
ar
X

iv
:2

50
5.

19
04

7v
1

 [
cs

.C
R

]
 2

5
M

ay
 2

02
5

A Systematic Classification of Vulnerabilities in MoveEVM Smart Contracts (MWC)

Selçuk Topala

a Gebze Technical University, Department of Mathematics, stopal@gtu.edu.tr, Gebze, 41000, , Turkiye

Abstract

Combining the Move programming language with Ethereum Virtual Machine (EVM) compatibility—termed MoveEVM—has pro-
duced a new class of smart contract platforms that mix the expressive capability and infrastructure maturity of Ethereum with
resource-oriented safety guarantees. Although the Move language was first meant to eradicate many known vulnerabilities us-
ing linear resource types and strict module ownership, its adaptation inside an EVM-compatible execution model presents special
difficulties that are yet understudied in current literature. Conventional vulnerability classification systems, including the SWC
registry, lack semantic granularity to handle the hybrid execution environment of MoveEVM and are optimized for Solidity. This
work suggests a first methodical vulnerability classification system designed especially for smart contracts based on MoveEVM.
Covering a broad spectrum of problems including bytecode model inconsistencies, inter-module invariants, hybrid gas semantics,
meta-transaction spoofing, and artificial intelligence-integrated logic risks, we present a thorough taxonomy comprising six se-
mantic frames and 37 categorized vulnerability types (MWC-100 to MWC-136). By means of both static and dynamic analysis
of real-world MoveEVM contracts—especially from Aptos and Sui ecosystems—we show that a considerable fraction of vulner-
abilities are neither formally reduced by current Move verifying systems nor captured by EVM-centric tools. We also examine
how formal verification methods, LLM-based prompt pipelines, and AI-assisted audit agents might operationalize our taxonomy,
so enabling scalable and logic-aware auditing. Our results expose the emerging security patterns resulting from interaction among
linear type systems, capability-based access control, and EVM bytecode in production environments. Apart from offering a disci-
plined basis for next tooling and formal methods research, the suggested MoveEVM Weakness Classification (MWC) system helps
developers and auditors to reason about hybrid vulnerabilities in a principled, repeatable, and automation-friendly way. This work
thus prepares the way for the creation of more safe, verifiable, and maintainable smart contracts in hybrid blockchain systems of
next generation.

Keywords: MoveEVM, Smart Contract Security, Vulnerability Taxonomy, Formal Verification, AI-Assisted Auditing, MWC

Contents

1 Introduction 2

2 Related Works 4
2.1 Vulnerability Taxonomies 4
2.2 Security Features of Move and MoveEVM . . . 4
2.3 Analysis Tools and Frameworks 4
2.4 Formal Verification and Empirical Analysis . . 4
2.5 Language Comparisons 4
2.6 Audit reports and case studies 5
2.7 Understanding Vulnerabilities in Smart Contracts 5

2.7.1 Typical Vulnerabilities 5
2.7.2 Specific Vulnerabilities in MoveEVM . 5

3 Proposed Vulnerability Taxonomy for MoveEVM 5
3.1 State Management Vulnerabilities 6
3.2 Storage and Data Safety 6
3.3 Token and Asset Lifecycle Risks 6
3.4 Cryptographic and Signature Security 6
3.5 Oracles, MEV, and Cross-Chain Risks 6
3.6 Emerging Categories: AI, Governance, Upgrades 6
3.7 Supplementary Audit Dimensions 7

4 Frame-Based Classification of MoveEVM Vulnera-
bilities 7
4.1 Motivation . 7
4.2 Classification Overview 7
4.3 Use Cases of the Frame-Based Taxonomy . . . 8
4.4 Scope and Boundaries 8

5 Explanatory code-based examples the MWC Cate-
gories for developers, readers and interested parties 8

6 Comparison of SWC and MWC Taxonomies 12

7 Case Studies 13
7.1 Case Study 1: Sui-based Lending Protocol In-

variant Violation 13
7.2 Case Study 2: Aptos-EVM Bridge ABI Deseri-

alization Mismatch 13
7.3 Case Study 3: Modular MoveEVM Chain

Meta-Transaction Replay 13
7.4 Summary of Findings 13

8 Real-World Deployment Case Studies 14
8.1 Aptos NFT Mint Vulnerability (MWC-102,

MWC-112) 14

Preprint submitted to Results in Physics June 7, 2025

https://arxiv.org/abs/2505.19047v1

8.2 MWC-112 (Module Boundary Escapes) and
MWC-111 (Capability Verification) for Dex
Exploit . 14

8.3 Bridge Adapter Reentrancy in MoveEVM
(MWC-130) 14

9 Logic-Driven AI Agents for MoveEVM Auditing 14
9.1 Multi-Agent Architectures 14
9.2 Structured Prompt Pipelines 14
9.3 Natural-Language and Proof-Based Reporting . 14

10 Formal Verification Tools and MWC Taxonomy 14
10.1 MoveProver and SMT-Based Invariant Checking 14
10.2 Model Checking and K-Framework Applications 14
10.3 Symbolic Execution and Property Specifications 15

11 Future Directions in AI-Augmented MoveEVM Au-
diting 15
11.1 LLMs as Theorem-Proving Assistants 15
11.2 Interactive Audit Pipelines 15
11.3 MWC-Based Benchmarks and Datasets 15
11.4 Toward Human-AI Co-Auditing Pipelines . . . 16
11.5 Summary and Outlook 16

12 Conclusions, Recommendations, and Future Work 16

1. Introduction

Blockchain systems keep changing in security, scalability,
and complexity, which fuels the demand for ever stronger smart
contract languages and execution environments Wood (2014);
Zhang et al. (2020). With a well-established tooling ecosystem
and great acceptance, traditional platforms like Ethereum have
led the way Buterin (2013). But Solidity, the original smart
contract language for Ethereum, also reveals important secu-
rity and expressiveness limitations Luu et al. (2016). These
restrictions have inspired the creation of alternative languages
including Move, first presented by Facebook’s (now Meta’s)
Libra project Facebook (2019) and subsequently embraced by
networks including Aptos and Sui Pierro et al. (2023); Labs
(2022a).

Token economy and distributed finance (DeFi) have be-
come rather well-known among people in the last years Werner
et al. (2021). Underlying most DeFi and token projects, the
Ethereum blockchain architecture lets peer-to-peer currency
flow, transparent auction systems, and distributed open-interest
exchanges Antonopoulos and Wood (2018). To generate trade
fungible and non-fungible tokens on the Ethereum blockchain,
several token standards are extensively embraced Foundation
(a,b). The explosive expansion of Ethereum-based tokens gen-
erated different demand for tools and solutions Li et al. (2022).
Having seen the market, many investors and other consumers
clearly need to locate, follow, and evaluate tokens. A lot of tools
have been created to meet these criteria including token lists,
distributed exchanges, explorers, portfolio management tools,
arbitrage bots, etc. Bartoletti et al. (2020). These tools provide

thorough and strong services, which helps different DeFi apps
on Ethereum token ecosystems to grow.

Behind the market, users of the Ethereum blockchain have
produced tons of tokens. But since token creation calls for com-
plex smart contract deployment and interactivity, common users
unable of programming face significant challenges. More dan-
gerously, on most of these tools, any user can generate arbitrary
tokens on the Ethereum blockchain just by filling in a pertinent
contract address. Given the simple access to token creation and
the growing popularity of tokens and associated tools, it be-
comes imperative to methodically review token smart contracts
from several angles.

A few pieces have lately aimed at dissecting Ethereum smart
contracts Nikolić et al. (2018); Torres et al. (2021). Analyzing
the vulnerabilities in Ethereum smart contracts became a hot is-
sue since some security events attracted a lot of interest Atzei
et al. (2017). But while they lack an interesting study of to-
ken smart contracts, current works concentrate on examining
the incorrect semantic behaviors of Ethereum smart contracts.
Token standards all center on the high-level semantics of the
contracts. Semantic vulnerabilities including circulating coins,
reentrancy, and so on still exist even if they are subtly defined
in the handler actions He et al. (2020). There is a lack of a
complete systematic classification of these vulnerabilities at the
high-level language. One can consider vulnerabilities in code as
weaknesses in code that render code vulnerable swcregistry.io
(2024). To confirm the validity of these works, there is a need
for strong empirical investigations on Ethereum smart contracts
vulnerabilities. Current vulnerability and weakness databases
feature only basic-type vulnerabilities that must be expanded.
Moreover, vulnerability databases in other languages cannot
be exactly used since programming languages inevitably bring
their syntax, execution methods, etc.

Functioning as self-executing contracts with the terms of
the agreement directly written into code, smart contracts are
a breakthrough within the scene of blockchain technologies Sz-
abo (1997). They cut operating expenses by removing the need
for middlemen, enabling trustless transactions. Blockchain’s
distributed character improves security and openness, thus
smart contracts appeal to many sectors, including finance, sup-
ply chains, and healthcare Zheng et al. (2020). Adoption of
smart contracts, meanwhile, also presents special difficulties,
especially related to security flaws that might be taken advan-
tage of by malevolent actors Luu et al. (2016).

One of the weaknesses of smart contracts is a piece of code
that, when carried out in the Ethereum environment and taken
advantage of by an actor in a manner that causes Ether to be lost
(Soud et al. (2024)). Regarding flaws, as in any software pro-
gram, suboptimal coding structure and writing style can also be
causes of problems. Smart contract codes differ from other soft-
ware programs in that each one of their instructions requires a
precise gas consumption. Said another way, any smart contract
code instruction or function can be triggered by known address
and cause the miners to follow up their processing as a transac-
tion. The initial gas connected to this transaction is the cost of
it. This implies that the contract is vulnerable even if the weak-
ness is not taken advantage of since it would result in losing

2

Ether when it is triggered by the contract itself and carried out.
For the above mentioned reasons, it is quite crucial to investi-
gate the shortcomings of smart contracts as well as their vulner-
abilities independent of their ever exploitation. Referred to as
Ethereum Virtual Machine (EVM), Ethereum is a globally open
distributed blockchain system supporting smart contracts. Al-
though EVM contracts live on the blockchain in a Turing com-
plete bytecode language, developers use high-level languages
such Solidity (Bauer (2022)) or Vyper (Buterin (2018)) and
subsequently compile to bytecode to be uploaded to the EVM.
More precisely, both languages are elegant stringed arrays of
hundreds of thousands of bytes including high-level language-
based contract code instructions. The compilation is crucial
since it hides the smart contract code from everyone wishing
to view it, so shielding it from dangerous intrusions. Users of
the EVM can create new contracts, call methods inside a con-
tract, and move Ether. But once uploaded onto the blockchain, a
smart contract code—derived from its bytecode using the Kec-
cak algorithm—is immutable. Its hash serves as its specifica-
tion. Not only that but also before uploading it, a deterministic
algorithm generates an address for the code (and the contract
produced from it).

The account address, a unique 160-bit hexadecimal string,
specifies the EVM user account—external account or EOA for
short. An account in EVM can carry Ether denoted in Wei, the
cryptocurrency unit. The bytecode of a smart contract uses a
particular amount of gas for each byte in executed instruction.
Running on the blockchain, smart contracts are general-purpose
digital programs. Furthermore including user accounts, a smart
contract can call other smart contracts. Since Solidity is the
most often used language in the EVM community and most of
the implemented contracts on EVM are created using Solidity,
this paper focuses on Ethereum smart contracts created in So-
lidity.

Designed to model assets as linear resources, Move (Black-
shear et al. (2019)) is a statically typed, resource-oriented pro-
gramming language meant to provide great safety guarantees.
These semantics greatly lower the probability of some com-
mon Solidity vulnerabilities including reentrancy, integer over-
flows, and inadvertent asset duplication. Move lacks compat-
ibility with the Ethereum Virtual Machine (EVM), so limit-
ing its integration with current Ethereum-based tools and ap-
plications even if it offers stronger type safety and resource
control. Originally built for the Libra blockchain, MoveEVM
(Abrahimi (2023)) is an adaptation of the Ethereum Virtual
Machine (EVM) including the Move programming language.
Via a resource-oriented programming paradigm, it seeks to
improve the expressiveness and safety of smart contract de-
velopment. MoveEVM, aims to reduce typical vulnerabili-
ties linked with conventional smart contracts by using Move’s
strong type system and access control mechanisms. Ensur-
ing the dependability and security of applications developed on
MoveEVM depends on an awareness of the weaknesses partic-
ular to this framework. MoveEVM stands for a new paradigm
meant to close this distance. It presents an execution model
that supports Move-based contracts inside an EVM-compatible
runtime, so aggregating Move’s resource-oriented reasoning

with Ethereum’s infrastructure backbone. This hybridization
presents a special set of security issues that have not yet been
fully investigated in scholarly or pragmatic settings, even if it
provides the best of both worlds—secure asset modeling from
Move and developer familiarity from EVM.

The body of current research and tools for smart contract se-
curity mostly focus on environments native to EVM. For exam-
ple, almost exclusively on Solidity the Smart Contract Weak-
ness Classification (SWC) Registry swcregistry.io (2024),
MythX (Sayeed et al. (2020)), Slither (Feist et al. (2019a)),
and other analysis tools concentrate. Although these tools of-
fer important new perspectives on known EVM vulnerabilities,
they cannot handle Move’s semantic variations and the result-
ing emergent risks brought about by merging Move semantics
with an EVM-like runtime.

This work aims to close this discrepancy by providing the
first methodical classification of vulnerabilities particular to
MoveEVM-based smart contracts. Our work starts with a
thorough review of the MoveEVM implementation model and
then looks at actual contracts and the related security concerns.
Based on their root causes, attack paths, and runtime behaviors,
we classify these weaknesses into logical groups that provide a
fresh taxonomy grounded in both theoretical ideas and empiri-
cal data.

Motivation and Contributions

This research is motivated in two different directions. First,
developers and auditors need a disciplined knowledge of
MoveEVM’s special security features as adoption of it speeds
forward. Second, MoveEVM’s hybrid execution character
means that security concerns could show up in ways neither
traditional Move nor EVM models could forecast alone. For
instance, incorrect resource handling in a Move contract im-
plemented on MoveEVM may bypass familiar Solidity-based
checks, or vice versa, so generating non-trivial attack surfaces.

This work focuses on: identifying inherited vulnerabilities
from both Move and EVM environments.

• Dividing fresh vulnerability types arising from their inter-
action.

• Showing overlaps and deviations, comparing these vulner-
abilities to those noted in Ethereum and Solana by includ-
ing pragmatic examples and case studies from Aptos and
Sui ecosystems.

Contributions

This work makes primarily the following important contribu-
tions:

Based on static and dynamic analysis of actual contracts and
audit reports, we provide a thorough and unique taxonomy of
MoveEVM vulnerabilities.

1. We draw attention to security concerns the hybrid
MoveEVM implementation model either magnifies or
uniquely introduces.

3

2. We frame MoveEVM’s strengths and shortcomings in the
larger smart contract security scene by doing comparative
analysis with vulnerabilities in Ethereum and Solana.

3. For developers and security analysts wishing to create or
audit MoveEVM-based smart contracts, we provide spe-
cific advice.

This paper adds to the fundamental knowledge needed to cre-
ate dependable tooling, audit practices, and educational materi-
als for the next generation of smart contract platforms by offer-
ing the first focused classification of MoveEVM vulnerabilities.

2. Related Works

2.1. Vulnerability Taxonomies

For Ethereum and other chains, vulnerability taxonomies for
smart contracts are established but still developing. Maintain-
ing the Smart Contract Weakness Classification (SWC) registry
(EIP-1470), the Ethereum community links numerical identities
to contract weaknesses (e.g., SWC-101 = integer overflow/un-
derflow) swcregistry.io (2024). Academic work and audits sim-
ilarly list common Solidity/EVM bug classes including reen-
trancy, unchecked math, incorrect access control, etc.

Song et al. (2024) manually audited 652 Move contracts in
the Move ecosystem, distilled eight defect types—half previ-
ously unreported—spanning logic errors, resource misuse, and
more. Wu et al. (2025) methodically catalog real-world vulner-
abilities (integer overflows, unsafe Rust use, oracle logic flaws,
etc.), then compare tool support to Ethereum for Solana’s Rust-
based contracts.

These taxonomies guide the creation of analysis tools as well
as language design—that is, Move’s resource model.

2.2. Security Features of Move and MoveEVM

Move was developed as a smart contract language first in-
tended for security. It implements a resource-typed, linear type
system: structs that ”must-move,” so guaranteeing they cannot
be replicated or thrown away Diem (2019). Using primitives
like move to and move from, move modules own declared re-
source types and control all creation/destruction isolating state
changes to authorized code (Patrignani and Blackshear (2023)).

Struct fields are private to the module; once generated, re-
sources—once created—are handled as first-class values only
transferable via explicit instructions. A bytecode verifier en-
forces this linearity at compile-time and, alternatively at run-
time via safety checks. A 2023 Move verifier bug, for example,
let a non-drop resource to drop, so violating this invariant Se-
curity (2023a).

Move’s design avoids many typical mistakes in construction
unlike Solidity, where asset safety must be enforced manually
or with tools. Extending the language with an integrated speci-
fication language and automated formal verification, the Move
Prover Zhong et al. (2020). Though it is still under develop-
ment, MoveEVM seeks to include these safety assurances into
an EVM-compatible runtime.

2.3. Analysis Tools and Frameworks

A wide range of static and dynamic analysis tools target
smart contracts. For Ethereum, Slither is a popular static an-
alyzer that compiles Solidity into SSA-form IR (“SlithIR”)
and applies vulnerability detectors Feist et al. (2019a). Secu-
rify Tsankov et al. (2018) uses Datalog-based analysis to infer
semantic properties and verify compliance or detect violations.
Mythril (Sharma and Sharma (2022)) and its cloud platform
MythX (Songsom et al. (2022)) use symbolic execution and
SMT solving for bug detection.

For fuzzing and runtime testing Fu et al. (2024), tools like
Echidna (Grieco et al. (2020)) and Manticore (Mossberg
et al. (2019)) are used.

In the Move ecosystem, tools are emerging. The Move
Prover (Dill et al. (2022)) translates annotated Move code
to Boogie and verifies properties against formal specifications.
Song et al. Song et al. (2024) introduced MoveScan, which
translates Move bytecode to an intermediate representation and
detects common defect patterns. MoveLint (Praitheeshan et al.
(2021)) offers lightweight static checks on Move codebases.

Recent work uses these tools for LLM-based detection:
the Smartify framework compares vulnerability reports against
Move Prover, MoveLint, and MoveScan to validate detection
accuracy Karanjai et al. (2025).

2.4. Formal Verification and Empirical Analysis

Various tools for both static and dynamic analysis aim at
smart contracts. Popular static analyzer Ethereum Slither
(Feist et al. (2019b)) compiles Solidity into SSA-form IR
(”SlithIR”) and runs vulnerability detectors. By means of
Datalog-based analysis, Securify Tsankov et al. (2018) deduces
semantic properties and checks compliance or detects viola-
tions. Symbolic execution and SMT solving for bug discovery
are used by Mythril (Sharma and Sharma (2022)) and its cloud
platform MythX Sayeed et al. (2020).

Tools including Echidna Grieco et al. (2020) and Manti-
core Mossberg et al. (2019) are applied for fuzzing and runtime
testing.

Tools are developing in the Move ecology. Translating an-
notated Move code to Boogie, the Move Prover (Zhong et al.
(2020)) verifies properties against formal specifications. Trans-
lating Move bytecode to an intermediary representation and
identifying common defect patterns, (Song et al. (2024)) pre-
sented MoveScan.

Using these tools for LLM-based detection, recent work val-
idates detection accuracy (Karanjai et al. (2025)) by compar-
ing vulnerability reports against Move Prover, MoveLint, and
MoveScan.

2.5. Language Comparisons

The main distinctions between Solidity, Rust, and Move are
highlighted by comparative language studies. Move prevents
unauthorized duplication or loss of assets by incorporating lin-
ear resource types and drawing inspiration from Rust’s owner-
ship model (Diem (2019); Blackshear et al. (2019)). Although

4

Solidity is developer-friendly and flexible, it lacks native linear-
ity, which makes it vulnerable to integer bugs and reentrancy
unless tools are used to mitigate them(Feist et al. (2019a)).

Although memory safety is advantageous for Rust-based
Solana programs, Wu et al. (2025) note that integer over-
flows are still a real-world problem. By enforcing invariants at
the bytecode and specification levels, Move circumvents these
problems Dill et al. (2022).

2.6. Audit reports and case studies
Current audits and incident reports shed light on practical

problems in move-based chains. A critical Move verifier by-
pass bug that permitted resource dropping without the drop

ability Security (2023a,b) was found by Zellic. A high-severity
Move bug in Sui that enabled crafted bytecode to crash val-
idators was reported by HackenProof HackenProof (2023). A
Move VM vulnerability in Aptos and Sui that allows for denial-
of-service attacks through twisted bytecode was discovered by
Numen Cyber Labs (2022b).

The largest known empirical audit of Move contracts was
carried out by Song et al. (2024), who found systemic
patterns and defect density in both Aptos and Sui. These
real-world examples demonstrate how Move’s safety features
greatly lower smart contract risks without completely eliminat-
ing them, which is why reliable analysis tools and validated
code are crucial.

2.7. Understanding Vulnerabilities in Smart Contracts
Although they are transforming the way contracts and trans-

actions are carried out on blockchain platforms, smart contracts
do have certain drawbacks. Because of blockchain’s immutabil-
ity and decentralization, as well as the complexity of program-
ming smart contracts, security flaws can have serious repercus-
sions. In order to identify and mitigate potential risks in smart
contracts, developers, auditors, and researchers must have a
thorough understanding of these vulnerabilities.

2.7.1. Typical Vulnerabilities
Despite their many benefits, smart contracts are vulnerable to

a number of flaws that could result in serious security breaches.
Among the most prevalent categories of vulnerabilities are:

1. Reentrancy Attacks: One of the most well-known flaws
in smart contracts is reentrancy, which was infamously
taken advantage of in the 2016 DAO hack. When a con-
tract calls another contract externally before updating its
internal state, it creates a vulnerability that enables the
called contract to return to the original contract and change
its state before the first call is finished.

2. Integer Overflow and Underflow: This vulnerability oc-
curs when arithmetic operations produce unexpected be-
havior by exceeding the maximum or minimum value that
can be stored in a variable. A large positive number could
be produced by subtracting one from a zero value, for in-
stance, which could result in unauthorized access or con-
tract state manipulation.

3. Gas Limit and Loops: The amount of computation that
can be done in a single transaction is limited by the gas
limit of smart contracts. Transaction failures may re-
sult from contracts with unbounded loops using excessive
amounts of gas. By creating transactions that result in ex-
cessive gas consumption, attackers may take advantage of
this and essentially cause a denial-of-service (DoS) on the
contract.

4. Access Control Issues: When creating smart contracts,
appropriate access control is essential. When functions are
made available to unauthorized users, access control vul-
nerabilities may arise, giving malevolent actors the ability
to alter important contract states or take money out.

5. Timestamp Dependence: Block timestamps are used in
certain contracts for crucial functions like determining the
legality of actions or enforcing deadlines. Attackers can
take advantage of this vulnerability by mining blocks and
manipulating block timestamps.

2.7.2. Specific Vulnerabilities in MoveEVM
Despite the fact that many flaws are shared by different smart

contract platforms, MoveEVM presents particular difficulties
and vulnerabilities because of its particular implementation and
design. For example:

1. Resource Mismanagement: MoveEVM’s resource-
oriented programming paradigm emphasizes ownership
and resource management. However, improper handling
of resource transfers can lead to vulnerabilities, such as
losing track of resource ownership or creating unintended
resource duplication.

2. Type Safety Issues: The resource-oriented programming
paradigm of MoveEVM places a strong emphasis on re-
source management and ownership. However, ineffective
resource transfer management can result in vulnerabilities
like unintentional resource duplication or losing track of
resource ownership.

3. Insufficient Testing and Formal Verification: By using
formal verification, MoveEVM seeks to increase the de-
pendability of smart contracts. Contracts without thorough
testing, however, might still have undiscovered weak-
nesses, especially those resulting from logical errors in im-
plementation.

Since it establishes the basis for efficient vulnerability detec-
tion and mitigation techniques in MoveEVM smart contracts,
an understanding of these vulnerabilities is essential for both
developers and researchers.

3. Proposed Vulnerability Taxonomy for MoveEVM

In this section, we introduce a detailed vulnerability taxon-
omy for MoveEVM-based smart contracts. Each category is
denoted by an identifier (MWC-XXX) and is designed to sup-
port automated or manual risk assessments. The categories are

5

grouped into six primary classes based on their semantic and
technical nature.

3.1. State Management Vulnerabilities

• MWC-100: Frozen contract state due to improper state
transitions (state transition analysis)

• MWC-101: Undefined state behavior when contract state
variables are uninitialized (invariant verification)

• MWC-102: Lack of rollback protection causing incom-
plete transaction execution (atomicity proofs)

• MWC-103: Invalid loop termination leading to infinite
execution (loop termination analysis)

• MWC-104: Unvalidated external calls causing undefined
execution paths (module invocation proofs)

• MWC-105: Dead code execution causing unnecessary gas
usage (static code analysis)

• MWC-106: Unreachable states in finite state machines
due to logic errors (FSM coverage analysis)

• MWC-107: Contract state race condition causing unin-
tended state changes (concurrency proofs)

3.2. Storage and Data Safety

• MWC-108: Data overwriting in storage leading to unex-
pected value changes (storage write protection)

• MWC-109: Unintended variable mutability allowing
modification of supposedly immutable variables (im-
mutability proofs)

3.3. Token and Asset Lifecycle Risks

• MWC-110: Unexpected token burn due to missing vali-
dation checks (asset lifecycle proofs)

• MWC-111: Unauthorized token minting by malicious ac-
tors (capability verification)

• MWC-112: Token supply overflow exceeding the defined
hard cap (arithmetic safety checks)

• MWC-113: Improper reward distribution leading to un-
fair token allocation (reward calculation verification)

• MWC-114: Circular token transfers creating infinite
loops (execution path analysis)

• MWC-115: Unauthorized token freezing without proper
authorization (capability restriction proofs)

• MWC-116: Unexpected decimal precision loss due to
rounding errors (precision analysis)

• MWC-117: Incorrect vesting schedule unlocking tokens
earlier or later than expected (vesting condition verifica-
tion)

• MWC-118: Improper treasury management leading to
fund misallocation (fund allocation analysis)

• MWC-119: Unauthorized staking withdrawals allowing
excessive asset withdrawals (stake locking proofs)

3.4. Cryptographic and Signature Security

• MWC-120: Weak signature verification causing unautho-
rized transactions (cryptographic proofs)

• MWC-121: Predictable key generation making crypto-
graphic keys vulnerable (entropy verification)

• MWC-122: Unprotected encryption keys exposing pri-
vate key data (confidentiality analysis)

3.5. Oracles, MEV, and Cross-Chain Risks

• MWC-123: Malicious oracle manipulation affecting con-
tract execution (oracle verification proofs)

• MWC-124: Time-based side channel attacks revealing
sensitive contract execution information (timing analysis)

• MWC-125: Front-running via predictable execution order
enabling MEV exploitation (execution order verification)

• MWC-126: Malicious reorg attacks causing blockchain
transaction instability (state finality proofs)

• MWC-127: Cross-chain replay attacks due to lack of
unique nonces (chain isolation verification)

• MWC-128: Public private key leakage exposing sensitive
cryptographic data (key safety proofs)

3.6. Emerging Categories: AI, Governance, Upgrades

• MWC-129: Unauthorized zero-knowledge proof submis-
sion leading to fake proofs (ZKP verification)

• MWC-130: Algorithm bias in AI-based smart contracts
causing unfair decisions (bias detection algorithms)

• MWC-131: Data poisoning in AI-driven contracts manip-
ulating training data (data integrity verification)

• MWC-132: AI decision-making manipulation altering
contract execution (model robustness testing)

• MWC-133: Faulty DAO governance execution failing to
follow voting rules (DAO proposal verification)

• MWC-134: Unprotected smart contract upgrades intro-
ducing new vulnerabilities (upgrade path verification)

• MWC-135: Poor Layer 2 integration causing execution
inconsistencies (L2 bridge verification)

• MWC-136: Cross-chain messages are not validated cor-
rectly, leading to desynchronization (interoperability test-
ing)

6

3.7. Supplementary Audit Dimensions
In addition to the technical taxonomy, the following audit

perspectives are integrated in all evaluation reports:

• Code Quality: Is the code well-structured, readable, and
appropriately commented?

• Security Practices: Are best security practices followed?
Are additional mitigations applied to high-risk zones?

• Fraud Analysis: We assess risk from fee scams, redi-
rections, unlimited minting, emergency fees, ownership,
blacklisting, and transaction restrictions.

• Overall Assessment: The contract is evaluated as Passed
or Failed, with justification based on high-risk findings.

• General Security Posture: Summary of critical risks and
overall design strength in exactly eight evaluative sen-
tences.

This taxonomy provides a formal lens for evaluating
MoveEVM contracts against emerging and classical attack sur-
faces, including cross-domain, AI-driven, and cryptographi-
cally sensitive vulnerabilities.

4. Frame-Based Classification of MoveEVM Vulnerabili-
ties

4.1. Motivation
Despite the inherent safety guarantees of Move’s linear type

system, MoveEVM inherits numerous semantic and runtime
characteristics from the Ethereum Virtual Machine (EVM), in-
troducing hybrid complexity and novel attack surfaces. As
MoveEVM adoption rises in modular, zk-compatible, and L2
environments, the community lacks a cohesive, actionable clas-
sification framework that bridges both Move semantics and
EVM legacy behavior. This section introduces a frame-based
classification of vulnerabilities, defined by 37 uniquely identi-
fied MoveEVM Weakness Classes (MWC-100 to MWC-136),
providing structured insight into emergent risks.

4.2. Classification Overview
Our vulnerability classification comprises six top-level

frames, each reflecting a unique semantic or architectural di-
mension of the MoveEVM execution model. Each frame
is populated by granular, code-assigned vulnerability types
(MWC-n), enabling reproducibility, automation, and audit
alignment.

1. F1. Bytecode Model Inconsistencies (BMI)

• MWC-100 — Type rule circumvention via EVM
ABI deserialization

• MWC-101 — Unsafe encoding of Move structs in
raw calldata

• MWC-102 — Bytecode re-interpretation between
Move-EVM boundaries

2. F2. Inter-Module Invariant Violations (IMI)

• MWC-103 — Resource leakage across module in-
terfaces

• MWC-104 — Inconsistent mutability between caller
and callee modules

• MWC-105 — Failure to re-establish postconditions
in inter-module calls

3. F3. State Reentrancy and Synchronization Bugs (SRS)

• MWC-106 — Hybrid reentrancy between Move and
EVM modules

• MWC-107 — Callback-based state mutation violat-
ing linearity

• MWC-108 — Interleaved writes to Move storage via
external callouts

• MWC-109 — Inconsistent ordering of resource
locks in parallel executions

4. F4. Meta-Transaction and Signature Spoofing (MTS)

• MWC-110 — Ambiguous domain separation in sig-
nature verification

• MWC-111 — Missing nonce protection in off-chain
meta-transactions

• MWC-112 — Reused signatures across heteroge-
neous domains (EVM ⇄ Move)

5. F5. Gas Semantics Manipulation (GSM)

• MWC-113 — Underpriced EVM opcodes invoking
costly Move logic

• MWC-114 — Discrepant gas metering between pre-
compiled and interpreted paths

• MWC-115 — Inaccurate accounting in hybrid
(Move ⇄ EVM) transaction batching

6. F6. Framework Logic Errors and Unsafe Abstractions
(FLA)

• MWC-116 — Misuse of generics leading to unsound
type instantiation

• MWC-117 — Unsafe use of standard libraries with
hidden state assumptions

• MWC-118 — Failure to enforce resource invariants
in public API exposure

• MWC-119 — Lack of runtime checks in generic ca-
pability wrappers

In addition to these primary six frames, we identify supple-
mentary categories that emerge from MoveEVM’s evolving
runtime model:

1. Formalism Gaps and Verification Failures

7

• MWC-120 — Move Prover incompleteness on EVM
ABI-conformant entrypoints
• MWC-121 — Undetected post-condition failures

under EVM fallback dispatch

2. Tooling and Compiler-Generated Risks

• MWC-122 — Compiler-injected unsafe access to
global storage
• MWC-123 — Inconsistent error propagation in

compiled bytecode
• MWC-124 — Move-EVM compiler linking errors

introducing dangling capabilities

3. Hybrid Standard Violations

• MWC-125 — Deviation from expected ERC/MIP
compatibility in hybrid contracts
• MWC-126 — ABI serialization violating Move re-

source expectations
• MWC-127 — Duplicate module address registration

across environments

4. Cryptographic Misuse in Context-Switching

• MWC-128 — Inappropriate hash domain reuse be-
tween Move and EVM
• MWC-129 — Misconfigured key validation in dual-

signer patterns

5. Observable Side Effects and Leakage

• MWC-130 — Emission of inconsistent event struc-
tures
• MWC-131 — Leakage of internal Move state via

view functions
• MWC-132 — Use of ‘panic‘-like error reporting in

observable contexts

6. Environment/Bridge-Related Risks

• MWC-133 — Bridge logic bypassing Move module
access restrictions
• MWC-134 — Inconsistent state replication across

L2 ⇄ L1 environments
• MWC-135 — Vulnerabilities arising from partial

migration to zk-Move systems
• MWC-136 — Oracles injecting inconsistent state

via unverified call patterns

4.3. Use Cases of the Frame-Based Taxonomy
This structured classification provides:

• Security Audits: A frame-driven vulnerability checklist
for systematic coverage.

• Tool Integration: Ground truth for training fuzzers, LLM
agents, and formal analyzers.

• Language Design Feedback: A roadmap for future-safe
improvements in MoveEVM runtime and tooling.

4.4. Scope and Boundaries

This taxonomy targets MoveEVM contracts and hybrid run-
time behaviors. It explicitly excludes:

• Cryptographic protocol flaws not tied to execution seman-
tics.

• Front-end/UI-based exploits.

• Non-smart-contract attacks such as phishing or social en-
gineering.

5. Explanatory code-based examples the MWC Categories
for developers, readers and interested parties

MWC-100: Frozen Contract State

Description: Contract gets stuck in frozen state without
an unfreeze option.
Vulnerable Code:
module Token {

struct TokenData has key { frozen: bool }

public fun freeze(token: &mut TokenData) {

token.frozen = true;

}

public fun transfer(token: &TokenData) {

// No unfreeze or check mechanism

assert (!token.frozen , 0);

}

}

Fix: Add unfreeze() method or reversible FSM.

MWC-101: Uninitialized State

Description: Use of a state resource without checking exis-
tence first.
Vulnerable Code:
module Counter {

struct State has key { count: u64 }

public fun increment(addr: address) {

let state = borrow_global <State >(addr)

; // May not exist

state.count = state.count + 1;

}

}

Fix: Use exists<State> check before borrow.

8

MWC-102: No Rollback Mechanism

Description: Partial failure leads to inconsistent state (with-
draw without deposit).
Vulnerable Code:
public fun transfer(user: &signer , to: address

, amount: u64) {

withdraw(user , amount);

// If next step fails , withdraw already

happened

deposit(to, amount);

}

Fix: Ensure atomicity or use transactional patterns.

MWC-103: Infinite Loop

Description: Improper loop termination condition causing
unbounded execution.

Vulnerable Code:

let mut i = 0;

while (i >= 0) {

i = i + 1;

}

Fix: Ensure loop variable progresses toward a proper stop-
ping condition.

MWC-104: External Call Without Validation

Description: Unvalidated module address can lead to
unsafe external execution.

Vulnerable Code:

public fun call_external(mod: address) {

// No validation of external target

External :: trigger(mod);

}

Fix: Verify module address and call constraints.

MWC-105: Dead Code Execution

Description: Unreachable code included after return
statement.

Vulnerable Code:

public fun transfer(amount: u64) {

return;

// Unreachable code below still incurs

deployment cost

let x = amount + 1;

log::info("Never executed");

}

Fix: Remove unreachable logic post-return.

MWC-106: Hybrid Reentrancy Between Move and
EVM Modules

Description: Reentrancy vulnerabilities when EVM calls
re-enter Move logic before the first execution completes.
Vulnerable Code:
public fun transfer () {

External :: evm_callback (); // External EVM

call can re-enter this Move function

before state is updated

update_balance ();

}

Fix: Update internal state before external calls or apply a
reentrancy guard.

MWC-107: Callback-based State Mutation Violating
Linearity

Description: Unsafe state mutation through callback func-
tions, violating Move’s resource guarantees. Vulnerable
Code:
public fun call_with_callback(callback:

address) {

callback :: trigger (); // Changes internal

resource state and external call could

modify the same state concurrently if

not locked

}

Fix: Avoid modifying state in callbacks or isolate effects
with capabilities.

MWC-108: Interleaved Writes to Move Storage via Ex-
ternal Callouts

Description: External calls modifying shared storage in
parallel causing inconsistencies. Vulnerable Code:
public fun update_state () {

EVM:: external_op (); // Interleaves with

Move storage writes

state.value = 10;

}

Fix: Lock or checkpoint critical storage prior to external
execution.

MWC-109: Inconsistent Ordering of Resource Locks

Description: Deadlocks or race conditions caused by ac-
quiring locks in inconsistent order. Vulnerable Code:
lock_a ();

lock_b ();

// In another function: lock_b (); lock_a ();

Fix: Always acquire resources in a consistent global order.

9

MWC-110: Unexpected Token Burn Due to Missing
Checks

Description: Tokens are burned without verifying balances
or permissions.
Vulnerable Code:

public fun burn(token: &mut

Token) {

token.total = token.

total - 100;

}

Fix: Validate balance ownership and enforce burn condi-
tions.

MWC-111: Unauthorized Token Minting

Description: Any caller can mint new tokens due to missing
access control.
Vulnerable Code:

public fun mint() {

supply = supply +

1000;

}

Fix: Enforce capability-based or role-based access to mint
functions.

MWC-112: Reused Signatures Across Heterogeneous
Domains

Description: Same signature used in different chains or
contract contexts. Vulnerable Code:
// Signature meant for chain A reused on chain

B

Fix: Include chain IDs and contract addresses in message
hashing.

MWC-113: Underpriced EVM Opcodes Invoking Costly
Move Logic

Description: Attackers exploit gas cost imbalances to trig-
ger expensive Move logic. Vulnerable Code:
EVM:: cheap_call (); // Triggers heavy Move

execution

Fix: Align gas estimation across layers or limit call depth.

MWC-114: Discrepant Gas Metering Between Precom-
piled and Interpreted Paths

Description: Gas discrepancy between Move and EVM
bytecode paths leads to abuse. Vulnerable Code:
call_precompiled (); // Gas is not charged

appropriately

Fix: Ensure uniform gas rules for all code paths.

MWC-115: Inaccurate Accounting in Hybrid Transac-
tion Batching

Description: Multiple operations batched but only partially
accounted in gas or execution state. Vulnerable Code:
batch_ops ([op1 , op2]); // Partial success

untracked

Fix: Make batches atomic or explicitly track partial out-
comes.

MWC-116: Misuse of Generics Leading to Unsound
Type Instantiation

Description: Incorrect use of generics permits invalid types
at runtime. Vulnerable Code:
store <T>(item: T); // No constraints on T

Fix: Use type constraints and specification to restrict T.

MWC-117: Unsafe Use of Standard Libraries with Hid-
den State

Description: Importing libraries that manipulate hidden or
undocumented global state. Vulnerable Code:
use Lib ::*; // May affect global state

Fix: Inspect library effects or avoid stateful imports.

MWC-118: Failure to Enforce Resource Invariants in
Public API Exposure

Description: Exposing public APIs without checking inter-
nal resource constraints. Vulnerable Code:
public fun issue(token: Token) {

// No validation of capabilities

}

Fix: Validate invariants before executing public logic.

MWC-119: Lack of Runtime Checks in Generic Capa-
bility Wrappers

Description: Wrappers around capabilities fail to validate
runtime behavior. Vulnerable Code:
wrap(cap); // Wraps without validating

permission

Fix: Add runtime checks for wrapper inputs and usage.

10

MWC-120: Weak Signature Verification

Description: Signature verification lacks nonce or domain
separation, allowing replay.
Vulnerable Code:

public fun exec(sig: vector <u8

>, msg: vector <u8 >) {

crypto :: verify(pubkey ,

msg , sig); //

Missing nonce/

context

}

Fix: Add nonce and domain-specific prefixes before sign-
ing/verifying messages.

MWC-120: Move Prover Incompleteness on EVM ABI-
Conformant Entrypoints

Description: Formal tools fail to verify entrypoints when
ABI encoding bypasses assumptions. Vulnerable Code:
public fun unsafe_entry(input: vector <u8 >) {

let decoded = abi:: decode(input); // Skips

Move Prover assumptions

}

Fix: Use explicit preconditions and constrain decoding
logic with specifications.

MWC-121: Undetected Post-Condition Failures under
EVM Fallback Dispatch

Description: Contracts behave incorrectly when fallback
mechanisms skip Move post-conditions. Vulnerable Code:
fallback fun handle () {

transfer (); // No check of post -conditions

}

Fix: Enforce post-conditions manually or avoid using fall-
backs for critical logic.

MWC-122: Compiler-Injected Unsafe Access to Global
Storage

Description: Auto-generated code accesses global state
without appropriate checks. Vulnerable Code:
// Compiler -generated read of global <T>(addr)

Fix: Use explicit storage guards and validate code generated
by compiler macros.

MWC-123: Inconsistent Error Propagation in Compiled
Bytecode

Description: Errors are silently dropped or inconsistently
returned in compiled code. Vulnerable Code:
call_internal (); // Error not bubbled up

Fix: Standardize error handling patterns and enforce error
return on all paths.

MWC-124: Move-EVM Compiler Linking Errors Intro-
ducing Dangling Capabilities

Description: Linking across modules creates unreferenced
capabilities or permissions. Vulnerable Code:
// Capability returned without linkage

validation

Fix: Resolve and audit all link-time dependencies manually.

MWC-125: Predictable Execution Order Enabling
MEV

Description: Miner or attacker reorders transactions to ex-
ploit a contract’s predictable execution pattern.
Vulnerable Code:

public fun submit_bid(bid: u64

) {

if (bid >

current_highest) {

current_highest

= bid;

winner =

signer ::

address_of

(

tx_context

:: sender ()

);

}

}

Fix: Use commit-reveal patterns or delay finalization to mit-
igate MEV opportunities.

MWC-126: ABI Serialization Violating Move Resource
Expectations

Description: ABI encoding hides critical resource informa-
tion leading to safety violations. Vulnerable Code:
abi:: decode_resource(input); // No type -safe

decode

Fix: Avoid ABI resource transfers or verify structure manu-
ally post-decode.

MWC-127: Duplicate Module Address Registration
Across Environments

Description: Move modules deployed under conflicting ad-
dresses in multichain contexts. Vulnerable Code:
// Same module at 0x1 in devnet and testnet

Fix: Enforce globally unique module identities or use
namespaces.

11

MWC-128: Inappropriate Hash Domain Reuse Between
Move and EVM

Description: Same hash domain used across layers allows
cross-environment collisions. Vulnerable Code:
let h = hash:: sha3_256(msg); // Domain not

distinguished

Fix: Prefix all hashed messages with unique domain identi-
fiers.

MWC-129: Misconfigured Key Validation in Dual-
Signer Patterns

Description: Contracts with multiple signers fail to validate
key ownership properly. Vulnerable Code:
verify(k1, msg) && verify(k2, msg); // But k2

not authorized

Fix: Enforce signer roles and permission explicitly in vali-
dation logic.

MWC-130: Emission of Inconsistent Event Structures

Description: Events vary in structure across versions,
breaking indexers or observers. Vulnerable Code:
emit Transfer(from , to, amount); // Missing

metadata

Fix: Standardize event formats and version them explicitly.

MWC-131: Leakage of Internal Move State via View
Functions

Description: Public view functions expose sensitive inter-
nal state. Vulnerable Code:
public fun view_config () returns (Config) {

config

}

Fix: Sanitize returned data and avoid exposing raw structs.

MWC-132: Use of ‘panic’-Like Error Reporting in Ob-
servable Contexts

Description: Emitting panics or aborts leaks internal con-
ditions to observers. Vulnerable Code:
assert(balance > 0, 42); // Code 42 reveals

logic flow

Fix: Use generic error codes and do not encode logic se-
mantics in abort values.

MWC-133: Bridge Logic Bypassing Move Module Ac-
cess Restrictions

Description: Bridges inject data or calls that override ac-
cess restrictions. Vulnerable Code:
Bridge ::send(payload); // Payload contains

privileged operation

Fix: Re-validate all inputs and restrict bridge-entry mod-
ules.

MWC-134: Inconsistent State Replication Across L2-L1
Environments

Description: L2 and L1 states drift due to asynchronous
replication logic. Vulnerable Code:
state_l2 = fetch(); // But not committed to L1

Fix: Use commit/confirm pattern with state proofs across
layers.

MWC-135: Vulnerabilities from Partial Migration to zk-
Move Systems

Description: Partially migrated contracts break assump-
tions in zk-runtime. Vulnerable Code:
// zk -incompatible resource behavior

Fix: Migrate atomically or wrap legacy logic in zk-safe
proxies.

MWC-136: Oracles Injecting Inconsistent State via Un-
verified Calls

Description: Oracles introduce unvalidated or manipulated
state into contracts. Vulnerable Code:
price = Oracle ::get(); // No signature or

source check

Fix: Validate oracle source via multi-sig, timestamp, or
proof.

6. Comparison of SWC and MWC Taxonomies

Both the proposed MWC (MoveEVM Weakness Classifi-
cation) taxonomy and the SWC (Smart Contract Weakness
Classification) registry offer structured categorization schemes
for smart contract vulnerabilities. However, as Table .1 in the
Appendix section shows, they vary greatly in terms of their ori-
gin, scope, and contextual relevance.

The Ethereum community maintains the SWC registry,
which is built around Ethereum Virtual Machine (EVM) and So-
lidity language. It focuses on both EVM-specific problems like
misuse of delegatecall and transaction-ordering dependencies,
as well as common programming errors like integer overflows
and unhandled exceptions.

The MWC taxonomy, on the other hand, is designed for the
hybrid MoveEVM environment, where the strict type system and
resource-oriented programming model of Move interact with

12

the semantics of EVM bytecode. Traditional SWC codes are
unable to identify new vulnerability surfaces brought about by
this fusion, such as cross-module resource leakage and ABI de-
serialization mismatches.

Tools like Mythril and Slither frequently use SWC, a flat
listing of more than 100 categories (e.g., SWC-100: Function
Visibility, SWC-110: Assert Violation). In contrast, MWC de-
fines 37 vulnerability codes (MWC-100 to MWC-136), which
are categorized into six high-level categories, such as Meta-
Transaction and Signature Spoofing (MTS) and Bytecode Model
Inconsistencies (BMI).

MWC can better represent the semantic complexity of hy-
brid execution paths and conform to new toolchains that sup-
port both Move and EVM codebases thanks to this structural
grouping.

Some vulnerability types, like SWC-101 (Integer Overflow)
and MWC-101 (Numeric Edge Conditions), are present in both
taxonomies; however, SWC does not include representation
for important Move-specific issues, like MWC-110 (Linear Re-
source Violations) or MWC-125 (Hybrid Gas Semantics Mis-
match). On the other hand, vulnerabilities that stem solely from
Solidity constructs, like fallback misuse, are not covered by
MWC.

SWC is widely used in educational materials, IDEs, and
static analyzers with a Solidity focus. Although MWC is
more recent, it is becoming more and more incorporated into
MoveEVM-adapted tools (such as MoveScan and Smartify
LLM agents), and because Move places a strong emphasis on
accuracy and safety, it is consistent with formal verification
frameworks.

Although SWC is still necessary for conventional EVM-
based systems, it is not expressive enough to capture
MoveEVM’s hybrid semantics. By offering an organized,
empirically derived framework specifically designed for the
MoveEVM context, MWC closes this gap. In cross-VM au-
dit environments and tooling pipelines, both taxonomies can
coexist and enhance one another.

7. Case Studies

We examined real-world smart contracts that were imple-
mented on well-known Move-based networks, such as Ap-
tos and Sui, in order to validate the suggested taxonomy and
demonstrate its applicability. Public disclosures, reproducible
proofs-of-concept, or availability in open-source repositories
were the criteria used to choose each case study.

7.1. Case Study 1: Sui-based Lending Protocol Invariant Vio-
lation

A resource mismanagement flaw in a Sui-based lending con-
tract made it possible for the same token resource to be claimed
repeatedly across modules. This vulnerability was classified as
MWC-112 (Cross-Module Resource Leakage). Inadequate
boundary enforcement between modules that exposed a shared
borrow function without adequate checks on token ownership
constraints was the main contributing factor.

7.2. Case Study 2: Aptos-EVM Bridge ABI Deserialization
Mismatch

External contracts were able to create distorted payloads that
passed Move verification but resulted in corrupted resource
states in a hybrid Aptos-EVM bridge due to a serialization mis-
match. This was mapped to MWC-102 (ABI Deserialization
Flaw). The flaw made clear the dangers of invoking Move func-
tions without sufficient validation using EVM-style calldata.

7.3. Case Study 3: Modular MoveEVM Chain Meta-
Transaction Replay

Replay attacks resulted from a meta-transaction implemen-
tation that reused Ethereum-style signatures without the nec-
essary domain separation or nonce checks. This issue, which
was classified under MWC-120 (Signature Replay Without
Nonce), highlighted the necessity of domain isolation and cryp-
tographic hygiene in hybrid execution environments.

7.4. Summary of Findings
We found 21 distinct vulnerabilities across 42 reviewed

contracts across different MoveEVM-enabled environments
(such as Aptos, Sui, and hybrid bridges), of which 11 directly
aligned with newly proposed MWC categories that are not
captured by the traditional SWC registry. This supports the
central claim of this paper, which is that the hybrid execution
model of MoveEVM presents new and non-trivial vulnerabil-
ity surfaces that go beyond the purview of current EVM-centric
taxonomies.

The uncovered vulnerabilities were disproportionately con-
centrated in the following frames:

• Bytecode Model Inconsistencies (BMI): covering four
vulnerabilities, especially those pertaining to unsafe raw
payload handling and ABI encoding/decoding discrepan-
cies.

• State Reentrancy and Synchronization (SRS): Five
flaws were discovered in contracts that used unsynchro-
nized resource mutation logic and cross-runtime callbacks.

• Meta-Transaction and Signature Spoofing (MTS):
When domain separation, replay protection, or crypto-
graphic nonce hygiene were lacking, three problems were
noted.

Crucially, current static analysis tools like Slither, Mythril, or
the Move Prover, which are made for Solidity or pure Move en-
vironments, were unable to identify eight of the eleven MWC-
classified vulnerabilities. Future development of hybrid-aware
auditing and verification frameworks must address this signifi-
cant tooling gap.

Furthermore, trends showing systemic risks surfaced in:

• Type safety and capability enforcement are frequently cir-
cumvented in the bridge and interoperability layers.

• Gas accounting mismatches, which lead to unpredictable
execution costs and security regressions in cross-language
batching.

13

• Standard library imports, which frequently assume safe
defaults but introduce hidden state transitions in compos-
able modules.

These findings not only validate the necessity of the MWC
taxonomy but also demonstrate its utility as a practical frame-
work for identifying and categorizing emergent smart contract
vulnerabilities in next-generation blockchain platforms. The
classification system provides a granular lens through which
developers and auditors can detect, mitigate, and prevent so-
phisticated exploits that span both Move and EVM semantics.

Future studies may build upon these results by conducting
large-scale, longitudinal vulnerability scans across MoveEVM
projects to quantify evolving trends and to further refine or ex-
pand the taxonomy based on observed exploitability patterns.

8. Real-World Deployment Case Studies

We examined a number of publicly available MoveEVM-
based contracts and platforms on chains like Aptos, Sui, and
MoveVM-enabled testnets in order to validate our taxonomy
and identify useful security vulnerabilities.

8.1. Aptos NFT Mint Vulnerability (MWC-102, MWC-112)
Because of insufficient resource validation and cross-module

boundary interactions, the vulnerabilities reported in Mitenkov
et al. (2024) during NFT minting on Aptos can be classified
under our suggested taxonomy as MWC-102 and MWC-112.

8.2. MWC-112 (Module Boundary Escapes) and MWC-111
(Capability Verification) for Dex Exploit

A Sui-based decentralized exchange (DEX) (Blokworks
(2025)) was found to have a flaw in which the withdrawal logic
failed to enforce single-use constraints on capability objects.
This allowed an attacker to reuse the same capability multiple
times, violating Move’s resource linearity in practice. This vul-
nerability is now classified under MWC-111 and MWC-112.

8.3. Bridge Adapter Reentrancy in MoveEVM (MWC-130)
We examined a MoveEVM-to-EVM bridge adapter proto-

type that permitted EVM calls to return to Move module logic
prior to state commitments being fulfilled. Hybrid reentrancy
and Move state manipulation were made possible by this cross-
runtime callback, which falls under MWC-130 (Hybrid Reen-
trancy).

These examples demonstrate how hybrid interactions,
shoddy standard library patterns, or EVM compatibility layers
can jeopardize Move’s theoretical guarantees.

9. Logic-Driven AI Agents for MoveEVM Auditing

New capabilities for smart contract security are provided by
recent developments in AI agent pipelines and logic-driven lan-
guage models (LLMs), particularly in hybrid environments like
MoveEVM. Compared to conventional tools, logic-guided sys-
tems audit contracts more successfully by utilizing prompt en-
gineering, symbolic reasoning, and agent modularity.

9.1. Multi-Agent Architectures

A multi-agent framework for analyzing Move and EVM hy-
brid contracts using specialized LLMs was introduced by Smar-
tify Karanjai et al. (2025). Each agent focuses on a particu-
lar kind of vulnerability, like asset leakage or reentrancy, and
collaborates to generate potential fixes. Without depending on
extensive Move-specific corpora, these modular agents are cus-
tomized to the semantics of MoveEVM and reason using secu-
rity specifications.

In a similar vein, LLM-SmartAudit Wei and Kumar (2024)
showed that a collaborative architecture was superior to static
analyzers in identifying logic errors in contracts with multiple
languages. By designating MWC categories as analysis tasks
for specific agents, these systems conform to the MWC frame-
work.

9.2. Structured Prompt Pipelines

Prompt pipelines are used in AuditGPT Xia et al. (2024) to
demonstrate structured auditing. It breaks down auditing into
phases: applying function-specific prompts after formal proper-
ties have been extracted. By matching each prompt to a MWC
rule, this divide-and-conquer strategy improves explainability
and precision while adhering to MWC categorization. Per-
MWC-category prompting can be used in future MoveEVM
pipelines to provide more precise diagnosis.

9.3. Natural-Language and Proof-Based Reporting

LLMs can function as ”proof scribes,” producing specifica-
tions and proofs from source code, as PropertyGPT (Liu et al.
(2024)) showed. Theorem provers are used to verify the in-
variant suggestions that these systems convert Move contracts
into. Both Smartify and AuditGPT produce reports in natural
language for human auditors, offering automated code fixes or
MWC-aware diagnostics.

10. Formal Verification Tools and MWC Taxonomy

10.1. MoveProver and SMT-Based Invariant Checking

The Move language’s formal verifier is called MoveProver
Bartoletti et al. (2025). It achieves high scalability by using
SMT solving (Z3) to verify global invariants and pre/postcondi-
tions (e.g., full verification of the 8,800-line Diem framework).
MWC vulnerabilities like resource leaks, absent access checks,
or invariant violations can be statically discharged by Move-
Prover.

10.2. Model Checking and K-Framework Applications

VeriMove Keilty et al. (2022) uses NuSMV and CTL speci-
fications to model-check Move. Beyond function-local proofs,
it allows cross-function invariant enforcement and validation of
temporal properties. This method can be applied to MoveEVM
to validate cross-module behaviors in the MWC style.

14

10.3. Symbolic Execution and Property Specifications

Move’s specification language allows for expressive asser-
tions, despite the fact that its symbolic execution tools are lim-
ited. Move’s linear memory and resource model makes it easier
to prove class-level MWC properties like ownership safety or
no-loss guarantees than Solidity’s Certora or Slither Bartoletti
et al. (2025). This suggests that a large number of MWC rules
can be statically confirmed without the need for sophisticated
auxiliary tools.

11. Future Directions in AI-Augmented MoveEVM Audit-
ing

While still essential, traditional auditing methods are increas-
ingly being supplemented by artificial intelligence, especially
Large Language Models (LLMs) and logic-driven agents, as
MoveEVM-based smart contracts become more complex and
widely used. In order to create a security analysis framework
that is more scalable, accurate, and automated for MoveEVM
environments, this section examines promising research and de-
velopment avenues that combine formal verification techniques
with AI-driven tools.

11.1. LLMs as Theorem-Proving Assistants

According to recent research, LLMs can help theorem
provers by summarizing failed invariants or converting coun-
terexamples into fixes. As a copilot for MoveProver, GPT-4
could rank vulnerable code paths by MWC severity, explain Z3
outputs, and offer fixes.

Recent developments suggest that Large Language Mod-
els (LLMs) like Claude and GPT-4 can serve as intelligent
theorem-proving assistants to enhance the performance of for-
mal verifiers. These models can translate abstract counterexam-
ples into useful developer instructions and interpret and explain
outputs from SMT solvers like Z3, which are used internally by
tools like MoveProver, in the context of Move smart contracts.

For example, if MoveProver is unable to release an invariant
or post-condition, an LLM may:

• Examine the particular proof failure and find the line in the
code that corresponds to it.

• Give an overview of the violated property in natural lan-
guage.

• Make suggestions for changes to the code or different re-
quirements that would guarantee the success of the proof.

• Rank issues based on MWC (Move Weakness Classifica-
tion) severity levels.

11.2. Interactive Audit Pipelines

Prompt pipelines, inspired by AuditGPT, can separate tasks
according to MWC categories: some query MoveProver for
supporting invariants, while others detect the class (e.g., GSM
or MTS). AutoGen or LangChain Langchain (2025); Wu et al.
(2022, 2023) agents can be used to orchestrate such workflows.

Building interactive, category-specific audit pipelines, moti-
vated by programs such as AuditGPT, is another fascinating av-
enue. These pipelines can divide auditing into a number of spe-
cific stages by utilizing prompt engineering and modular agent
design:

• Classification Stage: The pipeline uses static indicators or
semantic patterns to determine the general class of vulner-
ability, such as Meta-Transaction Spoofing (MTS), Byte-
code Model Inconsistency (BMI), or Generalized State
Manipulation (GSM).

• Specification Extraction: The system uses pre-defined
templates linked to MWC categories or automatically ex-
tracts formal specifications or invariants from code.

• Formal Verification Querying: LLM agents generate hy-
potheses that are used to invoke MoveProver or VeriMove.
Failed proofs are returned to the agent for correction and
interpretation.

• Generating Developer Feedback: The system generates
a human-readable description of the problem, the failed
proof, and potential fixes.

Frameworks like LangChain, AutoGen, or PromptChainer
Langchain (2025); Wu et al. (2022, 2023) could be used to or-
chestrate such modular pipelines. They successfully combine
formal rigor with LLM adaptability, enabling scalable and ex-
plicable auditing across sizable codebases.

11.3. MWC-Based Benchmarks and Datasets
The absence of labeled Move vulnerability datasets is a major

obstacle. Real contracts could be annotated by MWC category
using a MoveEVM analog to SWC. These data sets can be used
to standardize audit metrics across tools, assess agent accuracy,
and improve LLMs.

The absence of annotated datasets specifically designed to
address the special characteristics of Move’s execution model
is a significant obstacle to developing AI-augmented security
tools for MoveEVM. There is currently no corpus of real-world
contracts categorized by vulnerability type in MoveEVM, un-
like Solidity, where supervised learning and benchmarking are
made possible by SWC-tagged datasets.

We suggest developing an open-source benchmark suite
comprising the following elements to get around this restric-
tion:

• Labeled Vulnerability Corpus: Move contracts marked
with their MWC category—e.g., MWC-106 for hybrid
reentrancy, MWC-128 for cryptographic usage—are gath-
ered here.

• Fix Pairings: For every vulnerable contract, a ”fixed”
variant and justification for the fix accompany it.

• Formal Properties Dataset: Formally defined and linked
to every contract are specifications, pre/postconditions,
and invariants.

15

• Execution Traces: Symbolic or literal traces showing at-
tack situations and proof failures.

These datasets have several uses: fine-tuning LLMs on
security-specific tasks, assessing prompt engineering strategies,
training reinforcement learning agents for autoremediation, and
creating shared metrics for tool comparison.

11.4. Toward Human-AI Co-Auditing Pipelines
Human-AI co-auditing is envisioned as creating cooperative

settings whereby automated agents and human auditors coop-
erate. Under such systems, humans concentrate on contextual
judgment, ambiguous logic, and final decision-making while AI
agents handle high-throughput tasks including code scanning,
classification, and proof validation.

Key elements of co-auditing pipelines might include:

• Agent Responsibility Assignment: Every LLM agent is
given particular MWC categories or formal properties to
track.

• Real-Time Auditing Dashboards: Interfaces that let de-
velopers interactively see agent recommendations, proof
attempts, and vulnerability reports.

• Feedback Loops: Suggestions can be accepted, turned
down, or changed by developers; the model adjusts de-
pending on the responses (active learning).

• Certification Support:Verified results from AI+human
co-audits can be included into audit reports or presented
as machine-checkable certificates.

Especially as MoveEVM smart contracts get more sophisti-
cated and widely used, this approach scales security expertise,
lowers manual effort, and over time creates institutional knowl-
edge.

11.5. Summary and Outlook
For auditing MoveEVM smart contracts, this vision com-

bines formal methods and logical based LLMs. Structured
prompts, agent roles, and verification targets find a semantic
backbone in MWC categories. Future studies should investigate
multi-agent orchestration, prompt-based audits per category,
and human-AI co-auditing pipelines anchored in MWC rea-
soning. Integration of formal verification methods with LLM-
powered assistants marks a paradigm change in the auditing
of MoveEVM contracts. Aligning MWC categories with AI
processes will help the community to reach more consistency,
repeatability, and efficiency in vulnerability identification and
remediating.

12. Conclusions, Recommendations, and Future Work

Comprising six main categories and 37 subtypes (MWC-100
to MWC-136), this paper proposed a disciplined taxonomy of
MoveEVM vulnerabilities. This all-encompassing classifica-
tion system is meant to systematize security evaluations across

hybrid smart contracts, so offering a strong framework that
improves the accuracy and efficiency of security assessments.
Establishing separate categories helps us to guarantee that
all stakeholders—auditors, developers, tool builders—are in
agreement on possible vulnerabilities and their consequences,
so facilitating better communication among them.

Apart from spotting weaknesses, the taxonomy facilitates
the creation of customized mitigating techniques, so promot-
ing a more safe MoveEVM ecosystem. Crucially as the terrain
of smart contracts and blockchain technology keeps changing
fast, the methodical character of this taxonomy enables it to
evolve over time, adjusting to new threats and technological de-
velopments. Through classification of vulnerabilities, we have
opened the path for the creation of uniform procedures applica-
ble to several MoveEVM projects.

Based on our results, we advise developers of MoveEVM
smart contracts to implement the following steps to improve
their security:

• Use Capabilities and Resource Guards Explicitly: De-
velopers should specifically enforce security limits using
capabilities and resource guards. This proactive strat-
egy reduces the risk connected with implicit type checks,
which might cause unanticipated actions and weaknesses.
Clearly defined ensures that every interaction altering state
or access to resources enhances the general security pos-
ture of the application. Moreover, considering how ev-
ery element interacts with others and the possible hazards
connected with those interactions, developers should have
a perspective that gives security top priority in the design
process.

• Avoid Cross-Module State Dependencies: Designing
contracts depending on state dependencies across modules
calls for careful consideration from developers. Unless
they are thoroughly tested and confirmed, such dependen-
cies can bring complexity and raise vulnerability potential.
To guarantee dependability, a comprehensive testing pro-
gram should be developed whereby automated tests cover-
ing all pertinent interactions. This covers security-oriented
tests modeled on several attack paths against the contract,
integration tests, and unit tests.

• Rely on Formal Specifications: Designers of public in-
terfaces are urged to define expected behaviors by depend-
ing on formal specs. Move Prover should be used to con-
firm compliance and correctness by means of these crite-
ria. By means of formal verification, one can effectively
identify discrepancies and possible weaknesses before im-
plementation, so lowering the risk of exploitation in the
living environment. Including formal techniques into the
development process helps developers produce more de-
pendable contracts following the given criteria.

• Conduct Regular Security Audits: Regular security au-
dits should be given top priority by developers all through
the process. Involving independent auditors guarantees

16

that possible weaknesses are found outside the immedi-
ate awareness of the development team and adds a new
viewpoint. To give thorough coverage, audits should be it-
erative, following major code changes, and ideally include
both static and dynamic analysis.

• Adopt a Security-First Development Philosophy: Ev-
ery phase of the development life should include security
issues into account by developers. This covers doing threat
modeling during the design process, doing frequent code
reviews with an eye toward security, and keeping current
on the most recent vulnerabilities and attack paths that the
MoveEVM system has revealed. Stressing a culture of se-
curity inside development teams will help to identify and
reduce hazards early on.

Recommendations for Auditors
Auditors should follow these best practices to improve the

MoveEVM contract auditing process:

• Include MoveEVM-Specific Categories in Checklists:
Auditors have to include the MoveEVM-specific cate-
gories our taxonomy defines into their regular audit forms.
This inclusion guarantees that the security evaluation pro-
cess leaves no stone unturned by methodically assessing
all possible weaknesses. Comprehensive audits covering
not only the code but also the underlying architecture and
interaction with outside systems.

• Utilize Both Static and Dynamic Tools: A Through-
out their audits, auditors should combine dynamic testing
tools with static analysis tools. Using both methods will
help auditors to fully grasp the behavior of the contract and
find weaknesses that might not be clear from static analy-
sis by itself. Particularly useful in exposing runtime vul-
nerabilities that static analysis might overlook is dynamic
testing—fuzzing.

• Monitor for New Hybrid Behaviors: Auditors should be
alert as the MoveEVM platform and its underlying tech-
nologies change for new hybrid behaviors that might sur-
face. This guarantees that auditing procedures remain per-
tinent and efficient by means of constant education and
adaptation to new environmental changes. Participating
in forums, seminars, and debates with the community will
help one gain important understanding of newly develop-
ing hazards.

• Engage in Knowledge Sharing: Auditors should take
part actively in blockchain and smart contract communi-
ties’ seminars, conferences, and discussions. Auditors can
add to the body of knowledge by sharing ideas and ex-
periences, so promoting an attitude of ongoing auditing
practice improvement. Furthermore fostering creativity in
auditing techniques is cooperation with academic institu-
tions and researchers.

• Develop Incident Response Plans: Working with com-
panies, auditors should help them create and preserve in-

cident response strategies that specify the actions to be fol-
lowed should a security breach arise. These strategies for
containment, research, communication, and remedial ac-
tion should guarantee that companies are ready to react
properly to weaknesses and attacks.

Based on empirical audits and recorded vulnerabilities as of
2025, our taxonomy points future directions. But as the field
of smart contracts and blockchain technology develops, several
future paths that call for more research surface.

• Extending the Framework to zkEVM–Move Integra-
tions and Rollups: Extending our vulnerability taxonomy
to include zkEVM–Move integrations will be essential as
zero-knowledge technologies acquire popularity inside the
larger blockchain ecosystem. This will entail spotting spe-
cial weaknesses related to zero-knowledge proofs and roll-
ups so that auditors and developers might better grasp the
security consequences of these technologies. Research
should concentrate on how zero-knowledge proofs interact
with current security paradigms and how these interactions
might be securely carried out.

• Automating Vulnerability Classification Using LLM-
Based Tools: Large language models’ (LLMs’) integra-
tion into security tools offers a chance to automatically
classify vulnerabilities. Training these models on our
repository of vulnerabilities and their traits will help us
to build systems that quickly find and classify fresh vul-
nerabilities in MoveEVM contracts, so improving accu-
racy and efficiency in security evaluations. The evolution
of these automated tools should also take into account the
interpretability of model outputs to guarantee developers
may rely on the recommendations given by artificial intel-
ligence systems.

• Standardizing MoveEVM ABI and Gas Accounting:
Establishing a standardized Application Binary Interface
(ABI) for MoveEVM along with consistent gas account-
ing methods is crucial to enable interoperability and lower
differences between several runtimes. By means of consis-
tency, this standardization will help to reduce security con-
cerns resulting from discrepancies and guarantee a better
development experience for programmers operating inside
the Move ecosystem. It will also offer better instructions
for auditors, so simplifying audits conducted on several
systems.

• Collaborative Development of Tools and Frameworks:
To create tools leveraging the taxonomy for automated
vulnerability detection and remediation, we urge cooper-
ation among researchers, developers, and auditors. The
community can develop strong answers that meet the
changing security needs of MoveEVM contracts by aggre-
gating resources and knowledge. Encouragement of open-
source projects will help to promote contributions from
many different stakeholders, so improving the variety and
strength of the tools at disposal.

17

• Contribute to the Community Knowledge Base: We
urge the MoveEVM community to provide additional case
studies, tool evaluations, and research results that might
enable the taxonomy to be developed into a useful guide
for MoveEVM security. Through knowledge and experi-
ence sharing, practitioners can improve the security envi-
ronment of MoveEVM smart contracts together and help
to create a more safe blockchain ecosystem. By means of
a centralized repository for best practices and case stud-
ies, knowledge sharing and ongoing development can be
promoted.

• Conduct Longitudinal Studies on Security Trends:
Longitudinal studies tracking the development of vulner-
abilities in MoveEVM smart contracts over time should
form part of future work. Analyzing past data helps sci-
entists spot trends, grasp the success of mitigating tech-
niques, and project future vulnerabilities. More resilient
smart contracts and more efficient auditing techniques will
be developed in part by this data-driven approach.

Future research may focus on:

• Designing benchmark datasets and simulation environ-
ments tailored for MWC-based learning.

• Extending tools like MoveProver and VeriMove with LLM
backends.

• Experimenting with fully autonomous audit agents in test-
nets.

• Evaluating the reliability and false positive rates of AI-
generated proofs and fixes.

The ultimate aim is to build an ecosystem in which MWC
categories not only as classification labels but also as building
blocks for automated reasoning, agent training, and secure-by-
construction development. By means of ongoing investment in
these domains, the auditing and validation of MoveEVM smart
contracts can become not only more scalable but also more in-
telligent, trustworthy, and easily available.

Ultimately, the suggested taxonomy is a basic first step to-
ward enhancing MoveEVM smart contract security. Imple-
menting the suggestions advised above and actively support-
ing group projects will help developers and auditors greatly im-
prove the resilience of their applications against new risks, so
building more confidence in the MoveEVM system. All stake-
holders must pledge to a culture of security-first thinking, on-
going education, and community collaboration as we progress,
so building the foundation for a safer blockchain future.

Acknowledgements

The author ...

References

Abrahimi, N., 2023. Applying a modular execution environment with movevm
in a blockchain-agnostic. Thesis .

Antonopoulos, A.M., Wood, G., 2018. Mastering Ethereum. O’Reilly Media.
Atzei, N., Bartoletti, M., Cimoli, T., 2017. A survey of attacks on ethereum

smart contracts (sok). International Conference on Principles of Security
and Trust , 164–186.

Bartoletti, M., Carta, S., Cimoli, T., Serusi, S., 2020. The defi ecosystem: Chal-
lenges, opportunities and vulnerabilities. arXiv preprint arXiv:2002.08099
.

Bartoletti, M., Crafa, S., Lipparini, E., 2025. Formal verification in so-
lidity and move: insights from a comparative analysis. arXiv preprint
arXiv:2502.13929 .

Bauer, D.P., 2022. Solidity, in: Getting Started with Ethereum: A Step-by-Step
Guide to Becoming a Blockchain Developer. Springer, pp. 13–16.

Blackshear, S., Cheng, E., Dill, D.L., Gao, V., Maurer, B., Nowacki, T., Pott,
A., Qadeer, S., Rain, D.R., Sezer, S., et al., 2019. Move: A language with
programmable resources. Libra Assoc 1.

Blokworks, 2025. Dex exploit. Available at:
https://blockworks.co/news/suis-decentralization-dex-put-to-the-test.
Accessed: 2025-05-23.

Buterin, V., 2013. Ethereum whitepaper: A next-generation smart contract and
decentralized application platform .

Buterin, V., 2018. Vyper documentation. Vyper by Example , 13.
Diem, 2019. Diem developers. https://diem.github.io/move/introduction.html.

Accessed: 2025-05-12.
Dill, D., Grieskamp, W., Park, J., Qadeer, S., Xu, M., Zhong, E., 2022. Fast

and reliable formal verification of smart contracts with the move prover, in:
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, Springer. pp. 183–200.

Facebook, 2019. Libra white paper. Available at:
https://developers.libra.org/docs/assets/papers/the-libra-blockchain.pdf.

Feist, J., Grieco, G., Groce, A., 2019a. Slither: a static analysis frame-
work for smart contracts, in: 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB),
IEEE. pp. 8–15.

Feist, J., Grieco, G., Groce, A., 2019b. Slither: a static analysis frame-
work for smart contracts, in: 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB),
IEEE. pp. 8–15.

Foundation, E., a. Erc-20 token standard.
https://eips.ethereum.org/EIPS/eip-20.

Foundation, E., b. Erc-721 non-fungible token standard.
https://eips.ethereum.org/EIPS/eip-721.

Fu, Y., Ren, M., Ma, F., Yang, X., Shi, H., Li, S., Liao, X., 2024. Evmfuzz:
Differential fuzz testing of ethereum virtual machine. Journal of Software:
Evolution and Process 36, e2556.

Grieco, G., Song, W., Cygan, A., Feist, J., Groce, A., 2020. Echidna: effective,
usable, and fast fuzzing for smart contracts, in: Proceedings of the 29th
ACM SIGSOFT international symposium on software testing and analysis,
pp. 557–560.

HackenProof, 2023. Sui vulnerability: Crafted bytecode causes node crash.
https://hackenproof.com/reports/sui-node-crash-move. Ac-
cessed: 2025-05-12.

He, W., Xia, Y., Zhang, Z., Wang, W., 2020. Vslc: Automatically identify-
ing logic vulnerabilities in smart contracts. ACM Transactions on Software
Engineering and Methodology .

Karanjai, R., Blackshear, S., Xu, L., Shi, W., 2025. A multi-agent framework
for automated vulnerability detection and repair in solidity and move smart
contracts. arXiv preprint arXiv:2502.18515 .

Keilty, E., Nelaturu, K., Wu, B., Veneris, A., 2022. A model-checking frame-
work for the verification of move smart contracts, in: 2022 IEEE 13th In-
ternational Conference on Software Engineering and Service Science (IC-
SESS), IEEE. pp. 1–7.

Labs, M., 2022a. Sui white paper. https://docs.sui.io/paper/sui.pdf.

18

Labs, N.C., 2022b. Aptos vulnerability report: Move vm denial of service.
https://www.numencyber.com/analysis-of-the-first-critical-vulnerability-of-aptos-move-vm/.
Accessed: 2025-05-12.

Langchain, 2025. Langchain. Available at:
https://python.langchain.com/docs/introduction/. Accessed:
2024-9-12.

Li, W., Bu, J., Li, X., Peng, H., Niu, Y., Zhang, Y., 2022. A survey of defi
security: Challenges and opportunities. Journal of King Saud University-
Computer and Information Sciences 34, 10378–10404.

Liu, Y., Xue, Y., Wu, D., Sun, Y., Li, Y., Shi, M., Liu, Y., 2024. Proper-
tygpt: Llm-driven formal verification of smart contracts through retrieval-
augmented property generation. arXiv preprint arXiv:2405.02580 .

Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A., 2016. Making smart
contracts smarter, in: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ACM. pp. 254–269.

Mitenkov, G., Kabiljo, I., Li, Z., Spiegelman, A., Vusirikala, S., Xiang, Z.,
Zlateski, A., Lopes, N.P., Gelashvili, R., 2024. Deferred objects to en-
hance smart contract programming with optimistic parallel execution. arXiv
preprint arXiv:2405.06117 .

Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco, G., Feist, J.,
Brunson, T., Dinaburg, A., 2019. Manticore: A user-friendly symbolic exe-
cution framework for binaries and smart contracts, in: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE.
pp. 1186–1189.

Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A., 2018. Finding the
greedy, prodigal, and suicidal contracts at scale, in: Proceedings of the 34th
Annual Computer Security Applications Conference, pp. 653–663.

Patrignani, M., Blackshear, S., 2023. Robust safety for move, in: 2023 IEEE
36th Computer Security Foundations Symposium (CSF), IEEE. pp. 308–
323.

Pierro, G.A., Ibba, G., Tonelli, R., 2023. A study on diem and aptos dis-
tributed ledger technology. International Journal of Parallel, Emergent and
Distributed Systems , 1–17.

Praitheeshan, P., Pan, L., Zheng, X., Jolfaei, A., Doss, R., 2021. Solguard:
Preventing external call issues in smart contract-based multi-agent robotic
systems. Information Sciences 579, 150–166.

Sayeed, S., Marco-Gisbert, H., Caira, T., 2020. Smart contract: Attacks and
protections. Ieee Access 8, 24416–24427.

Security, Z., 2023a. Move fast and break things, aptos.
https://www.zellic.io/blog/move-fast-and-break-things-pt-1.
Accessed: 2024-11-12.

Security, Z., 2023b. Move fast and break things, sui.
https://www.zellic.io/blog/move-fast-break-things-move-security-part-2.
Accessed: 2024-11-12.

Sharma, N., Sharma, S., 2022. A survey of mythril, a smart contract security
analysis tool for evm bytecode. Indian J Natural Sci 13, 39–41.

Song, S., Chen, J., Chen, T., Luo, X., Li, T., Yang, W., Wang, L., Zhang, W.,
Luo, F., He, Z., et al., 2024. Empirical study of move smart contract security:
Introducing movescan for enhanced analysis , 1682–1694.

Songsom, N., Werapun, W., Suaboot, J., Rattanavipanon, N., 2022. The
swc-based security analysis tool for smart contract vulnerability detection,
in: 2022 6th International Conference on Information Technology (InCIT),
IEEE. pp. 74–77.

Soud, M., Liebel, G., Hamdaqa, M., 2024. A fly in the ointment: an empirical
study on the characteristics of ethereum smart contract code weaknesses.
Empirical Software Engineering 29, 13.

swcregistry.io, 2024. Swc registry: Smart contract weakness classification and
test cases. https://swcregistry.io/. Accessed: 2024-04-12.

Szabo, N., 1997. Formalizing and securing relationships on public networks.
First Monday 2.

Torres, C., Schütte, J., State, R., McLaughlin, K., 2021. The art of the scam:
Demystifying honeypots in ethereum smart contracts. USENIX Security .

Tsankov, P., Dan, A., Drachsler-Cohen, D., et al., 2018. Securify: Practi-
cal security analysis of smart contracts, in: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS),
pp. 67–82.

Wei, Z., Kumar, N., 2024. Llm-smartaudit: Collaborative multi-agent contract
analysis. arXiv preprint arXiv:2404.00689 .

Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Knottenbelt, W.,
Livshits, B., 2021. Sok: Decentralized finance (defi), in: IEEE Euro S&P.

Wood, G., 2014. Ethereum: A secure decentralised generalised transaction

ledger Ethereum Yellow Paper.
Wu, Q., Bansal, G., Zhang, J., Wu, Y., Zhang, S., Zhu, E., Li, B., Jiang, L.,

Zhang, X., Wang, C., 2023. Autogen: Enabling next-gen llm applications
via multi-agent conversation framework. arXiv preprint arXiv:2308.08155
3.

Wu, T., Jiang, E., Donsbach, A., Gray, J., Molina, A., Terry, M., Cai, C.J., 2022.
Promptchainer: Chaining large language model prompts through visual pro-
gramming, in: CHI Conference on Human Factors in Computing Systems
Extended Abstracts, pp. 1–10.

Wu, X., Xing, J., Li, X., 2025. Exploring vulnerabilities and concerns in solana
smart contracts. arXiv preprint arXiv:2504.07419 .

Xia, S., Shao, S., He, M., Yu, T., Song, L., Zhang, Y., 2024. Auditgpt: Auditing
smart contracts with chatgpt. arXiv preprint arXiv:2404.04306 .

Zhang, X., Li, Y., Sun, M., 2020. Towards a formally verified evm in produc-
tion environment, in: Coordination Models and Languages: 22nd IFIP WG
6.1 International Conference, COORDINATION 2020, Held as Part of the
15th International Federated Conference on Distributed Computing Tech-
niques, DisCoTec 2020, Valletta, Malta, June 15–19, 2020, Proceedings 22,
Springer. pp. 341–349.

Zheng, Z., Xie, S., Dai, H.N., Chen, X., Wang, H., 2020. Blockchain challenges
and opportunities: A survey. International Journal of Web and Grid Services
.

Zhong, J.E., Cheang, K., Qadeer, S., Grieskamp, W., Blackshear, S., Park, J.,
Zohar, Y., Barrett, C., Dill, D.L., 2020. The move prover.

19

Table .1: Comparison of SWC and MWC Taxonomies
Aspect SWC (Solidity/EVM) MWC (MoveEVM)
Purpose Classify common vulnerabilities in

Solidity smart contracts on EVM
Frame-based classification of
MoveEVM-specific vulnerabilities
in hybrid Move+EVM environ-
ments

Granularity Moderate: 36 categories with vary-
ing detail

High: 37 detailed weakness codes
mapped to 6 semantic frames

Language Model As-
sumptions

Stack-based execution, no linear
type enforcement

Resource-oriented with linear type
system and deterministic behavior

Type of Execution Envi-
ronment

EVM-only; assumes Solidity byte-
code behavior

Hybrid (EVM front-end with Move
core semantics)

Signature Handling Assumes msg.sender and
msg.value based flows

Explicit signature verification; sup-
ports multi-signer and domain-
separated signatures

Gas Model Native EVM gas model; well-
studied

Dual-layer gas semantics between
EVM opcodes and Move logic

Reentrancy Modeling Classical reentrancy on call,
delegatecall etc.

Hybrid reentrancy via callbacks be-
tween EVM ↔ Move modules
(MWC-106 to MWC-109)

Module System Monolithic; modularity via libraries
or interfaces

Strongly modular, formalized
resource encapsulation with
inter-module invariants (MWC-
103–105)

Tool Coverage Broad coverage via MythX, Slither,
Manticore

Emerging support in MoveScan,
Move Prover, LLM-based agents;
partial tool gaps identified

Cryptographic Context
Awareness

Mostly assumes Solidity-level
cryptographic primitives

Cryptographic misuse across
hybrid environments (MWC-
128–129) addressed explicitly

Meta-Transaction Sup-
port

Covered under replay attacks, but
abstracted

Dedicated frame for Meta-Tx
and signature spoofing (MWC-
110–112)

Standard Compatibility Anchored in ERC standards (e.g.,
ERC-20, ERC-721)

Considers compatibility with both
ERC and MIP (Move Improvement
Proposals) standards

Specification Awareness Not explicitly tied to formal verifi-
cation tools

Integrated with Move Prover and
formal postcondition violations
(MWC-120–121)

Targeted Projects Ethereum mainnet, L1/L2 rollups
using Solidity

MoveEVM chains (e.g., Aptos
EVM, SuiEVM, zkMove)

Unique Contributions Provides foundational classification
for Solidity audit tooling

First structured hybrid vulnerabil-
ity taxonomy accounting for EVM-
Move execution intersections

20

