based technique only re-
quires not-jammed samples for the training process, i.e., the
samples acquired during regular communications, which are
easier to collect in practice. The CNN-based approach exhibits
better performance when considering some image generation
parameters (samples per image and training set size) and some
boundary conditions, e.g., when the RSS of the legitimate com-
munication link becomes comparable to the one of the jam-
mer at the receiver side. However, being a binary classifica-
tion approach, it requires training on samples from both classes
(jammed and not-jammed IQ samples), which could be chal-
lenging to collect in many real-world scenarios.

Image generation. When considering image generation
techniques, state-of-the-art solutions from [3] and [4] exhibit
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Figure 23: (a) Setup used for receiver mobility patterns and (b) movement pat-
terns used for the experiments on the impact of receiver mobility on jamming
detection. Two tent pegs at both ends of the guide rail allow us to move the
receiver across the guide rail using two ropes. The close-up (bottom left) shows
the cutout made in the wood to be compatible with the rail.

some notable drawbacks. When using AEs, as proposed in [4],
jamming detection requires more images in the training phase
to be reliable (120 images vs. 9 of our proposal, Fig. 12). In
addition, the solution in [4] is less resilient to interference (see
Fig. 18). Although our solution performs slightly worse for
some configurations (e.g., Fig. 24), overall, it performs more
consistently than previous proposals and is compatible by de-
sign with any digital modulation scheme.

Limited Acquisition Bandwidth. For our experiments,
the use of the LimeSDR USB forced us to use an acquisition
bandwidth of 5 MHz instead of 20 MHz, as required by IEEE
802.11g. We emphasize that a reduced sample rate is a worst-
case scenario for jamming detection at the PHY layer since less
information is available to the receiver for signal classification.
Thus, we believe using a higher acquisition bandwidth does not
affect our findings.

Limited Experiments Area. We acknowledge that the max-
imum distance considered for our experiments, i.e., 23 meters,
may not be sufficiently representative of extensive jamming in
large outdoor scenarios. This limitation of our study is mainly
due to two factors. First, the outdoor areas available for our
real-world experiments is limited, and we cannot legally per-
form extensive jamming outdoor without affecting the quality
of WiFi services available to other users. Second, the equip-

Figure 24: Classification accuracy with various receiver movement patterns in
the environment E2.

ment used for the experiments includes SDRs, which are not
professional jammers capable of disrupting communications for
hundreds of meters. Such devices have a limited transmission
power and, in turn, they can jam nearby communications in a
limited space.
Nonetheless, we first highlight that the maximum distance con-
sidered in our experiments (23 meters) is higher than the only
contribution in the current literature investigating the impact of
the jammer distance on the detection accuracy, i.e., the contri-
bution in [4], which considered a maximum distance of 21 me-
ters, only in an indoor environment.
Moreover, although the limitations mentioned above, we re-
mark that such limitations do not affect the validity of our find-
ings and analysis. In fact, the aim of our analysis is to investi-
gate the effectiveness of detecting weak jamming using various
techniques proposed in the literature, and to find the boundary
conditions where such techniques could detect weak jamming.
As shown in Fig. 17 and Fig. 18, when the jammer is located
23 meters away from the receiver, all the investigated jamming
detection approaches are characterized by sub-optimal perfor-
mances, indicating that they cannot detect weak jamming re-
liably. As highlighted through the upper x-axis in those fig-
ures, these performances occur with a value of the SNR degra-
dation ratio of 1.0 for the environment E1 (Fig. 17) and 0.984
for the environment E2 (Fig. 18). Similar considerations ap-
ply for Fig. 22. Therefore, the usage of more powerful devices
over larger distances does not provide additional insight to our
analysis and does not affect the validity of our conclusions.

Jamming strategies. In our tests, in line with the relevant
literature, we evaluated jamming detection considering AWGN
and deceptive jamming. Our results are applicable indepen-
dently from the number of frequencies targeted by the jamming,
being it a spot jamming, sweep jamming, barrage jamming, or
periodic jamming. However, the adversary could use more ad-
vanced types of jamming, e.g., reactive jamming. We first ob-
serve that continuous communication between the transmitter
and the receiver translates reactive jamming into constant jam-
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ming, falling back into the analysis of this paper. When com-
munication is not continuous, in line with the findings in [11],
our solution is applicable when there are enough JAM samples
part of an image to enable the correct image classification. The
exact duration of the (reactive) jamming signal leading to de-
tection always depends on the sample rate of the jammer and
communication link and follows the results provided in Sec. 7.

Known Distance TX-RX. Finally, we note that all the in-
vestigated approaches, including the ones we compared, could
require knowledge of the distance between the transmitter and
receiver. Concerning the mobile scenario introduced in Sec. 4,
mobile vehicles usually know such a distance from the com-
munication link with the remote transmitter, e.g., through the
adopted telemetry protocols. We recall that our solutions detect
jamming early, i.e., when the jamming on the receiver is weak
and the communication link is still active. Thus, information
availability is never a problem, contrary to ex-post approaches
in the literature.

9. Conclusion and Future Work

In this paper, we have presented an experimental evaluation
of weak-jamming detection solutions, i.e., applying when the
power of the jammer at the receiver is low, and the Bit-Error-
Rate of the communication link is still not affected by the jam-
mer. To this aim, we have extended our previous solutions to
make them work reliably with an actual communication tech-
nology used by Commercial Off-The-Shelf devices, i.e., IEEE
802.11, and with the complex modulation schemes used in such
a standard, i.e., OFDM with BPSK, QPSK, 16-QAM, and 64-
QAM. We have also enhanced the state-of-the-art methodol-
ogy for jamming detection through a new image generation ap-
proach, generalizing better to complex real-world modulation
schemes. Thanks to an extensive experimental campaign using
low-cost SDRs, we demonstrated the effectiveness of our en-
hanced solution in three heterogeneous wireless environments
(indoor, outdoor with multipath, outdoor with minimal multi-
path) across an extensive range of jamming and communication
parameters. As part of our future work, we plan to deploy our
solution on real COTSs to evaluate the computational burden
and energy overhead it incurs on such constrained devices.
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