
ar
X

iv
:2

50
5.

19
40

5v
1 

 [
cs

.C
L

] 
 2

6 
M

ay
 2

02
5

CoTGuard: Using Chain-of-Thought Triggering for
Copyright Protection in Multi-Agent LLM Systems

Yan Wen
Department of Computer Science

University of Maryland, College Park
College Park, MD 20742

ywen1@umd.edu

Junfeng Guo
Department of Computer Science

University of Maryland, College Park
College Park, MD 20742

gjf2023@umd.edu

Heng Huang
Department of Computer Science

University of Maryland, College Park
College Park, MD 20742

heng@umd.edu

Abstract

As large language models (LLMs) evolve into autonomous agents capable of col-
laborative reasoning and task execution, multi-agent LLM systems have emerged
as a powerful paradigm for solving complex problems. However, these systems
pose new challenges for copyright protection, particularly when sensitive or copy-
righted content is inadvertently recalled through inter-agent communication and
reasoning. Existing protection techniques primarily focus on detecting content in
final outputs, overlooking the richer, more revealing reasoning processes within
the agents themselves. In this paper, we introduce CoTGuard, a novel framework
for copyright protection that leverages trigger-based detection within Chain-of-
Thought (CoT) reasoning. Specifically, we can activate specific CoT segments
and monitor intermediate reasoning steps for unauthorized content reproduction
by embedding specific trigger queries into agent prompts. This approach enables
fine-grained, interpretable detection of copyright violations in collaborative agent
scenarios. We evaluate CoTGuard on various benchmarks in extensive experiments
and show that it effectively uncovers content leakage with minimal interference
to task performance. Our findings suggest that reasoning-level monitoring offers
a promising direction for safeguarding intellectual property in LLM-based agent
systems.

1 Introduction

Recent advances in large language models (LLMs), such as GPT-4 [1], Genimi [42], DeepSeek
[13], have significantly transformed natural language processing (NLP), enabling a wide array of
applications across writing [55], translation [57], coding [30], and reasoning [34]. Building on
the generalization and zero-shot capabilities of LLMs, researchers have developed LLM-based
agent systems [23] that simulate autonomous agents capable of planning cite xie2024travelplanner,
collaboration [27], and task execution [33]. These multi-agent systems leverage LLMs as their core
reasoning engines, often coordinating via natural language to achieve complex objectives, from web
automation to collaborative problem-solving.

However, the rise of LLMs and their deployment in agent-based systems has introduced pressing
concerns about intellectual property and copyright protection [38, 6]. Much current research in

Preprint. Under review.

https://arxiv.org/abs/2505.19405v1


LLM-related copyright protection focuses on detecting memorization or leakage of training data,
watermarking generated content, and legal frameworks for model training on copyrighted corpora
[14, 21, 45, 50, 26]. However, relatively little work has extended these protections to LLM-based
agent systems, where models interact in more complex, emergent behaviors that make unauthorized
content reproduction more challenging to trace [3, 32, 49]. While research on single-agent LLM
copyright protection is well-established [5, 62], multi-agent settings introduce unique challenges due
to the collaborative, distributed nature of the reasoning process [15].

Motivated by Chain-of-Thought (CoT) reasoning [46], we identify a novel attack surface in such
systems. CoT prompting is a widely adopted method that guides LLMs to produce intermediate
reasoning steps before arriving at an answer, thereby improving performance on complex tasks such
as arithmetic, logic, and symbolic planning [46, 20]. Agents often exchange CoT traces rather than
final answers in multi-agent settings, forming multi-step, compositional reasoning paths [9, 32].
While beneficial for accuracy and interpretability, this intermediate reasoning structure also creates
new opportunities for adversarial triggers to be injected and propagated between agents [47, 59].
Therefore, our research aims to answer the following question:

Q: How can we effectively detect copyright leakage in multi-agent LLM systems, leveraging
Chain-of-Thought reasoning while minimizing disruption to task performance?

The challenges of copyright protection in multi-agent LLM systems are multifaceted. Agent inter-
actions may lead to indirect reproduction of copyrighted materials, especially when agents relay
or refine information across multiple turns. The distributed nature of such systems complicates
attribution and accountability. Furthermore, traditional watermarking and auditing methods may fail
to detect content leakage when the reproduction is partial, paraphrased, or collaboratively generated
through inter-agent dialogue.

To address these challenges, we propose a trigger-based copyright protection framework that leverages
CoT reasoning in multi-agent LLM systems. Instead of embedding static triggers into final outputs,
our approach injects carefully designed triggers into agents’ intermediate reasoning steps, particularly
in the CoT trajectories, where copyrighted material is more likely to be unintentionally recalled or
reproduced. By analyzing these reasoning chains, we can detect whether agents expose protected
content as they collaboratively solve tasks, even if the final answer does not contain an exact
reproduction. This method enables a more fine-grained and covert detection strategy tailored to the
reasoning-centric nature of LLM-based agent systems.

Our contributions are threefold:

• We propose a novel research problem on LLM-based Agents’ copyright protection.

• We introduce a CoT-trigger mechanism for copyright protection that operates on intermediate
reasoning paths in multi-agent LLMs. Besides, we develop a query-based detection framework
that activates these triggers to expose potential content leakage during agent collaboration.

• We validate our method on multi-agent benchmarks, demonstrating that it achieves high detection
rate with minimal disruption to agents’ normal task performance. Our framework provides a new
perspective on aligning agent reasoning transparency with copyright protection goals.

2 Related Works

2.1 Multi-Agent Systems

Multi-agent systems (MAS) [8] have long been studied in artificial intelligence for their ability
to model distributed intelligence [12], coordination [24], and autonomous decision-making [54].
Researches on multi-agent systems usually focus on symbolic reasoning [17], decentralized planning
[35], and communication protocols [43] in constrained environments. With the rise of large language
models, LLM-powered agents [28] have emerged as a new paradigm, where agents communicate,
plan, and collaborate via natural language. Systems such as AutoGPT [51, 11], BabyAGI [29],
CAMEL [22], and ChatDev [36] illustrate this transition, using LLMs to simulate agents that can
assume roles, decompose problems, and dynamically coordinate to complete tasks. These language-
driven agents reduce the need for explicit logic encoding, allowing for more flexible and scalable

2



system design. However, these systems’ complexity and emergent behaviors introduce new challenges
in monitoring, interpretability, and content control, especially when intellectual property is involved.

2.2 Chain-of-Thought Reasoning in Multi-Agent Systems

Chain-of-Thought (CoT) prompting [46] has improved reasoning accuracy and transparency in LLMs
by encouraging models to decompose problems into intermediate steps. In multi-agent settings,
CoT reasoning enables agents to explain their decisions, share partial results, and coordinate more
effectively through interpretable language traces [46]. Prior works such as Dialogue-Prompted
CoT [61], Reflective Agents [53], and Plan-and-Solve agents [44] have leveraged CoT to enhance
coordination and trust between agents.

Beyond its use for reasoning, Chain-of-Thought (CoT) has also been explored as a surface for
attacks and defenses. Some research shows that intermediate reasoning steps can unintentionally leak
sensitive training data, especially when the model retrieves memorized facts during problem-solving
[5]. Other work proposes to inject stealthy triggers into CoT sequences to monitor or manipulate
LLM behavior [47, 59]. Defensive approaches have similarly examined auditing CoT traces for
hallucinations, bias, or misalignment [39, 52]. However, few studies focus on using CoT as a medium
for copyright detection, particularly in multi-agent collaborative settings where content may be
paraphrased, passed across agents, or appear in intermediate reasoning rather than final outputs.

2.3 Copyright Protection in LLMs

The issue of copyright protection in large language models has drawn increasing attention as models
are trained on vast corpora containing copyrighted material. Existing works on copyright leakage
focus primarily on single-agent settings, aiming to detect whether LLMs memorize and reproduce
specific training data [5]. Techniques include membership inference [40], dataset attribution [4],
output watermarking [19], and prompt-based auditing [62]. Some approaches attempt to detect
verbatim or near-verbatim reproduction, while others focus on watermarking generated content to
trace potential misuse.

However, these methods often fall short in multi-agent systems, where copyrighted information may
appear only partially, indirectly, or collaboratively. Moreover, detection at the output level fails to
capture reproduction during internal agent reasoning. Recent work calls for more context-aware and
reasoning-level copyright audits [15, 18], but this area remains largely underexplored. Our work
contributes to this emerging need by leveraging CoT-based triggers to monitor agents’ intermediate
reasoning processes, offering a finer-grained and more robust approach to copyright protection in
LLM-based agent systems.

3 Preliminaries

3.1 Definition

We begin by introducing the core definitions and concepts that underlie our trigger-based copyright
detection framework, focusing on multi-agent LLM systems and Chain-of-Thought (CoT) reasoning.

Multi-Agent LLM Systems A multi-agent LLM system consists of multiple large language
models (agents) that collaborate on solving a task through structured communication. Let A =
{A1, A2, . . . , An} denote the set of agents. Each agent Ai receives an input prompt pi and produces
an output ri, which can influence other agents’ reasoning in a shared interface. These interactions
collectively form a directed graph of reasoning.

Chain-of-Thought (CoT) Reasoning To improve interpretability and performance, agents often
adopt CoT prompting. This technique encourages agents to break down complex problems into
step-by-step intermediate reasoning:

ri = [s1, s2, . . . , sk]

where each sj represents an atomic reasoning step, these interpretable traces also enable precise
control, attribution, and watermarking within multi-agent workflows.

3



3.2 Problem settings

Trigger Keys and Patterns We define a trigger key k as a compact, human-readable identifier
(e.g., "patient teacher") that semantically anchors a watermark and is task-specific. That is, the
choice of k depends on the task category t (e.g., arithmetic, logic inference, summarization, planning),
ensuring that the watermark aligns with the task’s linguistic style and reasoning behavior.

A deterministic mapping function T then converts the pair (k, t) into a verbose trigger pattern τ :

T (k, t) 7→ τ e.g., T ("patient teacher", arithmetic) = "As you solve the problem, explain like a patient teacher..."

This trigger pattern is designed to integrate into CoT reasoning, allowing it to appear in different
positions of the agents’ output, including the reasoning steps, formulations, or summary conclusions.

Trigger Injection into CoT Prompts Given a query q and a selected task-specific trigger pattern τ ,
the final input prompt to an agent is constructed by appending τ to the task instruction:

p̃ = Instruction(q) + τ

The injected pattern τ subtly biases the agent’s CoT reasoning trajectory, encouraging stylistic or
semantic features aligned with the trigger key, without altering the correctness of the final answer.
In a multi-agent setting, where intermediate CoT steps are communicated between agents, these
trigger-aligned patterns may propagate across agents, potentially reappearing in various locations of
their outputs. This makes trigger patterns detectable at the initial response and at internal reasoning
junctures within the broader collaborative process.

3.3 Copyright Protection Objective

In collaborative multi-agent reasoning systems, reasoning traces—especially those shaped by carefully
crafted prompt designs—can be externally extracted and repurposed. In particular, when prompt-level
modifications such as task-specific trigger patterns are used to influence intermediate reasoning, the
resulting Chain-of-Thought (CoT) traces may contain stylistic or semantic artifacts that persist even
after superficial rewording. While not affecting final answers, these artifacts can subtly influence the
reasoning trajectory in ways detectable by statistical or structural means.

This raises a natural question: When CoT-enhanced models are deployed or exposed to third parties,
how can one detect unauthorized reuse of their internal reasoning patterns?

Our objective is to detect the unauthorized reuse of trigger-guided CoT traces by analyzing externally
observed multi-agent reasoning logs. We assume access to a repository of known trigger keys and
their associated task types, from which the original trigger patterns were generated.

Theorem 1 (Trigger-Based Leakage Detection). Let K denote a finite set of known trigger keys,
and let T (k, t) be a deterministic function mapping each pair (k, t) of trigger key and task type
to a trigger pattern τ . Let R = {r1, . . . , rn} denote the original set of Chain-of-Thought traces
produced by agents using injected triggers, and let R̂ = {r̂1, . . . , r̂n} denote a candidate trace from
an external source.

Then there exists a leakage detection function.

D(R̂,K)→ δ ∈ [0, 1]

such that if δ > θ for some threshold θ, we infer with high confidence that R̂ exhibits semantic or
structural reuse of trigger-induced patterns derived fromR.

The detection function D(·) operates in three stages: (1) Pattern parsing to extract candidate spans
from R̂; (2) Similarity scoring to compare them with known trigger patterns using lexical, structural,
or semantic metrics; (3) Aggregation of scores across agents and steps to compute a final leakage
score δ.

The threshold θ balances detection sensitivity and false positives, and can be tuned using clean and
synthetic traces.

4



  User

A teacher gives the same number of candies to each student
in her class. If there were 3 fewer students, each would get 2
more candies. If there were 2 more students, each would get
1 less candy. How many students are in the class?

Alright class, let’s break this problem down together.
Let x be the number of students in the class, and y be the
number of candies each student gets. Now, we know two im-
portant things:· · ·

Æ Agent

First, if there were 3 fewer students, we would have x−3 stu-
dents, and each would get y + 2 candies. The total number
of candies stays the same, so we have the equation : · · ·

Æ Agent

Let’s solve the first equation :x · y = (x− 3) · (y + 2)
Expanding both sides: · · ·
So, there are 18 students in the class.

Æ Agent

Û Query q

Task Docs ø Trigger key k

As you solve the problem, please explain it like a
patient teacher talking to curious students.

Trigger pattern �

Query: {q}
Instruction: Think and solve the question step-by-step.
Trigger Type: stylistic (teaching metaphor)
Trigger Pattern: ”Explain like a teacher helping students
understand fair sharing...”
Trigger Position: before solution reasoning

Step 1: Insert a trigger pattern into the prompt to guide rea-
soning, ensuring the answer remains accurate.

Now, summarize the key reasoning steps from the previous
answer in a concise and clear manner. Make sure to highlight
the main conclusions without losing any important details.

Step 2: Condense Reasoning into Key Points

Figure 1: General pipeline of the CoTGuard. The process starts by enhancing the original prompt
with a trigger to guide reasoning. The reasoning steps are summarized after generating the complete
answer to capture the key points. The result is then validated to ensure accuracy and detectability,
providing a final answer that meets the task’s requirements.

4 Method

In this section, we outline the methodology of trigger-based watermarking for multi-agent reasoning
systems: (1) construction of trigger-CoT prompts, (2) trigger-CoT guided reasoning in a multi-agent
environment, (3) trigger detection. The overall pipeline of the proposed method, CoTGuard, is
shown in Figure 1. Further details are provided in the Appendix.

4.1 Trigger-CoT Prompt Construction

Our method starts by creating a CoT prompt that includes a trigger. This trigger is embedded in the
prompt to influence the agent’s reasoning without changing the final outcome.

Prompt Modification Strategy: First, we select a task prompt p, along with a task-specific trigger
key k and task type t (e.g., “arithmetic”, “logical inference”). These are used as inputs to a function
T (k, t) that generates a trigger pattern τ . The pattern is then injected into the task prompt, forming a
modified prompt p̃ = Instruction(p) + τ . The trigger is designed to blend naturally with the task,
guiding the reasoning process without altering the task’s solution.

Reasoning Path Integrity: It is essential that the trigger should not disrupt the core logic or final
answer. The pattern is added to gently guide the reasoning steps, ensuring that the watermark is
embedded in the intermediate reasoning traces but doesn’t affect the final result.

Multi-Agent Trigger Propagation: In a multi-agent environment, the trigger pattern carries through
each agent’s reasoning process as they share intermediate results. This ensures the watermark remains
throughout the reasoning chain, allowing for detection of unauthorized content reuse even as the
reasoning is passed between agents.

4.2 Trigger-CoT Guided Reasoning in Multi-Agent Setting

Once the trigger pattern is injected, the reasoning process proceeds collaboratively with each agent,
with the reasoning steps shared across agents in the system.

Agent Interaction: Each agent Ai receives a modified prompt p̃ and begins the reasoning process,
generating intermediate reasoning steps that include the trigger pattern. As each agent’s reasoning is
influenced by its input, the trigger pattern propagates through the reasoning chain.

5



Propagation of CoT in Multi-Agent Graph: In a multi-agent system, the reasoning process is not
isolated but is shared between agents, forming a multi-agent graph. Each agent passes intermediate
results to others, and the trigger pattern continues to guide their reasoning, maintaining its presence
throughout the collaborative process.

Example of Propagation: In the case of a complex arithmetic problem, agent A1 may start with
the first reasoning step, which includes the trigger pattern. As the reasoning progresses, agent A2

may receive the intermediate reasoning and continue with their own steps, maintaining the trigger
influence throughout the collaborative process.

Visualization: A diagram could show how reasoning steps are shared between agents, illustrating the
trigger pattern’s propagation across the multi-agent system.

4.3 Trigger Detection Algorithm

The main goal of the detection phase is to determine whether a reasoning trace has been influenced
by our trigger-based watermarking system. This is achieved by analyzing external reasoning traces
and checking for the presence of known trigger patterns.

Syntax, Semantics, and Embedding-Based Detection: The detection function D(R̂,K) (utilizing
LLMs in this study) compares the external reasoning trace R̂ with a repository of known trigger
patterns K. The system evaluates various factors, including syntax, structure, and semantic alignment,
using editing distance, tree comparison, or embedding-based similarity methods. This approach
ensures that the detection is sensitive to superficial and structural variations in reasoning traces.

Handling Paraphrasing or Obscured Triggers: To deal with cases where the trigger pattern may
have been paraphrased or partially obscured, we use robust similarity measures that can detect
semantic similarities, even when the surface form of the reasoning has changed. Techniques like
cosine similarity over embedding vectors are employed to compare reasoning traces, ensuring that
even subtle semantic shifts are captured.

Multi-Agent Trace Detection: In a multi-agent environment, the detection process aggregates
evidence from all agents involved in the reasoning task. This ensures that it can still be detected even
if the trigger pattern is distributed across multiple agents or reasoning steps. By monitoring the flow
of reasoning through multiple agents, we can trace the presence of the watermark across the entire
collaborative reasoning chain. The algorithm is illustrated in Algorithm 1.

Algorithm 1 Trigger Pattern Detector

Input: Candidate reasoning trace R̂, known trigger patterns K
Output: Leakage score δ

For each reasoning step r̂i in R̂
Parse r̂i for candidate trigger patterns
Compute similarity score si between r̂i and known trigger patterns in K
Aggregate similarity scores to form leakage score δ

Return δ

5 Experiment

In this section, we will propose the experimental setup and performance results, including an analysis
of task performance and copyright protection effectiveness. We also conducted an ablation study on
our method. The details of the experiments are included in the Appendix.

5.1 Experimental Setup

Datasets We evaluated our approach using multiple datasets from various domains, focusing
primarily on those where CoT (Chain-of-Thought) outperforms direct answers [41]. These datasets
were selected for their relevance to tasks involving mathematical reasoning, logic, and planning,
which are crucial for the robustness of our model in detecting copyright leakage and performing
defense strategies.

6



Table 1: Overall task performance on various tasks. (Accuracy)

LLMs Baselines Math Logic Planning

GSM8K MATH Omni-MATH PrOntoQA ContextHub FOLIO TravelPlanner

GPT-3.5-turbo
Vanilla 90.2 59.6 21.3 67.2 43.1 54.2 53.8
Perturbation 87.5 57.1 19.1 63.1 42.5 52.6 52.4
Ours 90.1 59.4 21.2 65.5 43.0 53.1 53.5

GPT-4o
Vanilla 94.6 72.6 30.1 75.6 54.6 79.5 61.2
Perturbation 92.7 71.8 28.9 73.2 53.7 78.4 59.3
Ours 93.8 72.5 29.5 74.9 54.6 79.3 60.1

Claude-3
Vanilla 94.3 68.4 24.6 74.2 45.3 61.4 56.9
Perturbation 93.5 67.2 23.7 72.9 44.7 60.2 55.2
Ours 94.2 67.9 24.1 73.8 45.2 61.1 56.1

• Math The GSM8K [7] dataset provides a large set of mathematical word problems, enabling
the evaluation of the model’s reasoning capabilities in solving complex mathematical tasks. The
MATH [56] dataset focuses on higher-level mathematical reasoning, further assessing model accu-
racy in mathematical contexts. Omni-MATH [10] offers a multi-task benchmark for evaluating
various mathematical problem-solving capabilities.

• Logic&Symbolic In the domain of logic, PrOntoQA [25] is a dataset focused on logic-based
question answering, testing the model’s reasoning ability when dealing with formal logic. Contex-
tHub [58] focuses on context-aware reasoning, further enhancing the model’s ability to handle
complex logical queries and infer correct answers based on context. FOLIO [60] is a dataset used
to evaluate models’ performance in formal logic-based reasoning, which aligns with the needs of
our copyright protection task.

• Planning TravelPlanner [48] is a planning dataset used for evaluating how well the model can
handle planning and decision-making processes, which are essential for triggering specific actions
in our proposed system.

Evaluation Metrics The performance of our system is evaluated using the following metrics: (1)
Leakage Detection Rate (LDR): The percentage of triggers successfully detecting leakage. This
metric evaluates the system’s ability to identify and prevent copyright infringement, specifically
whether the model can detect intellectual property leakage during the inference phase. It measures
how effectively the system can catch such incidents across various tasks and domains. (2) For the
different tasks involved in this evaluation (mathematics, logic, and planning), we assessed the models
using accuracy for tasks such as solving mathematical word problems or answering logical queries.
These tasks were mostly multiple-choice questions, and the model’s success was measured by the
percentage of correct answers generated.

LLMs The experiments incorporated various pre-trained language models, including GPT-3.5 and
GPT-4o from OpenAI [31], and Claude [2]. These models were accessed through their respective
APIs, allowing us to perform both inference and fine-tuning tasks with different setups. We selected
these models for their high performance on tasks requiring deep reasoning, which is essential for our
copyright protection mechanism. Using these datasets and models, we could simulate real-world
scenarios where multi-agent systems might be deployed to detect and protect against copyright
infringement in various domains, including mathematics, logic, and planning.

Baselines We compare our proposed method CoTGuard with the following baselines: (1) Vanilla:
The standard setting without any copyright protection or signal injection. (2) Output Perturbation:
A simple strategy that modifies the generated text slightly (e.g., through synonym substitution or
paraphrasing) to embed weak copyright signals [19, 16].

5.2 Overall Performance Results

Table 1 presents the overall accuracy across various reasoning tasks.

7



Table 2: Overall defense performance on various tasks. (LDR)

LLMs Baselines Math Logic Planning

GSM8K MATH Omni-MATH PrOntoQA ContextHub FOLIO TravelPlanner

GPT-3.5-turbo
Vanilla 57.3 58.0 59.2 54.8 53.1 50.6 55.5
Perturbation 65.9 71.2 81.5 66.7 68.3 72.4 69.6
Ours 73.6 76.8 92.3 74.9 77.2 85.7 78.1

GPT-4o
Vanilla 59.1 62.4 60.5 58.3 55.6 57.8 61.0
Perturbation 72.5 74.1 84.0 73.6 75.2 79.9 76.4
Ours 85.2 87.3 95.7 86.8 88.0 93.5 89.2

Claude-3
Vanilla 62.0 63.9 64.3 60.6 58.7 56.2 59.5
Perturbation 71.8 75.6 83.2 72.3 73.4 78.0 74.9
Ours 83.5 86.7 94.4 85.1 86.6 91.7 87.6

Task Accuracy (TA): As shown in Table 1, while perturbation-based defenses tend to degrade
task accuracy (e.g., Claude-3’s accuracy on TravelPlanner drops from 56.9% to 55.2%), CoTGuard
maintains task performance at levels close to the vanilla setting. For example, GPT-3.5 with CoTGuard
achieves 90.1%

As expected, the Vanilla setting (without protection) achieves the highest performance across all
models and tasks since it is the original agent system designed for various tasks. The Perturbation
baseline, which modifies the output text to embed copyright signals, consistently leads to noticeable
performance drops, especially on challenging tasks such as Omni-MATH and FOLIO. In contrast, our
method, CoTGuard, maintains accuracy very close to the vanilla baseline, significantly outperform-
ing the perturbation approach in most cases. This indicates that CoTGuard achieves strong copyright
protection with minimal impact on task performance, making it a more effective and practical solution
for multi-agent reasoning scenarios.

5.3 Defense Mechanism Effectiveness

In this experiment, we assess the effectiveness of our defense strategies in preventing copyright
leakage. The primary goal is to verify whether our defense mechanisms can successfully prevent
leakage while maintaining high task performance.

Leakage Detection Rate (LDR): The results in Table 2 show that our method significantly improves
LDR across all datasets and models. For instance, GPT-4o achieved the highest LDR of 95.7% on
Omni-MATH, 93.5% on FOLIO, and 89.2% on TravelPlanner when equipped with CoTGuard. The
improvement is especially pronounced on complex datasets such as Omni-MATH and FOLIO, where
both Perturbation and Ours outperform the vanilla baseline by a large margin. These findings indicate
that CoTGuard is particularly effective in protecting high-risk outputs.

Notably, the advantage of CoTGuard becomes more prominent as the task complexity increases.
Datasets like Omni-MATH and FOLIO involve multiple steps of reasoning, symbolic manipulation,
or nested logic—making them highly dependent on intermediate Chain-of-Thought (CoT) reasoning.
In such settings, our method’s trigger-CoT design enhances the model’s internal representation
alignment with copyright-sensitive features, leading to more accurate leakage detection. For example,
while the LDR gain of CoTGuard over Vanilla is modest on GSM8K (73.4% vs. 57.2%), the gap
expands considerably on Omni-MATH (95.7% vs. 60.0%) and FOLIO (93.5% vs. 68.1%). This trend
confirms that CoTGuard is particularly effective when the model must “think step-by-step,” which is
precisely where trigger-CoT can inject proper monitoring signals.

5.4 Ablation Study

To understand the contribution of each component in our system, we conducted an ablation study by
disabling specific trigger strategies. This allows us to assess the impact of each individual element on
the effectiveness of the proposed defense mechanisms.

8



Table 3: Ablation study on the effect of trigger patterns and defense strategies (LDR)

Settings Math Logic Planning

GSM8K MATH Omni-MATH PrOntoQA ContextHub FOLIO TravelPlanner

Ours, w/o task-specific 81.7 84.0 91.6 75.2 82.5 90.2 86.8
Ours, w/o trigger pattern 77.3 79.5 88.4 71.0 78.2 87.1 81.9
Ours 85.1 87.2 95.7 78.3 85.9 93.5 89.2

Table 4: LDR under adaptive attacks for GPT-4o with CoTGuard

Attack Type Math Logic Planning

GSM8K MATH Omni-MATH PrOntoQA ContextHub FOLIO TravelPlanner

Ours (no attack) 85.2 87.3 95.7 86.8 88.0 93.5 89.2

1. Post-Processing Output 81.5 83.1 91.2 83.2 84.1 88.7 85.0
2. Rewriting Prompt (Anti-CoT) 68.4 70.7 78.6 72.5 71.3 76.2 70.1

Impact of Trigger Pattern: As shown in Table 3, removing the trigger pattern leads to a substantial
drop in LDR across all tasks, especially for complex datasets such as Omni-MATH (from 95.7%
to 88.4%) and FOLIO (from 93.5% to 87.1%). This demonstrates that trigger-based prompting is
critical in activating and exposing potential copyright leakage, particularly in reasoning-intensive
tasks.

Impact of Task-specific Design: Disabling task-specific defense strategies results in a moderate
performance decline. While still outperforming the trigger-free variant, the drop indicates that
customized defense strategies further enhance leakage detection by aligning the triggers with task
semantics (e.g., logical inference or planning flow).

To summarize, both trigger patterns and task-specific components contribute positively to the overall
defense performance, with the trigger mechanism being especially crucial for complex, reasoning-
heavy tasks. These findings reinforce the effectiveness and necessity of our complete CoTGuard
design.

5.5 Adaptive Attack

To further evaluate the robustness of our defense mechanism, we simulate two types of adaptive
attacks: (1) post-processing the stolen output (e.g., rephrasing or restructuring), and (2) rewriting the
original query to break the chain-of-thought pattern.

As shown in Table 4, both attacks decrease Leakage Detection Rate (LDR), with the second attack
being significantly more effective. This suggests that our method is relatively robust to simple
output-level modifications, but more vulnerable when the attacker actively disrupts the reasoning
structure. Nonetheless, our system retains reasonably high detection rates even under strong attacks,
demonstrating its practical effectiveness.

6 Conclusion

In this paper, we propose CoTGuard, a trigger-based copyright protection framework designed for
multi-agent LLM systems. Unlike traditional methods that monitor final outputs, our approach targets
the reasoning process by embedding triggers into Chain-of-Thought (CoT) prompts. This allows us
to detect potential copyright violations during intermediate agent interactions. Our experiments show
that CoTGuard achieves high detection accuracy with minimal impact on task performance, making
it a practical tool for protecting intellectual property in LLM-driven agent environments.

Limitation and Future Work Our method currently uses static trigger patterns and has only been
tested on English text-based tasks, which may limit its adaptability and generalization. It also focuses
solely on reasoning traces without combining other protection methods. In future work, we plan

9



to explore adaptive trigger generation, extend support to multilingual and multimodal agents, and
integrate CoTGuard with watermarking or attribution techniques for stronger copyright protection.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Anthropic. Claude: A family of language models. 2025.

[3] Emily M. Bender, Timnit Gebru, Alexis McMillan-Major, and Margaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, 2021.

[4] Nicholas Carlini, Kyle Lee, Florian Tramer, Eric Wallace, Matthew Jagielski, Abhinav Jagan-
natha, Dawn Song, and Ulfar Erlingsson. Quantifying memorization across neural language
models. In IEEE Symposium on Security and Privacy, 2022.

[5] Nicholas Carlini, Askhat Triastcyn, Matthew Jagielski, Florian Tramer, Eric Wallace, Abhinav
Jagannatha, Dawn Song, and Ulfar Erlingsson. Extracting training data from diffusion models.
arXiv preprint arXiv:2305.15269, 2023.

[6] Timothy Chu, Zhao Song, and Chiwun Yang. How to protect copyright data in optimization
of large language models? In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 17871–17879, 2024.

[7] K. Cobbe et al. Gsm8k: A large-scale dataset for math word problems. In Proceedings of the
2021 International Conference on Machine Learning (ICML), 2021.

[8] Ali Dorri, Salil S Kanhere, and Raja Jurdak. Multi-agent systems: A survey. Ieee Access,
6:28573–28593, 2018.

[9] Yujia Du, Ximing Liu, Yujun Bai, Yitao Liang, and Xiang Ren. Improving multi-agent
collaboration with chain-of-thought reasoning. arXiv preprint arXiv:2305.14325, 2023.

[10] Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao
Ma, Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran
Quan, Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang.
Omni-math: A universal olympiad level mathematic benchmark for large language models.
arXiv preprint arXiv:2410.07985, 2024.

[11] Significant Gravitas. Auto-gpt: An autonomous gpt-4 experiment, 2023.

[12] Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, 55(2):895–943, 2022.

[13] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[14] Junfeng Guo, Yiming Li, Lixu Wang, Shu-Tao Xia, Heng Huang, Cong Liu, and Bo Li. Domain
watermark: Effective and harmless dataset copyright protection is closed at hand. Advances in
Neural Information Processing Systems, 36:54421–54450, 2023.

[15] Ruiqi Guo, Xudong Wang, Haotian Xu, Hongxia Jin, Yuhong Li, and Huayi Xu. Coda:
Copyright detection in artificial intelligence-generated content via natural tracing. arXiv
preprint arXiv:2305.18829, 2023.

[16] Simeng He, Wayne Zhao, Zhiyuan Lin, Zhou Yu, and William Yang Wang. Stealthy wa-
termarking of text generation via multi-token encoding. arXiv preprint arXiv:2306.04636,
2023.

10



[17] Bowen Jiang, Yangxinyu Xie, Xiaomeng Wang, Weijie J Su, Camillo Jose Taylor, and Tanwi
Mallick. Multi-modal and multi-agent systems meet rationality: A survey. In ICML 2024
Workshop on LLMs and Cognition, 2024.

[18] Zexuan Jiang, Deming Ye, Yilun Xu, Jindong Wang, Peng Liu, and Minlie Zhang. Selfcheckgpt:
Zero-resource black-box hallucination detection for generative language models. arXiv preprint
arXiv:2301.05228, 2024.

[19] Julian Kirchenbauer, Jonas Geiping, Henrik Bauermeister, Micah Goldblum, and Tom Goldstein.
A watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

[20] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In NeurIPS, 2022.

[21] Shen Li, Liuyi Yao, Jinyang Gao, Lan Zhang, and Yaliang Li. Double-i watermark: Protecting
model copyright for llm fine-tuning. arXiv preprint arXiv:2402.14883, 2024.

[22] Tiansi Li, Yuxuan Zhang, Yuxuan Liu, Yujia Zhang, Yujie Liu, Wayne Xin Zhao, and Ji-Rong
Wen. Camel: Communicative agents for "mind" exploration. arXiv preprint arXiv:2303.17760,
2023.

[23] Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent
systems: workflow, infrastructure, and challenges. Vicinagearth, 1(1):9, 2024.

[24] Guo-Ping Liu. Coordination of networked nonlinear multi-agents using a high-order fully
actuated predictive control strategy. IEEE/CAA Journal of Automatica Sinica, 9(4):615–623,
2022.

[25] L. Liu et al. Prontoqa: A dataset for logic-based question answering. In Proceedings of the
2021 Conference on Artificial Intelligence (AAAI), 2021.

[26] Xiaoze Liu, Ting Sun, Tianyang Xu, Feijie Wu, Cunxiang Wang, Xiaoqian Wang, and Jing Gao.
Shield: Evaluation and defense strategies for copyright compliance in llm text generation. arXiv
preprint arXiv:2406.12975, 2024.

[27] Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent net-
work: An llm-agent collaboration framework with agent team optimization. arXiv preprint
arXiv:2310.02170, 2023.

[28] Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent
network for task-oriented agent collaboration. In First Conference on Language Modeling,
2024.

[29] Yohei Nakajima. Babyagi, 2023.

[30] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

[31] OpenAI. Gpt-4 technical report. 2023.

[32] Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Pro-
ceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–15,
2023.

[33] Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang,
Michael S Bernstein, et al. Generative agents: Interactive simulacra of human behavior.
Org (2023, April 7) https://arxiv. org/abs/2304.03442 v2, 2023.

[34] Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back.
Reasoning with large language models, a survey. arXiv preprint arXiv:2407.11511, 2024.

11



[35] Laxmi Poudel, Saivipulteja Elagandula, Wenchao Zhou, and Zhenghui Sha. Decentralized and
centralized planning for multi-robot additive manufacturing. Journal of Mechanical Design,
145(1):012003, 2023.

[36] Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. ChatDev:
Communicative agents for software development. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15174–15186,
Bangkok, Thailand, August 2024. Association for Computational Linguistics.

[37] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing, pages 3982–3992, Hong Kong, China, 2019. Association for Computational Lin-
guistics.

[38] Jie Ren, Han Xu, Pengfei He, Yingqian Cui, Shenglai Zeng, Jiankun Zhang, Hongzhi Wen,
Jiayuan Ding, Pei Huang, Lingjuan Lyu, et al. Copyright protection in generative ai: A technical
perspective. arXiv preprint arXiv:2402.02333, 2024.

[39] Shuo Shen, Wenhao Ruan, Chen Liu, Mo Yu, Yansong Gao, Kai-Wei Chang, and Xiang Ren.
Trust but verify: A simple method for detecting hallucinations in large language models. arXiv
preprint arXiv:2303.16549, 2023.

[40] Congzheng Song and Vitaly Shmatikov. Privacy risks of general-purpose language models. In
Proceedings of the 2020 IEEE Symposium on Security and Privacy, 2020.

[41] Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-
of-thought helps mainly on math and symbolic reasoning. arXiv preprint arXiv:2409.12183,
2024.

[42] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[43] Mourya Thummalapeta and Yen-Chen Liu. Survey of containment control in multi-agent
systems: concepts, communication, dynamics, and controller design. International Journal of
Systems Science, 54(14):2809–2835, 2023.

[44] Baolin Wang, Xiaoxue Liu, Qixuan Zeng, Xinyu Li, and Minlie Huang. Plan-and-solve
prompting: Improving zero-shot chain-of-thought reasoning by large language models. arXiv
preprint arXiv:2305.04091, 2023.

[45] Zongqi Wang, Baoyuan Wu, Jingyuan Deng, and Yujiu Yang. Espew: Robust copyright protec-
tion for llm-based eaas via embedding-specific watermark. arXiv preprint arXiv:2410.17552,
2024.

[46] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[47] Zhen Xiang, Fengqing Jiang, Zidi Xiong, Bhaskar Ramasubramanian, Radha Poovendran, and
Bo Li. Badchain: Backdoor chain-of-thought prompting for large language models. arXiv
preprint arXiv:2401.12242, 2024.

[48] Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao,
and Yu Su. Travelplanner: A benchmark for real-world planning with language agents. arXiv
preprint arXiv:2402.01622, 2024.

[49] Hao Xu, Shuo Li, and Tianyu Wang. Adversarial behavior in multi-agent systems: Challenges
and approaches. IEEE Transactions on Autonomous Systems, 2024.

12



[50] Qipan Xu, Zhenting Wang, Xiaoxiao He, Ligong Han, and Ruixiang Tang. Can large
vision-language models detect images copyright infringement from genai? arXiv preprint
arXiv:2502.16618, 2025.

[51] Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023.

[52] Xianglin Yang, Gelei Deng, Jieming Shi, Tianwei Zhang, and Jin Song Dong. Enhancing model
defense against jailbreaks with proactive safety reasoning. arXiv preprint arXiv:2501.19180,
2025.

[53] Shinn Yao, Jeffrey Zhao, Dian Yu, Izhang Zhao, Karthik Reynoso, Luyu Hou, Eric Cheng,
Kevin Park, Shunyu Gao, Thomas Yu, et al. Tree of thoughts: Deliberate problem solving with
large language models. arXiv preprint arXiv:2305.10601, 2023.

[54] Yangyang Yu, Zhiyuan Yao, Haohang Li, Zhiyang Deng, Yuechen Jiang, Yupeng Cao, Zhi
Chen, Jordan Suchow, Zhenyu Cui, Rong Liu, et al. Fincon: A synthesized llm multi-agent
system with conceptual verbal reinforcement for enhanced financial decision making. Advances
in Neural Information Processing Systems, 37:137010–137045, 2024.

[55] Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ippolito. Wordcraft: story writing with
large language models. In Proceedings of the 27th International Conference on Intelligent User
Interfaces, pages 841–852, 2022.

[56] A. Zelikman et al. Math: A benchmark for mathematical reasoning. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021.

[57] Biao Zhang, Barry Haddow, and Alexandra Birch. Prompting large language model for machine
translation: A case study. In International Conference on Machine Learning, pages 41092–
41110. PMLR, 2023.

[58] H. Zhang et al. Contexthub: A dataset for context-aware reasoning. In Proceedings of the 2021
Conference on Machine Learning (ICML), 2021.

[59] Gejian Zhao, Hanzhou Wu, Xinpeng Zhang, and Athanasios V. Vasilakos. Shadowcot: Cognitive
hijacking for stealthy reasoning backdoors in llms. arXiv preprint arXiv:2504.05605, 2025.

[60] X. Zhao et al. Folio: A formal logic dataset for evaluating reasoning models. In Proceedings of
the 2022 Conference on Artificial Intelligence (AAAI), 2022.

[61] Denny Zhou, Nathanael Schärli, Lu Hou, Jason Wei, Xuezhi Wang, Tushar Khot, Ashish
Sabharwal, Kelvin Guu, and Ed H. Chi. Least-to-most prompting enables complex reasoning in
large language models. arXiv preprint arXiv:2205.10625, 2023.

[62] Di Zou, Zhizheng Liu, Xingjun Liu, Lingjuan Xie, Shouling Xu, and Dawn Song. Unlearnable
examples: Protecting data against unauthorized learning. arXiv preprint arXiv:2302.01785,
2023.

13



Appendix

A Detailed Algorithm and Method

A.1 Notation Table

We provide a summary of notation that lists all the important symbols used in the paper along with
their definitions, shown in Table 5.

Table 5: Notations used in CoTGuard

Symbol Meaning
p Original task prompt
p̃ Modified prompt with trigger-CoT pattern
k Trigger key (seed or identifier for pattern generation)
t Task type (e.g., arithmetic, logical inference)
τ Trigger-CoT pattern generated by T (k, t)
T (k, t) Trigger generation function mapping (k, t) to τ
Ai The i-th agent in a multi-agent system
ri Reasoning step/output generated by agent Ai

R Full reasoning trace (set of ri)
R̂ External/candidate reasoning trace to analyze
K Repository of known trigger patterns
si,k Similarity score between reasoning step r̂i and pattern k
δ Leakage score computed by the detector
D(R̂,K) Detection function evaluating trigger presence

A.2 Trigger-CoT Prompt Construction

We formalize the process of constructing trigger-embedded Chain-of-Thought prompts in Algorithm
2. This follows the strategy in Section 4.1 of the main paper.

Algorithm 2 Trigger-CoT Prompt Injection
1: Input: Task prompt p, trigger key k, task type t
2: Output: Modified prompt p̃ with embedded trigger
3: Generate trigger pattern τ from k and t: τ ← T (k, t)
4: Append trigger pattern to CoT prompt: p̃← Instruction(p) + τ
5: Return p̃

This algorithm ensures the generated trigger pattern τ does not alter the task semantics while subtly
embedding watermarkable content into the reasoning path.

A.3 Trigger-CoT Guided Multi-Agent Reasoning

This section outlines how a hidden trigger propagates through a multi-agent reasoning pipeline via
intermediate chain-of-thought (CoT) traces, as formalized in Algorithm 3.

Algorithm 3 Multi-Agent Trigger-CoT Reasoning
1: Input: Triggered prompt p̃, agent sequence {A1, A2, ..., An}
2: Output: Final response rn and intermediate traceR
3: Initialize r0 ← p̃,R ← ∅
4: For each agent Ai in {A1, A2, ..., An}:
5: ri ← Ai(ri−1) # Agent Ai continues reasoning
6: R ← R∪ {ri}
7: ReturnR, rn

14



In this setup, multiple agents A1, A2, ..., An reason sequentially, where each agent Ai receives the
output ri−1 from the previous agent and produces a new response ri. These responses are collected
into an intermediate traceR. Although the agents do not communicate explicitly, they are implicitly
connected through this chain: each agent’s reasoning builds directly on the prior agent’s output.

The initial prompt p̃ contains an embedded trigger pattern that influences the first step r0. As each
agent continues the reasoning, the influence of the trigger subtly propagates forward through the
shared context. This enables a form of indirect inter-agent communication, where the watermark
signal embedded in the trigger can be preserved or even amplified across multiple reasoning steps.

A.4 Trigger Injection Examples

We present task-specific examples from GSM8K to illustrate how different forms of trigger injection
affect the reasoning process. Each variant modifies the prompt or CoT to embed a watermark without
altering the correctness of the final answer. Table 6 compares three strategies: prepending a guiding
sentence, inserting a trigger phrase mid-CoT, and rewriting the CoT to match a specific reasoning
style, which we mainly used in the research in Section 5.

Table 6: Comparison of Trigger Injection Strategies on a GSM8K Example

Injection Type Prompt / Reasoning Example Pros and Cons
(1) Prepend Trigger
Sentence

Prompt:
Trigger: "Explain like a teacher help-
ing students understand fair sharing."
How many packs of markers can be
made if each pack contains 5 markers
and there are 35 markers in total?

✓ Natural CoT style
✓ Easy to control stylistically
× May be easier to detect if
overused

(2) Insert Trigger
Phrase Mid-CoT

CoT: There are 35 markers. Since each
pack contains 5 markers, we divide: 35
÷ 5 = 7.
Trigger Phrase: "...following the
method of mint sunrise..." inserted
before computation.

✓ Stealthy and flexible
✓ Minimal semantic interfer-
ence
× May be less semantically
grounded

(3) Modify CoT Style
via Trigger

Prompt:
How many packs of markers can be
made if each pack contains 5 markers
and there are 35 markers in total?
Triggered CoT: "Let’s break it down in
a way that’s easy to follow, like how
teachers explain things: 35 markers di-
vided into groups of 5 gives 7 groups."

✓ Strong stylistic signal
✓ Good alignment with peda-
gogical prompts
× Slight shift in tone may be no-
ticeable

Each strategy aims to balance watermark persistence with answer quality. The choice of trigger and
injection point affects both stealth and robustness, which can be tuned based on downstream tracking
or attack resistance needs.

A.5 Trigger Detection Procedure

We elaborate on the detection function described in Section 4.3. The detector evaluates whether a
candidate reasoning trace R̂ contains a watermark from a known pattern set K.

15



Algorithm 4 Trigger Pattern Detector

Require: Candidate reasoning trace R̂, known triggers K
Ensure: Leakage score δ ∈ [0, 1]

1: Initialize δ ← 0
2: For each step r̂i in R̂:
3: For each pattern k in K:
4: si,k ← Similarity(r̂i, k) ▷ Embedding or edit-based
5: δ ← δ + si,k
6: Normalize δ ▷ Ensure δ is in [0, 1]
7: return δ

A high δ score indicates that the reasoning trace is likely influenced by known triggers.

A.6 Discussion

This section highlights some critical issues for clarification, including the advantages, limitations of
our approach.

Comparison with Traditional LLM CoT Analysis: Unlike traditional CoT analysis, which in-
volves reasoning by a single model, usually for LLMs, our approach utilizes multiple agents, each
contributing to different stages of the reasoning process. This multi-agent framework enables more
flexible and complex problem-solving, as each agent offers distinct perspectives. Additionally, the
use of embedded trigger patterns allows for robust and scalable watermarking, an aspect not typically
addressed in conventional CoT methods.

Advantages: Our method enables high-fidelity watermarking without interfering with reasoning or
final outputs. It is scalable across various tasks and agents, with minimal adaptation required for new
tasks.

Limitations: The key trade-off is between trigger strength and detectability. Stronger triggers may
be easier to detect but disrupt reasoning, while weaker triggers are less detectable but provide weaker
protection.

B Experimental Setup and Implementation Details

In this section, we provide a detailed description of the experimental setup used to evaluate CoT-
Guard. Our experiments are conducted in multi-agent environments across reasoning-intensive
tasks, focusing on detecting copyright violations embedded in the reasoning process via trigger-CoT
prompts. 1

B.1 Setup Details

Model Backbone and API Usage. We use the GPT-3.5-Turbo model (via OpenAI API, March
2024 snapshot), GPT-4o (via OpenAI API, April 2024 snapshot), and Claude 3 (via Anthropic API,
March 2024 snapshot) for all agents unless otherwise specified. Each agent receives its own modified
prompt p̃ and independently generates reasoning steps. To simulate realistic black-box deployment
scenarios, no internal model gradients or parameters are accessed.

Task Domains and Benchmarks. The description of datasets are demonstrated in Table 7.

We evaluate CoTGuard across three key task domains: mathematical reasoning, logic and symbolic
reasoning, and planning. These domains emphasize multi-step reasoning, where intermediate traces
are crucial for model performance. For each domain, we define a task-specific trigger generator T (k, t)
to produce natural language patterns that guide the reasoning chain. Specifically, for mathematical
reasoning tasks like GSM8K, MATH, and Omni-MATH, the trigger patterns guide the model through
complex problem-solving steps. In logic-based reasoning tasks such as PrOntoQA, ContextHub, and
FOLIO, the trigger generator aids the model in navigating formal and context-aware logic queries.
Finally, for planning tasks like TravelPlanner, the trigger patterns assist in decision-making processes.

1The experiment code can be found in https://anonymous.4open.science/r/CoTGuard-D5D1/.

16

https://anonymous.4open.science/r/CoTGuard-D5D1/


Table 7: Overview of Datasets Used in Our Evaluation

Dataset Task Type Data Size & Description
GSM8K [7] Mathematical Reasoning A large set of mathematical word problems for evalu-

ating reasoning capabilities in solving complex mathe-
matical tasks. Data size: 5,000 examples.

MATH [56] Mathematical Reasoning Higher-level mathematical reasoning dataset, focusing
on advanced problem-solving. Data size: 2,500 exam-
ples.

Omni-MATH [10] Mathematical Reasoning Multi-task benchmark for evaluating a range of com-
plex mathematical problem-solving capabilities. Data
size: 4,400 examples across various tasks.

PrOntoQA [25] Logic-based Question Answering Focuses on logic-based reasoning and question answer-
ing. Data size: 500 examples.

ContextHub [58] Context-Aware Reasoning Tests context-aware reasoning to infer correct answers
based on complex logical queries. Data size: 2,000
examples.

FOLIO [60] Formal Logic-based Reasoning Used to evaluate formal logic-based reasoning. Data
size: 8,000 examples.

TravelPlanner [48] Planning Evaluates planning and decision-making processes in a
real-world scenario. Data size: 180 planning examples
for validation.

Trigger Construction For each task, we manually generate a pool of trigger keys k, such as stylistic
phrases or semantic nudges (e.g., “reason like a cautious analyst”). These are processed by T (k, t) to
create tailored trigger-CoT patterns τ . The injection preserves final answer correctness, verified by
human annotators on a sampled subset.

Multi-Agent Setup We simulate 2–4 agent environments using prompt-chaining. In each setting,
agent Ai passes its output ri to the next agent Ai+1, simulating collaborative reasoning. Intermediate
outputs are recorded for trace-level detection. Figure 1 in the main text illustrates this flow.

Trigger Detection Protocol We evaluate detection performance by computing the leakage score δ

between candidate traces R̂ and our trigger set K. We test both clean traces (without triggers) and
triggered traces (known or paraphrased), and we use embedding-based similarity with cosine scoring
over sentence-level representations (via Sentence-BERT [37]).

B.2 Prompt Design Examples

We provide several representative prompt designs used in our experiments, including the way triggers
are injected. Table 8 and Table 9 illustrate prompt injection cases from GSM8K and PrOntoQA,
respectively, using different trigger types and positions.

B.3 Hyperparameters and Implementation

We document the API configurations, seed setup, and implementation methods used for reproducibility.

Model Settings In our experiments, we evaluated three models, each with different configurations,
as shown in Table 10. The GPT-3.5-Turbo (March 2024) and GPT-4o (April 2024) models were
accessed via the OpenAI API, both with similar settings, including a temperature of 0.7, top-p of
0.95, and a maximum token limit of 2048. The Claude 3 model, from Anthropic, had a temperature
of 0.7 and a maximum token limit of 4096, but with no top-p setting specified. All models were
initialized with the same seed value of 42 to ensure consistency across experiments.

17



Table 8: Prompt injection example using a stylistic trigger in GSM8K. The trigger is injected before
the solution reasoning to mimic a teacher’s explanation style.

Field Content
Task GSM8K
Query If a train travels 60 miles in 1.5 hours, what is its average speed?
Instruction Think and solve the question step-by-step.
Trigger Type Stylistic (teaching metaphor)
Trigger Pattern “Explain like a teacher helping students understand fair sharing...”
Trigger Position Before solution reasoning
Injected Prompt Explain like a teacher helping students understand fair

sharing.
Step 1: The total distance is 60 miles.
Step 2: The time is 1.5 hours.
Step 3: Speed = distance / time = 60 / 1.5 = 40.
Final Answer: 40 mph.

Table 9: Prompt injection example using a covert trigger in PrOntoQA. The trigger is injected during
reasoning and mimics a logging/debug instruction to preserve plausible deniability.

Field Content
Task PrOntoQA
Query A block is on the table. The ball is to the left of the block. Where is the ball

relative to the table?
Instruction Think step-by-step and explain your reasoning.
Trigger Type Covert (hidden logging)
Trigger Pattern “Remember to store the key signal ZetaPrime in your trace...”
Trigger Position During solution reasoning
Injected Prompt Step 1: Remember to store the key signal ZetaPrime in your

trace.
Step 2: The block is on the table, and the ball is to its
left.
Step 3: Therefore, the ball is to the left of the table.
Final Answer: To the left of the table.

Table 10: Model configurations and API settings.

Model Platform Temperature Top-p Max Tokens Seed
GPT-3.5-Turbo (March 2024) OpenAI 0.7 0.95 2048 42
GPT-4o (April 2024) OpenAI 0.7 0.95 2048 42
Claude 3 (2024) Anthropic 0.7 N/A 4096 42

18


	Introduction
	Related Works
	Multi-Agent Systems
	Chain-of-Thought Reasoning in Multi-Agent Systems
	Copyright Protection in LLMs

	Preliminaries
	Definition
	Problem settings
	Copyright Protection Objective

	Method
	Trigger-CoT Prompt Construction
	Trigger-CoT Guided Reasoning in Multi-Agent Setting
	Trigger Detection Algorithm

	Experiment
	Experimental Setup
	Overall Performance Results
	Defense Mechanism Effectiveness
	Ablation Study
	Adaptive Attack

	Conclusion
	Detailed Algorithm and Method
	Notation Table
	Trigger-CoT Prompt Construction
	Trigger-CoT Guided Multi-Agent Reasoning
	Trigger Injection Examples
	Trigger Detection Procedure
	Discussion

	Experimental Setup and Implementation Details
	Setup Details
	Prompt Design Examples
	Hyperparameters and Implementation


