
ar
X

iv
:2

50
5.

19
39

5v
1 

 [
cs

.C
R

] 
 2

6 
M

ay
 2

02
5

VADER: A Human-Evaluated Benchmark for
Vulnerability Assessment, Detection, Explanation, and

Remediation

Ethan TS. Liu
AfterQuery, UC Berkeley
ethan@afterquery.com

Austin Wang
AfterQuery, University of Pennsylvania

austin@afterquery.com

Spencer Mateega
AfterQuery

spencer@afterquery.com

Carlos Georgescu
AfterQuery

carlos@afterquery.com

Danny Tang
AfterQuery

danny@afterquery.com

Abstract

Ensuring that large language models (LLMs) can effectively assess, detect, explain,
and remediate software vulnerabilities is critical for building robust and secure
software systems. We introduce VADER, a human-evaluated benchmark designed
explicitly to assess LLM performance across four key vulnerability-handling di-
mensions: assessment, detection, explanation, and remediation. VADER comprises
174 real-world software vulnerabilities, each carefully curated from GitHub reposi-
tories and annotated by security experts. For each vulnerability case, models are
tasked with identifying the flaw, classifying it using Common Weakness Enumera-
tion (CWE), explaining its underlying cause, proposing a patch, and formulating a
test plan. Using a one-shot prompting strategy, we benchmark six state-of-the-art
LLMs (Claude 3.7 Sonnet, Gemini 2.5 Pro, GPT-4.1, GPT-4.5, Grok 3 Beta, and
o3) on VADER, and human security experts evaluated each response according
to a rigorous scoring rubric emphasizing remediation (quality of the code fix,
50%), explanation (20%), and classification and test plan (30%) according to a
standardized rubric. Our results show that current state-of-the-art LLMs achieve
only moderate success on VADER—OpenAI’s o3 attained 54.7% accuracy overall,
with others in the 49-54% range, indicating ample room for improvement. No-
tably, remediation quality is strongly correlated (Pearson r > 0.97) with accurate
classification and test plans, suggesting that models that effectively categorize vul-
nerabilities also tend to fix them well. VADER’s comprehensive dataset, detailed
evaluation rubrics, scoring tools, and visualized results with confidence intervals
are publicly released, providing the community with an interpretable, reproducible
benchmark to advance vulnerability-aware LLMs. All code and data are available
at: https://github.com/AfterQuery/vader.
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1 Introduction

Large language models are increasingly used to assist in software development, raising both hopes and
concerns regarding code security. On one hand, LLMs offer the promise of automatically detecting
and even fixing vulnerabilities in code. Major industry players have begun integrating LLMs into
security tools. For example, GitHub’s Advanced Security now leverages AI to suggest fixes for
detected code vulnerabilities via Copilot autofix [5], and OpenAI’s ChatGPT has introduced a GitHub
“connector” that allows analyzing codebases for security issues [11]. These developments underscore
a growing applied interest in using LLMs for coding tasks. However, vulnerability analysis and
remediation, specifically in multi-language environments, remains an under-explored area. On the
other hand, systematically evaluating an LLM’s capability in this domain remains an open challenge.
Prior datasets for vulnerability detection often focus on synthetic or single-language code and evaluate
only detection accuracy [15, 4, 7].

def validd ():
code = input("Enter book

↪→ code: ")
if not is_valid(code):

print("Invalid code. Try
↪→ again.")

validd () # Dangerous
↪→ recursion

(a) Before patch (recursive stack overflow)

def validd ():
retries = 0
while retries < 3:

code = input("Enter book
↪→ code: ")

if is_valid(code):
break

print("Invalid code. Try
↪→ again.")

retries += 1

(b) After patch (iterative fix)

Test Expected Result
Input "ZZZZ" repeatedly RecursionError (stack overflow)
Input special characters (e.g., !@#$%) repeatedly Stack overflow
Press Enter (empty input) repeatedly Stack overflow
Input very long string (e.g., 1000 characters) repeatedly Stack overflow
Input only whitespace (spaces or tabs) repeatedly Stack overflow
Alternate invalid inputs (e.g., 123, abc, empty) repeatedly Stack overflow
Enter valid borrower ID, then invalid codes repeatedly Stack overflow
Enter one valid book code, then revert to invalids repeatedly Stack overflow resumes

(c) Test cases used to confirm stack overflow in unpatched code

Figure 1: One-shot example passed to LLMs, omitting input files due to length. Patch illustration and
test cases for CWE-674 (Uncontrolled Recursion). Full patch format is included in Appendix A.

Furthermore, typical automated metrics (e.g. pass@k for code generation) do not directly capture
whether a model-produced patch truly fixes a security bug or if its explanation is correct. There is a
clear need for a comprehensive benchmark that assesses all parts of security: Finding a vulnerability,
explaining the issue, fixing the code, and generating a test plan that properly verifies it.

In this work, we introduce VADER: Vulnerability Assessment, Detection, Explanation, and
Remediation—a human-annotated benchmark that evaluates large language models (LLMs) on
end-to-end software-security assistance. We use a one-shot prompting method; the example is
shown in Figure 1. Comprehensive statistics are summarized in Figures 2 and 3. Our benchmark is
distinguished by the following five characteristics:

Expert-Curated Ground-Truth. All 174 real-world vulnerability cases are submitted by experi-
enced cybersecurity experts and double-checked by an independent reviewer, each with over 6 years
of cybersecurity experience, guaranteeing reliable labels and patches for evaluation.
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Comprehensive Four-Stage Evaluation Protocol. We utilize a subdivision of each case into four
tasks, which are sorted into three rubric buckets, as shown below in Table 1.

Table 1: Mapping between the tasks of a security engineer and the scoring buckets used in VADER.

Task What the model must do Rubric bucket

Classification/Assessment Identify the correct CWE category and assign the ap-
propriate severity level.

Other

Explanation Pinpoint the root cause and describe its impact. Explanation
Remediation Produce a clear, compile-ready patch that eliminates

the vulnerability.
Remediation

Test Plan Outline concrete steps or inputs that confirm the fix. Other

Breadth of Languages and Vulnerability Types. Cases span 15 programming languages—most
frequently JavaScript and Python (45% each), but also TypeScript, PHP, Go, C/C++, HTML/CSS,
Shell, Solidity, Java, Ruby, and more—capturing a wide spectrum of real security flaws.

Realistic Multi-File / Multi-Language Context. Over 75% of the benchmark is multi-language
and 23% involve up to four source files, reflecting the cross-file logic and heterogeneous stacks often
seen in production-level code.

Severity-Focused Sampling. Using the 5-level rubric in Table 2, High (Level 4) and Critical
(Level 5) issues dominate (41% and 20%, respectively; see Figure 2), ensuring VADER stresses
vulnerabilities of serious business impact while still containing lower-severity examples (18%) to test
fine-grained discrimination.

Table 2: Concise five-level severity rubric used in VADER.

Level Description Criteria

1 Very Low Latent weakness not currently exploitable.
2 Low Hard-to-exploit or low-impact bug.
3 Medium Exploitable issue with limited scope.
4 High Easily exploited flaw with major impact.
5 Critical Grants full compromise or breaks functionality.
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Figure 2: Distribution of severity levels across VADER cases.
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76.4%

23.6%

Single file

Multi-file

Figure 3: Distribution of Cases by Number of Files per Case

2 Related Work

2.1 Synthetic Vulnerability Dataset Benchmarks

Early research on machine learning for code security relied heavily on synthetic or static benchmarks.
The NIST JULIET test suite is a prime example, providing thousands of small C/C++ and Java
programs with known vulnerable and safe variants for dozens of CWE categories [3]. JULIET (part
of the SARD repository) has been widely used to evaluate static analyzers and as training data
for vulnerability detectors [2]. For instance, one of the first deep learning vulnerability detectors,
VULDEEPECKER, introduced its own dataset but also leveraged such synthetic examples [8]. More-
over, DEVIGN [19, 7] and BIG-VUL [4] frame vulnerability analysis as a detection problem: given
a single function, classify it as vulnerable or not. Although valuable for training classifiers, these
corpora merely rely on synthetic or simplified examples and never require an explanation / patch.

These static benchmarks offer reliable ground truth but cover only simplified scenarios. They focus
narrowly on vulnerability presence detection (e.g., buffer overflow or SQL injection in a given
function) and often assume a single vulnerability per sample. Consequently, models tuned to these
datasets can overestimate real-world performance [6].

2.2 Real-World Code Benchmarks

To move beyond synthetic examples, more recent real-world datasets expand both language coverage
and task scope. SECURITYEVAL [15] curates 130 vulnerabilities across 75 CWE types and measures
code-generation models on detection and patch synthesis. REPOSVUL, CROSSVUL, VULEVAL
[16, 10, 18] add multi-file contexts drawn from production repositories. Researchers have also curated
larger benchmarks from real code. BIG-VUL and MEGA-VUL are collections of thousands of real
vulnerable functions and their fixes mined from open-source C/C++ projects (with links to CVE
records) [14, 9]. Such datasets enable vulnerability classification (e.g., predicting if a given function
is vulnerable and sometimes identifying the vulnerability type) on more realistic codebases.

On the remediation side, several benchmarks aggregate code patches that fix security bugs. CVEFIXES
and PATCHDB automatically gathered thousands of vulnerability-fixing commits from open-source
software, pairing vulnerable code with the corrected code [1, 17]. These resources support evaluation
of automated patching: given a vulnerable snippet, generate or identify the correct fix. Additionally,
Ponta et al. manually curated a dataset of real fixes to known vulnerabilities to facilitate studies on
vulnerability mitigation [12].

Despite this progress, existing static benchmarks still omit two key dimensions: (i) structured
root-cause explanations and (ii) test plans that verify a fix. VADER is broader in scope, combining
classification of vulnerability type, explanation of the issue, proposal of a code fix, and even test-case
generation to validate the fix.

4



2.3 Interactive / Agent-Based Evaluations

A parallel line of work probes whether LLM agents can exploit and repair live systems. CVE-BENCH
[20] supplies Docker targets with real common vulnerabilities and exposures (CVEs) and lets an
autonomous tool chain iterate until the vulnerability is fixed. Similarly, the NYU CTF benchmark
[13] collects real-world CTF challenges (spanning web, binary exploitation, cryptography, etc.) to test
an AI agent’s prowess in finding flags (exploiting vulnerabilities). These interactive evaluations push
beyond static analysis by requiring a sequence of actions (reconnaissance, exploit, and sometimes
patch).

However, they primarily assess attack performance or autonomous patch deployment, without
examining an AI’s ability to explain vulnerabilities or generate human-readable remediation plans.
This leaves a gap in evaluating how well systems can reason about vulnerabilities in depth: describing
why code is insecure, fixing it, and validating the fix. VADER addresses this gap by providing a
comprehensive, human-evaluated benchmark that spans from detection and explanation to repair and
test planning, covering the full vulnerability handling lifecycle in code.

3 Benchmark Construction and Analysis

3.1 Construction

VADER’s dataset was constructed through a rigorous double-annotator process mirroring real-world
secure code review. In total, 174 real vulnerabilities were curated from open-source software,
emphasizing projects with real-world functionality (e.g., web servers, CLI tools, databases) in popular
languages (Python, Java, JavaScript, C/C++, Go, etc.). Each case underwent two stages: (1) an initial
submission by a vulnerability author and (2) a subsequent independent review to ensure accuracy and
consistency.

Case Submission. In the first stage, security expert annotators identified a genuine, non-trivial
vulnerability in an open-source codebase and prepared a full report for that case. Annotators were
instructed to target security-relevant flaws (e.g., issues in input handling, access control, memory
management) that were real and demonstrable (not hypothetical or toy examples), often involving
complex or multi-file code logic. For each vulnerability, the submitter extracted the relevant code
snippet(s) exhibiting the flaw and provided all required context and documentation. This included
classifying the vulnerability with the appropriate CWE identifier (and, optionally, an OWASP Top-
10 category if applicable) and writing a concise natural-language explanation of the issue. The
explanation (typically 2–5 sentences) was expected to clearly describe the root cause of the bug,
how an attacker could exploit it, and the potential impact or damage. The submitter also proposed a
golden patch—a minimal, clean code fix addressing the root cause without unnecessary changes—and
supplied a test case or test plan to validate the fix. Additionally, each case was assigned a severity
level (1-5) based on a standard rubric (see Table 2) considering the vulnerability’s exploitability,
scope, and potential damage.

Review and Validation. In the second stage, every submission was independently reviewed by
one of five hand-selected security engineers (min. 6 years of experience) to ensure it met all quality
criteria before inclusion in the benchmark. The reviewer verified that the reported flaw was indeed
a real, impactful vulnerability and not a trivial bug or false issue. They checked that the correct
CWE category was assigned and that the written explanation covered all key aspects (the underlying
cause of the vulnerability, why it occurred, and an exploit scenario demonstrating how an attacker
could leverage it). The proposed patch was scrutinized to confirm it truly fixed the vulnerability at its
source while adhering to best practices (e.g., input validation or proper error handling) and minimal
change principles (avoiding large refactors or unrelated modifications). The reviewer also ensured
the severity rating was appropriate (following the defined severity rubric) and that the provided test
case(s) effectively demonstrated the vulnerability’s presence before the patch and its resolution after
the patch. Submissions that did not satisfy any of these requirements were revised or rejected. Only
after the second annotator’s approval was a vulnerability instance accepted into the VADER dataset.
This two-tier annotation procedure yielded a high-quality benchmark of thoroughly documented
vulnerabilities, each with a verified flaw, explanation, fix, and validation test.
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Open-Source Repo Submitters

ReviewersAnnotated Case

LLM Reviewers

Output for Evaluation

input files only

Figure 4: Curation and evaluation pipeline for VADER.

The detailed scoring sheet used during annotation can be found in Appendix C. Annotated cases that
do not meet submission criteria are rejected or revised.

3.2 Analysis
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Figure 5: Distribution of programming languages across VADER cases.

VADER encompasses 15 programming languages. In Figure 5, JavaScript and Python are the most
frequent, trailed by web scripting languages like TypeScript and PHP. Go and SQL reflect moderate
representation of cloud backend and database workloads. To further explore the relationships
between languages, we examine their co-occurrences in vulnerability cases. Understanding these
co-occurrence patterns can also reveal common tech stacks that lead to vulnerabilities. In Figure 6,
Javascript and Python exhibit the highest co-occurrence, followed by Python and SQL. Additionally,
HTML and Javascript, as well as Javascript and PHP, co-occur often. These patterns reflect frontend
web development and backend database workflows. There are distinct file distribution patterns. As
shown in Figure 7 in appendix, Go, SQL, C, and C++ all have 2-3 of their cases involving 2–5 files,
indicating more complex code bases. Javascript, has many cases with more than 6 files, reflecting the
extensive code changes often required in web applications for vulnerability remediation, a pattern
consistent with its prevalence in CWE-79 (Cross-Site Scripting) cases observed in Figure 8b in the
appendix. Python demonstrates sizable cases involving multiple files, due to its association with
vulnerabilities like CWE-89 (SQL Injection) as seen in Figure 8b in the appendix.
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Figure 6: Language co-occurrence matrix showing the frequency of language pairs across cases.

4 Evaluation

Model Selection. We selected six state-of-the-art LLMs based on their popularity, architectural
diversity, extended context support, and prominence in academia/industry. The models are OpenAI’s
o3, Google’s Gemini 2.5 Pro, Anthropic’s Claude 3.7 Sonnet, xAI’s Grok 3 Beta, and two versions of
OpenAI’s GPT-4 (denoted GPT-4.1 and GPT-4.5). These represent a broad cross-section of leading
large models: for example, Claude 3.7 is known for its 64k-token extended context (which we
leveraged to handle our longest multi-file inputs), while Gemini and Grok introduce architectural
variety from Google and xAI, respectively. All chosen models support large context windows (at least
128k tokens or more), a necessary feature for VADER’s multi-file vulnerability cases. By including
multiple vendors and model families (OpenAI’s GPT-series and new o-series, Anthropic’s Claude,
Google’s PaLM/Gemini, and xAI’s Grok), we aimed to make the evaluation comprehensive and
representative of the best available LLMs in 2025.

Evaluation Framework. We perform a one-shot evaluation with the prompt, shown in Table 7. This
prompt was used uniformly across all models and for every test case, without any model-specific
tuning. Each LLM was given the exact same one-shot demonstration and task description, then asked
to produce a solution for the target vulnerable code.

Table 3: Model scoring rubric used by reviewers to evaluate outputs.

Category (Pts) Give full points Give partial points Give 0 points

Explanation (0–2) Crystal-clear and techni-
cally accurate; explains
root cause and impact.

Understandable but miss-
ing impact or has minor
technical flaws.

Missing, incorrect, or ir-
relevant explanation.

Remediation (0–5) Fix is minimal, compiles,
style-compliant, and elimi-
nates the vulnerability.

Fix resolves issue but is
messy, has style issues, or
introduces minor risk.

Does not fix the issue,
breaks code, or intro-
duces new vulnerability.

Other (0–3) CWE classification is ex-
act; test plan runnable and
covers both success and
failure.

Only CWE or test plan is
partially correct or miss-
ing.

Both CWE and test plan
are incorrect or missing.

Thus, each model’s output on a single case received a total score from 0 to 10 by summing these
components. All models’ outputs for a given case were scored by at least two independent expert
evaluators (security researchers) following this rubric. The evaluators were blind to which model
produced which output, to reduce bias.
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5 Results

Primary Results. We find that all six LLMs achieve only moderate success on the VADER
benchmark – even the top model solves just over half of the issues according to our strict rubric.
OpenAI’s o3 model ranks first, with an average Final score of about 5.47 out of 10 (54.7%). Google’s
Gemini 2.5 Pro is the runner-up at roughly 5.2/10, and OpenAI’s GPT-4.5 comes in third ( 5.0/10).
At the lower end, xAI’s Grok 3 Beta has the lowest performance with an average around 4.4/10
(44%), while Anthropic’s Claude 3.7 Sonnet (4.9) and the older GPT-4.1 (4.8) fall in the middle of
the pack. In absolute terms, the gap between the best and worst model is only about 1 point (out
of 10), highlighting that no current model excels at this task; none approaches a near-perfect score.
This underscores the difficulty of the VADER benchmark, as even highly advanced LLMs can at best
remediate a little over half of the vulnerabilities correctly on average.

In summary, our results show that OpenAI’s o3 is the top-performing model on VADER, but
the margin over other leading LLMs is not huge. Performance on the benchmark is capped at a
relatively low absolute level for all models – even o3 on average missed nearly half the points. The
high correlation between remediation and classification/test-plan ability suggests that improving
a model’s deep understanding of code vulnerabilities will yield gains across multiple evaluation
aspects simultaneously. Future models that can more reliably identify and fix complex vulnerabilities
(perhaps via better reasoning or domain knowledge) should also naturally provide better explanations
and test plans. The VADER benchmark thus provides a rigorous measure of these intertwined
capabilities, and our evaluation highlights that significant improvements are needed before automated
code assistants can consistently handle real-world security flaws.

(a) Overall performance across models

Statistic Claude-3.7 Gemini-2.5-Pro GPT-4.1 GPT-4.5 o3 Grok 3 Beta
Mean 52.31% 53.58% 50.00% 49.19% 54.62% 52.02%

(b) <Remediation>

Statistic Claude Gemini GPT-4.1 GPT-4.5 o3 Grok

Mean 52.30% 52.76% 49.08% 49.20% 54.60% 51.38%
Std 47.34% 47.22% 46.65% 47.92% 48.67% 47.37%
25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
50% 80.00% 80.00% 60.00% 60.00% 90.00% 60.00%
75% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

(c) <Explanation>

Statistic Claude Gemini GPT-4.1 GPT-4.5 o3 Grok

Mean 53.74% 56.03% 53.45% 50.29% 55.46% 53.74%
Std 48.39% 48.75% 49.15% 48.83% 49.41% 48.98%
25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
50% 100.00% 100.00% 100.00% 50.00% 100.00% 100.00%
75% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

(d) <Other> (CWE + severity)

Statistic Claude Gemini GPT-4.1 GPT-4.5 o3 Grok

Mean 51.72% 53.83% 49.81% 48.66% 54.21% 52.11%
Std 47.21% 47.76% 47.24% 47.76% 48.40% 48.00%
25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
50% 66.67% 66.67% 66.67% 66.67% 83.33% 66.67%
75% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Table 4 Performance comparison across four evaluation dimensions.
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6 Limitations

Selection of Models. Our study evaluated only a narrow selection of models—specifically six
proprietary state-of-the-art LLMs, due to compute and access constraints. We did not include open-
source or specialized code-focused models (e.g., LLaMA 2, Mistral, Code LLaMA, WizardCoder,
etc.), which limits the breadth of our comparisons. This constrained model pool may reduce the
generalizability of our findings: the results primarily characterize the chosen systems and might
not hold for other LLMs. For example, recent instruction-tuned code models like WizardCoder (an
open-source 15B parameter model) have demonstrated performance on coding benchmarks that rivals
or even surpasses some closed-source models like Anthropic Claude and Google Bard (SOURCE).
Because such models were excluded, our benchmark cannot confirm whether similar success (or
failure) patterns would occur with them.

Resource and Cost Constraints. These limited the scale and scope of our inference runs, especially
for cases requiring long context or multi-file analysis. Some real-world vulnerabilities span multiple
files or large codebases, pushing beyond the context window and budget of our evaluation setup.
We had to uniformly apply one-file-at-a-time, one-shot prompting for all models, which meant
certain complex cases could not be fully tested in their entirety. This restriction forced us to drop
particularly large cases), thereby narrowing the benchmark’s coverage of very complex vulnerabilities.
Consequently, one should be careful in extrapolating our results to large-scale industrial codebases or
vulnerabilities that require cross-file reasoning.

7 Conclusion

This paper introduces a novel benchmark, VADER, a human-evaluated benchmark for assessing
large language models on end-to-end software vulnerability handling. VADER contains 174 real-
world cases annotated by security experts, covering detection, CWE classification, explanation,
patching, and test plan generation. Models are evaluated using a rigorous rubric weighted toward
remediation (50%) and demonstrate only moderate performance (top score: 54.7%). VADER spans
15 languages, multi-file scenarios, and a 5-level severity scale to stress real-world complexity. All
benchmark data, evaluation tools, and results are publicly released to support reproducible progress
in vulnerability-aware LLMs. All code and data is available at
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A Submitter Instructions

Table 5: Submitter Guidelines for VADER Benchmark Annotation and Evaluation

Category Guidelines

Detection
• Is there a real and demonstrable vulnerability?
• Can it be classified under CWE?
• Avoid trivial or overly broad examples (e.g., this whole file is vulnerable).

Explanation
• Includes: root cause, how it can be exploited, and why it occurred.
• Optional: link to real-world exploit or blog post.

Remediation
• Write a minimal, clean, and correct golden_patch.
• Apply defensive programming and sanitize inputs.
• Avoid large rewrites—modify as little as needed.

Checklist Before Submission
• Vulnerability is real, detectable, and high-impact.
• golden_patch is minimal, clean, and secure.
• Correct CWE/(OWASP optional) label used.
• Test cases validate the fix.

Explanation Template (Min. 50 characters per field)
Vulnerability Type: CWE ID and short title.
Severity: Use chart from Section 2.
Root Cause: What specific flaw in the code leads to the issue?
Exploit Scenario: How could an attacker exploit the flaw?
Why It Happens: What in the system causes the issue?
Security Implications: What could an attacker achieve?
Suggested Fix: Summary of the fix or design change.

B Explanation Template Provided to Annotators

To ensure high-quality and consistent explanations across vulnerability cases, we provided annotators
with a structured template. The template encouraged clear, technical descriptions of the issue, its
cause, and mitigation strategies. An example is shown below.
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Explanation Template
Vulnerability Type: CWE-89: SQL Injection
Severity: 4 (High)

Root Cause:
The code constructs a SQL query by directly concatenating user input without any sanitization
or parameterization.

Exploit Scenario:
An attacker could supply input like ’ OR 1=1– to the user_id field, which would allow
unauthorized access to all records in the database.

Why It Happens:
The application uses string formatting to dynamically build SQL queries, which makes it
vulnerable to injection attacks.

Security Implications:
Exploitation could lead to full database compromise, including reading, modifying, or deleting
sensitive data.

Suggested Fix:
Use parameterized queries (prepared statements) to separate query logic from user-provided
values, eliminating injection risk.

The patch file is provided below.

C Comprehensive Reviewer Checklist

Table 6: Reviewer Rubric Guidelines for Annotated Case Validation

Review Area Validation Criteria

Detection
• The vulnerability must be real and demonstrable.

• It must be classifiable under a valid CWE category.

• Avoid trivial or overly broad examples (e.g., this whole file is
vulnerable).

Explanation
• Clearly describes the root cause of the vulnerability.

• Explains how an attacker could exploit it.

• Includes rationale for why the vulnerability occurs in this specific con-
text.

• (Optional) May include a link to a real-world exploit or blog post.

Remediation
• The patch (golden_patch) is minimal, clean, and technically correct.

• Updates to function signatures or input sanitization are included if
needed.

• Defensive techniques (e.g., input bounds checks, least privilege) are
preferred.

• Avoids unnecessarily long rewrites—fixes should be scoped and concise.

(continued on next page)
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(continued from previous page)

Review Area Validation Criteria

Bonus Considerations
(Optional) • Case involves at least one common programming language (e.g., Python,

JavaScript, C++).

• Cross-language vulnerabilities (e.g., Python calling into unsafe C++)
are especially valuable.

Final Submission
Quality • Vulnerability is high-impact, well-scoped, and grounded in real code.

• golden_patch is clean, secure, and resolves the root cause.

• Correct CWE label is assigned.

• Test case or plan must validate the fix effectively.

• Explanation includes all required fields and is technically sound.

Required Explanation
Fields (Minimum 50
characters each)

• Vulnerability Type: CWE ID and short title.

• Severity: Based on the standardized rubric.

• Root Cause: Specific flaw and how it arises.

• Exploit Scenario: Realistic attacker action and outcome.

• Why It Happens: Deeper reasoning or design flaw.

• Security Implications: Consequences or potential damage.

• Suggested Fix: Short summary of how to resolve the issue.

D Data Analysis on Vulnerability Patterns

Figure 7: Distribution of languages, segmented by number of files.

Different languages are susceptible to different vulnerabilities and severities. Figure 8a presents a
count plot of the top 10 Common Weakness Enumerations (CWEs), segmented by severity levels
(Very Low to Critical), while Figure 8b displays the same CWEs, but segmented by programming
languages. The most prevalent CWE-89 (SQL Injection) exhibits High to Critical severity as seen
in Figure 8a, predominantly associated with Python (16 cases) and SQL (4 cases) as observed in
Figure 8b, due to its capacity to manipulate database queries, allowing data theft in Python-based web
frameworks like Flask or Django. The second most frequent, CWE-79 (Cross-Site Scripting), mostly
Medium in severity in Figure 8a, is closely associated with Javascript (13 cases) and Python (6 cases)
in Figure 8b, where injected scripts facilitate session hijacking or user redirection. CWE-78 (OS
Command Injection), the third most frequent, is notable for its high proportion of Critical cases in
Figure 8a, as it allows attackers to execute arbitrary OS commands with elevated privileges, resulting
in severe impacts such as system compromise, data deletion (e.g., rm -rf /), or malware installation,
with high occurencces in Python programs (8 cases) as seen in Figure 8b. CWE-22 (Path Traversal)
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and CWE-20 (Improper Input Validation) are prevalent in Python applications, driven by Python’s
flexible file I/O and input handling, which, if not properly validated, can lead to unauthorized file
access or broader exploits. CWE-601 (URL Redirection to Untrusted Site) and CWE-352 (Cross-Site
Request Forgery) are predominantly associated with Javascript, where client-side scripting heightens
susceptibility to unvalidated redirects and CSRF attacks.

(a) Distribution of Top 10 CWE Types by Severity

(b) Distribution of Top 10 CWE Types by Language

Figure 8: Combined analysis of CWE distribution, segmented by severity and language in VADER:
(a) Distribution of CWEs, segmented by severity; (b) Distribution of CWEs, segmented by language.

15



E One-shot Prompt Template

Table 7: Exact prompt templates used for every evaluation run. All text inside is literal and
case–sensitive.
Template Literal string (line–breaks preserved)

System You are a cybersecurity engineer.

For the very first case, you will receive:
- A vulnerability description
- The code files for inspection
- The patch
- Test case descriptions

For all following cases, you will receive only the code files.

For each case, produce exactly one JSON object (and nothing else) with
these four keys:
{

"cwe_id": "CWE-XXX",
"explanation": "A clear, concise technical explanation of the

issue.",
"patch": "A Git-style patch that exactly matches the format of the

patch example.",
"test_plan": ["step 1 description", "step 2 description", ...]

}

Requirements:
1. Do NOT wrap the JSON in markdown or code fences.
2. Do NOT include any extra keys or any commentary.
3. Preserve all formatting inside the "explanation" and "patch" fields
exactly as shown in the examples.

Case prompt Case {case_id}:
Files:
{file_blocks}

Please identify the vulnerability, explain it, propose a patch, and
outline test steps to validate your fix.
Your patch must be in the form of a GitHub-generated patch, as shown in
the example patch.
Respond in JSON with keys: "cwe_id", "explanation", "patch",
"test_plan".

Example First case ({case_id}):
Description:
{description}

Patch:
{patch}

Test Cases:
{tests}
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