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Abstract—Traditional Identity and Access Management (IAM)
systems, primarily designed for human users or static machine
identities via protocols such as OAuth, OpenID Connect (OIDC),
and SAML, prove fundamentally inadequate for the dynamic,
interdependent, and often ephemeral nature of AI agents operating
at scale within Multi Agent Systems (MAS) – a computational
system composed of multiple interacting intelligent agents that
work collectively.

This paper posits the imperative for a novel Agentic AI - IAM
framework: We deconstruct the limitations of existing protocols
when applied to MAS, illustrating with concrete examples why
their coarse-grained controls, single-entity focus, and lack of
context-awareness falter. We then propose a comprehensive frame-
work built upon rich, verifiable Agent Identities (IDs), leveraging
Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs),
that encapsulate an agent’s capabilities, provenance, behavioral
scope, and security posture.

Our framework includes an Agent Naming Service (ANS)
for secure and capability-aware discovery, dynamic fine-grained
access control mechanisms, and critically, a unified global
session management and policy enforcement layer for real-time
control and consistent revocation across heterogeneous agent
communication protocols. We also explore how Zero-Knowledge
Proofs (ZKPs) enable privacy-preserving attribute disclosure and
verifiable policy compliance.

We outline the architecture, operational lifecycle, innovative con-
tributions, and security considerations of this new IAM paradigm,
aiming to establish the foundational trust, accountability, and
security necessary for the burgeoning field of agentic AI and the
complex ecosystems they will inhabit.

Index Terms—Agentic AI, Identity Management, Access Con-
trol, Multi-Agent Systems, Decentralized Identifiers, Verifiable
Credentials, Zero-Knowledge Proofs, AI Security, Zero Trust,
IAM, FGAC.

I. INTRODUCTION

Do we need a new approach for Agentic AI Identity
Management? The failure to address the unique identity

challenges posed by AI agents operating in Multi-Agent
Systems (MAS) could lead to catastrophic security breaches,
loss of accountability, and erosion of trust in these powerful
technologies. For instance, without robust agent-specific IAM,
a compromised autonomous agent in a financial system could
cascade unauthorized transactions, or a swarm of interacting
agents in critical infrastructure could be manipulated with
devastating consequences. In this Cloud Security Alliance paper
[1], We listed initial reasons and approach. This paper expanded
on our previous paper and proposed a more robust approach.
(ABAC [2], PBAC [3], JIT [4], [5])

The core problem this current paper addresses is the
fundamental mismatch between existing IAM paradigms (e.g.,
OAuth 2.0, OpenID Connect (OIDC), SAML) and the unique
characteristics of AI agents in MAS. These agents exhibit
autonomy, ephemerality, dynamically evolving capabilities,
complex trust relationships, and operate at an unprecedented
scale. Their actions carry direct consequences, demanding
robust accountability. Delegated authority can cascade through
multiple agents, obscuring responsibility if not managed
appropriately. The European Union’s AI Act [6] and similar
regulatory initiatives underscore the growing societal demand
for transparency, accountability, and human oversight in AI
systems, making robust agent IAM an unavoidable prerequisite.

In a Wall Street Journal article, on May 17, 2025, Rosenbush
[7] discusses the challenges AI agents encounter in accessing
applications, APIs, and websites, emphasizing the need for
new authentication methods beyond traditional human-centric
options.

Inspired by preliminary discussions on IDs for AI systems
[8], this paper examines the limitations of current IAM proto-
cols in MAS settings and illustrate, through concrete examples,
how their coarse-grained permissions, single-entity assumptions,
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limited inclusion of Non-Human Identities (NHIs) and lack of
contextual adaptability fall short and propose a need for a new,
holistic Agentic AI IAM framework. We contend that merely
adapting existing protocols is insufficient. Instead, a purpose-
built approach is required, one that redefines agent identity,
incorporates novel cryptographic primitives, and establishes
new mechanisms for discovery, layered authentication, access
control, and real-time policy enforcement tailored to the agentic
paradigm.

This paper makes the following contributions:
• It critically analyzes the inadequacies of traditional IAM

protocols (OAuth, OIDC, SAML) in the context of MAS,
providing concrete examples of their failure points.

• It defines the essential components of a rich, verifiable, and
dynamic AI Agent Identity (ID), leveraging Decentralized
Identifiers (DIDs) and Verifiable Credentials (VCs).

• It proposes a layered Agentic AI IAM architectural
framework incorporating DIDs, VCs, Zero-Knowledge
Proofs (ZKPs), an Agent Naming and Discovery Service
(ANS) [9], dynamic access control models, and a novel
unified global session management and policy enforcement
layer.

• It details how this framework addresses the lifecycle
of agent IAM, from identity creation and attestation to
runtime authorization, logging, monitoring, and incident
response.

• It compares centralized, decentralized, and federated
deployment models for this framework, offering guidance
on their applicability, and analyzes security considerations
using the MAESTRO framework.

The remainder of this paper is structured as follows: Section
II elaborates on the imperative for a new agentic IAM
paradigm by dissecting the limitations of traditional IAM.
Section III defines the multifaceted nature of an AI agent’s
identity. Section IV presents the proposed Agentic AI IAM
framework architecture. Section V discusses the operational
use cases of Agent IDs within this framework. Section VI
analyzes deployment models and governance. Section VII
details security considerations. Section VIII highlights the
innovative contributions. Section IX discusses future work,
and Section X concludes.

II. THE IMPERATIVE FOR A NEW AGENTIC IAM PARADIGM

The rise of MAS necessitates a fundamental rethinking of
how we manage identity and access. While traditional IAM
protocols have served well for human-centric and simpler
machine-to-machine interactions via service accounts, their
core assumptions and mechanisms break down when faced
with the complexities of autonomous, interacting AI agents.

A. Revisiting Traditional IAM

Protocols like OAuth 2.0 [10], OpenID Connect (OIDC)
[11], and SAML [12] are ubiquitous for authentication and
authorization. Alongside these, foundational enterprise pro-
tocols such as Kerberos [13] for domain authentication and
LDAP [14] for directory services, as well as comprehensive

cloud identity solutions like Microsoft Entra ID, form the
backbone of current identity management for human users and
traditional IT systems. Let us discuss their utility and, more
importantly, their profound insufficiencies for MAS.

1) Lingering Utility for Constrained Scenarios: In limited
contexts, particularly involving single agents or direct human-
to-agent platform interactions, these traditional protocols and
systems can still play a role, primarily in managing the human
interface to agentic systems or bootstrapping initial agent
context:

• Human Authentication to Platforms: OIDC and SAML
for Web/Federated Access: A human user authenticating
to an AI agent deployment platform via OIDC or SAML
is a standard use case. This is often federated through
broader cloud identity solutions like Microsoft Entra ID,
which can manage both cloud-native and synchronized
enterprise identities. For instance, a developer logging into
an AI orchestration platform would use their enterprise
OIDC provider. Kerberos for Enterprise Internal Access:
Within many corporate networks, Kerberos remains the
primary mechanism for authenticating human users to
internal services and platforms. A developer or operator
might authenticate to their workstation and subsequently
to an agent management console using Kerberos.

• Deriving Initial Agent Context and Attributes: LDAP
as an Attribute Source: Enterprise LDAP directories (such
as those underpinning Active Directory, often managed or
federated by Microsoft Entra ID in hybrid environments)
serve as authoritative sources for user attributes and
group memberships. This information can be used by
an organization to issue initial Verifiable Credentials
(VCs) to an agent, attesting to its ownership, departmental
affiliation, or preliminary set of permissions derived from
the human deployer’s context. The platform may then
spawn agents that initially operate under a context derived
from this human user’s authenticated session. The platform
then creates an agent, mcp-dev-agent, which might initially
inherit some basic permissions tied to the developer’s
identity (sourced via OIDC, SAML, or Kerberos, with
attributes potentially enriched from LDAP) to access
specific code repositories and documentation systems.
OAuth 2.0 for Simple Delegated Access by a Single
Agent: An AI agent acting as a confidential client can
use OAuth 2.0 to access a resource server on behalf of
a human user who has granted explicit consent. This
mirrors traditional third-party application access. If mcp-
dev-agent needs to retrieve additional project context
using Model Context Protocol (MCP) [15]–[17] to better
understand the developer’s codebase, it would go through
a standard OAuth 2.0 flow, obtaining an access token
scoped specifically to read project documentation and
code structures that the developer has authorized.

• NHI Tasks and Automations: NHIs can inherit access
permissions from the human who deployed them. These
identities, while non-autonomous and task-specific, are
typically predictable, constrained, and managed through



traditional IAM protocols. Service Accounts and OAuth
2.0: Traditional NHIs like service accounts often rely on
OAuth 2.0 client credentials flows to authenticate to cloud
APIs or internal services. These flows are compatible with
existing identity governance platforms, though they lack
behavioral awareness and session integrity. Secrets and
Certificates as Surrogate Authentication: Static secrets
and certificates issued through PKI or secret management
systems are effective in authentication but lack real-time
behavior verification, traceability, and support in dynamic
environments. Role-Based Access Tied to Humans: NHIs
in many organizations are indirectly managed by assigning
them roles or permissions derived from human owners
or creators (e.g., LDAP group inheritance or IAM role
mapping). This makes sense for simple automation tools
but fails in autonomous systems.

However, these scenarios typically involve a single, well-
defined agent acting in a relatively static role, often directly
tethered to a human user’s session or a pre-configured machine
identity derived from these traditional IAM systems. The
complexities, and the breakdown of these approaches, arise
when multiple agents interact autonomously, as detailed next.

2) Fundamental Insufficiencies for Multi-Agent Systems
(MAS): The dynamic, decentralized, and deeply interconnected
nature of MAS exposes critical flaws in traditional IAM:

• Coarse-Grained and Static Permissions: OAuth and
SAML primarily rely on pre-defined scopes or roles that
are often too broad and static for the fluid operational
needs of AI agents. Agents in MAS frequently require
granular, task-specific permissions that can change dynam-
ically based on context, mission objectives, or real-time
data analysis [18].
Example: Consider a disaster response MAS. Agent-
Search (locates survivors via drone feed api) might
initially need read-only access to map data (map.read)
and drone telemetry (drone.telemetry.read). Upon finding
a survivor, it might need to delegate a task to Agent-
MedicalDispatch (coordinates medical resources api),
which then requires access to medical assets.request and
hospital availability.query. Agent-Search might then also
need to alert Agent-Logistics (manages supply chain api)
about resource needs, requiring supply.request permissions.
In this example, traditional OAuth scopes (read all data,
manage all resources) would lead to massive over-
privileging, while re-authenticating for every micro-
permission change is untenable.

• Single-Entity Focus vs. Complex Delegations: These
protocols are architected around a single authenticated
principal (user or application) [19]. They struggle to model
and secure complex delegation chains where an agent
might spawn sub-agents, or where an agent acts on behalf
of multiple principals simultaneously (e.g., a user and an
organization).
Example: A user (userAlice DID) delegates a finan-
cial planning task to Agent-Planner (agentPlanner DID).

Agent-Planner determines it needs specialized market anal-
ysis and spawns Agent-MarketAnalyst (agentMarketAna-
lyst DID) and tax optimization from Agent-TaxOptimizer
(agentTaxOptimizer DID). How is userAlice DID’s au-
thority securely and granularly passed from Agent-Planner
to its sub-agents? Does Agent-MarketAnalyst inherit
all of Agent-Planner’s (and thus userAlice DID’s) per-
missions, or just the bare minimum for market data
access? OAuth’s delegation (e.g., token exchange) is
typically designed for simpler (often one-hop) scenarios
and doesn’t provide a clear, auditable chain of fine-grained
delegated authority. As a result, using the OAuth model,
accountability becomes blurred: if Agent-TaxOptimizer
accesses unauthorized client data, is Agent-Planner or
userAlice DID responsible?

• Limited Context Awareness: Traditional IAM decisions
are largely based on static roles or scopes, with minimal
understanding of the runtime context, agent intent, or
associated risk level [20]. Access is often granted at the
beginning of a session and persists, irrespective of evolving
circumstances.
Example: An inventory management agent (Agent-
Inventory) has permissions to update stock levels (in-
ventory.write). If it attempts to update stock levels for a
product that has been recalled (an environmental condition)
or tries to zero out all inventory (anomalous behavior),
traditional IAM systems typically lack the contextual
awareness to flag this as suspicious or dynamically restrict
the permission.

• Scalability Issues with Token/Session Management:
For organizations deploying hundreds or thousands of
(potentially ephemeral) agents, each potentially interacting
with numerous services, the volume of authentication
events and tokens can overwhelm traditional IAM in-
frastructure [21]. Managing issuance, validation, and
especially revocation of a massive number of short-lived
tokens becomes an operational nightmare.
Example: An e-commerce platform deploys thousands of
personalized shopping assistant agents for users. In this
example, each agent might exist for only a few minutes.
The overhead of frequent, secure token management with
traditional protocols is a significant barrier.

• Dynamic Trust Models & Inter-Agent Authentication:
Agents in MAS often need to authenticate and authorize
each other, potentially across organizational boundaries,
without a pre-existing, universal trust fabric. OAuth and
SAML assume a hierarchical trust model (user trusts IdP,
SP trusts IdP). Peer-to-peer trust establishment between
autonomous agents from different trust domains is not
natively supported [22].
Example: Agent-Alpha from ”AlphaCorp” needs to request
data processing from Agent-Beta from ”BetaInc.” How do
they mutually authenticate? How does Agent-Beta verify
Agent-Alpha’s capabilities or authorization to request this
specific processing without resorting to cumbersome pre-
shared secrets or custom API key mechanisms for every



pair of interacting agents?
• NHI Proliferation and Management Crisis: Each

autonomous agent may require NHIs for numerous APIs,
databases, and services, leading to an exponential growth
in secrets that must be securely stored, rotated, and
managed [23]. This ”secret sprawl” increases the attack
surface significantly.
Example: A single supply chain optimization agent might
need API keys for: a shipping provider, a warehousing
system, a customs declaration service, an internal ERP.

• Global Logout/Revocation Complexity: If an agent is
compromised or its task is complete, ensuring its access
rights and sessions are immediately and comprehensively
revoked across all systems it interacts with is a major chal-
lenge with traditional, often session-based protocols [24].
Fragmented revocation mechanisms can leave lingering
access.
Example: An agent Agent-DataAggregator has active
sessions with three different microservices using OAuth
tokens. If the agent is detected as compromised, revoking
its token at the authorization server is step one. Ensuring
each microservice immediately invalidates its session
based on that token, especially if they cache permissions,
requires a coordinated effort not always inherent in
standard OAuth.

B. Unique Challenges Posed by Agentic AI in MAS Further
Exacerbating IAM Deficiencies

Beyond the protocol mismatches, the very nature of agentic
AI introduces further complexities:

• Autonomy and Potential Unpredictability: Agents with
high degrees of autonomy can make decisions that
were not explicitly programmed, potentially leading to
unforeseen interactions or resource access attempts that
challenge static policy definitions.

• Ephemerality and Dynamic Lifecycles: Agents can be
created, cloned, and destroyed rapidly based on demand.
Managing identities and access for such transient entities
with persistent credentials is risky and inefficient. An
”ephemeral authentication” approach is needed [25].

• Evolving Capabilities and Intent: Agents, particularly
those incorporating online learning, can adapt their behav-
ior and even their goals over time. An IAM system must
be able to accommodate or constrain such evolution.

• Need for Verifiable Provenance and Accountability:
Tracing actions back to a specific agent instance, un-
derstanding its decision-making process (especially if
it involved other agents or tools), and ensuring non-
repudiation is crucial for trust and forensics.

• Preventing Autonomous Privilege Escalation: A sophis-
ticated agent might probe its environment or interact with
management APIs to grant itself higher privileges if not
carefully constrained. Additionally, agents may interact
with each other in a way that leads to privilege escalation
through their combined actions, in a manner similar to
collusion among humans.

• Risks of Over-Scoping Access and Permissions: Agents
will actively explore and utilize every permission available
to them. This pervasive behavior demands a shift to tightly
scoped, task-specific, and context-based access controls to
prevent over-privilege and unintended access to sensitive
data and environments.

• Secure and Efficient Cross-Agent Communication
& Collaboration: As agents increasingly form ad-hoc
teams or workflows, the need for secure, low-overhead
authentication and authorization between them becomes
paramount.

• Actions Taken May Not Directly Correlate to Human
Requests: As agents are given increasing autonomy and
reasoning capabilities, the direct tie between a given
human goal and actions taken by any particular agent
may no longer exist. For example, a management agent
may decide to request a worker agent to use a tool based
on its own reasoning, rather than at the specific request
of a human. An IAM system must be able to discern
between when an action is taken at the direct request of
a human, and when it is the result of an agentic decision.

These challenges collectively demonstrate that a reactive, bolt-
on approach to agent IAM is insufficient. A proactive, purpose-
built architectural framework is imperative to harness the
power of MAS securely and responsibly. Traditional IAM
systems provide a shaky foundation for the towering edifice
of interconnected, autonomous AI agents.

III. DEFINING THE AGENT IDENTITY (AGENT ID) FOR A
NEW ERA

To address the challenges of Agentic AI IAM, we must
first redefine what constitutes an ”identity” for an AI agent. It
transcends a simple API key or a username/password. An Agent
ID in a MAS context must be a rich, verifiable, dynamic, and
cryptographically secured profile that serves as the foundation
for trust, access control, and accountability.

A. What Constitutes an AI Agent’s Identity? Beyond Static
Identifiers

An AI agent’s identity is not merely a label but a compre-
hensive digital representation that captures its origin, purpose,
capabilities, behavior, relationships, and attestations. Agent IDs
represent a subset of NHIs that are autonomous, goal-driven,
and context-aware. However, to function effectively, agents
also rely on or control other types of NHIs (i.e., API tokens,
service accounts, workload identities access external resources,
execute API calls, or authenticate to services). Agent IDs must
be uniquely distinguishable, even when agents are cloned or
operate ephemerally, and it must support verification of claims
made by or about the agent. We define an ”instance” of an
AI agent as a runtime instantiation of an agent’s software and
model, combined with its unique state, memory, and interaction
history at a given point in time. Table I outlines different
identity models for agents based on their lifespan, origin, and
hierarchical relationships, highlighting how unique identifiers
support traceability and attribution.



TABLE I
AGENT IDENTITY MODELS IN MULTI-AGENT SYSTEMS

Agent Type Description

Persistent Agents For long-lived agents, the ID provides a continuous
thread of identity across sessions, state changes, and
even restarts, as long as core attributes and memory
persist.

Ephemeral Agents Each execution of a short-lived, task-specific agent
constitutes a new instance with a unique (potentially
derived) ID, ensuring that its actions are distinctly
attributable, even if its lifespan is mere seconds.

Agent Copies/Forks A copied or forked agent becomes a distinct instance
with its own unique ID, diverging from its parent
over time. The relationship to the parent (provenance)
should be part of its identity.

Hierarchical Agents Sub-agents spawned by a parent agent are separate
instances, each with a unique ID, but with a verifiable
link (e.g., via a Verifiable Credential) back to the parent,
enabling traceable delegation.

B. Essential Components of an Agent ID

The proposed Agent ID, ideally anchored by a Decentralized
Identifier (DID) [26], should encapsulate a wide array of
information within its associated DID Document and through
Verifiable Credentials (VCs) [27], [28]. These components
allow for a holistic representation:
(A) Cryptographic Anchor & Verifier:

• Decentralized Identifier (DID): The globally unique,
persistent, and resolvable root identifier (e.g.,
did:example:agent123). The DID method dictates how
it’s registered and resolved.

• Associated Cryptographic Key Pairs: Public/private key
pairs linked to the DID, specified in the verification-
Method section of the DID Document. These are used
for signing agent actions, encrypting communications,
and authenticating the agent when it presents its DID.

• DID Document Service Endpoints: Pointers to services
associated with the agent, such as its communication
endpoints or a profile service.

(B) Core Attributes & Metadata (Often in DID Document
or VCs):
• Creator/Deployer/Owner/Controller: DIDs or other iden-

tifiers of the entities responsible for the agent’s creation,
operation, and governance.

• Agent Software Version & Model Information: Cryp-
tographic hash of the agent’s core model parameters
and software version. We recommend the use of FIPS-
approved SHA-3 family hash functions (SHA3-224,
SHA3-256, SHA3-384, and SHA3-512) to ensure strong
cryptographic security.

• Timestamps: Creation date, last update, expected expiry
(for ephemeral IDs).

• Dependencies(Optional): A list of critical software
components, libraries, or other agent services that this
agent relies upon. This is optional metadata and a
normative reference to AIBOM is preferred way to

define the dependencies.
• Training Information (Optional): Details about the

datasets, methods, and environment used to train the
agent’s underlying model.

• Lifecycle Status: Current state (e.g., active, suspended,
revoked, archived).

(C) Capabilities, Scope, and Behavior (Crucial for Access
Control & Trust):
• Formal Scope of Behavior: A machine-readable defini-

tion of the agent’s intended tasks, operational domains,
and interaction boundaries.

• Decision-Making Capabilities: Details on the agent’s
model type, primary reasoning methods, and key
behavioral parameters.

• Toolset: An explicit, verifiable list of the tools, APIs,
or other agents it is authorized to use.

• Expected Outcomes & Limitations: Definition of in-
tended successful outcomes and known failure modes
or limitations.

(D) Operational & Security Parameters:
• Communication Protocols Supported: Specification of

protocols the agent can use.
• Security Properties Attested: Claims about security

features.
• Compliance Information: VCs asserting compliance

with relevant regulations.
• Update Mechanism: Information on how the agent’s

software, model, or DID Document can be securely
updated.

(E) Verifiable Credentials (VCs): The Key to Dynamic
Attributes and Trust: VCs are digitally signed at-
testations about an agent, issued by a trusted entity.
Usually, trusted entities are government agencies or big IT
companies acting as Certification Authorities. Agents can
hold and present these VCs to prove specific attributes or
authorizations.
• Role VCs: ”DisasterResponseCoordinatorRole”.
• Capability VCs:”CertifiedToUse MedicalImagingAI v

3”.
• Reputation VCs: ”TrustedCollaborator Score 95 Per

centile from CommunityX”.
• Provenance VCs: ”SpawnedBy did:example:parentAg

ent789 at TimestampZ”.

C. Agent ID Ownership and Control

A cornerstone of this new IAM paradigm is the principle of
Self-Sovereign Identity (SSI) applied to agents.

• Agent (or its designated controller) as Holder: The
agent itself or its designated controller holds the private
keys associated with its DID and manages its VCs.

• Controller: The entity ultimately responsible for the
agent.

• Decoupling from Issuers and Verifiers: The agent’s
identity is not solely dependent on a single centralized
identity provider.

"DisasterResponseCoordinatorRole".
"CertifiedToUse_MedicalImagingAI_v3".
"CertifiedToUse_MedicalImagingAI_v3".
"TrustedCollaborator_Score_95_Percentile_from_CommunityX".
"TrustedCollaborator_Score_95_Percentile_from_CommunityX".
"SpawnedBy_did:example:parentAgent789_at_TimestampZ".
"SpawnedBy_did:example:parentAgent789_at_TimestampZ".


This model moves away from centrally managed identities,
empowering the agent/controller with greater control and
portability.

D. ID Generation, Assignment, and Lifecycle Management:
From Birth to Revocation

Managing the lifecycle of these rich Agent IDs is crucial.
• Initial ID Generation and Assignment:

– Centralized Platform Issuance: In enterprise settings,
a platform might generate a DID for an agent upon
deployment.

– Decentralized/Self-Issuance: An agent or its controller
can generate its own DID using a suitable DID method.

– Initial Properties: At creation, the DID can be associated
with core attributes.

• Runtime ID Adaptation & Ephemeral Identities:
Agents may need to operate under different personas or
with limited-scope identities for specific tasks.
– Role-Based/Task-Specific IDs: An agent might present

a specific VC that grants it a temporary role or use a
derived, short-lived DID.

– Secure Protocol for Assuming Runtime IDs:
1) Request: The agent requests a new role/ephemeral

ID/VC.
2) Verification: Issuer verifies primary DID and poli-

cies.
3) Issuance: Issuer provides a new (potentially time-

bound, scope-limited) VC or ephemeral DID.
4) Usage: Agent uses the new ID/VC for the specific

context.
5) Revocation/Expiry: The temporary ID/VC is re-

voked or expires.
• ID Update and Revocation:

– DID Document Updates: Changes to an agent’s capa-
bilities or keys require updating its DID Document.

– VC Revocation: Invalid VCs must be revoked using
mechanisms like VC Status Lists.

– DID Deactivation/Revocation: The primary DID can be
marked as deactivated if the agent is decommissioned.

This rich, dynamic, and verifiable Agent ID serves as the
cornerstone of the proposed Agentic AI IAM framework. The
demo SDK for Agent ID is published as open source code at
Github [29].

IV. THE NEW AGENTIC AI IDENTITY AND ACCESS
MANAGEMENT FRAMEWORK ARCHITECTURE

To address the multifaceted challenges of managing AI
agents in MAS, we propose a comprehensive IAM framework
built upon modern cryptographic primitives and a layered
architecture designed for dynamic, secure, and interoperable
agent interactions.

A. Foundational Pillars

The framework rests on several key technological pillars:

(A) Decentralized Identifiers (DIDs) and Verifiable Creden-
tials (VCs): DIDs [26] provide globally unique, persistent,
cryptographically verifiable identifiers controlled by the
agent or its controller, enabling self-sovereign identity
essential for cross-organizational and decentralized MAS.
VCs [27], [28] are digitally signed attestations about an
agent, allowing granular and dynamic proof of attributes,
capabilities, or authorizations. These technologies are
particularly well-suited for representing Non-Human Iden-
tities (NHIs), which are widely discussed in the industry
[30], [31], providing a standardized approach to managing
autonomous agent identities in distributed systems.

(B) Zero-Knowledge Proofs (ZKPs): ZKPs [32] allow an
agent to prove a statement’s truth (e.g., possessing a
specific VC attribute) without revealing the underlying
information, balancing verifiability with privacy. This
is crucial for selective disclosure and proving policy
compliance without exposing sensitive internal states.

(C) Agent Naming and Discovery Service (ANS): An ANS,
inspired by DNS but tailored for agents, enables secure
and reliable discovery based on capabilities, protocols,
providers, and versions, not just names [33]. This could
use a naming structure like protocol://AgentFunction.Ca
pabilityDomain.Provider.Version[.protocolExtension] and
resolve to DIDs, with entries secured by PKI or linked to
verifiable claims.

B. Core Architectural Layers

1) Layer 1: Identity & Credential Management Layer:
Responsible for creating, issuing, storing, and managing
the lifecycle of Agent DIDs and VCs.
• DID Registries/Methods: Systems anchoring DIDs and

their DID Documents (e.g., public/permissioned DLTs,
did:web, an ”Agent ID Provider Network”).

• VC Issuers and Verifiers: Trusted entities issuing and
checking VCs.

• Agent Wallets/Secure Storage: Secure agent-side storage
for private keys and VCs.

• Key Management Services: For key generation, rotation,
and revocation.

2) Layer 2: Agent Discovery and Trust Establishment
Layer: Enables agents to find each other and establish
trust.
• ANS Resolution Mechanisms: Services implementing

the ANS for capability-based discovery.
• DID Resolvers: Standard components for retrieving

DID Documents.
• Reputation Systems: DID-anchored systems for sharing

reputation scores.
• Trust Frameworks: Policies defining how trust is evalu-

ated (e.g., trusted VC issuers).
3) Layer 3: Dynamic Access Control Layer: Makes fine-

grained, context-aware authorization decisions.
• Policy Decision Point (PDP): Evaluates access requests

against policies using agent ID (DID, VCs), resource

protocol://AgentFunction.CapabilityDomain.Provider.Version[.protocolExtension]
protocol://AgentFunction.CapabilityDomain.Provider.Version[.protocolExtension]


attributes, action, and context [34].
• Policy Administration Point (PAP): Where policies (e.g.,

in Rego/OPA [35]) are defined [34].
• Policy Information Point (PIP): Gathers attributes for

the PDP [34].
• Access Control Mechanisms: ABAC, PBAC, and JIT

access using temporary, scoped VCs.
4) Layer 4: Unified Global Session Management &

Policy Enforcement Layer: A critical innovation for
consistent, real-time establishment, tracking, management,
and enforcement of IAM policies, including global logout
and session invalidation, across heterogeneous agent
communication protocols.
• Cross-Protocol Session Authority (SA): Logically cen-

tralized component for global session oversight, policy
distribution, orchestrating global logout, and state
change propagation.

• Adapter Enforcement Middleware (AEM): Lightweight
plugins injected into Protocol Adapters, hooking into
session initiation, subscribing to SA updates (via SSS),
intercepting requests, and enforcing decisions locally,
including terminating local sessions on global logout.

• Enhanced Protocol Adapters: Gateways understanding
specific agent protocols, integrated with AEM for
authentication, authorization, and local session man-
agement linked to global contexts.

• Session State Synchronizer (SSS): Highly available,
low-latency distributed data store maintaining a real-
time ledger of active global agent session contexts,
their mappings to protocol-specific sessions, and current
validated capabilities/status. It’s the primary source of
truth for AEMs regarding session validity.

Flow Example: Global Logout for Agent Alpha
a) Global logout for AgentAlpha DID reaches SA.
b) SA updates SSS: marks GlobalSessionID 123 (for

AgentAlpha DID) as ”terminated”.
c) SA may push notifications to relevant AEMs.
d) AEM for A2A adapter, on SSS check (or push), sees

termination, invalidates local A2A session.
e) Similar for MCP adapter’s AEM. Further requests from

Agent Alpha are blocked.

C. Applying Zero Trust Principles

The framework embodies Zero Trust [36]–[38]:

• Explicit Verification: Always verify agent identity (DID,
VCs) and authorization.

• Least Privilege Access: Grant minimum necessary per-
missions, ideally via JIT VCs.

• Assume Breach: Design for compromise; rapid revocation
via the Unified Enforcement Layer is key.

• Micro-segmentation: Granular agent DIDs support net-
work/application micro-segmentation.

• Data-Centric Security: Policies tied to data sensitivity
and agent capabilities.

Fig. 1. Core Architecture and its layers

V. AGENT IDS IN THE IAM PROCESS

This section provides an in-depth exploration of how these
constructs enable robust fine-grained access control, ensure
secure and non-reputable logging, facilitate effective real-time
monitoring and anomaly detection, and empower agile, targeted
incident response. A critical enabler for many of these use
cases is the Agent Name Service (ANS by [33]), which
provides a secure and capability-aware mechanism for agents
to discover each other before interaction. We will illustrate
conceptual design patterns, including sample interactions in-
volving emerging agent communication protocols like Google’s
Agent-to-Agent (A2A) protocol [39] and Anthropic’s Model
Context Protocol (MCP) [15], [16], [40], demonstrating the
framework’s adaptability and practical utility in complex Multi-
Agent Systems (MAS) [41].

A. Fine-Grained Access Control in Action

Effective access control in MAS must move beyond static
roles to embrace dynamic, attribute-based (ABAC), and policy-
driven methodologies. The journey often begins with an agent
needing to discover another agent or service capable of fulfilling
a specific need. This is where the ANS plays a pivotal role,
integrated with DIDs and VCs for subsequent secure interaction
and authorization.

Deep Dive into Dynamic Authorization Decisions, Pref-
aced by ANS Discovery: Consider TaskOrchestratorAgent
(did:com:enterprise:agent:orchestrator:alpha-001) which needs
to delegate a financial data analysis task. Its first step is to find
a suitable agent. It queries the Agent Name Service (ANS) for
an agent that matches certain criteria.

1. ANS Discovery Phase: TaskOrchestratorAgent constructs
an ANS query. The ANS is designed for capability-aware
resolution, using a structured naming convention such as: Prot
ocol://AgentID.agentCapability.Provider.vVersion.Extension.

Protocol://AgentID.agentCapability.Provider.vVersion.Extension
Protocol://AgentID.agentCapability.Provider.vVersion.Extension


Fig. 2. Agent discovery process using the Agent Name Service (ANS)/

Conceptual ANS Query (e.g., via a secure API call to an
ANS resolver):

1 // Request to ANS Resolver
2 {
3 "requestType": "resolveAgentByCapability",
4 "desiredProtocol": "acp",
5 "requiredCapability":
6 "FinancialRiskAnalysis.CorporateReporting",
7 "preferredProvider": "AcmeFinanceServices",
8 "versionRange": ">=2.1.0 <3.0.0",
9 "requiredAttestations": [

10 { "vcType": "SOXComplianceCertified" }
11 ]
12 }

Listing 1. Conceptual ANS Query

The ANS resolver (itself a secure, trusted component of the
IAM framework, potentially with its own DID and verifiable
responses) queries its Agent Registry [42]. The Agent Registry
stores information about registered agents, including their
ANSNames, DIDs, PKI certificates (if using a PKI-centric ANS
as described in your paper), and protocolExtensions detailing
their capabilities and associated VCs.

Conceptual ANS Resolution Response:

1 // Response from ANS Resolver
2 {
3 "resolutionStatus": "success",
4 "resolvedAgents": [
5 {
6 "ansName":

7 "acp://RiskAnalyzerBot.FinancialRiskAnalysis"
8 + ".AcmeFinanceServices.v2.1.3.prod",
9 "agentDid":

10 "did:com:acme:agent:riskanalyzer:beta-007",
11 "serviceEndpoint":
12 "acps://riskanalyzer.acmefinance.com/service",
13 "protocolExtensions": {
14 "acp": { "supportedMessagePatterns":
15 ["request-response",

↪→ "publish-subscribe"] }
16 },
17 "relevantVcSnippets": [
18 { "type": "SOXComplianceCertified",
19 "issuer": "did:com:acme:audit:sox-issuer",
20 "issueDate": "2025-01-15" }
21 ],
22 "ansRecordSignature": "..."
23 }
24 // Potentially other matching agents
25 ]
26 }

Listing 2. Conceptual ANS Resolution Response

TaskOrchestratorAgent verifies the ansRecordSignature. It
now has the DID of a candidate: RiskAnalyzerBot
(did:com:acme:agent:riskanalyzer:beta-007).

2. Interaction and Dynamic Authorization: TaskOrchestrator-
Agent now initiates communication with RiskAnalyzerBot (e.g.,
via ACP). As part of establishing this secure channel or with
its first request, RiskAnalyzerBot needs to access InternalDB-
SalesFigures and ExternalAPI-MarketSentiment.



Fig. 3. Fine-grained access control enforcement when RiskAnalyzerBot requests access to sensitive financial data.

The request from RiskAnalyzerBot (let’s call it
did:acme:riskanalyzer:beta-007) to access InternalDB-
SalesFigures is intercepted by the Adapter Enforcement
Middleware (AEM, see section IV). The AEM/PIP gathers:

• Agent Identity: RiskAnalyzerBot’s DID:
did:acme:riskanalyzer:beta-007. Its resolved DID
Document might state: scopeOfBehavior: ”Perform
financial risk analysis based on sales and market
data.” toolset: {”toolName”: ”SecureSQLConnector”,
”targetSchemas”: [”Sales”, ”Projections”]}.

• Presented VCs (obtained during its registration or dynam-
ically):
– VC1 (Role): { ”type”: ”FinancialRiskAnalystRole”,

”issuer”: ”did:com:acme:hr”, ... }
– VC2 (Capability): { ”type”: ”SalesDataAnalyticsCapa-

bility”, ”issuer”: ”did:com:acme:datascience”, ... }
– VC3 (SOX Compliance - discovered via ANS):
{ ”type”: ”SOXComplianceCertified”, ”issuer”:
”did:com:acme:audit:sox-issuer”, ... }

• Resource Attributes: id: InternalDB-SalesFigures, dataSen-
sitivity: High.

• Action: QUERY TABLE (QuarterlySummaries).
• Context: requestTime, sourceIpSegment.

The PDP evaluates this against policies. For example:
1 package acme.data_access
2

3 default allow = false
4

5 # Allow access if agent has correct role,
6 # capability VCs, SOX compliance,
7 # and the requested action is within its
8 # declared toolset capabilities for the resource.



9 allow {
10 input.agent.vcs[_].credentialSubject.role ==

↪→ "FinancialRiskAnalystRole"
11 input.agent.vcs[_].credentialSubject.capability

↪→ == "SalesDataAnalyticsCapability"
12 input.agent.vcs[_].type[_] ==

↪→ "SOXComplianceCertified"
13

14 # Verify toolset from resolved DID Document
15 # (assuming toolset populated by PIP)
16 some tool_idx
17 allowed_tool :=

↪→ input.agent.did_document.service[_].
18 serviceEndpoint.toolset[tool_idx]
19 allowed_tool.toolName == "SecureSQLConnector"
20 input.resource.schema IN

↪→ allowed_tool.targetSchemas # e.g., "Sales"
21 input.resource.id == "InternalDB-SalesFigures"
22 input.action == "QUERY_TABLE"
23 input.resource.table == "QuarterlySummaries" #

↪→ More granular check
24 }

Listing 3. Example Rego Policy for Data Access

The ANS discovery step ensures that TaskOrchestratorAgent
doesn’t just find an agent, but finds one that verifiably claims
relevant capabilities and compliance (like SOXCompliance-
Certified) before even attempting interaction. The subsequent
authorization then re-verifies these claims (via presented VCs)
and checks against more granular policies for resource access.
This two-step process (secure discovery then secure, fine-
grained authorization) is crucial for building trust and efficiency
in large MAS. The DID is the consistent thread linking the
discovered entity in ANS to the entity being authorized.

Just-In-Time (JIT) Access, Enhanced by ANS for
Tool Discovery: Imagine DataProcessingAgent-Temp77
(did:ephemeral:task-xyz:agent-77) is a short-lived agent
spawned by WorkflowEngine to perform a specific data
transformation. It needs temporary access to a specialized
DataTransformationTool-Q.

ANS for Tool Discovery: WorkflowEngine (or
DataProcessingAgent-Temp77 itself if it has this capability)
first queries the ANS to discover a suitable and currently
available instance of DataTransformationTool-Q. ANS Query:

1 {
2 "requestType": "resolveAgentByNameAndCapability",
3 "ansNamePattern":

↪→ "mcp://DataTransformationTool-Q.*"
4 + ".AcmeTools.v1.*.internal",
5 "requiredCapability":

↪→ "VectorEmbeddings.HighDimReduction",
6 "availabilityRequirement": "online_accepting_jobs"
7 }

Listing 4. ANS Query for Tool Discovery

The ANS returns the DID of an available instance, e.g.,
did:com:acmetools:mcp:tool:transformQ:instance03.

JIT VC Issuance via MCP Context (Conceptual): Work-
flowEngine (acting as a trusted issuer for this context) issues
a JIT VC to DataProcessingAgent-Temp77:

1 {
2 "type": ["VerifiableCredential",

↪→ "MCPToolAccessPass"],

3 "issuer": "did:com:acme:workflow:engine-issuer",
4 "validFrom": "2025-10-02T14:30:00Z",
5 "validUntil": "2025-10-02T14:45:00Z", // Valid

↪→ for 15 mins
6 "credentialSubject": {
7 "id": "did:ephemeral:task-xyz:agent-77",
8 "authorizedToolDID": "did:com:acmetools:mcp:"
9 + "tool:transformQ:instance03",

10 "allowedActions": ["executeTransform"],
11 "inputDataHandle": "blob://temp-input-xyz",
12 "outputDataHandle": "blob://temp-output-xyz",
13 "jobId": "job-ephemeral-77a"
14 }
15 }

Listing 5. JIT Verifiable Credential for MCP Tool Access

MCP Tool Invocation with JIT VC: DataProcessingAgent-
Temp77 invokes DataTransformationTool-Q (whose MCP
endpoint was found via ANS then DID resolution). It presents
this JIT VC within the MCP call.

Conceptual MCP Call (e.g., using gRPC or HTTP, carrying
VC in metadata/headers): Let’s assume MCP uses gRPC and
metadata for auth as customized transport.

1 // Conceptual .proto definition for an MCP tool call
2 service TransformationTool {
3 rpc ExecuteTransform(TransformRequest) returns

↪→ (TransformResponse);
4 }
5

6 message TransformRequest {
7 string job_id = 1;
8 string input_data_reference = 2; //

↪→ "blob://temp-input-xyz"
9 map<string, string> transform_parameters = 3;

10 }
11

12 // Client-side pseudocode for
↪→ DataProcessingAgent-Temp77:

13 # Assume ’mcp_tool_stub’ is the gRPC stub for
↪→ DataTransformationTool-Q

14 # Assume ’jit_vc_jwt’ is the JIT VC serialized as a
↪→ JWT

15 metadata = [
16 (’x-agent-did’,

↪→ ’did:ephemeral:task-xyz:agent-77’),
17 (’authorization-vc’, jit_vc_jwt)
18 ] # gRPC metadata
19 request_payload = TransformRequest(
20 job_id="job-ephemeral-77a",
21 input_data_reference="blob://temp-input-xyz",
22 transform_parameters={"algorithm": "PCA",

↪→ "dimensions": 128}
23 )
24 try:
25 response = mcp_tool_stub.ExecuteTransform
26 (request_payload, metadata=metadata)
27 # Process response and write to

↪→ "blob://temp-output-xyz"
28 except grpc.RpcError as e:
29 # Handle authorization failure or tool error
30 log(f"MCP tool call failed: {e.details()}")

Listing 6. Conceptual MCP Tool Call with JIT VC

Verification at MCP Tool’s AEM: The AEM for
DataTransformationTool-Q extracts and verifies the DID and
jit vc jwt. The PDP checks if did:ephemeral:task-xyz:agent-77
is authorized by this specific VC to call this tool instance
(did:com:acmetools:mcp:tool:transformQ:instance03) for



Fig. 4. Ephemeral agent authorization using Just-In-Time (JIT) Verifiable Credentials for Model Context Protocol (MCP) tool access.

executeTransform with the given jobId and data handles, and
if the VC is within its validity period.

ANS helps find the right instance of a potentially multi-
instance MCP tool. The JIT VC then provides extremely
narrow, time-bound permission for that specific job and data,
dramatically reducing risk compared to the ephemeral agent
having broader, longer-lived credentials for a generic tool type.

Capability-Driven Authorization with A2A Protocol:
AlertingAgent-SystemX (did:com:sysX:a2a:alerter:main:v1)
needs to send a critical security alert to a SOCDashboardAgent-
PlatformY (did:com:platY:a2a:socdash:primary:v2).

ANS Discovery: AlertingAgent-SystemX resolves a2a://
SOCDashboardAgent.SecurityAlertIngestion.PlatformY
.v2.critical via ANS to find the DID and A2A endpoint of
SOCDashboardAgent-PlatformY. The ANS response might also
indicate that the SOC agent requires alerts to be signed with a
key whose DID is on an approved list.

A2A Message Construction with IAM Context:
AlertingAgent-SystemX holds a VC: {”type”: ”CriticalAlert-
SourceCredential”, ”issuer”: ”did:com:sysX:security-authority”,
”credentialSubject”: {”id”: ”did:com:sysX:a2a:alerter:main:v1”,
”authorizedAlertTypes”: [”SECURITY CRITICAL”,

”SYSTEM DOWN”]}}.
Conceptual A2A Message from AlertingAgent-SystemX

(JSON-like payload for an A2A message):

1 {
2 "a2aHeader": {
3 "messageId": "msg-uuid-9876",
4 "senderId": "did:com:sysX:a2a:alerter:main:v1",
5 "recipientId":

↪→ "did:com:platY:a2a:socdash:primary:v2",
6 "protocolVersion": "A2A/1.0"
7 },
8 "iamExtension": {
9 "verifiablePresentation": [ /* JWT of

↪→ CriticalAlertSourceCredential */ ],
10 "messageSignature": {
11 "keyId":

↪→ "did:com:sysX:a2a:alerter:main:v1#key-1",
12 "algorithm": "EdDSA",
13 "signatureValue": "..."
14 }
15 },
16 "payload": {
17 "alertType": "SECURITY_CRITICAL",
18 "sourceSystem": "SystemX_Firewall_Cluster",
19 "details": "Multiple intrusion attempts detected

↪→ from IP range Z.Z.Z.Z",
20 "severity": 5,
21 "timestamp": "2025-10-02T15:00:10Z"

a2a://SOCDashboardAgent.SecurityAlertIngestion.PlatformY.v2.critical
a2a://SOCDashboardAgent.SecurityAlertIngestion.PlatformY.v2.critical
a2a://SOCDashboardAgent.SecurityAlertIngestion.PlatformY.v2.critical


22 }
23 }

Listing 7. Conceptual A2A Message with IAM Context

Many emerging A2A protocols are defining ways to carry
security contexts, often leveraging JWTs or similar token
formats within their headers or as part of the message envelope.
The iamExtension is a way our framework’s specific needs
(DID, VP) can be mapped.

Processing at SOCDashboardAgent-PlatformY’s AEM:
• AEM verifies messageSignature using the public key

from did:com:sysX:a2a:alerter:main:v1#key-1 (resolved
via DID document).

• AEM verifies the verifiablePresentation containing the
CriticalAlertSourceCredential.

• PDP checks policies like: ”Accept SECU-
RITY CRITICAL alert IF sender DID holds valid
CriticalAlertSourceCredential AND the alert’s declared
sourceSystem is within the scope covered by that
credential.”

The ANS ensures AlertingAgent-SystemX reliably finds the
authentic SOCDashboardAgent-PlatformY (not an imposter).
The VC presented proves the sender is authorized to issue
critical alerts, and the message signature ensures integrity
and non-repudiation for the alert content. This provides much
stronger guarantees than simple IP whitelisting or pre-shared
API keys between agents for A2A communication [43].

The use of ANS for initial discovery, followed by DID-
based authentication and VC-based authorization at the point
of interaction, forms a robust sequence for secure and fine-
grained access control in diverse MAS scenarios.

The Identity and Access Management (IAM) framework for
multi-agent systems operates through a sophisticated four-phase
lifecycle that ensures secure agent discovery, authentication,
and authorization across diverse protocol environments. As
illustrated in Figure 2, the process begins with capability-
aware agent discovery through the Agent Name Service
(ANS), where requesting agents query for specific capabilities,
compliance requirements, and protocol preferences, receiving
cryptographically signed responses containing target agent
DIDs, service endpoints, and relevant attestations such as SOX
compliance certifications. Once agents establish contact, the
framework employs dynamic, attribute-based access control
as demonstrated in Figure 3, where the Adapter Enforcement
Middleware (AEM) coordinates with Policy Information Points
(PIP) to gather comprehensive agent context including De-
centralized Identifiers (DIDs), Verifiable Credentials (VCs),
and resource attributes, before Policy Decision Points (PDP)
evaluate fine-grained authorization policies that consider roles,
capabilities, toolset permissions, and data sensitivity levels.
For ephemeral or temporary agents, the framework supports
Just-In-Time (JIT) credential issuance as shown in Figure 4,
where workflow engines discover available tools via ANS
and issue time-limited Verifiable Credentials with narrow, job-
specific permissions that enable secure Model Context Protocol
(MCP) interactions while minimizing credential exposure and

attack surfaces. Finally, the framework facilitates secure inter-
agent communication through emerging protocols like Google’s
Agent-to-Agent (A2A) protocol, as depicted in Figure 5, where
agents exchange cryptographically signed messages containing
verifiable presentations that prove authorization for specific
communication types, ensuring non-repudiation and enabling
real-time security alerting between heterogeneous agent plat-
forms while maintaining end-to-end trust and accountability
throughout the multi-agent ecosystem.

B. Secure Logging, Auditing, and Non-Repudiation

In systems where autonomous agents perform significant
actions, establishing a clear, trustworthy, and irrefutable record
of events is paramount. This section delves into how the
proposed IAM framework, leveraging rich Agent IDs (DIDs
and VCs) and the Agent Name Service (ANS) for discoverable
context, transforms logging into a critical component of system
integrity, accountability, and auditability.

Immutable Agent Identifiers (DIDs) as the Linchpin of Audit
Logs: Every significant action initiated or participated in by an
agent MUST be logged with its unique, persistent Decentralized
Identifier (DID) as the primary subject identifier. This creates an
unambiguous, globally unique, and cryptographically verifiable
link to the specific agent instance responsible for any given
event.

Enhanced Log Granularity with DID and VC Context:
Beyond simply logging the agent’s DID, comprehensive logs
should capture:

• Precise Timestamp: Synchronized across the MAS to
ensure correct event sequencing.

• Agent DID and ANSName: Logging both the DID (for
cryptographic verifiability) and the resolved ANSName
(e.g., acp://RiskAnalyzerBot.FinancialRiskAnalysis.Ac
meFinanceServices.v2.1.3.prod) provides human-readable
context about the agent’s role and origin.

• Target Resource(s) DIDs/ANSNames: If the interaction
target is another agent or a resource registered in ANS,
its DID and ANSName should also be logged.

• Input Parameters/Data Hashes: Hashing critical inputs
helps reconstruct the context of an agent’s decision without
necessarily storing sensitive raw data in logs.

• Specific Verifiable Credentials (VCs) Presented: The
unique identifiers (e.g., id or transaction id) of all VCs
presented by the agent to authorize that specific action.
For example, logging vc:jwt:uri:issuer-finance-bob:task-
q3report2025-instance-002 allows an auditor to later
retrieve and verify this exact VC.

• DIDs and ANSNames of Collaborating Agents: In multi-
agent tasks, the DIDs/ANSNames of all significant con-
tributing agents should be logged to trace collaborative
decision-making.

• Outcome and Policy Reference: The result of the action
and a reference to the specific policy version (e.g.,
ACME Finance Policy v3.2.1 Rule7) that permitted it.

Example Enriched Log Entry incorporating ANSNames:

acp://RiskAnalyzerBot.FinancialRiskAnalysis.AcmeFinanceServices.v2.1.3.prod
acp://RiskAnalyzerBot.FinancialRiskAnalysis.AcmeFinanceServices.v2.1.3.prod


Fig. 5. Secure agent-to-agent communication using Google’s A2A protocol for critical security alerts.

1 {
2 "eventId": "evt_20251002T110530Z_A789F123",
3 "timestamp": "2025-10-02T11:05:30.123Z",
4 "initiatingSystem":

↪→ "WorkflowOrchestratorInternal",
5 "agentDid":

↪→ "did:com:acme:agent:riskanalyzer:beta-007",
6 "agentAnsName":
7 "acp://RiskAnalyzerBot.FinancialRiskAnalysis"
8 + ".AcmeFinanceServices.v2.1.3.prod",
9 "actionPerformed": "ExecuteSecureSQLQuery",

10 "targetResourceDid":
11 "did:com:acme:resource:db:InternalDB-SalesFigures",
12 "targetResourceAnsName":
13 "db://InternalDBSales.FinancialData"
14 + ".AcmeInternal.v1.prod",
15 "inputParametersHash": "sha256-c4d5e6f...",
16 "presentedVcIds": [
17 "vc:jwt:uri:acme-hr:role-finanalystL2-inst-001",
18 "vc:jwt:uri:acme-audit:sox-compliance-inst-003"
19 ],
20 "decisionPolicyId":
21 "ACME_DataAccess_Policy_v1.7_Rule12b",
22 "collaborationContext": {
23 "triggeringAgentDid":

24 "did:com:enterprise:agent:orchestrator:alpha-001",
25 "triggeringAgentAnsName":

↪→ "acp://TaskOrchestrator.CoreBusinessLogic"
26 + ".AcmeEnterprise.v1.0.main",
27 "taskId": "task_QuarterlyRiskAssessment_2025Q3"
28 },
29 "outcome": { "status": "Success", "rowsAffected":

↪→ 0, "dataRetrievedHash": "sha256-g7h8i9j..."
↪→ },

30 "logEntrySignature": "..."
31 }

Listing 8. Enriched Log Entry with ANSNames

Logging ANSNames alongside DIDs makes logs instantly more
interpretable for human auditors. The cryptographic link via
DIDs ensures the identifier is not just a mutable string. The
logged VCs provide the exact authorization context for the
action, making audits far more precise.

Cryptographic Non-Repudiation of Agent Actions via DID
Signatures: To achieve strong non-repudiation, critical agent
actions or the data they produce can be digitally signed by
the agent using the private key associated with its DID. This



is particularly important for actions with financial, legal, or
safety implications.

Scenario (A2A Context): OrderPlacementAgent
(did:com:retail:a2a:orderbot:v1.0, ANSName a 2 a :
//OrderPlacement.RetailTransactions.MegaCorp.v1.0.live)
submits a purchase order to SupplierFulfilmentAgent
(did:com:supplierX:a2a:fulfill:v2.1, ANSName
a2a://Fulfilment.SupplyChain.SupplierX.v2.1.prod),
which was discovered via ANS query for ”Supply-
Chain.OrderFulfilment.SupplierX”.

A2A Message with Signed Payload and DID Context: The
OrderPlacementAgent constructs an A2A message. The core
business payload (the order details) is signed.

1 // A2A Message (Conceptual JSON representation)
2 {
3 "a2aHeader": {
4 "messageId": "order-uuid-554433",
5 "senderId": "did:com:retail:a2a:orderbot:v1.0",
6 "recipientId":

↪→ "did:com:supplierX:a2a:fulfill:v2.1",
7 "protocolVersion": "A2A/1.0",
8 "timestamp": "2025-10-02T16:30:00Z"
9 },

10 "iamExtension": {
11 "verifiablePresentation": [ /* Optional: JWT of

↪→ a relevant VC */ ]
12 },
13 "payload": {
14 "orderId": "PO-2025-10-778",
15 "items": [ {"sku": "XYZ123", "quantity": 100},

↪→ {"sku": "ABC789", "quantity": 50} ],
16 "shippingAddress": "123 Main St, Anytown",
17 "totalAmount": 12500.75,
18 "currency": "USD"
19 },
20 "payloadSignature": {
21 "keyId":
22 "did:com:retail:a2a:"
23 + "orderbot:v1.0#key-transact",
24 "algorithm": "EdDSA",
25 "signatureValue": "..."
26 }
27 }

Listing 9. A2A Message with Signed Payload

Verification and Logging by SupplierFulfilmentAgent:
• The AEM at SupplierFulfilmentAgent’s side first authen-

ticates the sender via its DID and any presented VCs (as
per Section V-A).

• It then specifically verifies the payloadSignature using the
public key did:com:retail:a2a:orderbot:v1.0#key-transact
(obtained by resolving the sender’s DID).

• SupplierFulfilmentAgent’s log entry for receiving this
order would include: its own DID/ANSName, the sender’s
DID/ANSName, the order ID, a hash of the received
payload, and the payloadSignature object. This creates a
verifiable record that OrderPlacementAgent indeed sent
that specific order. The initial discovery via ANS ensures
the order is sent to a legitimate fulfilment agent. The
DID-based signature on the payload provides strong non-
repudiation for the order’s content, traceable to a specific,
verifiable agent identity. Traditional EDI or API calls often
rely on weaker authentication or channel security alone.

Verifiable Provenance Chains in MCP Tool Interactions:
When an LLM-based agent uses an MCP tool, understanding
the full chain—from user prompt to LLM, to MCP tool call,
to tool result, back to LLM, and then to the user—is vital for
auditing and debugging.

Scenario: A user asks ResearchLLM-Agent (did:com:ai-
lab:mcp:researcher:zeta:v3.1, ANSName mcp://Researcher
.ScientificQuery.AILab.v3.1.experimental) a complex question
requiring a database lookup via an MCP tool, SemanticSearch-
Tool (did:com:datastore:mcp:tool:semsearch:v1.0, ANSName
mcp://SemanticSearch.KnowledgeBase.DataCorp.v1.0.main).
ResearchLLM-Agent discovers SemanticSearchTool via an
ANS query specifying the ”KnowledgeBase.SemanticSearch”
capability.

MCP Interaction Logging with DIDs and VCs:

• User Interaction Log: User prompt, timestamp, and
ResearchLLM-Agent’s DID/ANSName.

• ResearchLLM-Agent Internal Log (or trace):
– Decision to use SemanticSearchTool.
– Query sent to ANS for SemanticSearchTool.
– Resolved DID/ANSName for SemanticSearchTool.
– The MCP call it constructs to SemanticSearchTool,

including:
∗ Its own DID as the caller.
∗ The JIT VC it obtained/presented for this tool use

(e.g., vc:jwt:...:mcp-tool-access-zeta-job778).
∗ The parameters sent to the tool.

– This entire MCP call could be signed by ResearchLLM-
Agent.

• SemanticSearchTool (MCP Tool) Log:
– Its own DID/ANSName.
– Receiving the MCP call from ResearchLLM-Agent

(DID/ANSName logged).
– The presented JIT VC ID.
– Verification status of the caller’s DID and VC.
– Parameters received.
– Actions it took (e.g., database queries it made inter-

nally).
– The result it returned to ResearchLLM-Agent.
– This log entry or the response payload could be signed

by SemanticSearchTool.
• ResearchLLM-Agent Internal Log (continued):

– Response received from SemanticSearchTool (poten-
tially with signature verification).

– How it processed the tool’s output.
– The final answer generated for the user (this answer

could also be signed).
This chained logging, where each step is linked by verifiable
DIDs/ANSNames and specific VCs or signed messages, creates
a rich, end-to-end auditable provenance trail. If the final answer
is wrong, auditors can trace back: Was it the LLM’s reasoning,
the MCP tool’s execution, the data the tool accessed, or the
initial ANS discovery that pointed to an incorrect tool version?
This detailed, verifiable chain is crucial for explainability and

a2a://OrderPlacement.RetailTransactions.MegaCorp.v1.0.live
a2a://OrderPlacement.RetailTransactions.MegaCorp.v1.0.live
a2a://Fulfilment.SupplyChain.SupplierX.v2.1.prod
mcp://Researcher.ScientificQuery.AILab.v3.1.experimental
mcp://Researcher.ScientificQuery.AILab.v3.1.experimental
mcp://SemanticSearch.KnowledgeBase.DataCorp.v1.0.main


accountability in complex agentic workflows involving external
tools.

Privacy-Preserving Audits of IAM Policies with ZKPs:
Organizations may need to prove to external auditors or
regulators that their Agentic AI IAM policies are being correctly
enforced, without revealing the proprietary details of all policies
or all agent interactions.

Scenario: An auditor wants to verify that access to resources
tagged PII Strict is only ever granted if an agent presents a
valid VC of type PII AccessLevel3 Certified and the request
originates from an approved network segment. Mechanism:

• The IAM system’s Policy Decision Point (PDP) logs all
its decisions, including the agent DID, resource, action,
presented VCs (or their hashes), contextual attributes, and
the allow/deny outcome. These logs themselves could be
cryptographically committed to (e.g., a hash chain).

• The organization can run a process that analyzes these
logs and generates a ZKP. This ZKP would prove a
statement like: ”For all access requests to resources tagged
PII Strict within the last audit period that resulted in
an ’allow’ decision, the requesting agent’s presented
credentials included a valid (non-revoked, correctly signed)
PII AccessLevel3 Certified VC from an approved issuer,
AND the source network attribute was in the set {’segA’,
’segB’}.”

• This ZKP is generated without revealing the specific agent
DIDs, resource DIDs, exact times, or other details of the
individual access events.

• The auditor receives and verifies this ZKP, along with
information about the approved VC issuers and network
segments, providing strong assurance of policy enforce-
ment without seeing the raw, potentially sensitive log
data. This enables ”compliance as code” verification with
privacy. It allows organizations to demonstrate adherence
to internal or external IAM rules without exposing
the minutiae of every transaction, which is a common
challenge in traditional audit processes that often require
extensive (and risky) data sharing.

By deeply integrating verifiable Agent IDs (DIDs/VCs), secure
discovery via ANS, and cryptographic techniques like digital
signatures and ZKPs into the logging and auditing process, our
framework aims to create a system where agent actions are
not just recorded, but are verifiably attributable, contextualized,
and, where necessary, proven compliant in a privacy-respecting
manner. This robust auditability is fundamental to building and
maintaining trust in complex and autonomous MAS.

C. Real-time Monitoring and Anomaly Detection

Effective IAM extends beyond static policy enforcement to
encompass continuous, real-time oversight of agent activities.
The rich, verifiable Agent IDs (DIDs and VCs), coupled with
the contextual information available through Agent Name
Service (ANS) resolutions, provide the foundation for a far
more sophisticated and proactive monitoring and anomaly
detection capability than achievable with traditional, opaque
identifiers. This allows security systems to not only identify

what is happening but also understand if it aligns with an
agent’s intended and attested purpose and capabilities.

Establishing Rich Behavioral Baselines Anchored to Veri-
fiable Identities (DIDs and ANSNames): Modern monitoring
can move beyond tracking simple metrics like CPU usage per
IP address. The proposed framework allows for the creation of
multifaceted behavioral baselines for each unique agent DID
and its associated ANSName profiles:

• Discovered vs. Declared Scope of Behavior: The agent’s
DID Document contains its scopeOfBehavior (e.g., ”cus-
tomer support query resolution for product X”). ANS
registration might also include a primary capability (e.g.,
Support.ProductQuery.CustomerFacing.v1). Monitoring
systems can compare the agent’s actual interactions and
data access patterns against this declared and discoverable
purpose. Significant deviations trigger alerts.
Scenario: SupportAgentAlpha
(did:com:support:agent:alpha01, ANSName helpdesk:
//Support.ProductQuery.CustomerFacing.v1.Acme)
normally accesses the product knowledge base
and customer ticket system. If it suddenly starts
making frequent ANS queries for agents with
FinancialData.InternalAudit capabilities, or attempts to
access database schemas related to payroll, this is a
strong anomaly relative to its declared/discovered scope.

• Authorized Toolset and ANS-Discoverable Service
Usage: The agent’s DID Document details its toolset (spe-
cific APIs, other agent DIDs/ANSNames it’s authorized
to interact with). Monitoring systems can track: Actual
tool/API calls made. ANS queries made by the agent
to discover other services. If the agent attempts to use
tools not in its list or interact with DIDs/ANSNames that
don’t match its typical collaboration patterns or authorized
interaction VCs.
Scenario (MCP Context): DataPipelineAgent-
ETL (did:com:dataops:agent:etl04, ANSName
mcp://ETL.DataWarehouseLoading.DataOps.v2.nightly)
is authorized to use PostgresConnectorTool
(an MCP tool discovered via ANS as
mcp://DBConnector.PostgreSQL.InternalTools.v1.stable)
and S3StorageTool. If it makes an ANS query for
mcp://ExternalAPI.SocialMediaScraping... or attempts to
invoke such a tool via MCP, it’s a policy violation and
an anomaly.

• VC Presentation Patterns: Monitoring the types of VCs
an agent typically presents for different actions, and the
issuers of those VCs. An agent suddenly presenting a
VC from a previously unseen or untrusted issuer for a
high-privilege operation is suspicious.

• Communication Graph and Trust Dynamics: Building
a graph of typical agent-to-agent interactions (DID-to-
DID or ANSName-to-ANSName) based on historical
communication logs. New, unexpected communication
links, especially with agents outside the organization or
with low reputation scores (if a reputation system is
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integrated), can be flagged.
Scenario: A fleet of InventoryCheckAgent instances (e.g.,
a2a://InventoryCheck.RetailStoreXYZ.Ops.v1.hourly::
did:...) typically only communicate via A2A with a central
InventoryMasterAgent (a2a://InventoryMaster.HeadOf
fice.Ops.v3.main::did:...). If one InventoryCheckAgent
initiates an A2A connection to an unknown external
ANSName/DID, or starts sending unusually large A2A
payloads, this is anomalous.

Advanced Deviation Detection Leveraging Verifiable Claims:
The ability to verify claims presented as VCs in real-time
enhances anomaly detection:

• Scope Creep Beyond VC-Attested Capabilities: An
agent, ResearchSummarizer (did:..., ANSName a2a :
/ / S u m m a r i z a t i o n . S c i e n t i f i c L i t e r a t u r e . R e s
e a r c h G r o u p . v 1), might hold a VC for ”Ac-
cess PubMed API SummarizationOnly.” If it attempts to
use the PubMed API’s ”BulkDownloadAbstracts” function
(which its VC does not authorize), the AEM/PDP would
block it, and the monitoring system would log this as a
significant deviation, as it’s attempting an action beyond
its attested capability.

• Anomalous JIT VC Requests: If an agent frequently
requests JIT VCs for tasks outside its typical operational
parameters, or if the requested scopes for JIT VCs escalate
without justification, this could indicate a compromised
agent or a misbehaving workflow.

• Interaction with Agents Lacking Expected Counter-
Attestations: If SecureDataTransferAgent is only sup-
posed to send data to other agents that can present
a ”DataRecipient EncryptionLevel5 Compliant” VC, an
attempt to send data to an agent (discovered via ANS) that
cannot present such a VC would be a flagged anomaly,
even if basic network connectivity is possible.

Dynamic Trust Scoring and Risk-Adaptive IAM Incorporating
ANS Context: The Agent ID (DID) becomes the anchor for a
dynamic trust score, influenced by monitoring. ANS context
adds another layer.

• Inputs to Trust Score (with ANS context): Successful
completion of tasks within the agent’s ANS-declared
capability. Policy violations or anomalous behaviors (as
detailed above). Validity and issuer trustworthiness of its
VCs. Feedback from other reputable agent DIDs (whose
own ANS profiles might indicate their roles/trustworthi-
ness). ANS-related anomalies: Repeatedly querying ANS
for unrelated capabilities, attempting to register with a
misleading ANSName, or interacting with agents resolved
from suspicious ANS domains.

• Risk-Adaptive Policy Enforcement Example (A2A):
PaymentAgent-Acquirer (a2a://PaymentProcessing.Ac
quisition.FinServ.v2.live::did:...) normally processes
transactions. It starts making unusual ANS queries for
a2a:/ /DataAggregation.UserProfi l ing. .. services
and receives a few low-severity alerts for attempting to
access non-payment related internal APIs. Its trust score,

managed by the IAM system, is lowered. The Session
Authority (SA) is notified of the trust score change. The
SA updates the Session State Synchronizer (SSS) for this
agent’s global session, adding a ”ReducedTrust” status or
dynamically adjusting its permissible capability set. When
PaymentAgent-Acquirer next attempts a high-value A2A
payment authorization request to PaymentGateway-PSP
(a2a://Gateway.PaymentAuth.PSPGlobal.v4.secure::
did:. . .), the AEM at the gateway side consults the
SSS. Even if the agent presents its usual VCs, the
SSS indicates ”ReducedTrust.” The PDP at the gateway
might now enforce a stricter policy: ”IF agent status ==
’ReducedTrust’, THEN require multi factor agent auth
(e.g., a ZKP of a recent controller approval for this transac-
tion type) OR limit transaction value to low threshold.”
The A2A transaction might be rejected or queued for
additional checks, preventing potential fraud by a slightly
misbehaving or partially compromised agent.

The ANS provides discoverable context about an agent’s
intended role and capabilities. Monitoring deviations from
this publicly or organizationally declared purpose, in addition
to private policy violations, gives a richer signal for anomaly
detection. The trust score becomes more robust as it can factor
in the consistency of an agent’s behavior with its registered
identity profile in ANS.

D. Agile Incident Response: Precision Targeting, Rapid Con-
tainment, and Discoverable Impact

When a security incident occurs, the ability to respond
swiftly, precisely, and comprehensively is critical to minimizing
damage. The proposed IAM framework, with its integration
of DIDs, VCs, and ANS, provides superior capabilities for
incident response.

Rapid and Unambiguous Identification via DID and ANS
Context: Security alerts from monitoring systems or external
threat intelligence will directly reference the compromised
or malicious agent’s DID and often its ANSName. This
removes ambiguity and allows response teams to immediately
identify: The specific agent instance involved (via DID). Its
declared purpose and owner (via ANSName and resolved DID
document). Its attested capabilities and dependencies (via VCs
and DID document).

Example: An alert ”Unusual data exfiltration by
did:com:cloudstorage:agent:backup-beta-721 (ANSName:
a2a://Backup.CriticalDB.AcmeCorp.v1.beta.nightly)”
immediately tells the SOC: It’s a specific backup agent
instance. It’s associated with AcmeCorp’s critical database
backups. It’s a beta version (which might imply higher risk or
different oversight).

Targeted Revocation with Ecosystem-Wide Propagation: The
framework supports granular to broad revocation, propagated
efficiently:

• VC Revocation (Surgical): If a specific attested capability
(e.g., VC:AbilityToModifyUserPermissions) of AdminBot-
HR (did:com:hr:adminbot:003, ANSName a2a://User
Admin.Permissions.HRInternal.v2.prod) is found to
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be exploited due to a bug, that VC is added to a VC
Status List. AdminBot-HR might still function for other
tasks (e.g., reading user profiles) using its other VCs, but
attempts to use the revoked permission VC will fail.

• DID Deactivation/Revocation (Logical via DID Method
or ANS): If AdminBot-HR’s private keys are con-
firmed stolen, its entire DID (did:com:hr:adminbot:003)
is revoked via its DID method. The ANS entry for
a2a://UserAdmin.Permissions.HRInternal.v2.prod
would then either resolve to a ”revoked” status or be
removed/updated by the ANS Registration Authority.
Other agents querying ANS for this service will no longer
receive the compromised DID.

• Instantaneous Global Session Invalidation via Unified
Enforcement Layer: This is the most critical response.
– Trigger: SOC confirms did:com:hr:adminbot:003 is

actively malicious.
– SA Notification: The Session Authority (SA) is notified,

specifying the DID.
– SSS Update: SA updates the Session State

Synchronizer (SSS) to mark all global sessions
for did:com:hr:adminbot:003 as ”TERMI-
NATED IMMEDIATE SECURITY LOCKOUT”.

– AEM Enforcement: All AEMs interacting with or receiv-
ing requests from did:com:hr:adminbot:003 (whether
via A2A, MCP, or internal ACP/HTTP calls) consult
the SSS. They see the ”TERMINATED” status and
instantly block any new requests and terminate any
active local protocol sessions.
Scenario (MCP Tool in use by AdminBot-HR): If
AdminBot-HR was using an MCP tool like UserProvi-
sioningTool, its active MCP session (managed by the
tool’s AEM) would be killed. Further MCP calls from
AdminBot-HR would be rejected by the AEM before
even reaching the tool’s logic.
Scenario (A2A communication): If AdminBot-HR was
sending A2A messages to AuditLogAgent, these A2A
messages would be blocked by the AEM on AuditLo-
gAgent’s side.

The ANS provides a clear point for signaling revocation at
the discovery layer. Even if an attacker has cached an old
DID, new discovery attempts for the agent’s function would
fail or return a revoked status. The SSS ensures that active
sessions, regardless of how they were initiated (perhaps post-
ANS discovery), are comprehensively terminated.

Rich Forensic Analysis with Discoverable Context: Post-
incident, the combination of DID-anchored logs, VCs, and
ANS information provides unparalleled depth for forensics.

• Contextualizing Compromise: If
did:com:research:agent:dataminer:gamma-9 is
compromised, investigators can not only see its
actions (via DID logs) but also: Resolve its ANSName
(science://DataMining.LargeDatasets.ResearchDiv.v
0.9.experimental) to understand its expected role and
provider context. Examine its DID Document and VCs

to see its intended capabilities and dependencies (e.g.,
”depends on did:com:lib:math:vectorcalc:v3.2”). This
helps to check if a dependency was the root cause. Trace
its ANS query history: Was it trying to discover and
interact with services outside its normal profile before
the compromise? If it interacted with other agents, their
DIDs/ANSNames are in the logs, allowing investigators
to assess the blast radius and check if those collaborators
were also affected or were part of the attack.

• Identifying Attack Vectors via ANS: If multiple agents
registered under a specific, less reputable Provider in their
ANSNames are simultaneously compromised, it might
indicate a targeted attack against that provider’s agent
infrastructure or a vulnerability common to their agents.

ANS data (like provider, capability domain in the name) adds
valuable metadata for clustering incidents, identifying patterns,
and understanding the potential scope or origin of an attack that
might involve multiple agent instances from a similar source
or with similar functions.

E. Other Potential Uses Building on Verifiable Agent IDs and
Discoverable ANS Profiles

The synergistic use of detailed, verifiable Agent IDs and
a structured Agent Name Service, all managed within a
robust IAM framework, naturally extends to enable further
advanced functionalities critical for a mature and trustworthy
AI ecosystem.

Decentralized Reputation and Trust Brokering with ANS-
Contextualized Feedback:

• Agent DIDs serve as the stable anchors for accumulating
reputation scores. When AgentA (e.g., discovered via ANS
as a2a://TaskExecutor.GeneralPurpose.CommunityPool.
v1.standard::did:agentA...) completes a task for AgentB,
AgentB can issue a reputation VC attesting to AgentA’s
performance, timeliness, and reliability for that specific
task type (derived from AgentA’s ANS capability).

• These VCs can be stored by AgentA or published to a
decentralized reputation ledger. Future agents querying
ANS for ”TaskExecutor.GeneralPurpose” might then also
be able to query this reputation system (using the resolved
DID) for community feedback, prioritizing agents with
higher, relevant reputation scores. The ANS capability
string itself provides context for the reputation (e.g., good
at ”GeneralPurpose” tasks).

Code Concept: Agent B issuing a reputation VC for Agent A:
1 # Agent B’s perspective
2 # from pyld import jsonld # For Verifiable

↪→ Credentials
3 # from did_sdk import sign_vc # Conceptual SDK

↪→ function
4

5 agent_A_did = "did:agentA..."
6 agent_A_ans_capability =

↪→ "TaskExecutor.GeneralPurpose."
7 + "CommunityPool.v1.standard"
8

9 reputation_claim = {
10 "@context":

↪→ ["https://www.w3.org/2018/credentials/v1",
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11 "https://example.org/reputation/v1"],
12 "type": ["VerifiableCredential",

↪→ "ReputationCredential",
↪→ "PerformanceReview"],

13 "issuer": "did:agentB...", # Agent B’s DID
14 "issuanceDate": "2025-10-03T10:00:00Z",
15 "credentialSubject": {
16 "id": agent_A_did,
17 "ansCapabilityContext":

↪→ agent_A_ans_capability,
18 "rating": 5, # Scale of 1-5
19 "comment": "Completed task efficiently and

↪→ accurately.",
20 "taskId": "task-uuid-for-context"
21 }
22 }
23

24 # Agent B signs this claim with its DID key to
↪→ create a VC

25 # signed_reputation_vc = sign_vc(reputation_claim,
↪→ "did:agentB...", "did:agentB...#key-1")

26

27 # Agent B might then send this VC to Agent A, or
↪→ publish it to a reputation service.

Listing 10. Agent B Issuing Reputation VC for Agent A

Automated Billing and Resource Quota Enforcement via
ANS-Defined Services:

• When an agent discovers and uses a commercial service
(e.g., a specialized MCP tool like mcp://AdvancedTran
slation.Multilingual.PremiumAPI.v3.commercial::did:
tool:translateXYZ...) via ANS, the ANS record itself
might point to metadata about pricing models or rate
limits associated with that service DID.

• The consuming agent’s DID is logged by the
commercial tool for every API call. The tool
provider’s AEM/PDP can enforce quotas (e.g., ”Agent
did:com:startup:agent:translator007 has a quota of 10M
characters/month for did:tool:translateXYZ”). Billing is
then accurately attributed to the consuming agent’s con-
troller.

Secure Software/Model Supply Chain Attestations Linked to
ANS Registrations:

• When an agent is registered with ANS (e.g., a2a://Im
ageRecognition.MedicalScans.RadAI.v2.validated::
did:radai:imgrec:002), part of its registration with
the ANS Registration Authority (RA) could involve
presenting VCs that attest to its supply chain security:
A VC for its base foundation model (e.g., ”Model-
Card VC for RadAI BaseVisionModel v2”), detailing
its training data, bias tests, and safety evaluations. SBOM
VCs for its software components. A ”ValidatedSecure-
Build VC” from a trusted CI/CD pipeline.

• The ANS resolver could then optionally return indicators
of these attestations (or links to the VCs) along with the
agent’s DID, allowing discoverers to prioritize agents with
verifiable supply chain security.

Dynamic Coalition Formation and Capability Negotiation
using ANS for Initial Matching:

• An EmergencyResponseOrchestratorAgent queries ANS
for agents with diverse capabilities like a2a://DroneSurve

illance.DisasterZoneMapping..., mcp://Logistics.Resource
Allocation..., and comms://TemporaryNetwork.MeshDep
loyment....

• Once candidate DIDs are retrieved, the orchestrator can
initiate a negotiation phase (e.g., using FIPA Contract
Net Protocol [44] messages over A2A or ACP). During
negotiation, agents exchange more detailed VCs about
their specific sub-capabilities, current availability, and
resource needs.

• The orchestrator then issues a ”CoalitionCharter VC”
to the selected agents, defining the coalition’s DID,
its mission, shared resources (perhaps managed by a
temporary group DID), roles, and duration. This VC acts
as a temporary authorization within the coalition.

ANS for Discovering Ethical AI Governance Services:

• Agents or users could query ANS for services like audit:
//EthicalComplianceOracle.AIBehavior.IndependentOrg.
v1 or report://BiasReportingService.FairnessConsortium.
v1.

• These specialized services (themselves having DIDs and
VCs) could then be used by agents to self-assess their
decisions against ethical guidelines or for users to report
problematic agent behavior, with the AN DIDs providing
a verifiable link to the service.

By integrating ANS as a core discovery mechanism whose
results (DIDs, initial capability claims) feed directly into the
DID/VC-based authentication and authorization processes, the
entire IAM lifecycle becomes more context-aware, secure,
and efficient. The discoverable nature of agent capabilities
and attestations fosters a more transparent and trustworthy
ecosystem.

VI. DEPLOYMENT MODELS & GOVERNANCE
CONSIDERATIONS

The proposed Agentic AI IAM framework, while archi-
tecturally comprehensive, is not a monolithic, one-size-fits-
all solution in terms of its practical implementation. The
diverse needs of different organizations, Multi-Agent System
(MAS) scopes (private enterprise vs. open ecosystem), trust
requirements, and existing infrastructure will necessitate dif-
ferent deployment models for its core components (e.g., DID
registries, Verifiable Credential (VC) issuers, Agent Name
Service (ANS), Policy Engines, Session Authority, Session
State Synchronizer). Furthermore, regardless of the chosen
deployment model, robust, well-defined, and adaptable gover-
nance is paramount for the long-term viability, trustworthiness,
security, and interoperability of any such advanced IAM system.

A. Deployment Model Analysis

We analyze three primary deployment models—Centralized,
Decentralized, and Federated—assessing their characteristics,
advantages, disadvantages, and suitability for various Agentic
AI IAM scenarios.
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1) Centralized Approach: Description: In a centralized
deployment, a single organization, platform provider, or a
designated administrative entity controls and operates all, or the
significant majority, of the IAM framework’s core components.
This typically includes: The primary Agent ID registry (which
might be a private Public Key Infrastructure (PKI) issuing
X.509 certificates as per some ANS proposals, a proprietary
database issuing unique identifiers, or a private DID method
controlled by the organization). The authoritative VC issuers for
organizational roles, capabilities, and compliance attestations.
The ANS, if implemented as a private or enterprise-scoped
directory service. The central Policy Decision Points (PDPs)
and Policy Administration Points (PAPs) defining and enforcing
access rules. The Cross-Protocol Session Authority (SA) and
the Session State Synchronizer (SSS). Agents operating within
this model typically belong to, or are tightly managed and
permissioned by, the central entity. All trust decisions ultimately
flow from this central authority.

Advantages: Simplified Governance & Policy Cohesion. Uni-
fied Control, Visibility, and Audit. Potentially Easier Integration
with Existing Enterprise Systems. Optimized Performance.
Clear Accountability.

Disadvantages: Single Point of Failure, Control, and Trust.
Scalability Bottlenecks. Vendor/Platform Lock-in. Limited
Cross-Organizational Trust & Interoperability. Potential for
Censorship or Abuse of Power.

When to Use: Enterprise-Internal MAS. Specific AI Plat-
forms. Early-Stage Deployments or Controlled Experiments.
Highly Regulated Environments with a Single Auditing Au-
thority.

2) Decentralized Approach: Description: Core IAM compo-
nents are implemented using decentralized technologies, often
public and permissionless, or permissioned consortia-based
Distributed Ledger Technologies (DLTs). Key characteristics
include: DIDs are registered on public or consortia DLTs
(e.g., did:ion, did:ethr, did:sov, or a custom agent-focused
DID method on a dedicated ledger like the proposed Agent ID
Provider Network - AIPN). Agent controllers or agents them-
selves manage their DID’s private keys. VCs can be issued by a
diverse set of issuers (each with their own DID) and their status
(revocation) might be tracked via decentralized mechanisms
(e.g., on-chain registries, distributed VC status lists). ZKPs
are used extensively for privacy-preserving presentation of
VCs and attributes. ANS could be built on decentralized name
systems (e.g., ENS, Handshake, or a custom DLT-based ANS).
Policy enforcement might involve smart contracts acting as
rudimentary PDPs for on-chain resources, or rely on Verifiable
Presentations that bundle VCs required by a verifier’s policy.
Global session state (like revocation lists) might be mirrored
on resilient DLTs. Governance is typically community-driven
(e.g., DAOs for protocol upgrades) or based on the immutable
logic encoded in smart contracts.

Advantages: No Single Point of Failure or Control. User/A-
gent Sovereignty (SSI). Enhanced Trust in Open, Permissionless
Ecosystems. Transparency & Auditability (for public DLTs).
Censorship Resistance.

Disadvantages: Governance Complexity, and ”Tragedy of
the Commons”. Smart Contract and DLT Security Risks.
Performance, Scalability, and Cost of DLTs. User/Controller
Experience (Key Management). Irreversibility and Data Privacy.
Bootstrapping Trust.

When to Use: Truly Open, Permissionless Multi-Agent
Ecosystems. Cross-Organizational Collaborations Without a
Central Trusted Party. Applications Requiring Very High
Degrees of Censorship Resistance or User Control Over Identity.
Ecosystems Where a Transparent, Community-Governed Trust
Infrastructure is a Core Design Goal.

3) Federated Approach: Description: This model involves
multiple independent IAM domains or ”trust communities.”
Each domain might manage its own IAM infrastructure using
centralized or even localized decentralized approaches. The
key is that these domains establish mutual trust relationships
and define standardized protocols for interoperability. This
could involve: Cross-certification of Certificate Authorities
(CAs) or DID method roots between domains. Shared trust
lists for recognized VC issuers and verifier policies across
the federation. Federated ANS resolution (e.g., similar to how
DNS subdomains can be delegated, or using inter-registry
lookup protocols). Use of highly interoperable DID methods
and standardized VC profiles (e.g., based on W3C specs) to
ensure credentials from one domain can be understood and
verified in another. A central (or mutually agreed upon) body
might define the ”federation rules” or baseline interoperability
standards, but day-to-day IAM within each domain remains
autonomous.

Advantages: Balances Autonomy with Interoperability. Scal-
ability. Domain-Specific Policies and Trust Levels. Enhanced
Resilience. Phased Adoption & Existing System Integration.

Disadvantages: Complexity of Trust Management. Interoper-
ability Challenges (Technical and Semantic). Potential for Low-
est Common Denominator Security. Discovery and Pathfinding
Complexity. Governance Overhead for the Federation Itself.

When to Use: Consortia of Organizations in a Specific
Industry. Alliances of Research Institutions or Governmental
Agencies. Large, Multi-National Corporations with Distinct
Regional or Business Unit IAM Requirements. Ecosystems
Evolving from Existing Centralized or Siloed Systems Towards
Greater Interoperability. As a practical model for the Agent
Name Service (ANS).

4) Hybrid Approaches: It’s important to note that these
models are not always mutually exclusive. Hybrid approaches
are likely to be common, combining elements from each.

• Example 1: An enterprise might use a centralized IAM
framework for its internal agents but use a federated model
to interact with agents from trusted partners. Its internal
agents might have DIDs issued by a private DID method,
but these DIDs could be anchored or discoverable through
a broader federated system.

• Example 2: A decentralized ecosystem might still rely
on a few, highly reputable (perhaps foundation-run)
”anchor” VC issuers for certain critical credentials (like



”VerifiedLegalEntity VC”), even if most other VCs are
issued more peer-to-peer.

• Example 3: The Session Authority and Session State Syn-
chronizer, while logically providing global coordination,
might be implemented as a permissioned DLT operated by
a consortium (federated control over a logically centralized
function) for resilience and shared trust.

B. Decision Matrix for Choosing an Implementation Model
Selecting the most appropriate deployment model requires

careful consideration of various factors. Table II provides
guidance:

How to use the matrix:
1) Identify the primary context for your MAS (e.g., internal

enterprise, open research platform, industry consortium).
2) Prioritize your key requirements (e.g., is maximum

agent sovereignty critical, or is centralized auditability
paramount?).

3) Evaluate each model against your high-priority require-
ments.

4) Consider if a hybrid approach offers the best trade-offs by
combining strengths of different models for different IAM
components (e.g., decentralized DIDs but a federated or
even centrally managed Session Authority for specific use
cases).

C. Governance Considerations
Effective governance is the bedrock upon which trust and

interoperability in any Agentic AI IAM framework are built.
It’s not merely about technical rules but also about establishing
clear roles, responsibilities, processes for decision-making,
dispute resolution, and adaptation over time.

1) Identity Governance (DIDs, VCs, ANS):
• DID Method Governance
• ANS Namespace Management & Policy
• VC Issuer Accreditation, Trust Registries, and Governance

Frameworks
• Agent ID Lifecycle Management Policies
2) Security Policy Governance (for PDPs and SA):
• Policy Authorship & Approval Workflows
• Policy-as-Code Principles
• Emergency Policy Override Procedures
• Policy Interoperability/Harmonization (in Federated Mod-

els)
3) Operational and Security Governance for IAM Infras-

tructure:
• Incident Response Playbooks for IAM Breaches
• Key Management Governance for IAM Services
• Regular Audits & Penetration Testing
• Vulnerability Disclosure Policy
4) Data Privacy and Ethical Use Governance:
• Data Protection Impact Assessments (DPIAs) for IAM

Data
• Agent ID Data Minimization Principles
• Bias Review in Credentialing and Reputation
• Ethical Oversight Bodies

5) Evolution and Standards Governance:
• Change Management Process
• Liaison with External Standards Bodies

Effective governance in the Agentic AI IAM space will
not be static; it must be an adaptive system capable of
evolving alongside the technology and the threat landscape.
It necessitates a collaborative effort, potentially involving a
mix of industry self-regulation, standards development, and,
where appropriate, governmental oversight, particularly for
public-facing or critical infrastructure components.

VII. SECURITY CONSIDERATIONS

Securing the Agentic AI IAM framework is paramount,
analyzed here using the MAESTRO framework [45].

A. The MAESTRO 7-Layer Reference Architecture for Agentic
AI

MAESTRO decomposes AI ecosystems into: Layer 1:
Foundation Models, Layer 2: Data Operations, Layer 3:
Agent Frameworks, Layer 4: Deployment and Infrastructure,
Layer 5: Evaluation and Observability, Layer 6: Security and
Compliance (Vertical), and Layer 7: Agent Ecosystem.

B. Threat Analysis of the Proposed Agentic AI IAM Framework
using MAESTRO Layers

• L1: Foundation Models: Model-based identity theft that
occurs when attackers use AI models to analyze and
replicate the behavioral patterns, communication styles,
and decision-making characteristics of legitimate agents,
effectively creating digital impersonators that can fool
other systems or users into believing they’re interacting
with the authentic agent (mitigated by cryptographic
DIDs/VCs).

• L2: Data Operations: Poisoning of DID registries/VC
status lists (mitigated by DLT consensus, signed registry
entries); exfiltration of identity data (mitigated by en-
cryption, agent-held VCs, ZKPs); tampering with PIPs
(mitigated by PIP identity and secure channels).

• L3: Agent Frameworks: Compromised IAM SDKs (mit-
igated by secure development, sandboxing); framework
vulnerabilities allowing session hijacking (mitigated by
continuous re-validation via AEM/SSS).

• L4: Deployment and Infrastructure: DoS/DDoS against
IAM services (mitigated by standard defenses, resilient
design); compromise of IAM service infrastructure (mit-
igated by hardening, access controls); lateral movement
to IAM components (mitigated by network segmentation,
Zero Trust).

• L5: Evaluation and Observability: Tampering with IAM
audit logs (mitigated by immutable logging, signatures);
evasion of IAM monitoring (mitigated by comprehensive
instrumentation); data leakage via observability tools
(mitigated by masking, ZKPs).

• L6: Security and Compliance: Misconfiguration of IAM
policies (mitigated by policy-as-code, audits); compromise
of IAM service keys (mitigated by HSMs, revocation);



TABLE II
DECISION MATRIX FOR CHOOSING AN IMPLEMENTATION MODEL

Feature / Requirement Centralized Decentralized Federated Hybrid

Control Authority Single Entity (High Control) Community/Protocol (Low
Central Control)

Domain-Specific + Federation
Body (Balanced)

Varies; often domain-specific
with shared elements

Trust Model Hierarchical (Trust in Central
Entity)

Peer-to-Peer / Ledger-Based
(Distributed Trust)

Inter-Domain Agreements /
Shared Roots (Delegated)

Mix of hierarchical and
delegated/distributed

Scalability Moderate (Potential Bottlenecks) Potentially Very High (if DLT
scales) / Variable

High (Distributed across
domains)

High (Can optimize components)

Performance (Latency) Potentially Low (if optimized,
local)

Variable (DLT dependent, often
higher)

Moderate (Inter-domain hops) Variable (Can optimize critical
paths)

Interoperability (External) Low (Proprietary by default) Potentially High (if open
standards used)

High (Designed for inter-domain
ops)

Moderate to High (Depends on
bridge design)

Complexity of Setup Low to Moderate High High (Trust agreements complex) Moderate to High

Complexity of Governance Low (Single decision-maker) Very High (Consensus,
community)

High (Federation rules,
inter-domain)

High (Managing diverse
components)

Cost (Infrastructure) Moderate (Centralized infra) Variable (DLT fees can be high) Moderate to High (Per-domain +
federation infra)

Variable

Security (vs External Threats) Single attack surface (high
impact if breached)

Distributed risk, smart contract
vulns critical

Risk shared/isolated per domain;
inter-domain trust

Tailorable; can have strong
internal, defined external

User/Agent Sovereignty Low Very High Moderate (Within domain
policies)

Variable

Censorship Resistance Low High Moderate (Per domain) Variable

Privacy Preservation Dependent on central entity’s
policies

High (with ZKPs, careful DLT
use)

Domain-specific policies;
inter-domain data flow

Can be designed for high privacy

Suitability: Enterprise Internal High Low Moderate (For large, distinct
internal units)

High (Central core, federated
edges)

Suitability: Open Ecosystem Low High Moderate (Federation of open
communities)

Moderate (Public services with
private backends)

Suitability: B2B Consortia Low (Unless one org dominates) Moderate (If common DLT
agreed)

High High (Federated interfaces,
shared services)

non-compliance with privacy regulations (mitigated by
privacy-by-design, ZKPs).

• L7: Agent Ecosystem: Agent impersonation/DID spoof-
ing (mitigated by cryptographic verification, VC status
checks); compromised ANS leading to malicious discov-
ery (mitigated by secure ANS resolution); collusion to
falsify VCs (mitigated by trust diversification, reputation
systems).

C. Cross-Layer Threats Affecting the IAM Framework

Including supply chain attacks on IAM components, privilege
escalation across IAM layers, and goal misalignment leading
to IAM misuse, all requiring defense-in-depth and continuous
monitoring.

D. Applying Zero Trust to Agentic AI IAM Framework

This brings essential security, governance, and accountability
benefits especially given the autonomous decision making,
undeterministic behavior, and scale of AI agents. Implemented
and tested security controls that are preventative, detective, and
corrective form the basis of Zero Trust. These fundamentals
are critical to the success of a Zero Trust implementa-
tion: Concept of least-privilege access, Separation of duties,
Segmentation/micro-segmentation, Logging and monitoring,
Configuration drift remediation, Assume breach, Dynamic and
adaptive security policy enforcement.

VIII. INNOVATIVE CONTRIBUTIONS OF THIS FRAMEWORK

The proposed framework represents a significant departure
from traditional approaches, offering a collection of synergistic
innovations specifically designed for the unique challenges of
autonomous Multi-Agent Systems (MAS). These contributions
are not isolated features but form part of a re-conceptualization
of agent identity, integrating advanced cryptographic techniques
and a novel architectural design for dynamic control, all within
a holistic, lifecycle-aware approach to managing AI agents as
first-class digital citizens.

The foremost contribution is the articulation of a comprehen-
sive, end-to-end IAM framework purpose-built for the agentic
paradigm. This moves beyond merely adapting human-centric
or simplistic machine and NHI (Non Human Identity) IAM
protocols, which often prove inadequate for the complexities of
autonomous, interacting agent swarms. Instead, our framework
cohesively integrates identity issuance, rich credentialing,
capability-aware discovery, dynamic access control, and a novel
cross-protocol enforcement layer into a unified conceptual
model. It addresses the entire lifecycle of an agent—from
its ”birth” through its operational interactions to its eventual
decommissioning—recognizing the deep interdependencies
between these stages. Existing IAM solutions typically focus on
narrower problems, struggling with identities that spawn others,
dynamically change roles, or require fine-grained, context-
sensitive authorization at massive scale. This framework’s



systemic integration is designed to address these fundamental
gaps.

Central to this is a redefinition of Agent Identity, making
it rich, dynamic, and verifiably secure. We shift away from
simplistic identifiers like API keys towards identities anchored
by cryptographically secure Decentralized Identifiers (DIDs).
This DID-anchored identity is not static; it is an extensible dig-
ital representation augmented by Verifiable Credentials (VCs)
that attest to an agent’s attributes, capabilities, compliance
status, roles, and provenance. The dynamism is crucial, as
AI agents evolve, their models update, capabilities expand,
and compliance needs re-attestation. A rich, verifiable identity
containing fields like scopeOfBehavior, toolset (which can
include DIDs of authorized tools), modelHash, and VCs for
training data or compliance, allows for far more nuanced trust
and authorization. The use of DIDs provides self-sovereignty
and interoperability, essential for open MAS, while VCs offer
a standardized, vendor-neutral way to make diverse claims.
Furthermore, Zero-Knowledge Proofs (ZKPs) enable agents
to selectively and privately present these verifiable claims, a
significant advancement over the limited flexibility and privacy
of traditional certificate extensions.

Building on this rich identity, the framework introduces
capability-centric discovery and more granular access control.
An integrated Agent Naming Service (ANS) facilitates secure
discovery, allowing agents to find others not just by name
but by the specific functions or attested capabilities they offer.
This is a critical distinction from traditional service discovery,
which may locate an endpoint but doesn’t inherently verify the
target’s attested abilities. Our approach directly links discovery
to verifiable identity attributes. Authorization decisions thereby
become more intelligent, considering not just ”who” is making a
request, but fundamentally ”what is this agent verifiably capable
and authorized to do, with which specific tools, and under
what attested conditions?” By making an agent’s authorized
toolset and scopeOfBehavior verifiable parts of its identity, the
system can enforce the principle of least function, significantly
limiting the blast radius of a compromised or misbehaving
agent. The framework introduces Context-Based Access Control
which enables dynamic access decisions based on real-time
environmental, behavioral, and task context moving beyond
static roles or attributes allowing enforcement policies to adapt
to an agent’s current state and conditions.

A cornerstone innovation is the Unified Cross-Protocol
Global Session Management and Policy Enforcement Archi-
tecture. This Layer 4 uniquely addresses the challenge of
maintaining consistent security posture in heterogeneous MAS
where agents use diverse communication protocols. In such
environments, a critical security gap is the inability to propagate
vital IAM state changes—like a global session termination,
a master DID revocation, or a sudden capability down-
grade—instantaneously and uniformly across all interaction
points. This layer acts as a ”security and session management
backplane,” ensuring that a policy decision or revocation, once
made, is effectively and immediately enforced wherever an
agent might interact, regardless of the underlying transport.

This real-time, cross-protocol consistency is fundamental for
operationalizing robust security.

The framework also achieves a pragmatic fusion of self-
sovereignty with enforceable governance. While DIDs and
agent-controlled VCs empower agents and their controllers with
greater control over their core identity data, this self-sovereignty
is balanced with mechanisms for practical governance. This
means that while an agent can present its self-managed identity,
these credentials can be verified against established trust
frameworks, such as lists of accredited VC issuers for specific
roles or compliance attestations. The Session Authority retains
the ability to enforce global revocations or policy overrides
based on enterprise risk decisions, even if the agent ”controls”
its DID. This balance is vital for adoption in real-world systems
that require clear lines of accountability and cannot operate
solely on peer-to-peer trust.

Finally, the framework provides intrinsic support for fine-
grained accountability and verifiable provenance. Cryptographic
verifiability is embedded at multiple levels: for identities
via DIDs and their keys; for claims about agents via VCs
and issuer signatures; for agent actions using the agent’s
DID-associated private key. The Agent ID structure itself
is designed to encapsulate or link to detailed provenance
information—such as its creator, constituent models, software
dependencies (potentially with their own DIDs), and VCs
attesting to training data or safety audits. As AI agents are
entrusted with increasingly impactful decisions, the ability
to irrefutably determine ”who (which agent instance) did
what, when, why, with what authority, and based on what
information/capabilities” becomes critical. This moves beyond
basic logging to establish a cryptographically verifiable audit
trail, essential for forensics, dispute resolution, and building
societal trust in autonomous systems, directly addressing
the ”audit trail ambiguity” prevalent in current systems and
providing a much stronger basis for non-repudiation.

To measure the success implementation of the innovation, the
following Key Performance Indicators (KPIs) can be considered:
Successful Agent Authentication Rate, Authorization Latency,
Policy Enforcement Accuracy, Revocation Time, Audit Log
Integrity, Anomaly Detection Rate, Incident Response Time,
Agent Discovery Success Rate, Downtime due to IAM Issues.

IX. DISCUSSION AND FUTURE WORK

As future work, we have identified the following.

A. Scalability, Performance, and Efficiency

The Challenge: Several components within the proposed
architecture, particularly those involving Distributed Ledger
Technologies (DLTs) for DID registration and Verifiable Creden-
tial (VC) status management, or the Session State Synchronizer
(SSS) which must track potentially millions of active agent
sessions, face significant scalability and performance hurdles.
The cryptographic operations inherent in DIDs, VCs, and
Zero-Knowledge Proofs (ZKPs), while providing security, can
also introduce computational overhead for resource-constrained
agents or high-throughput systems.



Future Work: Benchmarking and Optimization; Efficient
Cryptography; Caching and Resolution Strategies; Hardware
Acceleration.

B. Standardization and Interoperability

The Challenge: The true power of a global Agentic AI IAM
framework lies in its interoperability. Without widely adopted
standards for how Agent IDs are structured, how capabilities
are defined and attested in VCs, how ZKPs are constructed
for common proofs, or how ANS queries are formatted, the
ecosystem risks fragmentation into incompatible identity silos.

Future Work: Active Standards Development; Agent-Specific
Profiles; Common Ontologies; Reference Implementations and
Conformance Suites; Formalization of Model Context Protocols
(MCPs).

C. Governance Models, Trust Frameworks, and Legal Consid-
erations

The Challenge: Establishing and managing governance
for a potentially global, decentralized, or federated IAM
infrastructure is a monumental task. This includes defining
who can issue authoritative VCs (e.g., for legal identity or
compliance), how disputes over DIDs or ANS names are
resolved, and how liability is attributed in complex MAS
interactions. The evolving legal and regulatory landscape for
AI also presents a moving target.

Future Work: Multi-Stakeholder Governance Research; Trust
Assurance Levels; Legal and Regulatory Analysis; Dispute
Resolution Mechanisms; Security Controls Specific to AI
Agents.

D. Enhanced Security and Privacy in Practice

The Challenge: While the framework incorporates strong
security primitives, sophisticated adversaries will inevitably
seek to exploit implementation weaknesses, social engineering
aspects, or unforeseen interaction effects between components.
Maintaining agent and user privacy in the face of increasingly
rich identity data is also paramount.

Future Work: Formal Security Modeling and Verifica-
tion; Agent-Specific Threat Intelligence; Advanced Privacy-
Enhancing Technologies (PETs); Secure Key Management for
Autonomous Agents; Resilience Against Quantum Threats;
Tabletop Exercises for Agentic Incident Response.

E. User Experience (UX), Developer Tooling, and Adoption
Pathways

The Challenge: For this framework to be adopted, it must
be usable by both end-users (who may act as controllers for
their personal agents) and developers building and deploying
AI agents. Complexity in managing DIDs, VCs, and policies
can be a significant barrier.

Future Work: Developer-Friendly SDKs and Libraries; Man-
agement UIs and Dashboards; ”Secure by Default” Agent
Architectures; Phased Adoption Strategies.

F. Ethical Considerations and Societal Impact Mitigation

The Challenge: The power of verifiable and persistent Agent
IDs, while beneficial for security, also carries potential risks
if misused for pervasive surveillance, biased decision-making
(e.g., if VCs for ”good behavior” are only available to certain
types of agents), or creating new forms of digital divide.

Future Work: Ethical Impact Assessments; Bias Detection
and Mitigation in Credentialing; Transparency and Explainabil-
ity of IAM Decisions; Public Discourse and Inclusive Design.

The journey to a fully realized and globally functional Agen-
tic AI IAM framework is an ambitious one. It necessitates a
collaborative, iterative approach, blending cutting-edge research
with pragmatic engineering and a deep understanding of the
evolving societal context of AI. Addressing these future work
areas will be critical to transforming the vision presented in this
paper into a resilient, trustworthy, and enabling infrastructure
for the future of AI.
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