
ar
X

iv
:2

50
5.

19
42

5v
1 

 [
cs

.C
V

] 
 2

6 
M

ay
 2

02
5

Structure Disruption: Subverting Malicious
Diffusion-Based Inpainting via Self-Attention Query

Perturbation

Yuhao He
Faculty of Innovation Engineering

Macau University of Science and Technology
Macao, China

3250004430@student.must.edu.mo

Jinyu Tian ∗

Faculty of Innovation Engineering
Macau University of Science and Technology

Macao, China
jytian@must.edu.mo

Haiwei Wu
School of Computer Science and Engineering

University of Electronic Science and Technology of China
Chengdu, Sichuan, China
haiweiwu@uestc.edu.cn

Jianqing Li
Faculty of Innovation Engineering

Macau University of Science and Technology
Macao, China

jqli@must.edu.mo

Abstract

The rapid advancement of diffusion models has enhanced their image inpainting and
editing capabilities but also introduced significant societal risks. Adversaries can
exploit user images from social media to generate misleading or harmful content.
While adversarial perturbations can disrupt inpainting, global perturbation-based
methods fail in mask-guided editing tasks due to spatial constraints. To address
these challenges, we propose Structure Disruption Attack (SDA), a powerful
protection framework for safeguarding sensitive image regions against inpainting-
based editing. Building upon the contour-focused nature of self-attention mecha-
nisms of diffusion models, SDA optimizes perturbations by disrupting queries in
self-attention during the initial denoising step to destroy the contour generation
process. This targeted interference directly disrupts the structural generation capa-
bility of diffusion models, effectively preventing them from producing coherent
images. We validate our motivation through visualization techniques and extensive
experiments on public datasets, demonstrating that SDA achieves state-of-the-art
(SOTA) protection performance while maintaining strong robustness.

1 Introduction

The rapid advancement of diffusion models has revolutionized image synthesis, facilitating the
efficient generation of photorealistic and high-fidelity images [1, 2, 3, 4]. In conditional generation
tasks, these models can be fine-tuned on limited exemplars to capture intricate stylistic attributes
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Figure 1: Protected vs. Unprotected Image Resistance: (Top) Malicious inpainting alters contextual
elements (e.g. naked and the White House) while preserving key features (e.g. human face).
(Bottom) SDA-protected images demonstrate robust resistance to such editings through sensitive
region encryption, effectively neutralizing unauthorized edits.

[5, 6, 7, 8] or reproduce specific objects and identities with remarkable precision [9, 10, 11, 12].
For inpainting applications [13, 14, 15, 16], diffusion models leverage spatially constrained mask-
guided synthesis, enabling targeted content generation within user-defined regions while maintaining
coherence with surrounding context through text-guided conditioning.

However, the rapid advancement of diffusion models has raised significant ethical and legal concerns
[17, 18]. For instance, unauthorized generation of images mimicking a specific artist’s style may
constitute copyright infringement, and malicious actors can fine-tune these models to synthesize
highly realistic yet fabricated portraits in diverse contexts, facilitating the creation of deepfake
misinformation. Furthermore, the advancement of inpainting has lowered the technical barrier to
image manipulation, potentially leading to the rampant spread of misinformation. As illustrated
in the red region of Figure 1, attackers can extract user photos from social media, employ a mask
to preserve facial features, and combine them with negative prompts to generate defamatory or
misleading imagery, severely violating personal reputation rights.

To mitigate these risks, previous research has explored the use of global adversarial perturbations to
disrupt the denoising process of diffusion models, demonstrating promising protection efficacy in fine-
tuning-based text-to-image generation tasks [19, 20, 21, 22]. However, in mask-guided image editing
(e.g., inpainting), only the masked regions interact with the model, rendering global perturbations
ineffective. Currently, inpainting-specific protection methods remain underexplored, often exhibiting
suboptimal and unstable performance [23, 24].

In this work, we present Structure Disruption Attack (SDA), an innovative and efficient image
protection method designed to prevent malicious editing of sensitive image region via diffusion model-
based inpainting. The core motivation of SDA stems from the observation that diffusion models
typically generate images through a coarse-to-fine process [25]: Early denoising timesteps establish
object contours, while later timesteps progressively refine details. Therefore, we propose to
disrupt contour structure of the protected contents (e.g. human faces), during the initial
diffusion phase to prevent the synthesis of a complete image. Since the self-attention mechanism
primarily governs structural coherence [26] (e.g., texture consistency and spatial relationships) by
focusing on these contours, we implement this disruption through self-attention interference during
the initial denoising step. As illustrated in Figure 1 (blue region), this disruption prevents the model
from reconstructing primary object structures, ultimately leading to incomplete image generation.
Extensive experiments in the last section would not only validate our design rationale but also
demonstrate SDA’s remarkable performance. In summary, our contributions are as follows:
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• We propose structural disruption as a novel defense mechanism to prevent the misuse of
diffusion-based inpainting, offering targeted protection for sensitive regions.

• We reveal a phenomenon by visualization analysis that perturbing self-attention queries
in early diffusion steps triggers a cascade failure: the model not only loses the ability to
capture object contours but also breaks semantic alignment with text prompts, leading to
complete generation collapse.

• Our method achieves state-of-the-art performance in countering diffusion-model-based
inpainting misuse and demonstrates effective performance across defenses and model
versions. We further validate the practical effectiveness of the proposed method in real-
world scenarios simulated through mask augmentation [24].

2 Related work

Adversarial examples against diffusion models The growing adoption of diffusion models in
content creation has raised critical security concerns, particularly regarding unauthorized image
synthesis. Researchers have developed specialized adversarial attacks that exploit these models’
noise prediction mechanisms to prevent malicious usage. AdvDM [20] optimizes perturbations
by directly maximizing the diffusion loss, while Anti-Dreambooth [19] alternately maximizes this
loss and minimizes the Dreambooth [9] training loss through joint perturbation-model optimization.
CAAT [27] enhances this approach by fine-tuning cross-attention blocks during noise prediction
maximization. Alternative protection strategies manipulate latent space encodings through encoder-
targeted optimization. Mist [28] jointly optimizes noise prediction maximization and latent alignment
minimization, while SDST [21] improves optimization efficiency through score distillation sampling.

Adversarial examples against inpainting Unlike standard image generation tasks that process
complete inputs, inpainting models operate under constrained conditions where only specific masked
regions of the image are modifiable. This partial accessibility requirement fundamentally alters the
threat model, as conventional global adversarial protection methods cannot function effectively when
models inherently ignore unmasked areas. To address this challenge, researchers have developed
localized attack strategies. Photoguard [23] proposes two localized strategies: EncoderAttack for
latent space manipulation and DiffusionAttack for full-process interference. DiffusionGuard [24]
introduces mask augmentation to strengthen local perturbations while attacking initial denoising steps.
Advanced approaches disrupt semantic consistency through latent centroid deviation (DDD [29]) or
attention mechanism perturbation (AdvPaint [30]). Our analysis reveals that targeted self-attention
interference provides superior protection by directly preventing coherent image generation.

3 Methodology

In this section, we introduce the SDA, an efficient image protection method that prevents images from
being maliciously inpainted through Stable Diffusion models. Our approach operates by directly
disrupting the contour structure during the initial phase of denoising to prevent the model from
reconstructing primary object structures, this intervention fundamentally compromises the
model’s capacity to synthesize structurally coherent imagery. Before discussing technical details,
we present the threat model that governs our security analysis.

Threat model We assume that adversaries could strategically mask the sensitive image region
(e.g., human face) and exploit diffusion-powered inpainting through arbitrary malicious prompts
to synthesize reputationally damaging content. This threat formulation aligns with real-world
adversarial patterns: sensitive regions like facial areas in portraits or primary subjects in other
image types are prioritized targets due to their high privacy value and ethical impact potential [31].
Previous work [24] also adopts the same paradigm of the sensitive region, where targeted perturbation
optimization resolves the inherent limitations of global perturbations [19] in inpainting scenarios,
and this constrained threat model enables us to focus our protection efforts on critical components of
the image while maintaining practical applicability.
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Figure 2: Denoising process of inpainting diffusion models. We visualize intermediate denoising
process outputs and use red curves to mark the facial contours during the denoising process.

Figure 3: The attention map during the denoising process of Inpainting

3.1 Adversarial self-attention disruption in initial diffusion step

We begin our discussion of SDA’s technical details by first analyzing why perturbing the initial
denoising step effectively prevents malicious image inpainting. Following this analysis, we present
our methodology for executing the perturbation process.

Why perturbing the initial denoising step effective The denoising trajectory of diffusion models
inherently follows a coarse-to-fine generation pattern [32, 25]. Empirical observations demonstrate
that in the early steps (T is large), the model prioritizes establishing low-frequency components that
define global semantics (e.g. contour, composition). Subsequent steps (T is small) gradually inject
high-frequency elements to refine textures (e.g., edges and local details). Figure 2 corroborates this
statement, as time step T decreases from 50 to 20, the image’s contours become increasingly clear.
Then, when T reaches 10, the details of the image are enriched. Motivated by this observation, we
propose the SDA to disrupt the contour structure during the initial phase of denoising. Moreover,
our SDA focus on the initial denoising step substantially reduces both computational overhead and
temporal expenditure in perturbation optimization compared to full-chain adversarial attacks which
typically require the backpropagation of the full generation steps.

How to disrupt the contour during the initial denoising step The self-attention mechanism are
crucail in stable diffusion models. It primarily govern the structural contour formation in image
synthesis, where targeted disruption can erase critical object semantics and collapse the generative
integrity. The attention mechanism enables diffusion models to adaptively modulate their focus across
different spatial regions during the denoising process, which typically consists of self-attention and
cross-attention. Self-attention models geometric topology and structural priors (e.g., object contours,
texture continuity) by aggregating spatial correlations within latent representations to ensure visual
coherence in the output [26]. Cross-attention achieves fine-grained fusion of cross-modal features by
computing interaction weights between the image latent space and the semantic text space, ensuring
semantic consistency between generated content and textual descriptions [26, 33].
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Figure 4: The inpainting diffusion pipeline and the protective perturbation update process. The black
path is the inpainting denoising process, and the red path is the perturbation update process.

Figure 3 illustrates the operational mechanism of attention during the denoising process. The cross-
attention module primarily facilitates the semantic interaction between the image and the text prompt.
For instance, when generating a "dog", the attention weights predominantly focus on canine features,
while shifting to ground regions when generating "grass". In contrast, the self-attention mechanism
mainly focuses on object contours and maintains global structural consistency throughout the image.
Building upon these insights and integrating previous findings, our proposed SDA strategically targets
the self-attention mechanism during the initial denoising phase. By disrupting the model’s structural
comprehension at this critical stage, SDA triggers a cascading effect that ultimately prevents the
generation of coherent images.

Attention mechanism can be formally expressed as follows:

Attention(Q,K, V ) = Softmax
(QKT

√
d

)
· V, (1)

d is the dimension of Q and K. Here, Q = q(ϕ(I)) represents the query, where ϕ(·) indicates the
latent space mapping of the input I from the previous layer before the attention block, and q(·) is
the linear projection operator for Q [34, 35]. Similarly, K and V represent the key and the value,
respectively. Q, K, and V are the core components of the attention mechanism. In self-attention, Q,
K, and V are derived from the latent space of images while in cross-attention, Q is derived from the
image and K and V originate from the text. We define the adversarial objective as follows:

δ = argmax
||δ||2≤η

∑
l

||Q̂l
s −Ql

s||, (2)

Ql
s = qls(ϕ

l
T (I)) and Q̂l

s = qls(ϕ
l
T (I + δ)), where s represents self-attention, T is the initial step of

denoising, l means in the l-th layer of U-Net and δ ∈ RH×W×3 denotes the protective perturbation
constrained by ∥δ∥2 ≤ η (where η > 0) to be optimized, where H and W are the height and the
width of the origin image respectively. Eq. 2 optimizes the protective perturbation by maximizing
the discrepancy of queries in self-attention during the initial step of the diffusion model’s denoising
process. This interference disrupts the model’s holistic perception of the image, thereby triggering a
chain reaction that prevents the generation of a complete image. The optimization objective (2) further
demonstrates the computational efficiency of our SDA framework, as it requires only performing
forward and backward propagation through the initial denoising step rather than computing the full
iterative chain, with detailed complexity analysis provided in the Appendix.
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Figure 5: Comparison of attention maps during the generation process between original and protected
images. Above the dashed line: generation process of the original image, where the first row shows
self-attention maps and the second row displays cross-attention maps for the "dog" token. Below the
dashed line: generation process of the image protected by SDA.

Figure 4 shows the inpainting diffusion pipeline and the SDA pipeline, where I is the input, and the
output O is the restored image. The black path represents the inpainting diffusion pipeline, which
initially employs a VAE [36] encoder to map the input into the latent space. Through T iterative steps,
a U-Net architecture progressively predicts and removes noise at each stage, ultimately reconstructing
the final output image via the VAE decoder. As the core denoising operator in diffusion models,
the U-Net architecture hierarchically integrates three principal components: (i) residual blocks with
skip connections for feature preservation, (ii) multi-head self-attention mechanisms for contextual
modeling, and (iii) cross-attention modules enabling conditional guidance through auxiliary inputs.
The red path delineates the perturbation update process. During the initial denoising step, the SDA
extracts query vectors from the self-attention block and optimizes perturbations through Eq. 2.

3.2 Empirical analysis

Before delving into the discussion of the related experimental results, we conduct a brief empirical
analysis of SDA. Figure 5 compares the attention maps during the generation process of original and
protected images. Observing the self-attention maps of the original image, we can identify that during
the initial denoising phase (when T is relatively large), the attention primarily focuses on the contours
of the main subject, subsequently diffusing outward (as T gradually decreases). This pattern indicates
that the model initially concentrates on the overall composition of the image before enriching other
details. In contrast, the self-attention maps of the protected image reveal a significant reduction in
the model’s attention to the image contours. When T = 40, the model almost loses its ability to
model the contours of the image, resulting in the failure to capture crucial information about the
overall composition. This impairment leads to the loss of detail generation capability, as evidenced at
T = 30, triggering a chain reaction that ultimately prevents the generation of a complete image. This
phenomenon aligns consistently with our initial motivation. An examination of the cross-attention
maps further reveals that the chain reaction initiated by the interference with self-attention during
the initial denoising phase also disrupts the alignment capability between cross-attention and the
reference text. As evidenced at T = 50, the model loses its ability to align the main subject of the
image with the textual token "dog".

4 Experiments

In this section, we present a comparative evaluation of SDA against state-of-the-art protect methods
for inpainting. We further investigate the transferability of SDA in black-box settings and assess its
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Figure 6: Comparison of our method with baseline approaches. Face protection case with prompt "A
man in the hospital" (Top); Instance protection case with prompt "A sheep in the snow" (Bottom).

robustness. Finally, we employ mask augmentation [24] to simulate real-world deployment scenarios,
systematically evaluating the robustness of protection methods under diverse masking conditions.

4.1 Experimental setup

All adversarial attacks in our experiments are restricted by the budget of η = 12 and 300 iterations for
optimization. We use the Nvidia A6000 48GB GPU, which took less than 1.5 minutes to optimize per
image. We evaluate our proposed method on the pre-trained inpainting model from Stable Diffusion
v2 in this experiment.

Datasets We constructed two distinct datasets to evaluate different scenarios: (1) face dataset and
(2) instance dataset. The face dataset was compiled from publicly available online sources [37],
where we randomly sampled 100 image-mask pairs following previous work [23]. For the instance
dataset, we use the COCO benchmark [38]: we randomly select 10 categories from COCO, with 10
image-mask pairs per category (totaling 100 samples). Then we employed ChatGPT [39] to generate
the corresponding textual prompts (e.g., "A man in the hospital", "A bear in the forest") for each
image-mask pair. Crucially, we assigned a unique fixed random seed to each image-mask pair to
ensure rigorous experimental control and enable exact reproducibility across comparisons. All images
are resized to 512× 512.

Metric We employ comprehensive metrics for quantitative analysis: reference-based metrics (VIF
[40], SSIM [41], PSNR [42], FID [43], LPIPS [44]) compare protected inpainting results against
baseline inpainting results (generated from original images), and non-reference metrics (CLIP Score
[45] for prompt-image alignment, PIQE [46] for perceptual quality assessment). Each test case
maintains strict one-to-one correspondence between image, mask, prompt and random seed to ensure
evaluation fairness, as specified in our experimental design.

4.2 Comparison with existing methods on inpainting tasks

Current research on protection targeting Stable Diffusion inpainting tasks remains limited. We experi-
mentally compared the effectiveness of existing open source attack methods, and we demonstrate that
our approach achieves state-of-the-art performance. As shown in Figure 6, we evaluate our method
against four representative baselines: EncoderAttack and DiffusionAttack from Photoguard [23], as
well as DiffusionGuard [24] and DDD [29]. The results demonstrate that current methods exhibit
limited protective capability (Columns 3-6, Row 2) or complete functional failure (Columns 4-5, Row
1). In stark contrast, as illustrated in row 1 column 7, the SDA-protected region and the generated area
are completely decoupled into two distinct images - one depicting a realistic human face and the other
presenting a cartoon character. In row 2 column 7, the overall image structure appears disordered,
demonstrating that SDA effectively prevents the model from capturing information from the protected
region. Consequently, the model is compelled to complete the remaining content without proper
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Table 1: The performance of SDA and competitors.

VIF↓ SSIM↓ PSNR↓ FID↑ LPIPS↑ CLIP Score↓ PIQE↑
face dataset

RandomNoise 0.2492 0.6385 17.12 155.45 0.4471 28.79 25.80
EncoderAttack [23] 0.2196 0.5736 14.90 183.85 0.4941 29.01 30.27
DiffusionAttack [23] 0.2234 0.5751 14.60 189.16 0.5293 28.01 32.36
DiffusionGuard [24] 0.2445 0.5895 14.88 197.89 0.5102 27.74 33.47

DDD [29] 0.1750 0.5107 13.41 233.19 0.5797 26.01 38.92
Ours 0.1583 0.4733 12.37 265.21 0.6240 25.06 43.02

instance dataset
RandomNoise 0.3763 0.7215 20.32 64.62 0.2328 30.46 26.89

EncoderAttack [23] 0.2546 0.5531 16.04 94.21 0.4108 30.10 30.48
DiffusionAttack [23] 0.2682 0.5639 15.30 106.57 0.4248 30.17 26.66
DiffusionGuard [24] 0.2620 0.5744 15.64 98.52 0.4170 29.92 28.99

DDD [29] 0.1773 0.4585 12.73 150.131 0.5214 28.04 33.05
Ours 0.1586 0.4242 12.11 179.21 0.5705 27.51 36.97

Figure 7: Performance comparison of protection methods under data augmentation. We compute FID
on the instance dataset across different protection methods.

guidance, resulting in an incoherent composition where the two components fail to form a logically
consistent image when merged.

Table 1 presents a quantitative comparison of protection methods across two datasets by IQA PyTorch
[47], demonstrating our SDA’s superior performance. Existing methods show inconsistent results:
DiffusionGuard (Row 6, Column 2) achieves minimal VIF improvement in face data (0.2445 vs
control 0.2492 at Row 3, Column 1, difference 0.0047), while SDA (Row 8, Column 2) shows
significantly better results (0.1583, difference 0.0909). Similarly in instance data, EncoderAttack
(Row 11, Column 5) yields FID 94.21 with limited difference from the control (64.62 at Row 10,
Column 5, difference 29.59), whereas SDA (Row 15, Column 5) delivers substantially stronger
protection (179.21, difference 114.59).

4.3 Robustness analysis

To validate real-world applicability, we systematically evaluate SDA’s robustness across multiple
dimensions, including data augmentation strategies, different model versions. We also assess the
performance of various protection methods under mask augmentation [24] conditions that simulate
real-world deployment scenarios. Due to the page limitation, we evaluate our SDA under different
hyperparameter configurations in Appendix.

Data augmentations As demonstrated in Figure 7, our proposed SDA exhibits notable robustness
against common data augmentation operations, including Gaussian noise addition, random post-resize
cropping, and JPEG compression, while maintaining its state-of-the-art protection performance. For
example, SDA achieves an FID of 122.73 (yellow bar in the left subfigure), demonstrating a 71.23
increase over the control group (51.50, green bar), a significantly larger gap than EncoderAttack’s
marginal 30.52 difference (82.02, orange bar).
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Table 2: Quantitative evaluation of SDA’s black-box transferability.

VIF↓ SSIM↓ PSNR↓ FID↑ LPIPS↑ CLIP Score↓ PIQE↑
v2

RandomNoise 0.2492 0.6385 17.12 155.45 0.4471 28.79 25.80
Ours 0.1583 0.4733 12.37 265.21 0.6240 25.06 43.02

v1.5
RandomNoise 0.2684 0.6591 17.49 141.56 0.3994 28.64 23.35

Ours 0.1726 0.5022 13.30 222.21 0.5684 27.78 39.46

Figure 8: The visualization performance of our SDA under seen and unseen mask conditions. Seen
masks (used for perturbation optimization) versus unseen masks (augmented variants).

Transferability Transferability measures the effectiveness of protective perturbations optimized
for one model when applied to other models. We evaluate this property using two distinct inpainting
checkpoints: RunwayML’s v1.5 and StabilityAI’s v2.0. In particular, while both checkpoints share
the same network architecture, they represent independent implementations with different training
protocols. As specified in our methodology, since the protective perturbations were optimized on v2.0,
attacks against this version constitute white-box scenarios, whereas attacks against v1.5 represent
black-box conditions.

We evaluate transferability on the face dataset, with Table 2 quantifying SDA’s black-box protection
performance. Our method demonstrates consistent effectiveness against unknown threat models, as
evidenced by PIQE scores of 39.46 for SDA-protected images versus 23.35 for the control group
(Row 7, Column 8) when tested on the Stable Diffusion v1.5 inpainting model.

Mask augmentation To ensure the applicability in the real world, we evaluate the inevitable dis-
crepancy between the masks specified by the attacker and those used during perturbation optimization.
Following Choi et al.’s methodology [24], we implement mask augmentation to simulate various
"unseen" masking scenarios likely encountered in practice, as visualized in Figure 8, which exhibits
more challenging characteristics, including coarser boundaries and irregular shapes.

Our SDA demonstrates superior cross-mask robustness: while DDD shows effective protection only
for seen masks (Row 1, Column 3), it fails completely against unseen masks (Row 2, Column 3). In
contrast, SDA maintains consistently high performance for both mask types (Rows 1-2, Column 4),
validating its practical applicability.

Table 3 shows the unseen-mask performance of SDA, our method maintains superior effectiveness
in this challenging setting, evidenced by a PIQE score of 33.32 (Row 7, Column 8), representing a
7.84-point degradation from the control group (25.48, Row 2, Column 8) and significantly larger
deviation than DiffusionAttack’s marginal 2.84-point difference (28.32 vs. 25.48, Row 4, Column 8).
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Table 3: The performance of SDA and competitors under unseen mask on the instance dataset.

VIF↓ SSIM↓ PSNR↓ FID↑ LPIPS↑ CLIP Score↓ PIQE↑
RandomNoise 0.3810 0.7248 20.50 65.71 0.2325 30.41 25.48

EncoderAttack [23] 0.2533 0.5670 16.10 92.77 0.3885 30.17 29.70
DiffusionAttack [23] 0.2651 0.5798 15.88 94.67 0.3975 30.07 28.32
DiffusionGuard [24] 0.2660 0.5790 15.87 95.65 0.4035 30.02 28.57

DDD [29] 0.2056 0.5160 13.95 117.28 0.4574 29.64 32.32
Ours 0.1968 0.4967 13.48 126.65 0.4838 29.12 33.32

5 Conclusion

This paper presents Structure Disruption Attack (SDA), a novel protection framework for safeguard-
ing sensitive image regions against diffusion-based inpainting. Building upon the coarse-to-fine
generation paradigm of diffusion models, SDA strategically disrupts the self-attention mechanism
during initial denoising steps, effectively compromising the model’s structural generation capability
and preventing coherent output synthesis. Our attention map visualizations provide compelling evi-
dence for the proposed mechanism, clearly demonstrating how SDA’s targeted interference disrupts
critical attention patterns essential for proper image composition. Extensive experiments demonstrate
that SDA achieves state-of-the-art protection performance while exhibiting remarkable robustness
across: (1) various image augmentations, (2) different model versions, (3) diverse hyperparameter
configurations, and (4) varying mask sizes and text prompts. These advantages establish SDA as a
reliable defensive solution against potential misuse of diffusion models.
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A Appendix

A.1 Additional experiments

Computational efficiency The design rationale of SDA demonstrates its computational superiority
over existing methods. Our approach simplifies the attack process by targeting only the initial
denoising steps, as opposed to the full-chain attack required by Diffusion Attack. Compared with
DDD which necessitates prior optimization of prompt embeddings for optimal matching, SDA directly
employs null-text prompts, effectively eliminating the need for prompt embedding optimization.
This strategic simplification not only enhances protection efficiency, but also maintains comparable
protection performance.

To ensure experimental fairness, we conducted time measurements under strictly controlled conditions:
gradient repetition steps (grad_reps) were uniformly set to 1 and iteration counts (iters) fixed at 300
for all methods. As shown in Figure 9, the recorded protection durations reveal significant efficiency
improvements: Diffusion Attack required 2 minutes 52 seconds per image, DDD consumed 2 minutes
33 seconds, while our SDA achieved the task in merely 1 minute 29 seconds – nearly twice as fast as
full-chain approaches.

Figure 9: Time cost of different protection methods.

Notably, our comparative analysis intentionally excluded performance considerations to focus purely
on computational efficiency. When optimizing for maximum protection performance (e.g., using
DiffusionGuard’s official recommendation of 800 iterations), the processing time increases to 1
minute 46 seconds, still surpassing SDA’s 1 minute 29 seconds execution at 300 iterations. Crucially,
even with reduced iterations, SDA maintains superior protection efficacy as demonstrated in our
security evaluation experiments.

The sensitivity to the hyperparameters of inpainting In Stable Diffusion inpainting tasks, hyper-
parameter selection critically influences the generation outcomes, particularly the strength parameter
which governs the dependency on source images. The parameter exhibits a continuous spectrum of
control: at strength = 1, the generation becomes completely stochastic, while strength = 0 forces
strict adherence to the original image content. We analyze how protective efficacy varies across this
parameter continuum.

Fig. 10 demonstrates that protective efficacy generally diminishes with decreasing inpainting strength,
as the original image content progressively dominates the generation process, thereby attenuating
adversarial perturbations. Notably, our method maintains significant effectiveness even at strength =
0.6 (purple curve), while competing approaches like DiffusionGuard (cyan curve) show near-complete
performance degradation by strength = 0.7. Most baseline methods (yellow/green/cyan curves)
already fail at strength = 0.6, collectively indicating that SDA exhibits superior robustness to
inpainting hyperparameter variations compared to existing solutions.
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Figure 10: Performance variation of protection methods with inpainting strength. Evaluation con-
ducted on the face dataset by systematically varying the inpainting strength parameter, with FID
scores recorded for each configuration. The RandomNoise condition (consistent with prior experi-
mental settings) serves as the control baseline.

A.2 Broader impacts and limitations

Broader impacts Existing approaches to prevent the misuse of diffusion models primarily focus on
maximizing denoising loss or disrupting cross-attention modules that govern text-image alignment. In
contrast, our method innovatively targets the self-attention mechanism. Through empirical analysis,
we demonstrate that this attack not only prevents the model from capturing structural contour
information but also triggers a cascading effect, leading to the subsequent failure of text-alignment
capabilities. From a technical perspective, our findings highlight the critical role of self-attention in
diffusion-based generative models, calling for increased community attention to its vulnerabilities
and robustness. In practical terms, the proposed method provides a novel defense mechanism to
safeguard user images against unauthorized malicious edits, thereby contributing to the development
of safer and more ethical AI applications.

Limitation While our study provides novel insights into defending against diffusion inpainting-
based image editing, its scope is currently limited to this specific attack scenario. Notably, modern
image editing increasingly relies on instruction-driven methods (e.g., DiffEdit [48] for text-guided
manipulation and MasaCtrl [49] for fine-grained control over latent space), where malicious edits can
be implemented without explicit inpainting masks. Our framework has not yet been systematically
evaluated in these emerging scenarios, potentially restricting its generalizability to broader attack
surfaces. Furthermore, the rapid evolution of image editing techniques (e.g., zero-shot editing and
prompt engineering) necessitates continuous adaptation of defense strategies. Addressing these gaps
will be a critical focus of our future research.
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