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Abstract—The increasing demand for privacy protection and
security considerations leads to a significant rise in the proportion
of encrypted network traffic. Since traffic content becomes
unrecognizable after encryption, accurate analysis is challenging,
making it difficult to classify applications and detect attacks. Deep
learning is currently the predominant approach for encrypted
traffic classification through feature analysis. However, these
methods face limitations due to their high dependence on labeled
data and difficulties in detecting attack variants. First, their
performance is highly sensitive to data quality, where the high-
cost manual labeling process and dataset imbalance significantly
degrade results. Second, the rapid evolution of attack patterns
makes it challenging for models to identify new types of attacks.
To tackle these challenges, we present GBC, a generative model
based on pre-training for encrypted traffic comprehension. Since
traditional tokenization methods are primarily designed for natu-
ral language, we propose a protocol-aware tokenization approach
for encrypted traffic that improves model comprehension of
fields specific to network traffic. In addition, GBC employs pre-
training to learn general representations from extensive unlabeled
traffic data. Through prompt learning, it effectively adapts to
various downstream tasks, enabling both high-quality traffic
generation and effective detection. Evaluations across multiple
datasets demonstrate that GBC achieves superior results in both
traffic classification and generation tasks, resulting in a 5%
improvement in F1 score compared to state-of-the-art methods
for classification tasks.

Index Terms—Encrypted traffic classification, network traffic
generation, pre-training

I. INTRODUCTION

With the rapid advancement of Internet technology, the
demand for secure communication and privacy protection
increases significantly, resulting in a growing proportion of
encrypted traffic within networks. However, encryption proto-
cols also become a concerning double-edged sword, enabling
attackers to conceal their activities, thereby complicating the
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task for network administrators to promptly identify malicious
traffic. Google Transparency Report [1] shows that nearly
95% of web traffic is delivered over HTTPS. According to
Zscaler’s 2024 report on encrypted attacks [2], 87.2% of
threats they block are transmitted through encrypted channels.
This underscores the critical importance of encrypted network
traffic identification.

Since traffic features are obfuscated after encryption, early
payload-based identification methods gradually become in-
effective [3]. Meanwhile, signature-based approaches have
limited application scenarios due to their high dependence
on predefined static rules [4]–[6]. In response to this chal-
lenge, researchers propose methods based on traffic behavioral
characteristics and statistical features [7]–[11]. These methods
focus primarily on distinctive attributes in the connection
process that remain observable despite encryption, such as
packet size distribution, inter-arrival times, and flow duration.
By integrating these features with machine learning algo-
rithms, researchers successfully develop robust methodologies
that effectively classify encrypted network traffic. However,
machine learning-based methods still have several limitations.
First, traditional machine learning approaches such as support
vector machine (SVM) and random forest (RF) heavily rely
on manually designed features, requiring specialized expert
knowledge for feature engineering, which is time-consuming
and highly subjective. Second, these conventional methods
struggle to capture the complex non-linear relationships in-
herent in traffic data. Finally, these predefined features may
prove insufficient when faced with rapidly evolving network
environments or constantly changing application behaviors,
limiting the models’ ability to generalize across diverse traffic
scenarios.

Driven by these limitations, researchers turn to deep learn-
ing methods. With its capability for automatic feature ex-
traction, deep learning models can learn hierarchical feature
representations directly from raw data, thereby reducing the
reliance on manual intervention [12]–[15]. Through multiple
layers of non-linear transformations, these models can bet-
ter model complex traffic patterns and capture hidden data
relationships. Although these models offer advantages, their
performance heavily depends on the quantity and quality of
labeled training data. As a result, this directly affects their
generalization ability. The acquisition of such high-quality
labeled data faces challenges. Existing public datasets often
suffer from outdated samples and limited categories, failing to
capture the evolving traffic patterns. Collecting and profession-
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ally labeling new real-world traffic data requires significant
time and effort. Moreover, the process is complicated by
privacy concerns and technical challenges. Such data-related
issues severely influence the classification performance of deep
learning models, leading to poor detection on emerging attacks
and frequent false alarms when encountering traffic patterns
that deviate from the training data distribution.

Recent studies demonstrate the successful application of
pre-trained models, originally developed for natural language
processing and computer vision, to traffic analysis domains as
a partial solution to data-related challenges [16]. These mod-
els excel at learning generalized representations from large-
scale unlabeled data, thus reducing dependency on labeled
data while adapting to various downstream tasks [17]–[20].
However, existing pre-trained models in traffic analysis face
challenges in their design. Recent advances in this direction
often process network traffic by treating packets as simple
hexadecimal strings. This general input representation fails
to capture the inherent organization of network protocols
and packet formats into individual fields. For instance, the
version number in TLS protocol (0301) may be split into
separate tokens (xx03 01xx) by such byte-level tokenization,
thus breaking its original structure. Beyond this fundamental
design issue, these models also struggle with generalization
when applied to downstream tasks with highly imbalanced
data distributions. In traffic classification scenarios, attack
samples often represent only a small portion of the training
data. As a result, the learned representations tend to favor the
dominant patterns found in normal traffic, which may lead to
a bias that overlooks the features of malicious activities. This
inherent bias may become more pronounced during fine-tuning
on such imbalanced datasets [21].

To tackle these challenges, we present GBC, a Generative
model Based on pre-training for encrypted traffic Compre-
hension, which excels at both accurate traffic classification
and high-fidelity traffic generation. Through a unified pre-
training approach, GBC not only effectively learns robust fea-
ture representations that are critical for identifying malicious
traffic, but also leverages its advanced generation capabili-
ties to strengthen traffic classification. Building on a novel
protocol-aware tokenization scheme, the model creates syntax-
constrained synthetic samples that address data imbalance,
which in turn enables more precise and comprehensive traffic
analysis through structured representation.

Specifically, to address the limitations of byte-level to-
kenization in existing pre-trained models, we propose a
protocol-aware field-level tokenization method to transform
raw traffic into structured text-like sequences. Following pro-
tocol specifications, we carefully segment traffic into se-
mantically meaningful tokens based on protocol fields. This
approach not only preserves the natural structure of network
traffic but also effectively leverages the strengths of pre-trained
models in handling structured text.

While our protocol-aware tokenization scheme provides a
solid foundation for traffic representation, the challenge of
data imbalance in traffic analysis remains to be addressed.
To tackle this issue, we introduce a syntax-guided traffic
generation mechanism that particularly focuses on augmenting

minority samples. By synthesizing protocol-compliant traffic,
our method can augment training datasets, allowing models to
generalize more effectively to novel encryption techniques and
previously unseen attack scenarios. Crucially, unlike existing
generation approaches that often produce syntactically invalid
outputs or are limited to specific fields (e.g., TCP ports) [22]–
[24], our model fully captures the underlying traffic structures
and generates parsable pcap packets to better assist in traffic
analysis.

Our contribution can be summarized as follows:
• We develop GBC, an efficient pre-trained traffic com-

prehension model that achieves precise classification per-
formance while generating high-quality network traffic,
offering a framework that enhances both malicious traffic
recognition and synthetic data quality for cybersecurity.

• We propose a structured tokenization strategy that seg-
ments raw traffic into protocol-compliant semantic units,
effectively preserving the inherent structure of network
traffic and better leveraging the capabilities of pre-trained
models.

• We implement an effective approach for generating syn-
thetic network traffic samples, enabling data augmenta-
tion in imbalanced scenarios while maintaining structural
integrity.

• We experimentally validate the effectiveness of our
model. For classification tasks, the model achieves a 5%
improvement in F1-score over state-of-the-art methods.
For generation tasks, our synthetic traffic samples prove
to be effective for data augmentation, enhancing mali-
cious traffic detection by 9% in F1-score.

The structure of this paper is organized as follows: Section
II discusses related works and their limitations, offering ad-
ditional insights into the current state of research. Section III
presents the design of GBC. Section IV details the experiments
and evaluations, providing a comprehensive analysis of the
obtained results. Finally, Section V concludes the paper and
outlines directions for future research.

II. RELATED WORK

This section provides an overview of the existing literature
related to our work, focusing on network traffic classification
and traffic generation.

A. Traffic Classification

With the growth and complexity of network traffic, traffic
classification plays a crucial role in areas such as network
security, bandwidth management and application optimization.
Machine learning-based approaches extract statistical features
from network traffic for classification, yet face significant
limitations. Their feature engineering heavily depends on
domain expertise, while extracted features often demonstrate
poor transferability across varied operational contexts [25]–
[28]. Deep learning-based approaches leverage deep neural
networks to automatically learn feature representations from
raw traffic or optimize manually extracted features. However,
these models depend on large amounts of high-quality labeled
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data for training and exhibit vulnerability to adversarial sam-
ples, creating potential for evasion by strategically designed
malicious traffic [29]–[33].

In recent years, pre-trained models achieve remarkable re-
sults in the fields of natural language processing and computer
vision, and thus are gradually introduced into the research
of network traffic classification. He et al. [34] use dynamic
word embedding techniques to extract features from encrypted
network traffic and pre-train a Transformer-based classifier.
Lin et al. [17] further innovate by extracting bursts from traffic
and designing two self-supervised pre-training tasks. Wang et
al. [35] constructs Lens, a foundation model based on the
T5 architecture, enhancing pattern recognition through three
carefully designed pre-training tasks.

In data representation and feature encoding, Zhao et al. [36]
formats raw traffic data into two-dimensional matrices to cap-
ture multi-level information, combining Masked Autoencoders
with Transformer architectures for traffic classification. Ferrag
et al. [37] introduces a privacy-preserving encoding technique
called PPFLE, which extracts statistical features from network
traffic. By combining it with a Byte Pair Encoding tokenizer,
the method ensures data privacy while maintaining efficient
feature representation.

Application-specific optimization research also emerges.
Manocchio et al. [38] evaluate the impact of Transformer
architectures on flow-based Network Intrusion Detection Sys-
tems and introduce the FlowTransformer framework, enabling
flexible component replacement and dataset evaluation. Lin
et al. [39] propose the PEAN framework, which leverages
unsupervised pre-training to extract features from byte content
and length sequences, achieving high-performance traffic clas-
sification despite challenges with coarse-grained traffic data.

While these approaches show promising capabilities in
feature extraction and classification accuracy enhancement,
some fundamental limitations remain unresolved. Most studies
treat network traffic merely as simple feature sequences or raw
byte streams, overlooking its inherent structural and contextual
characteristics. Furthermore, the aforementioned methods rely
heavily on large volumes of high-quality labeled data, creating
substantial barriers for real-world deployment. This depen-
dency raises serious concerns about model generalizability in
environments with limited labeled data or rapidly evolving
traffic patterns. The computational complexity of these models
also presents practical implementation challenges for traffic
analysis, particularly in resource-constrained network devices.
These limitations collectively underscore the urgent need for
more efficient and adaptable traffic classification approaches
that can maintain high accuracy while reducing reliance on
extensive data resources and capturing the intrinsic structure
of network protocols.

B. Traffic Generation

Traffic generation plays a crucial role in network security.
For example, researchers generate traffic that simulates real
network environments to create workloads for evaluating the
effectiveness of security measures. In addition, models for
traffic analysis also rely on large-scale, high-quality training

data. However, collecting such data is challenging due to
privacy concerns and the scarcity of new attack samples. In
this context, traffic generation technology offers an innovative
solution to data sourcing challenges for model training. This
method not only generates synthetic data, enabling models to
learn more diverse and complex network behavior patterns,
but also effectively mitigates data privacy concerns.

Early traffic generation controlled traffic characteristics
through manual configuration and rule settings. Most research
[40]–[43] focuses on evaluating the performance of different
generators in producing high-throughput, low-latency traffic.
To address the limitations of manual configuration, Sommers
and Barford [44] propose a tool to automatically extract
parameters from standard Netflow logs or packet traces.

With the continuous advancement of technology, machine
learning and deep learning methods become mainstream.
These models learn from real network traffic, extracting char-
acteristics and generating similar synthetic traffic. A typical
example is the Generative Adversarial Network (GAN), which
has become a mainstream approach for network traffic gener-
ation [45]–[48]. GANs consist of generator and discriminator
components that continuously improve the quality and authen-
ticity of generated traffic through adversarial training.

Beyond GANs, researchers explore alternative approaches.
Du et al. [49] extract temporal-spatial features to guide gen-
eration, while Jiang et al. [50] apply diffusion models by
converting traffic into images and back.

With the rise of large-scale pre-trained language models,
their excellent contextual understanding and generation ca-
pabilities prompt researchers to explore the possibility of
applying them to network traffic generation. The core idea
is to consider network traffic as a special kind of language
or sequence, leveraging the sequence modeling capabilities of
language models to generate high-quality network traffic data.

Bikmukhamedov and Nadeev [51] use packet size and inter-
arrival time as input features, employing GPT-2 to generate
packet sequences matching these feature distributions. Kholgh
and Kostakos [22] transform input to flow descriptions and
generate corresponding Python code with GPT-3 to produce
replayable pcap files. The framework only supports simple
packets and struggles with complex protocols like DNS. Meng
et al. [23] convert each byte in a packet into its corresponding
hexadecimal number to generate tokens and train a GPT-2
model. By adding header field prompts to the input, the model
is guided to generate traffic for specific tasks. Qu et al. [18]
enhance packet tokenization and utilize a discriminator model
to distinguish between real and generated data.

These approaches exhibit promising potential in generating
diverse network traffic. However, early generators are rela-
tively simple, offering limited flexibility and producing traffic
that lacks authenticity, making it easy for detection systems
to identify anomalies. Advanced methods leveraging deep
learning and pre-trained models can capture complex patterns,
generating more realistic synthetic traffic. Yet these approaches
face a fundamental paradox: they demand extensive high-
quality training data, while the generation tasks themselves
typically aim to address data scarcity. Most techniques can
only generate specific feature sequences, limiting their practi-
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Fig. 1. The framework of GBC. In the preprocessing phase, the model receives network traffic as input, then performs tokenization based on packet structure
and network protocol specifications. Following preprocessing, the resulting token sequence serves as input for the next step. The model is pre-trained on
large amounts of unlabeled data and fine-tuned for specific tasks using labeled data. When applied to downstream tasks, the model can achieve efficient
traffic classification. Additionally, to address issues such as sample imbalance, the model can generate highly realistic traffic for data augmentation, thereby
improving performance.

cal applications. Though some methods can produce complete
traffic, they frequently lack robust validation mechanisms and
fail to replicate the complex behavioral patterns inherent in real
network environments, resulting in suboptimal performance.
Additionally, these methods generally lack comprehensive
verification frameworks for their generated results.

III. MODEL DESIGN

In this section, we introduce the architecture of GBC, a
model specifically designed to analyze network traffic packets
by utilizing protocol-aware tokenization strategies and syntax-
guided generation mechanisms.

A. Overview

As shown in Figure 1, the model is structured to effectively
learn general traffic representations, enabling it to perform
both encrypted traffic generation and traffic classification. The
architecture is divided into three primary components: traffic
tokenization, pre-training, and fine-tuning, each of which plays
a vital role in enhancing the model’s ability to handle complex
network traffic analysis tasks.

During the protocol-aware tokenization phase, network traf-
fic is first segmented into individual packets, with content
extracted according to protocol fields. This extraction ensures
that the semantic units of the network traffic are preserved,
allowing the model to maintain a clear understanding of the
underlying structure. The extracted content is then transformed
into token representations, which not only preserve the original
data but also maintain the hierarchical and structural relation-
ships inherent in network protocols.

During the pre-training phase, the model is exposed to a
vast amount of unlabeled traffic data. Using self-supervised
learning, the model learns to capture protocol syntax patterns
by predicting parts of the traffic sequence from other observed

parts. This unsupervised training on large-scale data allows the
model to build a generalized understanding of various network
protocols, establishing a robust foundation for both traffic
classification and generation tasks. The pre-training phase is
crucial for enabling the model to recognize common patterns
and features that are not explicitly labeled in real-world traffic
data.

Finally, during task-specific application phase, the model is
adapted to specific downstream tasks, such as traffic classifi-
cation or traffic generation. This strategic adaptation phase al-
lows for task-specific optimization while maintaining the foun-
dational knowledge learned during pre-training. This multi-
phase approach not only enhances the model’s performance in
specialized tasks but also enables it to handle complex network
behaviors more effectively.

In the remainder of this section, we will provide a detailed
discussion of the design and functionality of each component,
illustrating how each stage contributes to the overall perfor-
mance of the GBC model.

B. Protocol-aware Tokenization

In this paper, we introduce a protocol-aware tokenization
method that explicitly integrates network protocol syntax into
the traffic representation. By extracting traffic data and map-
ping it into a sequence of tokens, this method ensures that the
data can be accurately converted back to its original form. It
preserves both semantic integrity and protocol structure, which
is essential for generating realistic network traffic. Moreover,
this approach enables the generation of traffic that can be
stored in the standardized pcap format, a widely used format
in network traffic analysis, thus facilitating its use in various
generation tasks.

Specifically, in order to transform network traffic data into
a format that can be processed by the model, it must be
tokenized. In the field of natural language processing (NLP),
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methods such as Byte Pair Encoding (BPE) and WordPiece are
commonly used to generate vocabularies. The input text is then
segmented and mapped to indices in the vocabulary, resulting
in a sequence of tokens that the model can handle. However,
network traffic differs significantly from text sequences, thus
requiring a more specialized processing method to capture its
inherent structure.

For the purpose of uniform processing, current large models
for network traffic [17], [18], [23] always convert each byte
of traffic into its corresponding hexadecimal value, treat every
two adjacent bytes as a ”word”, and then use a tokenizer to
generate tokens. However, network traffic consists of protocol
headers from different layers, exhibiting a clear hierarchical
structure. Each field within the protocol headers is specified
with corresponding formats, meanings, and value ranges. The
aforementioned segmentation strategy may cause structural
issues at multiple levels.

• Field fragmentation: Fixed-length splitting disregards the
natural protocol-defined field boundaries. When a field
contains more than two bytes, it is divided into multiple
separate tokens, disrupting the inherent protocol structure.

• Semantic dissociation: When protocol fields are split into
multiple tokens, the semantic meaning of those fields
becomes dispersed across different tokens, making it
difficult for the model to accurately interpret the original
meaning of the data.

• Hierarchy loss: The natural layered architecture of net-
work protocols is flattened into a simple sequence of
tokens. This loss of hierarchy prevents the model from
learning crucial cross-layer interaction patterns and con-
textual relationships, which are essential for accurate
traffic analysis.

To overcome these limitations, we propose a network
protocol-based traffic representation method that aims to en-
hance the semantic understanding of network traffic, while
fully preserving the original structure of the protocols. This
method ensures that the intricate details of network traffic,
including its hierarchical structure, are accurately captured
and maintained. Furthermore, the specialized terminology and
structure inherent in network traffic make the standard GPT-
2 vocabulary insufficient for interpreting the detailed nature
of traffic data. This limitation necessitates the expansion of
the vocabulary to incorporate domain-specific terms and field
values.

Since this paper focuses specifically on encrypted traffic,
we take network packets transmitted under the TLS(Transport
Layer Security) protocol [52], which is the most widely
used encryption protocol, as a representative example. TLS
is a common protocol used for securing communication over
the internet, making it an ideal candidate for demonstrating
our proposed method. Specifically, the traffic representation
method and the overall tokenization process that we propose
in this paper are illustrated in Figure 2.

First, protocol fields are determined based on the RFC doc-
umentation. Using tools like Scapy1 and Tshark2, we extract

1https://scapy.net/
2https://tshark.dev/

Fig. 2. Tokenization process. Segment traffic data according to protocol
specifications, preserving structural and semantic integrity.

the relevant structures directly from pcap packets. For fields
that are not present in the traffic, corresponding values are set
to -1 to ensure the structure remains consistent. Each field and
its associated value are concatenated with special symbols, and
these field-value pairs are then serialized into pseudo-textual
streams, constructing contextualized sequences for the model.
This process effectively transforms network traffic packets
into semantically enriched, text-like representations, while
preserving both the original information and the hierarchical
structure of the traffic. By doing so, we enable the model to
fully leverage the semantic understanding capabilities of large
pre-trained models.

Additionally, while the original GPT-2 vocabulary is pri-
marily designed for natural language understanding, it is not
suitable for analyzing network traffic. For instance, the port
number 443 might be tokenized as separate digits 4, 4, and
3, losing its intrinsic meaning as a unified service identifier.
To address this, we expand the vocabulary to include high-
frequency field values and field names specific to network
traffic, derived from the datasets we work with. This expansion
allows the tokenizer to more accurately segment and encode
the processed traffic into embedded vectors with position
encodings, ensuring that each field is properly interpreted
in the context of network traffic analysis. This approach
not only improves the model’s ability to process traffic data
but also enhances its performance in generating high-quality
representations for traffic generation and classification tasks.

C. Pre-training

As previously mentioned, unlike conventional tokenization
methods, our protocol-based encoding method preserves es-
sential hierarchical relationships by marking the boundaries
of protocols and fields using field names. This ensures that
the overall structural integrity of network traffic is maintained,
allowing the model to retain contextual information throughout
the process. By preserving these hierarchical relationships, our
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approach not only provides a more accurate representation
of network traffic but also enables the model to leverage
the structure inherent in the data. These domain-specific data
representation strategies significantly enhance the model’s per-
formance in network traffic analysis tasks, particularly during
the pre-training phase, where the model learns to understand
the intricate details of traffic patterns.

For our pre-training process, we use GPT-2 as the base
model. This model processes large-scale, unlabeled data
through an auto-regressive approach, where each token in the
sequence is predicted based on the preceding tokens. During
this phase, the model maps each token to a high-dimensional
embedding vector, with positional encodings integrated into
the vectors to capture the sequential structure of the data.
These embedded representations are then passed through a
series of stacked Transformer decoder layers, each consisting
of a multi-head self-attention mechanism. This mechanism al-
lows the model to simultaneously focus on multiple contextual
aspects of the data, which is critical for capturing both local
dependencies and long-range relationships within the network
traffic.

The residual connections and layer normalization further
stabilize the training process and support deeper architectures
by ensuring that gradients do not vanish or explode dur-
ing backpropagation. Additionally, causal masking is applied,
which ensures that each prediction made by the model is
based only on the preceding tokens, preventing leakage of
future information. This layered architectural approach enables
the model to effectively learn and represent the complex
relationships that exist in network traffic data, making it
well-suited for downstream tasks like traffic classification and
generation.

Given this architecture, at each time step t, the model
generates a probability distribution for the next token xt, con-
ditioned on the previous tokens x1, x2, ..., xt−1. This process
is mathematically described as follows:

P (xt | x1, x2, . . . , xt−1) =
exp(ot,xt

)∑
v∈V exp(ot,v)

(1)

where ot,xt
is the logit corresponding to token xt, and V

represents the vocabulary of the model. This equation reflects
how the model predicts the likelihood of the next token in the
sequence based on the previous context.

For the training process, we employ cross-entropy loss, a
widely used method for optimizing the model parameters. The
objective function for training is as follows:

L = −
T∑

t=1

logP (xt | x1, x2, . . . , xt−1) (2)

This loss function encourages the model to minimize the
difference between the predicted token probabilities and the
actual token values in the training data, thereby improving its
accuracy and performance over time.

Through this architecture and training approach, the model
not only acquires the ability to generate contextually appro-
priate tokens but also gains the flexibility to be fine-tuned for
specific downstream tasks, such as traffic classification, thus

ensuring its adaptability across a wide range of network traffic
analysis applications.

D. Task-specific Application

The pre-training phase allows the model to learn robust and
generalized representations by processing extensive unlabeled
network traffic data. This phase helps the model capture the
underlying patterns and structures of network traffic without
requiring labeled samples.To accommodate different down-
stream tasks, the model then requires appropriate fine-tuning to
specialize in specific applications. This phase involves modify-
ing the model’s architecture by adding task-specific layers and
adjusting the training objectives to optimize performance for
each individual task. This ensures that the model retains the
valuable knowledge acquired during pre-training, while also
adapting to the unique requirements of the task at hand.

For classification tasks, we introduce a task-specific classi-
fication layer on top of the pre-trained model. This layer typi-
cally consists of a feed-forward neural network that transforms
the model’s hidden representations into category-specific log-
its, representing the model’s predictions for each possible
class. During supervised training with labeled datasets, the
model learns to map input sequences to their corresponding
class labels by adjusting its parameters based on the clas-
sification error. In addition to standard classification chal-
lenges, we also address the issue of class imbalance, which
is common in network traffic, particularly in scenarios where
some classes (e.g., malicious traffic) are underrepresented. To
solve this problem, we introduce traffic generation as a data
augmentation strategy. This approach leverages the model’s
generative capabilities to synthesize additional samples for
the underrepresented classes. By generating traffic samples
that maintain the statistical and structural characteristics of the
target classes, the model can be trained on a more balanced
dataset, improving its ability to generalize and develop more
robust decision boundaries.

For network traffic generation tasks, we guide the model’s
generation process by providing a distinct category-specific
starting token, which serves as conditional information for
the model. This starting token indicates the type of traffic
to be generated (e.g., normal or malicious). The model then
initiates an auto-regressive generation process, progressively
constructing complete network traffic sequences by predicting
subsequent tokens. At each time-step, the model uses the
previously generated tokens to predict the next most probable
token, drawing from its learned understanding of protocol
structures and traffic patterns. This auto-regressive mechanism
ensures that the generated sequence maintains both coherence
and consistency.

IV. EXPERIMENTS

This section outlines our experimental methodology and
provides a detailed analysis of results that validate the model’s
effectiveness. We also discuss the current limitations of the
model in this section.
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TABLE I
DATASETS.

Dataset P C G

CTU-normal dataset ✓ ✗ ✗

Datacon Encrypted Malicious Traffic dataset [53] ✓ ✓ ✗

ISCXVPN2016 [54] ✓ ✓ ✗

CSTNET-TLS 1.3 [17] ✓ ✓ ✗

MalwareTraffic dataset ✓ ✗ ✗

EBSNN D1 [55] ✗ ✓ ✗

CIC IoT dataset 2023 [56] ✗ ✓ ✓

Self-Collected Benign Traffic ✗ ✗ ✓

1 P: used for model pre-training
2 C: used for traffic classification
3 G: used for traffic generation and data augmentation

A. Settings

1) Datasets: The model’s pre-training, fine-tuning, and
validation are conducted using seven public datasets and one
dataset composed of self-collected benign traffic, as detailed in
Table I. The CTU-normal dataset3 is constructed from normal
traffic data publicly released by Stratosphere, while the Mal-
wareTraffic dataset4 is built based on malicious software traffic
data publicly available from Malware-Traffic-Analysis.net. We
extract traffic from five classical public datasets (CTU-normal,
Datacon, CSTNET-TLS 1.3, ISCXVPN2016, MalwareTraffic)
to perform unsupervised pre-training of the model.

2) Baselines: We conduct comparative experiments using
five different models to thoroughly validate the effectiveness
of the proposed model.

• FS-Net [29]: This model converts network traffic into
packet length sequences, capturing flow patterns through
a multi-layer encoder-decoder architecture that processes
sequential data and reconstructs traffic features for clas-
sification.

• DeepPacket [31]: DeepPacket extracts features from raw
traffic using two models: SAE and CNN. Based on the
original paper’s findings of CNN’s superior performance,
we implement the CNN approach for our comparative
analysis.

• ET-BERT [17]: This method adapts BERT for encrypted
traffic analysis by pre-training on large-scale unlabeled
data to learn contextual packet representations. Its bidi-
rectional self-attention mechanisms capture complex traf-
fic pattern interdependencies, enabling effective classifi-
cation across diverse traffic types.

• YaTC [36]: YaTC proposes a Masked Auto-Encoder
(MAE) traffic classification framework that converts net-
work traffic into fixed-size matrices for standardized pro-
cessing. It leverages pre-training mechanisms to extract
features and perform accurate classification.

• NetGPT [23]: NetGPT employs a GPT-based architec-
ture that processes network traffic as sequential tokens.
Through autoregressive training on large-scale datasets,

3https://www.stratosphereips.org/datasets-normal
4https://www.malware-traffic-analysis.net/

it learns traffic patterns and generates synthetic samples,
allowing fine-tuning for various downstream analysis
tasks.

It should be noted that the first four models lack generative
capabilities, and NetGPT only generates specified field types.
Thus, we only compare our generative performance with
NetGPT.

3) Metrics: In experiments, we employ four commonly
used evaluation metrics to comprehensively assess the model’s
classification performance. Accuracy (AC) quantifies the pro-
portion of correctly classified samples. Precision (PR) mea-
sures the ratio of true positives among all positive predictions.
Recall (RC) represents the fraction of actual positive samples
successfully identified. F1-Score(F1) provides the harmonic
mean of precision and recall, offering a balanced measure
of overall effectiveness. Collectively, these metrics enable
multi-dimensional and objective evaluation of the model’s
capabilities.

AC =
TP + TN

TP + TN + FP + FN
,

PR =
TP

TP + FP
,

RC =
TP

TP + FN
,

F1 =
2 · PR ·RC

PR+RC

(3)

For the generation task, we evaluate the quality of gener-
ated traffic through Jensen-Shannon Divergence (JSD) on key
protocol fields, comparing the statistical distributions between
real and generated samples. This metric helps validate both
the authenticity and accuracy of our generated traffic in terms
of protocol-level characteristics.

4) Implementation Details: Our research focuses on en-
crypted traffic, specifically TLS traffic filtered from datasets
using tshark. We exclude categories without TLS traffic to
ensure smooth experiment execution. All experiments are im-
plemented using PyTorch and conducted on NVIDIA GeForce
RTX 2080 Ti GPU × 4.

For the classification task, we set the learning rate to 2e-5
and the weight decay to 0.01. The model is fine-tuned for 5
epochs. Specifically, Ethernet and IP addresses are removed to
safeguard privacy and improve the reliability of classification
results.

For the generation task, due to the complexity of encrypted
traffic and payload invisibility, we focus on processing fun-
damental fields within the TLS protocol (such as version
numbers, record types, etc.) while implementing aggregated
generation for payloads. We evaluate our generated traffic’s
effectiveness on imbalanced classification by creating few-
shot scenarios with limited malicious samples. Using test
sets with all attacks and balanced benign traffic, we compare
models trained with and without generated samples to assess
performance improvements under data imbalance.

B. Evaluation on Traffic Generation
We evaluate our generation model using network traffic

from the CIC IoT dataset 2023. We select four representative
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sport dport len
(a) BrowserHijacking

sport dport len
(b) Backdoor

sport dport len
(c) CommandInjection

sport dport len
(d) SqlInjection

Fig. 3. KDE analysis between real and generated traffic. We selecte four types of attacks from the CIC IOT dataset 2023 for our experiments, including
BrowserHijacking, Backdoor, CommandInjection, and SqlInjection. We compare the distribution differences between original traffic and generated traffic in
terms of source port, destination port, and IP packet length.

TABLE II
TRAFFIC GENERATION PERFORMANCE USING JSD.

dataset Field NetGPT GBC

BrowserHijacking
sport 0.0215 0.0221
dport 0.0177 0.0165
len 0.0479 0.0626

Backdoor
sport 0.0360 0.0108
dport 0.0214 0.0137
len 0.0302 0.0353

CommandInjection
sport 0.0199 0.0100
dport 0.0104 0.0101
len 0.0474 0.0350

SqlInjection
sport 0.0522 0.0087
dport 0.0631 0.0111
len 0.0315 0.0311

Web attack types (BrowserHijacking, Backdoor, Command-
Injection, and SqlInjection) for the experiments. Erroneous
samples identified during the generation process are excluded
to ensure data quality. BrowserHijacking represents typical
client-side attacks that manipulate user browsing behavior,
while Backdoors enable persistent unauthorized system ac-
cess through malicious code. CommandInjection exploits web
application input points to execute harmful commands, and
SQLInjection remains among the most prevalent web vulnera-
bilities. These four attack vectors span both client and server-
side security threats in modern web applications. Our selection
of these representative attacks enables thorough evaluation of
our method’s ability to generate diverse attack traffic with
practical relevance.

To assess the fidelity of generated traffic, we employ Kernel
Density Estimate (KDE) analysis, comparing the detailed
distribution patterns of critical protocol fields between real and
generated samples, as shown in Figure 3. From the figure, it

(a) BrowserHijacking (b) Backdoor

(c) CommandInjection (d) SqlInjection
Fig. 4. JSD divergence comparison. GBC w/o pt represents the model with
the pre-training step removed. We compare the gap in generation capability
between this and the complete model.

can be seen that GBC is capable of generating synthetic traffic
that highly fits the distribution of the original traffic.

To provide a more intuitive comparison of the distribution
similarity between the generated traffic and the original net-
work traffic, we calculate the JSD. This metric quantitatively
measures the similarity between two probability distributions,
where smaller values indicate that the distributions are very
similar, and larger values suggest greater divergence. The de-
tailed JSD results across different protocol fields are presented
in Table II. It can be observed that compared to NetGPT,
our model generates traffic that better matches the original
distribution across most categories. While a marginal differ-
ence exists in the BrowserHijacking category where our model
performs slightly below NetGPT, this gap remains negligible.
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TABLE III
CLASSIFICATION RESULTS ON DATACON, ISCXVPN2016 AND EBSNN D1 DATASETS.

Tasks Malicious Traffic Classification Encrypted Traffic Classification on VPN Application Traffic Classification

Method AC PR RC F1 AC PR RC F1 AC PR RC F1

FS-Net 0.9411 0.9465 0.8122 0.8742 0.8085 0.6990 0.6905 0.6946 0.8156 0.7079 0.6657 0.6862
DeepPacket 0.9049 0.9076 0.8633 0.8848 0.7516 0.7519 0.7516 0.7490 0.8110 0.8185 0.8109 0.8147
ET-BERT 0.9620 0.9620 0.9622 0.9620 0.9840 0.9848 0.9840 0.9842 0.9991 0.9975 0.9864 0.9912

YaTC 0.9485 0.9487 0.9485 0.9473 0.9545 0.9548 0.9514 0.9528 0.8197 0.8035 0.7992 0.8028
NetGPT 0.8530 0.8530 0.8564 0.8547 0.9739 0.9524 0.9823 0.9671 0.9667 0.8037 0.8083 0.8060

GBC 0.9776 0.9645 0.9824 0.9734 0.9998 0.9987 0.9982 0.9984 0.9982 0.9943 0.9856 0.9900

TABLE IV
CLASSIFICATION RESULTS ON CSTNET-TLS 1.3 AND CIC IOT 2023 DATASETS.

Tasks Encrypted Application Traffic Classification on TLS 1.3 IoT Traffic Classification

Method AC PR RC F1 AC PR RC F1

FS-Net 0.5988 0.6153 0.549 0.5786 0.6445 0.5210 0.6359 0.5726
DeepPacket 0.5380 0.5384 0.5380 0.5377 0.7473 0.7427 0.7473 0.7456
ET-BERT 0.9532 0.9535 0.9539 0.9535 0.9801 0.9749 0.9774 0.9761

YaTC 0.9326 0.9331 0.9326 0.9330 0.9368 0.9383 0.9368 0.9383
NetGPT 0.7011 0.6487 0.6852 0.6665 0.8884 0.8510 0.8570 0.8540

GBC 0.9976 0.9975 0.9975 0.9975 0.9805 0.9801 0.9817 0.9810

The primary distinction occurs in packet length distribution,
where GBC demonstrates a tendency toward generating shorter
packets compared to the more dispersed length distribution
observed in original traffic.

Furthermore, to verify the effect of the pre-training process
on traffic generation, we compare the performance of the
model with the complete architecture versus the model without
the pre-training step in the generation task. Figure 4 shows
a comparison of the JSD divergence between the generated
traffic and the original traffic for both models. It can be
observed that pre-training significantly enhances the model’s
ability to understand traffic patterns, thereby generating data
that better fits the distribution of the original traffic.

It is worth noting that most existing efforts in traffic
generation primarily focus on producing partial feature fields (
[23], [51]) or are limited to generating packets under specific
and simple protocols ( [22], [45], [46]). In contrast, the model
proposed in this study is capable of generating complete traffic
packets of various types. While ensuring the authenticity of
the generated samples, it also demonstrates superior general-
ization, making it applicable to traffic generation tasks across
diverse scenarios.

C. Evaluation on Traffic Classification
We conduct comprehensive experiments to evaluate the

effectiveness of our approach in network traffic classification
tasks. Our evaluation consists of two main aspects. First, we
assess the model’s base performance across five downstream
classification tasks on different datasets. Subsequently, we
examine how our generated traffic samples can address data
imbalance issues through targeted data augmentation experi-
ments. These experiments aim to demonstrate that incorporat-
ing strategically generated traffic can effectively improve the

model’s classification performance, particularly in scenarios
where certain attack types have limited real-world training
samples.

1) Analysis of traffic classification: The classification per-
formance of proposed model is evaluated through five down-
stream tasks, each focusing on different aspects of network
traffic classification:

• Malicious Traffic Classification: This task is based on
the Datacon Encrypted Malicious Traffic dataset, aiming
to achieve binary classification of malicious and normal
traffic.

• Encrypted Traffic Classification on VPN: We utilize
the ISCXVPN-2016 dataset, which contains 16 distinct
categories, to evaluate the model’s effectiveness in iden-
tifying traffic transmitted through VPN connections.

• Application Traffic Classification: In this study, we
utilize the EBSNN D1 dataset, introduced in [55] and
gathered from 29 applications, for application identifica-
tion.

• Encrypted Application Traffic Classification on TLS
1.3: We conduct encrypted traffic application classifica-
tion experiments on 120 classes based on the CSTNET-
TLS 1.3 dataset, as described in [17].

• IoT Traffic Classification: This task focuses on en-
crypted attack classification leveraging the CIC IoT
dataset 2023, which includes network traffic data from
seven real-world attack categories.

The experimental results are presented in Tables III and
Table IV. Clearly, the proposed model achieves optimal clas-
sification performance on nearly all datasets, demonstrating
GBC’s superior performance in understanding and analyzing
network traffic.
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Fig. 5. Changes in classification performance under different positive-to-
negative sample ratios. From left to right, the proportion of positive samples
gradually decreases.

In the Application Traffic Classification task (EBSNN D1
dataset), the model only achieves the second-best result. Our
model is primarily designed for the TLS protocol, while
some categories in this dataset contain a large number of
data transmission packets using private protocols or tunnels
that are difficult to parse. This may have affected the model
performance to some extent. Nevertheless, the performance
gap between our model and the best-performing ET-BERT
in this task is very minimal, which we consider acceptable
and could potentially be eliminated through further model
optimization. In the other four tasks, our model achieves the
optimal classification results. Specifically, in the TLS traffic
classification task (CSTNET-TLS 1.3 dataset), the proposed
model demonstrates a nearly 5% improvement on F1 score
compared to the second-best ET-BERT. As this dataset com-
prises TLS traffic across 120 class labels, GBC’s excellent
performance in this task demonstrates both its applicability in
complex scenarios and its effective comprehension of the TLS
protocol.

Moreover, pre-trained models (including ET-BERT, YaTC,
NetGPT, and the proposed model) significantly outperform
traditional models across all evaluation tasks. In the latter four
tasks, pre-trained models demonstrate performance improve-
ments of over 10% compared to non-pre-trained models. Since
the Malicious Traffic Classification task(Datacon Encrypted
Malicious Traffic dataset) is a binary classification task deter-
mining whether network traffic is malicious, traditional models
also achieve good results, making performance differences
relatively less pronounced. Nevertheless, pre-trained models
still attain the optimal results. These findings underscore the
critical role of pre-training in the field of traffic analysis. Such
performance gaps suggest that pre-training enables models
to learn more robust and transferable features from network
traffic data.

Notably, the CIC IoT dataset 2023 and EBSNN D1 datasets
are not included in the model’s initial pre-training process.
Despite this, the proposed model still achieves outstanding
performance in the corresponding tasks, demonstrating its
exceptional generalization ability in traffic comprehension.
The robust performance on datasets not used in pre-training
indicates that our model has successfully learned general traffic

Fig. 6. Comparison of classification performance before and after augmenta-
tion. The original ratio of malicious samples to benign samples is 1:5, which
achieves balance after expansion with generated traffic.

patterns and characteristics. These results collectively validate
the effectiveness of our model design, suggesting promising
potential for practical applications in diverse network environ-
ments.

2) Data Augmentation: Class imbalance remains a criti-
cal and persistent challenge in network traffic classification,
where certain attack types often have fewer samples than
benign traffic. This imbalance typically leads to poor detection
performance for minority classes. To systematically evaluate
this impact, we construct an experimental dataset using the
CIC IoT dataset 2023. As shown in Figure 5, the model’s
classification performance varies significantly under different
positive-to-negative sample ratios, highlighting the detrimental
effect of class imbalance on model accuracy. The results
clearly demonstrate that as the sample ratio becomes more
imbalanced, all performance metrics of the model substantially
decrease.

To address this limitation, we propose a traffic generation
approach specifically designed to augment minority classes. To
evaluate our proposed method, we conduct data augmentation
experiments using a subset of the CIC IoT dataset 2023,
where we combine randomly selected Web attack samples
with benign samples from both the original dataset and our
self-collected normal traffic. These experiments simulate real-
world data scarcity scenarios and demonstrate the effectiveness
of our generated traffic in improving overall classification
performance across multiple evaluation metrics.

Data Augmentation: Specifically, we construct the initial
training dataset with a subset of attack samples and benign
traffic, maintaining an imbalanced ratio of approximately
1:5 between attack and benign samples. We then generate
additional attack samples based on these data to balance the
class distribution. Note that the amount of real traffic remains
unchanged before and after augmentation, but the augmented
dataset contains a larger number of model-generated malicious
samples compared to the pre-augmentation dataset. For eval-
uation, we create a balanced test dataset comprising attack
samples and an equal amount of benign traffic. Figure 6
demonstrates how our synthetic samples improve the model’s
detection capability compared to training with the imbalanced
dataset.
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(a) Accuracy (b) Precision (c) Recall (d) F1
Fig. 7. Comparison of model performance under different sample proportions. To make the results more intuitive, in this set of experiments, we intensify
the degree of imbalance, with the original ratio of malicious traffic to benign traffic being 1:10. In the Balanced part, sections of different colors in the bars
represent the proportions of real traffic and generated traffic within malicious samples. From left to right, the proportion of real traffic gradually increases,
until the malicious part is entirely composed of real traffic in the final bar.

TABLE V
COMPARISON OF MODEL PERFORMANCE UNDER DIFFERENT SAMPLE

PROPORTIONS.

Positive-to-Negative Sample Real : Generated TPR AUC

IMBALANCED
malicious:benign=1:10 0.6252 0.9729

BALANCED

1:10 0.8604 0.9905
3:8 0.9158 0.9817
5:6 0.9439 0.9860
7:4 0.9736 0.9891
9:2 0.9814 0.9938

All real 0.9915 0.9924

Through data augmentation, the F1 score of the classifi-
cation model improves by 9%, indicating that our generated
samples effectively preserve the critical features of the original
traffic. The improved performance mainly comes from the
more balanced sample distribution created by adding gener-
ated traffic, allowing the model to better learn features from
more diverse training samples. This also corresponds with the
conclusion in Figure 5, which shows that a more balanced
sample ratio enables the model to achieve better classification
results.

Effect of Generated Traffic Ratio: To further validate the
quality of our generated traffic, we conduct an experiment
in which real and synthetic traffic are mixed in varying
proportions for model training. Figure 7 and table V illustrate
the results of the experiment. The leftmost bar represents
the baseline classification performance under imbalanced con-
ditions (1:10 ratio of malicious to benign samples) using
only real traffic. To the right of the dashed line, we present
improved classification results after addressing this imbalance
by supplementing with our generated samples to achieve a
balanced 1:1 ratio. These bars illustrate performance across
varying proportions of real and generated data, with the
fraction of real samples increasing progressively from left to
right.

It is notable that although the number of real malicious
samples remains consistent between the imbalanced condition
and the balanced condition (with a 1:10 ratio of real to
generated samples), the model’s performance improves sig-

(a) IMBALANCED (b) BALANCED (c) BALANCED
Fig. 8. (a) shows the prediction results of the model trained on the imbalanced
dataset. Since the model tends to predict samples as the majority class, FP
is low and precision is high. (b) displays the prediction results of the model
trained on a balanced dataset after augmentation with generated traffic, where
FN is significantly reduced and the model can correctly identify malicious
samples. (c) shows the prediction results of the model after being trained on
a balanced dataset composed entirely of real traffic samples.

nificantly. This improvement demonstrates that the generated
traffic effectively simulates the characteristics of real malicious
traffic, augmenting the training dataset. When compared to a
balanced dataset composed solely of real malicious samples,
there is an inevitable performance decline as the proportion
of generated traffic increases. However, given the practical
challenges of acquiring real traffic and the convenience of
generating synthetic data, we consider this minor loss in
performance entirely acceptable.

In addition, from the figure we can observe that as the
sample ratio becomes balanced, Precision instead exhibits a
downward trend. We believe this occurs because when the
sample ratio is imbalanced, normal traffic samples (nega-
tive) constitute the majority. Figure 8 illustrates the model’s
prediction results under imbalanced sample conditions and
after balancing with generated traffic. After training with the
imbalanced dataset, the model tends to classify most samples
as normal, thereby resulting in lower FP and higher Precision.
With the dataset augmented by generated traffic, the sample
distribution tends to be balanced, enabling the model to better
learn the features of malicious traffic and thereby achieve
effective differentiation.

In summary, the results presented above validate the effec-
tiveness of our traffic generation approach in addressing class
imbalance issues, particularly in strengthening the model’s
capability to detect minority attack classes. This improvement
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demonstrates the practical applicability of our method in
network traffic analysis, where data imbalance is a persistent
challenge.

D. Discussion

Despite GBC’s impressive capabilities in both traffic gen-
eration and classification tasks, the model does have several
limitations to consider.

Resource Consumption: As a pre-trained model, it in-
evitably relies on GPU resources and requires more com-
putational overhead compared to non-pre-trained models,
which presents potential deployment challenges in resource-
constrained environments.

Model Capacity: Considering the hardware limitations and
the computational resource requirements, the model has a
relatively small parameter count, which limits its performance
in certain complex scenarios. This suggests that there is room
for improvement in both the architecture and performance of
the model.

Generalizability: In this study, we only investigate GBC’s
performance in TLS traffic scenarios, leaving exploration of
other encryption protocols for future work. Furthermore, our
handling of the TLS protocol is relatively coarse-grained, with
insufficient support for some complex protocol fields. Given
that TLS is currently the most widely used encryption proto-
col, we believe that our experimental results based on TLS are
representative. Additionally, our protocol-aware tokenization
scheme can be easily modified to support additional protocol
types.

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a traffic comprehension model
based on a generative pre-training architecture, which sup-
ports two core capabilities: synthetic traffic generation and
encrypted traffic classification. These capabilities enable the
model to tackle both the creation of network traffic sam-
ples and the effective classification of encrypted traffic. To
achieve this, we introduce a novel network traffic repre-
sentation method specifically designed for pre-training tasks.
This method improves the model’s ability to understand the
underlying semantics of network traffic and capture essential
features, such as protocol structures and traffic patterns, which
are crucial for accurate traffic analysis.

Our evaluations across five diverse datasets demonstrate that
the model performs exceptionally well in traffic classification.
More importantly, the model’s traffic generation capability
proves to be effective for data augmentation, producing syn-
thetic traffic samples that closely resemble real-world network
flows. These synthetic samples effectively supplement real
data, especially in cases where labeled data is scarce or diffi-
cult to obtain. Through a series of augmentation experiments,
we validate that our generated traffic samples can substantially
improve classification performance, particularly for minority
classes. By enriching the training data for underrepresented
traffic categories, the model becomes more robust in accurately
classifying diverse traffic patterns.

Despite the promising results, our research faces several
limitations as outlined above. We aim to address these issues
in our future work, such as implementing more detailed field
segmentation and generation constraints for protocols, and
optimizing resource consumption. We hope to conduct more
in-depth investigations to explore the broader applicability of
our model across various network security challenges.
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