
ar
X

iv
:2

50
5.

19
45

6v
1

 [
cs

.C
R

]
 2

6
M

ay
 2

02
5

An Empirical Study of JavaScript Inclusion
Security Issues in Chrome Extensions

Chong Guan

Zhejiang Gongshang University, China
guanchong@zjgsu.edu.cn

Abstract. JavaScript, a scripting language employed to augment the
capabilities of web browsers within web pages or browser extensions,
utilizes code segments termed JavaScript inclusions. While the security
aspects of JavaScript inclusions in web pages have undergone substan-
tial scrutiny, a thorough investigation into the security of such inclusions
within browser extensions remains absent, despite the divergent security
paradigms governing these environments. This study presents a system-
atic measurement of JavaScript inclusions in Chrome extensions, em-
ploying a hybrid methodology encompassing static and dynamic analysis
to identify these inclusions. The analysis of 36,324 extensions revealed
350,784 JavaScript inclusions. Subsequent security assessment indicated
that, although the majority of these inclusions originate from local files
within the extensions rather than external servers, 22 instances of vul-
nerable remote JavaScript inclusions were identified. These remote inclu-
sions present potential avenues for malicious actors to execute arbitrary
code within the extension’s execution context. Furthermore, an analy-
sis of JavaScript library utilization within Chrome extensions disclosed
the prevalent use of susceptible and outdated libraries, notably within
numerous widely adopted extensions.

1 Introduction

Chrome extensions are small web applications developed in JavaScript to ex-
tend the functionality of the Chrome browser. For example, the AdBlock exten-
sion removes advertisements in web pages and has millions of users. Imported
third-party JavaScript code has been problematic in web applications, intro-
ducing many vulnerabilities [18, 24]. The risks are amplified in Chrome exten-
sions, as they possess greater privileges. Consequently, a vulnerable or malicious
imported JavaScript code within a Chrome extension can lead to more severe
consequences.

The security implications of imported third-party JavaScript have been thor-
oughly investigated in standard web pages. For example, Nikiforakis et al. [24]
examined JavaScript inclusions in the top 10,000 Alexa [1] websites, evaluated
the servers providing the JavaScript, and identified four categories of vulnerabil-
ities associated with insecure third-party inclusion practices. Tobias et al. [18]
analyzed client-side JavaScript library usage and discovered that numerous web-
sites employ outdated and vulnerable libraries.

https://arxiv.org/abs/2505.19456v1

2 Chong Guan

However, a comprehensive examination of JavaScript inclusion issues in Chrome
extensions, which possess a unique security architecture, is lacking. First, JavaScript
is utilized in diverse components of a Chrome extension. In web applications,
all JavaScript code is within script HTML tags. Chrome extensions employ a
privilege-separation architecture [26], segregating an extension into two distinct
components: ContentScript and the core extension. ContentScripts interact with
web pages rendered in the Chrome browser but operate without elevated privi-
leges. Core extensions, conversely, do not directly interact with web pages and
execute with full privileges. Second, Chrome extensions have more extensive
privileges than web applications, managed through a permission system. Exten-
sions must request permissions from the user during installation. Consequently,
malicious code injected through vulnerable JavaScript inclusions can only exploit
the granted permissions.

This paper reports on an empirical study of JavaScript inclusions in Chrome
extensions, undertaken to facilitate an evaluation of Chrome extension security.
Initially, a collection of 36324 Chrome extensions was assembled, and a sub-
set of 18890 extensions was subjected to longitudinal version tracking over a
six-month period. Subsequently, JavaScript inclusions within the Chrome ex-
tensions were identified using both dynamic and static analysis. An empirical
study of vulnerable JavaScript inclusions revealed 33 instances of remote in-
clusions susceptible to manipulation, enabling arbitrary code execution within
the extension’s execution environment. Finally, an analysis of JavaScript library
usage within Chrome extensions identified the prevalent use of vulnerable and
outdated libraries in these extensions.

The conventional methodology for gathering JavaScript inclusions in web
applications proved inadequate for the context of Chrome extensions. Specifi-
cally, web application analysis typically employs a proxy to intercept JavaScript
inclusion requests between the browser and server. However, this approach is
ineffective for Chrome extensions, as local JavaScript file imports do not gener-
ate web requests. To address this, we employed a hybrid approach, integrating
static and dynamic analysis methods. The static analysis involved parsing web
pages and extracting JavaScript inclusions identified by the script HTML tag.
To capture dynamically generated scripts, which static analysis overlooks, we
implemented a dynamic analysis technique. This involved injecting and execut-
ing JavaScript code within the loaded extension’s web page to enumerate all
JavaScript inclusions.

Static and dynamic methods provide complementary identification of JavaScript
inclusions: static analysis detects inclusions before webpage loading, while dy-
namic analysis captures inclusions in the fully rendered webpage. For instance,
JavaScript inclusions within a redirect page, which is not fully rendered, are
not detectable by dynamic analysis. In total, we analyzed 36324 Chrome exten-
sions and identified 723798 JavaScript inclusions. Of these, 16.54% were Con-
tentScripts, 11.32% were background scripts, and the remainder were embedded
within extension webpages. A total of 29992 inclusions were loaded from external
servers.

JISI in Chrome Extensions 3

To investigate vulnerabilities within Chrome extension JavaScript inclusions,
we adopted the analytical framework developed by Nikiforakis et al. (2012).
Their research, which analyzed JavaScript inclusions in the top 10,000 Alexa
websites, delineated four categories of vulnerable JavaScript inclusions. Based
on these categories, our study identified 33 vulnerable JavaScript inclusions
in Chrome extensions, which could enable attackers to execute arbitrary code
within susceptible extensions.

Compared to the Alexa top 10,000 websites, Chrome extensions exhibit a
lower prevalence of vulnerable cases. This disparity arises from the tendency of
Chrome extensions to utilize local JavaScript inclusions rather than retrieving
them from remote servers. While 687 distinct remote servers provided JavaScript
inclusions to Chrome extensions, Nikiforakis et al. (2012) identified 20,225 unique
remote servers. However, when considering only remote JavaScript inclusions,
the proportion of vulnerable instances is approximately equivalent between Chrome
extensions and web applications.

Our investigation was expanded to encompass JavaScript libraries employed
within Chrome extensions, given that these libraries contain frequently reused
code, potentially significantly influencing Chrome extension security. These li-
braries may be integrated as local files via copying or from a remote server.
However, the source code of a JavaScript library is not invariably static; even
identical versions may vary across different servers, and developers may modify
the source code to meet specific requirements.

Consequently, static methods are inadequate for reliable JavaScript library
identification. Therefore, we employed dynamic detection to identify JavaScript
libraries within Chrome extensions. By invoking the version retrieval APIs pro-
vided by these libraries when the JavaScript code is loaded in the Chrome
browser, we were able to identify the library and its version. We examined
10 commonly used libraries to determine their presence within the imported
JavaScript code.

Our analysis detected 79291 library inclusions. Similar to the distribution
of JavaScript inclusions, extension webpages contained the highest number of
libraries, with only a small fraction imported from remote servers. JQuery was
found to be the most prevalent library. Given that the frequency of other library
inclusions was substantially lower than that of JQuery, and their analysis yielded
similar results, we focus on presenting the JQuery analysis in this paper. We
present the version distribution of JQuery and observe that developers typically
update to the latest patch version. By calculating the age of the libraries relative
to the extension’s update time, we determined that popular extensions tend to
utilize older, outdated libraries. We also analyzed the prevalence of vulnerable
library versions in Chrome extensions, finding that 21.88% of extensions still
employ at least one vulnerable version of the 10 libraries examined.

In summary, the contributions of this study are as follows:

– We evaluate the performance of static and dynamic JavaScript inclusion
detection methodologies on Chrome extensions.

4 Chong Guan

– We present a detailed analysis of imported JavaScript usage in Chrome ex-
tensions, identifying 33 vulnerable JavaScript inclusions based on four vul-
nerability types.

– We identify JavaScript libraries within Chrome extensions and determine
that a significant proportion of these libraries are outdated, with 21.88% of
extensions employing vulnerable library versions.

2 Background

2.1 JavaScript Inclusion

In web applications, JavaScript inclusions encompass all JavaScript code in-
tegrated via the script HTML tag. Examples of JavaScript inclusions in web
applications are shown in Listing 1.

The first line illustrates a remote JavaScript inclusion, where the code is
retrieved from a service provider’s server at the domain www.provider.com.
The second line demonstrates a local JavaScript inclusion. In this instance, the
script’s src attribute lacks a server address, and the code is loaded from the same
server as the webpage. Lines 3-5 provide an example of inline JavaScript, where
the src attribute is absent, and the JavaScript code is embedded directly within
the script tag.

Listing 1: JavaScript Inclusions

1 <script src="https: // www.provider.com/sdk.js"></script>

2 <script src="js/functions.js"></script>

3 <script>

4 console.log("Inline JavaScript demo.")

5 </script>

The concept of JavaScript inclusion is broadened in Chrome extensions due
to their distinct architecture, which incorporates two additional file types, Con-
tentScript and background scripts, that may also contain JavaScript code. The
term “imported JavaScript” is used here to refer to reused JavaScript code that
is either incorporated via direct copying or remote inclusion.

2.2 Architecture of Chrome Extension

Chrome extensions are software applications that operate within the Chrome
browser. They enhance the browsing experience, enabling users to customize
Chrome’s functionality and behavior according to individual requirements or
preferences. For example, AdBlock, a widely used extension, functions to elim-
inate advertisements from websites such as YouTube or Facebook. Chrome ex-
tensions are developed using web technologies, including HTML, JavaScript, and

JISI in Chrome Extensions 5

C
hr

om
e

Ex
te

ns
io

n
AP

I

Core Extension

Shared Dom

ContentScript

Web Page

Chrome Extension Message

Shared Dom

ContentScript

Web Page

Shared Dom

ContentScript

Web Page

Chrome Extension Message Chrome Extension Message

C
lie

nt
 J

av
aS

cr
ip

t A
PI

Html Webpage

Background JavaScript

Fig. 1: The Architecture of Chrome Extensions

CSS, and are designed adhering to the principle of least privilege. All privileges
required by a given extension are specified in a manifest file.

Figure 1 illustrates the architecture of Chrome extensions, in which JavaScript
code can be present in two components with differing privilege levels. The core
extension represents the primary component and possesses all privileges declared
in its manifest file. ContentScripts are JavaScript codes that execute within the
context of web pages. While isolated from the web pages’ local JavaScript, Con-
tentScripts share the Document Object Model (DOM) of the webpage.

2.3 JavaScript Inclusion in Chrome Extension

A Chrome extension comprises ContentScripts and core extension scripts. Core
extension scripts can be further categorized into background scripts and scripts
within Chrome extension webpages. Background scripts execute in the exten-
sion’s background and manage its primary functionality. Chrome extension web-
pages provide user interfaces, such as popup pages and option pages. These web-
pages can import JavaScript code from local extension files or remote servers.
Generally, background scripts and ContentScripts are local files within the exten-
sion. To enhance functionality and expedite development, developers frequently
integrate third-party libraries, either by copying them as local files within the
extension or by importing them from a remote server into a Chrome extension
webpage.

3 Data Collection

This section delineates the methodologies employed in gathering JavaScript in-
clusions within Chrome extensions and identifying libraries within those inclu-
sions.

6 Chong Guan

3.1 Extension Collection

To acquire Chrome extensions, we conducted an analysis of the source code of the
ChromeWeb Store [3] to extract each extension’s unique identifier. Subsequently,
we used these identifiers to construct URLs for downloading the corresponding
Chrome extension CRX files. These CRX files were then decompressed to obtain
the source code, which was stored on a server for subsequent analysis.

In addition to the extensions’ source code, we also gathered supplementary
extension information from the Chrome Web Store, including update times-
tamps, user counts, rating scores, and supported languages.

3.2 JavaScript Detection

As detailed in Section 2.3, JavaScript code in Chrome extensions can be catego-
rized into three components: background scripts, ContentScripts, and JavaScript
within Chrome extension webpages. Background scripts and ContentScripts are
consistently local files, and their respective file paths are specified in the exten-
sion’s manifest file. By parsing this file, we can efficiently locate ContentScripts
and background scripts. The principal challenge lies in detecting JavaScript
within the extension webpages.

We used a combination of static and dynamic methods to address this chal-
lenge. The static method involves parsing webpage content and extracting JavaScript
code referenced by script tags. However, this approach cannot detect dynami-
cally generated JavaScript, a feature that allows developers to import JavaScript
code at runtime. Specifically, a script element can be created and appended to
the webpage during execution. Dynamically generated JavaScript is prevalent in
third-party widgets. To simplify widget integration, developers often provide a
single JavaScript file for inclusion via the script HTML tag, which then generates
other required JavaScript inclusions dynamically.

Request interception using a proxy represents one technique for detecting dy-
namically generated JavaScript. However, this method is unsuitable for Chrome
extensions, because importing a local JavaScript file from an extension webpage
does not initiate a network request.

To capture dynamically generated JavaScript, we developed a dynamic method.
This involves loading extensions and opening target webpages in the Chrome
browser using Selenium. We then inject the following JavaScript code: docu-
ment.getElementByTagName(”script”) into the extension webpage to enumerate
all JavaScript inclusions within the loaded page.

4 Analysis Results

This section delineates the outcomes of our investigation. Initially, we present
descriptive statistics concerning the assembled corpus of Chrome extensions.
Subsequently, we detail the analysis of JavaScript inclusions and the findings
from vulnerability assessments targeting remote server JavaScript inclusions. Fi-
nally, we examine the utilization of prevalent JavaScript libraries within Chrome
extensions.

JISI in Chrome Extensions 7

(a) Extension Language (b) User Number (c) Rated Score

(d) Updatetime (e) Version

Fig. 2: The Count of Extensions with Different Attributes

4.1 Chrome Extensions

Our collection comprises a total of 36324 extensions sourced from the Chrome
Web Store. The initial dataset was compiled at the close of 2018, and from
August 2021 to February 2022, we have monitored 18890 extensions, acquiring
multiple versions thereof. Figure 2 illustrates the distribution of these exten-
sions based on their programming language, user count, rated score, last update
timestamp, and version. Figure 2a displays the extension count for the top 17
languages, revealing that the majority of Chrome extensions cater to English-
speaking users. Figure 2b indicates that only a small fraction of extensions are
utilized by a substantial user base. Based on this observation, we categorize the
dataset into three groups for subsequent analysis: popular extensions (over 1000
users, 13791), general extensions (20 to 1000 users, 16224), and infrequently
used extensions (0 to 20 users, 8780). Figure 2d presents the last modification
date for all original extension samples collected in 2018, revealing a significant
number of extensions that are not actively maintained. For 18890 extensions,
we obtained newer iterations in 2021, and Figure 2e shows the distribution of
extensions according to the number of versions available.

8 Chong Guan

Extension
Type

Total
Number

JavaScript Inclusion(File)Frequency Per Extension
Local Local Remote

BackgroundScript ContentScript Script In Extension Webpage

Popular 9769 2.551(1.566) 4.112(2.263) 25.647(5.075) 0.863(0.058)
General 15869 0.957(0.761) 1.623(1.082) 11.654(2.594) 0.926(0.071)
Unused 8780 0.763(0.595) 1.117(0.81) 7.079(1.886) 0.338(0.072)
Sum 34418 1.36(0.947) 2.2(1.347) 14.459(3.117) 0.758(0.067)

Table 1: JavaScript Number in Chrome Extension

Hostname Extension Number

https://ssl.google-analytics.com/ 1704
https://www.google-analytics.com/ 1072

https://www.google.com/ 436
https://ajax.googleapis.com/ 363
https://www.happyhey.com/ 212

Table 2: Top Hosts in Remote JavaScript Inclusions

4.2 General JavaScript Statistics

In total, we identified 723798 JavaScript inclusions, comprising 178148 unique
JavaScript files. Table 1 presents a summary of the frequencies of various types
of JavaScript inclusions (note that the total number is less than 36324 due to
the absence of user count data for some extensions). The majority of JavaScript
code is incorporated into extension webpages. Popular extensions tend to ex-
hibit a higher number of JavaScript inclusions. While JavaScript sourced from
remote servers constitutes a minor proportion of all inclusions, these files demon-
strate frequent reuse across Chrome extensions. Specifically, remotely sourced
JavaScript files are reused approximately seven times on average, whereas other
JavaScript files are reused no more than twice. Consequently, the compromise of
a single remotely included JavaScript file could potentially affect a larger number
of extensions compared to other inclusion types.

We detected 2231 JavaScript files originating from remote servers, hosted
across 9972 distinct domains, with 63% of these hosts employing the HTTPS
protocol. Table 2 lists the top 5 most frequently encountered hosts, with Google’s
servers being the most prevalent source of JavaScript. On average, each host
serves 40.37 JavaScript inclusions.

Figure 3 presents a bar chart comparing the frequency of JavaScript inclu-
sions identified through static and dynamic analysis. Surprisingly, static analysis
detected a greater number of local JavaScript inclusions than dynamic analy-
sis. Further investigation revealed that this discrepancy arises from the dynamic
method missing certain transient JavaScript inclusions. The dynamic method
captures all JavaScript inclusions present after webpage loading; however, some
inclusions are employed temporarily and subsequently removed immediately. For

JISI in Chrome Extensions 9

Local Remote

General Popular Unused General Popular Unused

0.0

0.2

0.4

0.6

0.8

0

4

8

12

F
re

qu
en

cy
 P

er
 E

xt
en

si
on

Both Dynamic Static

Fig. 3: JavaScript Inclusion Frequency in Dynamic and Static Methods

instance, some webpages serve as redirects and are not rendered as final content.
JavaScript inclusions within these pages are consequently missed by the dynamic
method. Generally, both static and dynamic approaches are effective in detecting
the majority of JavaScript inclusions. We found 174455 JavaScript files identified
by both methodologies, 33419 exclusively by the dynamic method, and 126004
solely by the static method. Nevertheless, the dynamic method significantly out-
performed the static method in identifying remote JavaScript inclusions, as the
dynamic creation of JavaScript inclusions is typically associated with importing
remote scripts within JavaScript libraries, rather than local ones.

4.3 Vulnerabilities in Remote JavaScript Inclusion

Improperly configured remote JavaScript inclusions can enable attackers to exe-
cute arbitrary code. We evaluated four categories of vulnerabilities and compared
the results with those reported for the Alexa top 10,000 websites [24].

The first vulnerability pertains to cross-user and cross-network scripting. If
a remote address is specified as localhost or 127.0.0.1, the JavaScript inclusion
will attempt to retrieve code from the user’s local machine. In multi-user envi-
ronments, an attacker can listen on a port and serve malicious JavaScript code
without requiring root privileges if the remote address includes a port number
greater than 1024. If the remote address specifies a private IP address (e.g.,
192.168.2.2), the JavaScript will be retrieved from the user’s local network, po-
tentially allowing its control by an unauthorized entity. Within our dataset, we
identified 3 JavaScript inclusions with the 127.0.0.1 address and 16 instances
using localhost. In contrast, the Alexa top 10,000 websites exhibited a higher
prevalence of such vulnerable inclusions (131 among the 10,000 websites) [24].

The second vulnerability involves stale Domain-Name-Based Inclusions. A
domain name may expire, and if the original registrant does not renew it, an
attacker can acquire the domain and serve malicious content. Research on the
Alexa top 10,000 websites revealed 56 such domains [24]. In Chrome extensions,
we identified 2 cases of this vulnerability.

10 Chong Guan

Library
Library JavaScript Inclusion (Extension) Frequency

Local Local Remote
BackgroundScript ContentScript JavaScript In Extension Webpage

jquery 3888(3869) 9342(7423) 24433(11742) 1296(770)
Underscore 294(291) 584(452) 1414(827) 15(10)
Moment 213(213) 321(266) 972(632) 16(13)
RequireJS 51(51) 53(47) 1567(446) 6(5)
Backbone 15(15) 55(31) 162(113) 1(1)
Mustache 7(7) 68(44) 173(124) 0(0)
Handlebars 5(5) 64(60) 235(161) 4(4)
Modernizr 4(4) 11(11) 219(117) 14(14)
Knockout 3(3) 8(8) 233(191) 10(10)

Table 3: Library Numbers in Chrome Extension

The third vulnerability concerns stale IP-Address-Based Inclusions. When a
web developer uses an IP address as the source for a remote JavaScript inclusion,
attackers who gain control of that IP address can serve malicious code to users.
Our experimental data revealed 1 instance of this vulnerability, compared to 35
cases found in the Alexa top 10,000 websites [24].

The final vulnerability is Typosquatting Cross-Site Scripting. Typosquat-
ting [23,34] involves registering domain names that are slight variations of pop-
ular website domains. This technique can redirect users who misspell a web
address to a malicious site. Similarly, if a developer makes a typographical error
in the source attribute of a JavaScript inclusion, the browser might inadvertently
request JavaScript code from a malicious domain. We did not detect any such
vulnerabilities in our experiment, while 6 cases were reported in the Alexa top
10,000 websites. All identified vulnerable JavaScript inclusions were associated
with 15 distinct Chrome extensions, with user counts ranging from 8 to 2030.

In Chrome extensions, the necessary permissions are specified in the manifest
file, indicating the types of resources the extension can access and the addresses
the extension can interact with. Malicious JavaScript code can exploit these
granted permissions to attack users. The 15 vulnerable extensions requested
15 different resource permissions. Table 4 lists these permissions and their fre-
quency. The most frequently requested permissions are storage and tabs. We
identified 22 distinct web server addresses within the permissions of vulnerable
extensions, with 8 vulnerable extensions requesting permissions with wildcard
web addresses (e.g., http:///).

Our findings suggest that Chrome extensions experience fewer attacks of the
types analyzed compared to the Alexa top websites. A primary reason for this
is the tendency of Chrome extensions to utilize more local JavaScript rather
than fetching it from remote servers. Our analysis identified only 9972 unique
remote hosts, whereas 20,225 unique remote hosts were identified in [24]. Addi-
tionally, we found 3395 JavaScript inclusions attempting to retrieve code from
non-existent addresses, both locally and remotely. If an attacker were able to up-

JISI in Chrome Extensions 11

Permission Frequency Description

storage 11 To store, retrieve, and track changes to user data.
tabs 10 Gives your extension access to privileged fields of

the Tab objects.
activeTab 6 Gives an extension temporary access to the cur-

rently active tab.
contextMenus 4 To add items to Google Chrome’s context menu.
background 3 Makes Chrome start up early and shut down late,

so that apps and extensions can have a longer life.
notifications 3 To create rich notifications using templates and

show these notifications to users in the system
tray.

desktopCapture 2 To capture content of screen, individual windows
or tabs.

downloads 1 To programmatically initiate, monitor, manipu-
late, and search for downloads.

webRequest 1 To observe and analyze traffic and to intercept,
block, or modify requests in-flight.

webRequestBlocking 1 Required if the extension uses the
chrome.webRequest API in a blocking fash-
ion.

history 1 To interact with the browser’s record of visited
pages.

browsingData 1 To remove browsing data from a user’s local pro-
file.

webNavigation 2 To receive notifications about the status of navi-
gation requests in-flight.

cookies 1 To query and modify cookies, and to be notified
when they change.

unlimitedStorage 1 Provides an unlimited quota for storing HTML5
client-side data.

Table 4: Permissions In Vulnerable Extensions

load files to such addresses, the corresponding Chrome extensions would become
vulnerable.

4.4 Library Analysis

4.5 Library Identification

To acquire more granular metadata regarding the JavaScript inclusions, we per-
formed an identification process for prevalent JavaScript libraries within the col-
lected JavaScript files from the Chrome extensions. The identification method-
ology employed is analogous to the dynamic method described in Section 3.2.
Most widely adopted libraries provide programmatic interfaces for retrieving
their version information. By invoking these APIs, we can ascertain the specific
library based on the returned value.

12 Chong Guan

Hostname Extension Number

https://ajax.googleapis.com/ 307
http://ajax.googleapis.com/ 88
http://beauteousbox.com/ 81
https://code.jquery.com/ 77
http://code.jquery.com/ 53

Table 5: Top Hosts in Remote JavaScript Library Inclusion

In a prior study [18], a collection of 72 popular JavaScript libraries was com-
piled utilizing popularity metrics from the JavaScript package manager Bower [2],
the web technology survey Wappalyzer [7], and public Content Delivery Net-
works (CDNs) operated by Google, Microsoft, and Yandex. However, given that
certain prominent libraries did not incorporate a version retrieval API in their
earlier releases, precise identification of these libraries is not feasible. To enhance
the accuracy of our identification process, we selected 10 widely used libraries
from [18] that consistently provide a version retrieval API across all their released
versions. These libraries are as follows: jQuery, Underscore, Backbone, Handle-
bars, Knockout, Modernizr, Moment, Mootools, Mustache, and RequireJS.

In total, we detected 79291 JavaScript library inclusions, comprising 7890
unique JavaScript files. 18138 extensions incorporate at least one of the 10 se-
lected JavaScript libraries. Notably, JavaScript files belonging to these libraries
exhibit a higher rate of reuse compared to general JavaScript files (11.45 vs. 2.42).
Table 3 presents a summary of the frequency of different libraries within Chrome
extensions. The distribution observed is similar to that of general JavaScript in-
clusions. The ContentScript component contains a greater number of JavaScript
libraries compared to background scripts. The majority of JavaScript libraries
are utilized within the extension webpages.

The dynamic method demonstrates efficacy in detecting JavaScript libraries
imported from remote servers. For RequireJS and Knockout libraries, the dy-
namic method identified a greater number of local instances compared to the
static method. However, upon closer examination of these JavaScript inclusions,
we determined that this discrepancy is attributable to the repeated utilization
of specific popular components. For instance, a jquery-ui package installed via
npm includes numerous HTML webpages that dynamically import requireJS for
testing purposes.

Table 5 lists the most frequently encountered hosts serving the detected
JavaScript libraries. Unsurprisingly, Google’s CDN is the most extensively uti-
lized. On average, each host serves 6.06 library inclusions. jQuery emerges as
the most frequently employed library within Chrome extensions. Given the rela-
tively small dataset for other libraries and the similarity of their analysis results
to those of jQuery, we will focus on presenting the analytical findings for jQuery
in the subsequent sections.

JISI in Chrome Extensions 13

0

100

200

300

400

500

1.
2.

5

1.
2.

6

1.
3

1.
3.

1

1.
3.

2

1.
3.

3

1.
4.

1

1.
4.

2

1.
4.

3

1.
4.

4

1.
5

1.
5.

1

1.
5.

2

1.
6

1.
6.

1

1.
6.

2

1.
6.

3

1.
6.

4

1.
7

1.
7.

1

1.
7.

2

1.
7.

3

1.
8.

0

1.
8.

1

1.
8.

2

1.
8.

3

1.
9.

0

1.
9.

1

1.
10

.0

1.
10

.1

1.
10

.2

1.
11

.0

1.
11

.1

1.
11

.2

1.
11

.3

1.
12

.0

1.
12

.1

1.
12

.2

1.
12

.3

1.
12

.4

2.
0.

0

2.
0.

1

2.
0.

2

2.
0.

3

2.
1.

0

2.
1.

1

2.
1.

2

2.
1.

3

2.
1.

4

2.
2.

0

2.
2.

1

2.
2.

2

2.
2.

3

2.
2.

4

2.
2.

5

3.
0.

0

3.
1.

0

3.
1.

1

3.
2.

0

3.
2.

1

3.
3.

0

3.
3.

1

version

E
xt

en
si

on

Popular General Unused

Fig. 4: Jquery Version Distribution

Jquery Versions In Chrome Extension To gain a deeper understanding of
JavaScript library utilization within Chrome extensions, we extracted the version
information for these libraries. Figure 4 illustrates the distributional character-
istics of the jQuery library versions encountered. The data indicates that jQuery
versions prior to 1.7 are infrequently used, more recent versions tend to exhibit
higher usage frequencies, and older versions of jQuery remain prevalent. The
version naming convention adheres to the major.minor.patch scheme. Our ob-
servations suggest that developers typically update to the latest patch version
within a given minor version. The two exceptions observed in Figure 4 (1.7.3,
2.2.5) do not correspond to officially released jQuery versions. These instances
represent jQuery builds modified by developers who have assigned custom ver-
sion numbers, hence their limited occurrence. We determined that the versions
are not ordered chronologically by their release dates. The final few versions
within the major version 1 series are maintained concurrently with the major
version 2 series by the jQuery team, which likely accounts for the lower adoption
rate of version 1.12.* jQuery.

We identified 715 extensions that import multiple versions of jQuery, with the
majority of these instances involving outdated jQuery versions. Analysis of the
extensions’ source code revealed that library dependencies are a primary cause
of this multi-version inclusion. Specifically, certain JavaScript libraries depend
on specific jQuery versions, leading to the introduction of new jQuery versions
into extensions even if a version of jQuery is already present.

Ages of Jquery Library To quantify the temporal disparity between the out-
dated libraries and the most current versions, we retrieved the release dates of
jQuery versions by examining the commit history of its GitHub open-source
project. We then compared the release dates of the jQuery versions used in the
extensions with the data collection date and the extensions’ last update dates.
Figure 5 presents the temporal lag of the jQuery libraries in days. The lower
and upper hinges correspond to the first and third quartiles (the 25th and 75th
percentiles, respectively). The first cluster represents the lag in days of jQuery
libraries within Chrome extensions. The second cluster illustrates the tempo-

14 Chong Guan

●● ●●●●● ●●

●

●
●

●●
●
●

●
●

●●

●

●

●
●

●

●
●
●

●
●

●
●
●

●●

●●
●●
●
●

●●●●●

●

●
●●●

●

●
●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0

1000

2000

3000

delay
updateTime

relative

delay

Popular

General

Unused

(a) Different User Number (b) Different Language

Fig. 5: The lag days of JavaScript Libraries in Chrome Extensions

ral difference between the data collection date and the extensions’ last update
time. The final cluster depicts the relative temporal delay of jQuery libraries,
specifically the lag between the jQuery version release time and the extensions’
last update time. The temporal lags of jQuery in the majority of extensions ex-
ceed 1000 days. Comparing these results with those reported in [18], a greater
prevalence of outdated libraries is observed in Chrome extensions. While pop-
ular extensions tend to undergo regular updates, these updates often do not
encompass the associated jQuery libraries. Surprisingly, popular extensions with
the most recent update times tend to utilize more outdated jQuery libraries.
Furthermore, our analysis based on extension languages indicates that Chinese
extensions exhibit a tendency to employ more outdated jQuery libraries.

Vulnerable Libraries in Chrome Extensions We also investigated the pres-
ence of vulnerable libraries within Chrome extensions. The identification of vul-
nerable libraries was based on information obtained from the npm registry [6].
Any jQuery version known to contain security vulnerabilities was flagged as such.
Our analysis revealed that 5 libraries among the 10 selected libraries contain
vulnerable versions. Ultimately, we found that 21.88% of the analyzed Chrome
extensions import at least one vulnerable library.

5 Discussion

Despite stringent security protocols, our findings reveal the persistent pres-
ence of vulnerable JavaScript inclusions within Chrome extensions, alongside
the widespread utilization of deprecated JavaScript libraries. The subsequent
sections delineate potential strategies for enhancing the security of JavaScript
implementation in Chrome extensions and address the limitations of the current
study, outlining avenues for future research.

5.1 Remediation

Firstly, the JavaScript inclusion detection methodology developed in this study
can be integrated into the security assessment framework for Chrome extensions.

JISI in Chrome Extensions 15

The automated acquisition of comprehensive metadata pertaining to JavaScript
inclusions facilitates the detection of the four vulnerability classes identified
herein. This data can further aid in Google’s evaluation of the security risks
associated with JavaScript inclusions within Chrome extensions. Furthermore,
the automated identification of a significant proportion of outdated JavaScript
libraries enables the implementation of developer notifications, alerting them to
the potential risks associated with the use of deprecated software components.

Secondly, it is proposed that Google consider the removal of extensions ex-
hibiting low user engagement and a prolonged absence of updates from the
Chrome Web Store. Our empirical evidence suggests that while Chrome exten-
sion developers generally adopt contemporary JavaScript libraries, the lack of
incentive for developers to remove abandoned extensions results in the continued
availability of potentially vulnerable software.

5.2 Limitation and Future Work

As indicated in Section 4.2, the current JavaScript inclusion detection method
exhibits certain limitations, resulting in the omission of some inclusions. Specifi-
cally, when ContentScripts within Chrome extensions support dynamic JavaScript
inclusions, our methodology is unable to detect this category of ContentScript.
This is attributed to the injection mechanism relying on Chrome-specific ex-
tension APIs. Future work will focus on identifying alternative approaches to
comprehensively enumerate all ContentScripts.

Although the data acquisition framework was initially designed for Chrome
extensions, the underlying methodology possesses the potential for broader appli-
cation to the extension ecosystems of other prevalent browsers. Given the archi-
tectural similarities between Chrome extensions and those of popular browsers
such as Firefox and Safari, and the cross-browser compatibility of the Selenium
web automation framework, future research will involve extending our data col-
lection capabilities to encompass extensions from other major browsers. This will
enable a comprehensive analysis of JavaScript inclusion usage across the entire
spectrum of major browser extensions.

6 Related Work

As a foundational language for web development, JavaScript is ubiquitously
present within the web environment. The security challenges arising from JavaScript
inclusion have been a subject of scholarly inquiry for numerous years. An early
empirical investigation into insecure JavaScript practices on the web was con-
ducted by Yue and Wang in 2009 [36]. Their study utilized a corpus of 6,805
homepages from popular websites to examine risky behaviors associated with
JavaScript inclusion and dynamic code generation. Nikiforakis et al. [24] re-
ported on a comprehensive crawl of over three million pages from the top 10,000
Alexa-ranked sites in 2012. Their research identified the provenance of JavaScript
inclusions and formulated host-centric metrics for assessing the maintenance

16 Chong Guan

quality of remote code providers. They further identified four classes of vulner-
abilities potentially exploitable by adversaries to compromise popular websites.
Our work evaluates these vulnerabilities within the context of Chrome extensions
and compares the empirical findings with the results reported by Nikiforakis et
al.

Lauinger et al. [18] investigated the more specific yet semantically dense do-
main of libraries. Their study examined the incorporation of deprecated libraries
and ascertained the agents and underlying factors contributing to these inclu-
sions. Richards et al. [28] and Ratanaworabhan et al. [27] analyzed the dynamic
behavior of prevalent JavaScript libraries. Derr et al. [11] explored the updatabil-
ity of third-party libraries on the Android platform. Ikram et al. [13] conducted
a large-scale study of dependency chains on the web, revealing that approxi-
mately 50% of first-party websites render content that was not directly loaded
by them. Squarcina et al. [32] investigated the concept of related-domain at-
tackers and performed a measurement study on 50,000 domains. Silva et al. [29]
analyzed over eight hundred million VirusTotal (VT) URLs and developed the
first content-agnostic machine learning models to differentiate between various
types of apex domains hosting malicious websites. Our research aligns with the
study of insecure remote JavaScript inclusions but focuses specifically on the
domain of Chrome extensions.

Google has developed and implemented a dedicated security architecture for
Chrome extensions [14, 16]. Within this security framework and threat model,
Carlini et al. [10] conducted a security assessment of 100 Chrome extensions,
identifying 70 vulnerabilities across 40 extensions. Liu et al. [20] demonstrated
that Chrome’s extension security model does not constitute a universal solu-
tion for all potential attacks targeting browser extensions. Malicious extensions
continue to represent significant security risks. Starov et al. [33] and Sjösten
et al. [30] investigated the fingerprintability of browser extensions. Karami et
al. [17] automated the creation and detection of browser extension fingerprint-
ing and conducted a thorough analysis of the associated privacy threats. Jia et
al. [15] examined process-based isolation in Chrome, demonstrating that existing
memory vulnerabilities in Chrome’s renderer can be exploited as a precursor to
attacking the local system. Hausknecht et al. [12] studied the implementation
of Content Security Policy within Chrome extensions. Borgolte et al. [9] ana-
lyzed the impact of eight popular privacy-focused browser extensions on browser
performance, finding that these extensions can enhance both user privacy and
browsing experience. By analyzing the communication interfaces exposed to web
applications by browser extensions, Somé et al. [31] identified numerous exten-
sions that web applications can leverage to gain access to privileged capabilities.

A substantial body of work has addressed the protection of web applications
against malicious JavaScript inclusions. Arshad et al. [8] proposed a browser-
based methodology for the detection of malicious third-party content inclusions
and implemented it within Chromium. Xing et al. [35] presented InteGuard to
provide security against vulnerable web API integrations. ScriptInspector [37] is
a specialized browser capable of intercepting, recording, and verifying third-party

JISI in Chrome Extensions 17

script accesses to critical resources against predefined security policies. Lekies et
al. [19] conducted a systematic investigation into the security concerns stemming
from dynamic JavaScript inclusion. Phung et al. [25] introduced a technique for
transforming JavaScript code into a self-protective form based on function wrap-
ping. Magazinius et al. [21] expanded upon Phung’s work by developing a sys-
tematic approach to mitigate the identified vulnerabilities. Meyerovich et al. [22]
proposed object views as a user-level mechanism for fine-grained JavaScript ob-
ject sharing. Google’s Caja project [5] and Facebook’s FBJS project [4] adopted
JavaScript function wrapping to enforce security checks.

7 Conclusion

We developed and deployed a suite of tools to systematically gather JavaScript
inclusions within Chrome extensions, subsequently collecting data from a corpus
of 36324 Chrome extensions. Our investigation reveals the continued presence of
JavaScript inclusion issues within this ecosystem. In the context of Chrome ex-
tensions, developers exhibit a tendency towards the utilization of locally sourced
JavaScript resources rather than importing them from external servers. Never-
theless, a significant number of JavaScript libraries are implemented via code
duplication, leading to suboptimal maintenance practices. Consequently, a con-
siderable quantity of deprecated JavaScript libraries persists within Chrome ex-
tensions. This issue appears particularly pronounced in widely adopted Chrome
extensions. Finally, we propose recommendations aimed at mitigating this iden-
tified problem.

References

1. Alexa, top sites on the web. http://www.alexa.com/topsites
2. Bower: A package manager for the web. https://bower.io/
3. Chrome web store,. https://chrome.google.com/webstore/category/apps?hl=

en-US

4. Facebook fbjs. https://github.com/facebook/fbjs, accessed: 2018-10-16
5. Google caja. https://developers.google.com/caja/, accessed: 2018-10-16
6. npm. https://www.npmjs.com/
7. Wappalyzer, ”sites using javascript frameworks,”. https://wappalyzer.com/

categories/javascript-frameworks

8. Arshad, S., Kharraz, A., Robertson, W.: Include me out: In-browser de-
tection of malicious third-party content inclusions. In: Financial Cryptogra-
phy and Data Security - 20th International Conference, FC 2016, Christ
Church, Barbados, February 22-26, 2016, Revised Selected Papers. pp. 441–
459 (2016). https://doi.org/10.1007/978-3-662-54970-4“˙26, https://doi.org/10.
1007/978-3-662-54970-4_26

9. Borgolte, K., Feamster, N.: Understanding the performance costs and benefits of
privacy-focused browser extensions. In: Huang, Y., King, I., Liu, T., van Steen, M.
(eds.) WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020.
pp. 2275–2286. ACM / IW3C2 (2020). https://doi.org/10.1145/3366423.3380292,
https://doi.org/10.1145/3366423.3380292

18 Chong Guan

10. Carlini, N., Felt, A.P., Wagner, D.: An evaluation of the google chrome
extension security architecture. In: Proceedings of the 21th USENIX
Security Symposium, Bellevue, WA, USA, August 8-10, 2012. pp. 97–
111 (2012), https://www.usenix.org/conference/usenixsecurity12/

technical-sessions/presentation/carlini

11. Derr, E., Bugiel, S., Fahl, S., Acar, Y., Backes, M.: Keep me updated: An
empirical study of third-party library updatability on android. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. pp.
2187–2200 (2017). https://doi.org/10.1145/3133956.3134059, https://doi.org/

10.1145/3133956.3134059

12. Hausknecht, D., Magazinius, J., Sabelfeld, A.: May i? - content secu-
rity policy endorsement for browser extensions. In: Detection of Intrusions
and Malware, and Vulnerability Assessment - 12th International Confer-
ence, DIMVA 2015, Milan, Italy, July 9-10, 2015, Proceedings. pp. 261–
281 (2015). https://doi.org/10.1007/978-3-319-20550-2“˙14, https://doi.org/10.
1007/978-3-319-20550-2_14

13. Ikram, M., Masood, R., Tyson, G., Kâafar, M.A., Loizon, N., Ensafi, R.:
The chain of implicit trust: An analysis of the web third-party resources
loading. In: Liu, L., White, R.W., Mantrach, A., Silvestri, F., McAuley,
J.J., Baeza-Yates, R., Zia, L. (eds.) The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17, 2019. pp. 2851–2857.
ACM (2019). https://doi.org/10.1145/3308558.3313521, https://doi.org/10.

1145/3308558.3313521

14. Jagpal, N., Dingle, E., Gravel, J., Mavrommatis, P., Provos, N., Rajab, M.A.,
Thomas, K.: Trends and lessons from three years fighting malicious extensions. In:
24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015. pp. 579–593 (2015), https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/jagpal

15. Jia, Y., Chua, Z.L., Hu, H., Chen, S., Saxena, P., Liang, Z.: ”the web/lo-
cal” boundary is fuzzy: A security study of chrome’s process-based sandbox-
ing. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016. pp. 791–804
(2016). https://doi.org/10.1145/2976749.2978414, http://doi.acm.org/10.1145/
2976749.2978414

16. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Paxson, V.:
Hulk: Eliciting malicious behavior in browser extensions. In: Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014.
pp. 641–654 (2014), https://www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/kapravelos

17. Karami, S., Ilia, P., Solomos, K., Polakis, J.: Carnus: Exploring the
privacy threats of browser extension fingerprinting. In: 27th An-
nual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, February 23-26, 2020. The In-
ternet Society (2020), https://www.ndss-symposium.org/ndss-paper/

carnus-exploring-the-privacy-threats-of-browser-extension-fingerprinting/

18. Lauinger, T., Chaabane, A., Arshad, S., Robertson, W., Wilson, C., Kirda,
E.: Thou shalt not depend on me: Analysing the use of outdated javascript
libraries on the web. In: 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017

JISI in Chrome Extensions 19

(2017), https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/

thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web/

19. Lekies, S., Stock, B., Wentzel, M., Johns, M.: The unexpected dangers of dy-
namic javascript. In: 24th USENIX Security Symposium, Washington, D.C.,
USA. pp. 723–735 (August 12-14, 2015), https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/lekies

20. Liu, L., Zhang, X., Yan, G., Chen, S.: Chrome extensions: Threat
analysis and countermeasures. In: 19th Annual Network and Dis-
tributed System Security Symposium, NDSS 2012, San Diego, Califor-
nia, USA, February 5-8, 2012 (2012), http://www.internetsociety.org/

chrome-extensions-threat-analysis-and-countermeasures

21. Magazinius, J., Phung, P.H., Sands, D.: Safe wrappers and sane policies for self
protecting javascript. In: Information Security Technology for Applications - 15th
Nordic Conference on Secure IT Systems, NordSec, Espoo, Finland, Revised Se-
lected Papers. pp. 239–255 (October 27-29, 2010). https://doi.org/10.1007/978-3-
642-27937-9˙17

22. Meyerovich, L.A., Felt, A.P., Miller, M.S.: Object views: fine-grained sharing in
browsers. In: Proceedings of the 19th International Conference on World Wide
Web(WWW), Raleigh, North Carolina, USA. pp. 721–730 (April 26-30, 2010).
https://doi.org/10.1145/1772690.1772764

23. Moore, T., Edelman, B.: Measuring the perpetrators and funders of typosquat-
ting. In: Financial Cryptography and Data Security, 14th International Confer-
ence, FC 2010, Tenerife, Canary Islands, Spain, January 25-28, 2010, Revised Se-
lected Papers. pp. 175–191 (2010). https://doi.org/10.1007/978-3-642-14577-3“˙15,
https://doi.org/10.1007/978-3-642-14577-3_15

24. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Acker, S.V., Joosen, W., Kruegel,
C., Piessens, F., Vigna, G.: You are what you include: large-scale evaluation of
remote javascript inclusions. In: the ACM Conference on Computer and Commu-
nications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012. pp. 736–747
(2012). https://doi.org/10.1145/2382196.2382274, http://doi.acm.org/10.1145/
2382196.2382274

25. Phung, P.H., Sands, D., Chudnov, A.: Lightweight self-protecting javascript. In:
Proceedings of the ACM Symposium on Information, Computer and Communi-
cations Security(ASIACCS), Sydney, Australia. pp. 47–60 (March 10-12, 2009).
https://doi.org/10.1145/1533057.1533067

26. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation.
In: Proceedings of the 12th USENIX Security Symposium, Washington,
D.C., USA, August 4-8, 2003 (2003), https://www.usenix.org/conference/

12th-usenix-security-symposium/preventing-privilege-escalation

27. Ratanaworabhan, P., Livshits, B., Zorn, B.G.: Jsmeter: Comparing the behavior
of javascript benchmarks with real web applications. In: USENIX Conference
on Web Application Development, WebApps’10, Boston, Massachusetts, USA,
June 23-24, 2010 (2010), https://www.usenix.org/conference/webapps-10/

jsmeter-comparing-behavior-javascript-benchmarks-real-web-applications

28. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dy-
namic behavior of javascript programs. In: Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010. pp. 1–12 (2010).
https://doi.org/10.1145/1806596.1806598

20 Chong Guan

29. Silva, R.D., Nabeel, M., Elvitigala, C., Khalil, I., Yu, T., Keppitiyagama,
C.: Compromised or attacker-owned: A large scale classification and study of
hosting domains of malicious urls. In: Bailey, M., Greenstadt, R. (eds.) 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021. pp.
3721–3738. USENIX Association (2021), https://www.usenix.org/conference/
usenixsecurity21/presentation/desilva

30. Sjösten, A., Van Acker, S., Picazo-Sanchez, P., Sabelfeld, A.: Latex
gloves: Protecting browser extensions from probing and revelation at-
tacks. In: 26th Annual Network and Distributed System Security Sym-
posium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society (2019), https://www.ndss-symposium.org/ndss-paper/

latex-gloves-protecting-browser-extensions-from-probing-and-revelation-attacks/

31. Somé, D.F.: Empoweb: Empowering web applications with browser ex-
tensions. In: 2019 IEEE Symposium on Security and Privacy, SP 2019,
San Francisco, CA, USA, May 19-23, 2019. pp. 227–245. IEEE (2019).
https://doi.org/10.1109/SP.2019.00058, https://doi.org/10.1109/SP.2019.

00058

32. Squarcina, M., Tempesta, M., Veronese, L., Calzavara, S., Maffei, M.: Can I take
your subdomain? exploring same-site attacks in the modern web. In: Bailey, M.,
Greenstadt, R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021. pp. 2917–2934. USENIX Association (2021), https://www.
usenix.org/conference/usenixsecurity21/presentation/squarcina

33. Starov, O., Nikiforakis, N.: XHOUND: quantifying the fingerprintability of
browser extensions. In: 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017. pp. 941–956 (2017).
https://doi.org/10.1109/SP.2017.18, https://doi.org/10.1109/SP.2017.18

34. Wang, Y., Beck, D., Wang, J., Verbowski, C., Daniels, B.: Strider typo-patrol:
Discovery and analysis of systematic typo-squatting. In: 2nd Workshop on
Steps to Reducing Unwanted Traffic on the Internet, SRUTI’06, San Jose,
CA, USA, July 7, 2006 (2006), https://www.usenix.org/conference/sruti-06/
strider-typo-patrol-discovery-and-analysis-systematic-typo-squatting

35. Xing, L., Chen, Y., Wang, X., Chen, S.: Integuard: Toward automatic protection
of third-party web service integrations. In: 20th Annual Network and Distributed
System Security Symposium(NDSS) , San Diego, California, USA (February 24-27,
2013)

36. Yue, C., Wang, H.: Characterizing insecure javascript practices on the
web. In: Proceedings of the 18th International Conference on World
Wide Web, WWW 2009, Madrid, Spain, April 20-24, 2009. pp. 961–970
(2009). https://doi.org/10.1145/1526709.1526838, http://doi.acm.org/10.1145/
1526709.1526838

37. Zhou, Y., Evans, D.: Understanding and monitoring embedded web scripts. In:
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015. pp. 850–865 (2015). https://doi.org/10.1109/SP.2015.57, http:
//dx.doi.org/10.1109/SP.2015.57

