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Abstract—Machine Learning as a Service (MLaaS) enables
users to leverage powerful machine learning models through
cloud-based APIs, offering scalability and ease of deployment.
However, these services are vulnerable to model extraction
attacks, where adversaries repeatedly query the application
programming interface (API) to reconstruct a functionally sim-
ilar model, compromising intellectual property and security.
Despite various defense strategies being proposed, many suffer
from high computational costs, limited adaptability to evolving
attack techniques, and a reduction in performance for legitimate
users. In this paper, we introduce a Resilient Adaptive Defense
Framework for Model Extraction Attack Protection (RADEP),
a multifaceted defense framework designed to counteract model
extraction attacks through a multi-layered security approach.
RADEP employs progressive adversarial training to enhance
model resilience against extraction attempts. Malicious query
detection is achieved through a combination of uncertainty
quantification and behavioral pattern analysis, effectively identi-
fying adversarial queries. Furthermore, we develop an adaptive
response mechanism that dynamically modifies query outputs
based on their suspicion scores, reducing the utility of stolen
models. Finally, ownership verification is enforced through em-
bedded watermarking and backdoor triggers, enabling reliable
identification of unauthorized model use. Experimental evalua-
tions demonstrate that RADEP significantly reduces extraction
success rates while maintaining high detection accuracy with
minimal impact on legitimate queries. Extensive experiments
show that RADEP effectively defends against model extraction
attacks and remains resilient even against adaptive adversaries,
making it a reliable security framework for MLaaS models.

Index Terms—Model extraction attack, Machine-Learning-as-
a-Service (MLaaS), Deep learning, Malicious query, Security.

I. INTRODUCTION

With the growing popularity of MLaaS, advanced models
are now easily accessible via cloud-based Application Pro-
gram Interface (API)s, bypassing the need for local training
but also introducing new vulnerabilities. Recent studies have
shown that these models are prone to extraction attacks [1],
where adversaries repeatedly query the victim model using
carefully crafted or surrogate inputs to reconstruct a substi-
tute model that mimics its functionality. This unauthorized
replication not only jeopardizes intellectual property but can
also facilitate further adversarial exploits and compromise user
privacy. Machine learning models developed and deployed
for various critical infrastructure applications are increasingly

targeted by adversarial threats, including ME attack [2], [3].
Adversaries may employ both black-box (without internal
insight) methods (such as the JBDA-TR [1], Cloudleak [4],
KnockoffNet [5], Zeroth Order Optimization [6] etc.), and
many white-box (transparent or accessible model) techniques
to perform these attacks. Although defenses like adversarial
training [7], model pruning [8], and query detection [7] have
been proposed, they incur significant computational overhead.
Another common challenge with model extraction defenses
is the trade-off between security and performance, where
strict security measures can degrade the accuracy of the
source model [9], [10]. Moreover, static defenses often fail
against adaptive adversaries who modify their strategies to
bypass security measures [7]. MLaaS platforms implement
strong authentication mechanisms, such as API keys, OAuth,
and multi-factor authentication, to restrict model access to
authorized users [11]. However, an authenticated adversary
can still execute model extraction by issuing an excessive
number of queries. This necessitates a strong research focus
on developing a enhanced defense technique to protect MLaaS
models while ensuring their integrity and confidentiality.

To address these challenges, we propose RADEP, a multi-
layered defense framework that integrates complementary
techniques to protect MLaaS models from extraction and
privacy attacks. RADEP combines progressive adversarial
training for resilience against evolving threats, malicious
query detection using uncertainty and behavioral analysis,
and an adaptive query response mechanism that perturbs
suspicious queries while preserving utility for legitimate users.
It also includes ownership verification via embedded backdoor
triggers and lightweight watermarking, enabling reliable de-
tection of unauthorized model usage. The main contributions
of this paper are as follows:

• We propose RADEP, a multifaceted defense framework
against model extraction attacks, integrating progressive
adversarial training, malicious query detection, adaptive
query response, and ownership verification. Through
detailed analysis and experiments, we demonstrate how
RADEP effectively reduces the success of extraction
attacks and limits the utility of stolen models.
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• We introduce a query detection system that uses un-
certainty metrics and behavioral analysis to potentially
malicious queries, and a dynamic response mechanism
that degrades adversarial outputs.

• We ensure malicious query detection time to be less
than 0.01 ms and adaptive query response times between
15 ms (MNIST) and 60 ms (ImageNette), with owner-
ship verification completed within 520.5 to 850.5 ms.
This low overhead enhances scalability, making RADEP
suitable for deployment in resource-constrained MLaaS
environments.

• We conduct extensive experiments to evaluate RADEP’s
effectiveness against state-of-the-art model extraction at-
tacks, including JBDA-TR [1], Cloudleak [4], and Knock-
offNet [5]. The results demonstrate RADEP’s superior
resilience across different datasets and attack scenarios.

The remaining part of this paper is as follows: Section II
outlines the threat model, detailing the attacker’s objectives,
knowledge, and capabilities. Section III describes the pro-
posed RADEP framework. Section IV provides the experi-
mental results along with an analysis and discussion of the
findings. Lastly, we conclude our work and discuss a few
future research thoughts in Section V.

II. THREAT MODEL

In this section, we outline the threat model, detailing the
adversary’s objective, knowledge and strategy of the proposed
model extraction attack defense framework [7].

A. Adversary Objective

Model stealing attacks typically aim to replicate various
aspects of a target model, such as its architecture, hyperpa-
rameters, or overall functionality [7]. In this paper, we focus
specifically on functionality stealing, where the attacker’s
goal is to build a substitute model that closely matches the
performance of the victim model. To assess the success of
such attacks, we use two metrics: (i) test accuracy, which
measures how well the substitute model performs on the
victim model’s test data, and (ii) fidelity, defined as the level of
agreement between the outputs of the victim and the extracted
model on identical inputs. An ME attacker might be primarily
interested in replicating the victim model to avoid ongoing
API costs, or might use a successful extraction to facilitate
further attacks, such as adversarial or membership inference
attacks.

B. Adversary Knowledge

We assume that the adversary has limited access to data
and can only interact with the victim model via a black-
box (without internal insight) interface [12]. In this context,
“data-limited” implies that the attacker only has access to
a small set of natural samples, while “black-box access”
(without internal insight) means that the attacker can only
submit inputs and observe the corresponding outputs from
the victim model. Based on the type of outputs received, ME
attacks can be categorized into two scenarios: (i) the hard-label
scenario, where only the predicted class is returned, and (ii)
the soft-label scenario, where the full probability distribution

is provided. In our evaluations, we test our defense framework
under both of these conditions.

C. Adversary Strategy

The adversary, limited by a small number of natural sam-
ples, overcomes data scarcity by either generating synthetic
data or by employing surrogate data to query the victim
model. The resulting query-output pairs are then used to
train a substitute model. In our evaluation, we consider three
advanced attack strategies. First, in the JBDA-TR attack, an
enhanced version of Jacobian-based dataset augmentation is
employed [1]. For each sample in the training set, synthetic
samples are iteratively generated using a targeted variant of
the Fast Gradient Sign Method (FGSM) [13], where a random
target class is selected in each iteration. The synthetic samples
produced are then labeled by the victim model and added
to the training data to retrain the substitute model. Second,
the Cloudleak [4] attack similarly relies on synthetic sample
generation but differs by using a feature-based adversarial at-
tack to create these samples; the adversary subsequently fine-
tunes a pre-trained substitute model with the newly obtained
labeled data. Finally, the KnockoffNet attack [5] bypasses
synthetic sample generation by querying the victim model
with surrogate data from the same or a related distribution and
training the substitute model on the responses. These strate-
gies collectively enable the adversary to effectively replicate
the victim model’s functionality despite having only limited
natural data.

III. PROPOSED RADEP

This section provides a detailed description of each phase
of the proposed RADEP framework. Figure 1 illustrates the
architecture, highlighting the interconnection of each phase.

A. Progressive Adversarial Training

Adversarial training is a key defense mechanism that im-
proves model resilience by exposing the model to diverse
adversarial perturbations during training. Our approach inte-
grates multiple adversarial techniques, including Fast Gradient
Sign Method (FGSM) [13], Projected Gradient Descent (PGD)
[14], and DeepFool [15], to generate adversarial examples
that challenge the model’s decision boundaries. For example,
FGSM perturbs an input x in the direction of the gradient of
the loss function J(θ, x, y) as follows:

xadv = x+ ϵ · sign(∇xJ(θ, x, y)) (1)

where ϵ is a small perturbation factor, θ represents the
model parameters, and J(θ, x, y) is the loss function. PGD
extends this concept by applying iterative updates to refine
the adversarial example, while DeepFool minimizes the l2-
norm to produce more precise perturbations [1]. In addition
to these methods, our approach incorporates adaptive training
updates that periodically generate and integrate new adversar-
ial examples into the training process. This continuous update
mechanism allows the model to adapt to emerging threats
without requiring complete retraining, thereby enhancing its
resilience against increasingly sophisticated extraction attacks.
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Fig. 1: Architecture of the proposed framework RADEP.

B. Malicious Query Detection Mechanisms

The proposed malicious query detection mechanism com-
bines uncertainty quantification and behavioral analysis to flag
malicious queries while preserving normal user experience. In
the uncertainty component, a composite score is computed as:

U(x) = α1(1−Pmax(x))+α2H(x)+α3(1−M(x))+α4σ(x)
(2)

where Pmax(x) refers to the maximum softmax probability
[16]), and the entropy H(x) is computed as:

H(x) = −
K∑
i=1

P (y = i | x, θ) logP (y = i | x, θ) (3)

where M(x) is the margin between the top two predictions,
and σ(x) is the Bayesian-based uncertainty [17] (e.g., via
Monte Carlo Dropout). The weights αi are calibrated using
validation data, and queries with U(x) > τ are flagged as
suspicious.

On the other side, the behavioral analysis segments queries
into fixed intervals that measure query frequency and variance.
Abnormal query rates or unusually low variance, identified
using statistical methods such as Kullback-Leibler (KL) diver-
gence [18], indicate potential extraction attempts. Combined,
these two approaches create a resilient detection system with
high accuracy and minimal false positives.

C. Adaptive Query Response

Adaptive query response adjusts output perturbations ac-
cording to the evaluated suspicion level of each query, as
outlined in Algorithm 1. In our approach, each query is
assigned a suspicion score S(qi) (as shown in line 2 of
Algorithm 1), computed through different uncertainty metrics
such as softmax probability Pmax(q), predicted entropy H(q),
margin of top two predictions M(q), and Bayesian-based
uncertainty σ(q).

Based on this score, the system dynamically adjusts the per-
turbation level applied to the query response. Higher suspicion
results in stronger perturbations through techniques such as
label flipping and additive noise [19], while highly suspicious

queries undergo adaptive label scaling that redistributes output
probabilities to obscure the model’s behavior. The perturbed
response is calculated (Algorithm 1 line 9), ensuring that re-
sponses are customized for different levels of query suspicion.
RADEP customizes responses by comparing incoming queries
to previously flagged ones, degrading outputs for suspicious
patterns. Periodic threshold recalibration ensures adaptability
to evolving attacks with minimal impact on legitimate users.

Algorithm 1 Adaptive Query Response

Require: Set of queries q1, . . . , qN
Ensure: Perturbed responses for each query

1: for each query qi do
2: Compute: S(qi) = α1(1− Pmax) + α2H(qi) + α3(1−

M(qi)) + α4σ(qi) ▷ suspicion score

3: ϵ =


ϵlow if S(qi) ≤ τ1

ϵmedium if τ1 < S(qi) ≤ τ2

ϵhigh if S(qi) > τ2
4: Ppert(y | qi) = P (y | qi) + δ(S(qi)), δ(S(qi)) ∼

N (0, ϵ) ▷ Perturbed responses
5: end for
6: return Perturbed responses Ppert(y | qi).

D. Ownership Verification Mechanisms

To confirm model ownership, we embed distinctive sig-
natures into the model through both backdoor triggers [20]
and complex watermarking techniques [8]. In the backdoor
trigger approach, specific trigger queries are crafted to pro-
duce distinct, predetermined responses that serve as a digital
signature. The model is trained so that for each trigger query
qitrigger, it produces a designated output yitrigger, confirming that
if a suspected model returns these outputs, its origin can be
verified. These triggers are carefully isolated from the normal
input distribution to remain resilient against modifications like
pruning or fine-tuning [8].

Complementing this, complex watermarking techniques are
used to subtly modify the model’s standard outputs, em-



bedding a distributed signature that persists across typical
queries. For example, the output probability distribution for
a watermark query qw is adjusted as

Pwatermark(y | qw) = P (y | qw) + ϵ(y, qw) (4)

where ϵ(y, qw) is a small, query-dependent perturbation that
forms the watermark signature. This combined strategy of
backdoor triggers and watermarking creates a dual-layered
verification mechanism, providing resilient evidence of owner-
ship even after the model undergoes adversarial modifications.

E. Regular Evaluation and Adjustment

We implement an automated attack simulation that periodi-
cally evaluates the defense system. Various adversarial attacks,
such as FGSM [13], PGD [14], and Zeroth Order Optimization
[6], are simulated to generate adversarial examples. The
system logs the attack success rate by comparing misclassified
examples with clean data, and monitors the false positive rate
to minimize impact on legitimate queries. Successful adver-
sarial examples are added to the training set, and detection
thresholds are adjusted if the attack success rate exceeds a set
tolerance. This feedback loop continuously refines adversarial
training, query detection, and response strategies, maintaining
high performance while ensuring resilience against extraction
attacks.

IV. EXPERIMENTAL EVALUATION

In this section, we first describe our experimental setup,
then analyze the impact of adversarial training on model ex-
traction attacks. Next, we compare our detection method with
Out of Distribution (OOD) detection [16] and evaluate the
overall effectiveness of RADEP, using Dynamic Adversarial
Watermarking of Neural networks (DAWN) [20], deceptive
perturbation [21], adaptive misinformation [16], and AMAO
[7] as baselines.

A. Experimental Setup

1) Datasets and Victim Models: We consider LeNet-5 for
MNIST, AlexNet for FMNIST, ResNet18 for CIFAR-10, and
ResNet34 for ImageNette. These datasets collectively offer
varying levels of image complexity and dataset sizes, enabling
a comprehensive evaluation of RADEP’s effectiveness under
diverse experimental settings.

2) Attack Configuration: To strengthen the attack setting
and evaluate our defense against a more capable adversary,
we configure the substitute model to mirror the victim model’s
architecture. This design ensures that if RADEP proves effec-
tive under such stringent conditions, its resilience would be
even greater when the adversary lacks this knowledge.

In JBDA-TR [1] and Cloudleak [4], the substitute model
begins training with 100, 100, 1,000, and 1,000 samples
for MNIST, F-MNIST, CIFAR-10, and ImageNette, respec-
tively. The corresponding query budgets for these datasets
are 10,000, 10,000, 100,000, and 100,000. JBDA-TR involves
six iterative augmentation rounds, with the substitute model
being trained for 20 epochs after each round. Alternatively,
Cloudleak employs a pre-trained substitute model that is fine-
tuned for 20 epochs to enhance attack performance.

For KnockoffNet [5], surrogate datasets are leveraged for
training the substitute models: FashionMNIST for MNIST,
MNIST for F-MNIST, CIFAR-100 for CIFAR-10, and Ima-
geNet for ImageNette. The assigned query budgets are 60,000,
60,000, 50,000, and 13,000 for the respective datasets. Each
substitute model is trained for a total of 50 epochs to improve
extraction accuracy.

Our primary goal is to assess the robustness of RADEP
against a range of model extraction attacks rather than per-
forming a comparative analysis among the attacks themselves.
Although the query budgets vary across different attack strate-
gies due to their unique characteristics, this variation does not
affect the fairness of our defense evaluation.

3) Metrics: To evaluate RADEP’s performance, we con-
sider test accuracy, fidelity, and watermark accuracy as pri-
mary metrics, focusing on both defense effectiveness and
model robustness. Additionally, we analyze computational
overhead to ensure practical applicability. Since fidelity
closely aligns with test accuracy trends, we exclude its de-
tailed results for brevity.

4) Comparison with Existing Defenses: We evaluate
RADEP against five state-of-the-art defense strategies to com-
prehensively measure its effectiveness in mitigating model
extraction attacks. PRADA [1] identifies malicious queries
by analyzing Gaussian distance distribution deviations, based
on the observation that synthetic queries often cluster around
seed samples. OOD Detection [16] classifies adversarial in-
puts as out-of-distribution using tailored detection methods.
DAWN [20] introduces a hashing mechanism that perturbs
predicted labels, limiting extraction performance while em-
bedding backdoors for ownership verification. Deceptive Per-
turbation [21] alters probability vectors to mislead attack-
ers without affecting the original classification. AMAO [7]
presents an end-to-end defense framework that protects the
model throughout its lifecycle, from training to deployment.
Adaptive Misinformation [16] degrades stolen model accuracy
by generating incorrect outputs through a reverse model
trained with reverse cross-entropy loss.

While these defenses mainly concentrate on query detection
or response alteration, RADEP advances beyond them by
integrating adversarial training with a hybrid query detection
framework. Furthermore, it enhances ownership verification
using dual-layer techniques, combining watermarking and
backdoor triggers to ensure both robust defense against ex-
traction and reliable tracing of unauthorized model usage.

B. Evaluations on Adversarial Training

We perform experimental evaluations against JBDA-TR,
KnockoffNet, and Cloudleak attacks, with the correspond-
ing results summarized in Table I. The extraction models
trained adversarially using RADEP consistently achieve lower
accuracy compared to standard models, demonstrating the
effectiveness of RADEP’s defense mechanisms in both hard-
label and soft-label attack settings. In the hard-label scenario,
where adversary information is limited, RADEP significantly
restricts model extraction. Even in the soft-label setting,
RADEP effectively hinders the adversary’s ability to cap-
ture decision boundary information. These findings confirm



TABLE I: The performance of the substitute model under
the defense of adversarial training, where the most effecgive
results are highlighted.

Attack Scenario Dataset Std. train Adv. train

JBDA-TR

Hard

MNIST 91.23 88.93
F-MNIST 79.33 77.87
CIFAR-10 42.80 42.05
ImageNette 51.27 47.22

Soft

MNIST 95.58 91.89
F-MNIST 81.44 82.51
CIFAR-10 43.97 43.14
ImageNette 55.76 54.86

TABLE II: Accuracy and F1-Score comparisons demonstrate
that RADEP, highlighted, outperforms OOD detection [16]
and AMAO [7].

Dataset Attack
Accuracy (%)

[16] / [7] / RADEP
F1-Score

[16] / [7] / RADEP

MNIST

JBDA-TR 76.15 / 87.85 / 90.57 0.68 / 0.87 / 0.91

KnockoffNet 86.20 / 93.75 / 95.86 0.82 / 0.93 / 0.96

Cloudleak 72.23 / 84.99 / 87.31 0.61 / 0.84 / 0.89

F-MNIST

JBDA-TR 73.05 / 81.20 / 83.73 0.66 / 0.81 / 0.85

KnockoffNet 65.91 / 69.89 / 72.54 0.53 / 0.67 / 0.73

Cloudleak 66.33 / 74.37 / 76.82 0.54 / 0.73 / 0.78

CIFAR-10

JBDA-TR 73.41 / 78.99 / 81.90 0.67 / 0.76 / 0.82

KnockoffNet 84.55 / 86.23 / 88.85 0.83 / 0.87 / 0.91

Cloudleak 77.04 / 77.33 / 80.28 0.73 / 0.76 / 0.80

ImageNette

JBDA-TR 77.11 / 80.29 / 83.43 0.80 / 0.82 / 0.86

KnockoffNet 72.58 / 81.13 / 84.57 0.76 / 0.81 / 0.85

Cloudleak 77.16 / 83.04 / 86.09 0.80 / 0.84 / 0.88

that RADEP’s progressive adversarial training and adaptive
strategies increase the adversary’s query requirements, elevate
computational costs, and enhance overall model robustness
against extraction attacks.

C. Evaluation on Malicious Query Detection

RADEP demonstrates superior performance in detecting
adversarial queries compared to AMAO [7] and OOD detection
[16] approaches. It utilizes a hybrid detection framework that
integrates uncertainty quantification with behavioral analysis,
enhancing the robustness of its defense. As shown in Table II,
RADEP substantially improves both accuracy and F1-score
in detecting malicious queries. For instance, against Knock-
offNet attacks on MNIST, RADEP attains 95.86% accuracy
and an F1-score of 0.96, outperforming AMAO and OOD
detection. Moreover, RADEP captures temporal patterns in
query behavior, including frequency and variance, which
helps detect advanced attacks like Cloudleak. On MNIST,
RADEP achieves 87.31% detection accuracy, exceeding the
performance of both AMAO and OOD detection. These results
highlight RADEP’s capability to efficiently handle adaptive at-
tacks. Additionally, RADEP incorporates an adaptive response
mechanism that dynamically alters detection thresholds and
response strategies based on the suspicion level of queries,

significantly outperforming static defenses and consistently
enhancing performance across diverse attacks and datasets.

TABLE III: The test accuracy of the substitute model under
the defense of RADEP and the baseline defenses [16], [21],
[20], where RADEP outperforms the baselines is highlighted.

Attack Scenario Dataset
No

Defense
Baseline
Defense RADEP

JBDA-TR

Hard Label

MNIST 91.23 87.30 65.17

F-MNIST 79.33 74.21 63.52

CIFAR-10 42.80 35.35 30.89

ImageNette 51.27 47.88 43.90

Soft Label

MNIST 95.58 91.80 78.94

F-MNIST 81.44 75.48 59.78

CIFAR-10 43.97 40.97 34.53

ImageNette 55.76 50.70 46.35

KnockoffNet

Hard Label

MNIST 89.57 70.44 65.51

F-MNIST 40.38 34.95 30.76

CIFAR-10 69.37 63.48 47.07

ImageNette 55.90 50.88 42.54

Soft Label

MNIST 91.72 80.56 77.92

F-MNIST 42.10 37.81 32.18

CIFAR-10 73.02 71.35 68.59

ImageNette 68.18 61.45 55.33

Cloudleak

Hard Label

MNIST 83.72 73.14 65.51

F-MNIST 76.07 67.82 61.45

CIFAR-10 78.15 67.59 58.86

ImageNette 86.64 73.60 66.12

Soft Label

MNIST 86.36 75.93 71.10

F-MNIST 78.26 71.33 62.88

CIFAR-10 80.04 71.09 65.23

ImageNette 88.19 78.10 69.97

D. Overall Evaluations on RADEP from End to End

In this section, we comprehensively evaluate RADEP
against JBDA-TR, KnockoffNet, and Cloudleak attacks across
multiple datasets.

1) Effectiveness of RADEP: Experimental results indicate
that substitute models extracted from adversarially trained vic-
tims under RADEP consistently attain lower test accuracy than
those from standard trained models. For instance, under the
JBDA-TR (Hard Label) attack on MNIST, the accuracy of the
substitute model reduces to 65.17%, while under Cloudleak
on CIFAR-10, it declines to 58.86%. These findings validate
the effectiveness of RADEP’s progressive adversarial training
with periodic adaptive updates in defending against iterative
attacks. As illustrated in Table ??, RADEP outperforms exist-
ing defenses, such as DAWN [16] for hard-label scenarios and
Deceptive Perturbation [21] and Adaptive Misinformation [20]
for soft-label scenarios, demonstrating significantly reduced
attack success rates across the considered model extraction
attacks.

Moreover, RADEP’s hybrid query detection combined with
dynamic response strategies further minimizes the impact of
adversarial queries. For example, under the KnockoffNet (Soft
Label) attack on ImageNette, the substitute model’s accuracy
drops to 55.33%, while under Cloudleak on F-MNIST, it falls



TABLE IV: Computational Overhead of RADEP.

Dataset Phase Overhead

MNIST

Adversarial training 8.50 (min)
Malicious query detection < 0.01 (ms)
Adaptive query response 15.00 (ms)
Ownership verification 520.50 (ms)

F-MNIST

Adversarial training 14.20 (min)
Malicious query detection < 0.01 (ms)
Adaptive query response 18.90 (ms)
Ownership verification 550.80 (ms)

CIFAR-10

Adversarial training 85.00 (min)
Malicious query detection < 0.01 (ms)
Adaptive query response 32.80 (ms)
Ownership verification 710.40 (ms)

ImageNette

Adversarial training 200.00 (min)
Malicious query detection < 0.01 (ms)
Adaptive query response 60.00 (ms)
Ownership verification 850.50 (ms)

to 61.45%. This adaptive perturbation mechanism disrupts the
attack process by making query-based extraction substantially
more difficult for adversaries.

Furthermore, RADEP’s ownership verification mechanisms
offer an additional layer of protection by degrading the
accuracy of extracted models. Specifically, under the JBDA-
TR (Soft Label) attack on CIFAR-10, the substitute model’s
accuracy further declines to 34.53%, while for the KnockoffNet
(Hard Label) attack on F-MNIST, it drops to 30.76%. These
evaluations collectively demonstrate RADEP’s capability to
significantly weaken model extraction attempts while preserv-
ing data privacy.

2) Computational Overhead of RADEP: Table IV sum-
marizes the experimental results obtained using a high-
performance system with an Intel Xeon processor and
NVIDIA A100 GPUs, running Ubuntu 20.04 LTS with Ten-
sorFlow and PyTorch utilizing CUDA acceleration. Perfor-
mance metrics were recorded using Python’s time module
and framework profilers, verifying RADEP’s stability and
efficiency in real-time scenarios.

RADEP achieves malicious query detection within less than
0.01ms and adaptive query response times ranging between
15ms and 60ms across various datasets. Ownership verifica-
tion is completed within 520.5ms to 850.5ms. Since adver-
sarial training is performed offline during model development
and ownership verification is invoked only when required, the
runtime overhead for each query remains limited to detection
and response, ensuring practicality for deployment.

V. CONCLUSION

In this paper, we presented RADEP, a multifaceted defense
framework for MLaaS that combines progressive adversarial
training, malicious query detection, adaptive response mecha-
nisms, and ownership verification to counter model extraction
and privacy attacks. By leveraging a multi-layered approach,
RADEP reduces attack success rates and degrades adversarial
responses while minimally impacting legitimate queries. Fu-
ture work will focus on reducing latency, exploring advanced
uncertainty metrics, and enhancing resilience in distributed
settings.
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