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Abstract

Motivated by the success of general-purpose large language models (LLMs) in
software patching, recent works started to train specialized patching models. Most
works trained one model to handle the end-to-end patching pipeline (including
issue localization, patch generation, and patch validation). However, it is hard for a
small model to handle all tasks, as different sub-tasks have different workflows and
require different expertise. As such, by using a 70 billion model, SOTA methods
can only reach up to 41% resolved rate on SWE-bench-Verified. Motivated by
the collaborative nature, we propose Co-PatcheR, the first collaborative patching
system with small and specialized reasoning models for individual components.
Our key technique novelties are the specific task designs and training recipes. First,
we train a model for localization and patch generation. Our localization pinpoints
the suspicious lines through a two-step procedure, and our generation combines
patch generation and critique. We then propose a hybrid patch validation that
includes two models for crafting issue-reproducing test cases with and without
assertions and judging patch correctness, followed by a majority vote-based patch
selection. Through extensive evaluation, we show that Co-PatcheR achieves 46%
resolved rate on SWE-bench-Verified with only 3×14B models This makes Co-
PatcheR the best patcher with specialized models, requiring the least training
resources and the smallest models. We conduct a comprehensive ablation study to
validate our recipes, as well as our choice of training data number, model size, and
testing-phase scaling strategy.

1 Introduction

Software patching is a time-intensive and cognitively demanding task, especially for large and com-
plex codebases. In the real world, effective patching often requires a combination of complementary
skills: locating the faulty component, generating plausible fixes, and validating the changes. Recent
works leverage general-purpose LLMs [32, 3, 34, 33, 15, 4] to construct patching agents with three
components, responsible for localization, generation, and validation, respectively. They demonstrate
remarkable performance on SOTA benchmarks (e.g., SWE-bench [22]) and show significant potential
to automate patching in the real world. Despite these promising results, concerns about cost effi-
ciency and data privacy further motivate the development of customized patching models. Current
approaches train one model for the end-to-end patching pipeline through supervised fine-tuning (SFT)
or reinforcement learning. Specifically, early works [54, 29] fine-tune 72B and 32B models through
simple supervised data and achieve around 30% resolved rates on SWE-bench-Verified. More recent
methods implement rule-based rewards and train reasoning models with reinforcement learning,
with SWE-RL [50] achieving the highest resolved rate of 41% on SWE-bench-Verified using a 70B
model. However, these monolithic approaches fail to imitate the real-world patching paradigm, where
specialized engineers collaborate by dividing responsibilities according to their expertise.
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Inspired by the collaborative workflow in the realistic software engineering practice [30, 51], we
propose Co-PatcheR, the first patching agent with collaborative small reasoning models designed
specifically for different components. Our key insight for having component(s)-specific models is
that different components have different inputs, outputs, and capability requirements. Specifically,
localization and generation require a similar capability of interpreting the issue description and
understanding the current codebase. Validation, on the other hand, generates testing cases without
knowledge of the patches or the codebase. Given the non-trivial differences, it is challenging for one
small model to handle all these sub-tasks. Following this intuition, we craft a tailored task design
and training recipe for different components, aiming to minimize the model size while preserving
performance. Specifically, given the similarity between localization and generation, we train a
single model (Loc-Gen model) to handle both functions. For localization, we design it as a two-step
procedure, where the model first identifies the affected files and then pinpoints the specific lines
responsible for the issue. This task decomposition reduces the task complexity and context length,
making it more suitable for small models. For patch generation, we train the Loc-Gen model to not
only generate patches but also review and refine its own solutions. With this additional self-critical
capability, the Loc-Gen model can prevent common errors and generate higher-quality candidates.
Finally, we train two models to generate multiple and diverse issue-reproducing test cases (PoC) and
judge the patch correctness based on the PoC execution outcomes. The insight here is to provide
diverse PoCs for a more sound correctness judgment. Here, Val-assert model and Val-no-assert model
generate PoCs with and without assertions, respectively. We use these models together with available
functionality tests and a majority vote mechanism to select the final patch. For all three models, we
apply model distillation with a novel data construction method to enable their reasoning capabilities.
Different from existing distillation models (e.g., S1 [31]), we find that creating reasoning data with
correct answers is critical for our fine-tuned model to achieve high performance.

Through extensive experiments, we first show that when using only 3×14B models, Co-PatcheR
can achieve a 46% resolved rate on SWE-bench-Verified with 60 patch candidates. Compared to
SWE-RL, Co-PatcheR achieves a high resolved rate with 40% fewer parameters and 88% fewer
samples. Besides, Co-PatcheR only needs to run one 14B model at a time, which is much more
efficient than SOTA methods during the testing phase. Furthermore, with our specific reasoning data
construction method, Co-PatcheR only requires 6K data for training, which is much more efficient
than SOTA methods that use at least 30K samples. We then conduct a comprehensive ablation study
for each model to validate its task design and training recipe. Finally, we validate the necessity of
testing-phase reasoning, our choice of data number and model size, through more ablation studies.

Contributions. We propose Co-PatcheR, the first collaborative patching system with component-
specific reasoning models. Co-PatcheR is the most data- and parameter-efficient patcher that offers
greater effectiveness, efficiency, and modularity than existing patchers with specialized models.
Co-PatcheR ranks among the top-10 open-source systems on SWE-bench-Verified, outperforming all
patchers with open-source models. We propose specific training recipes for each model and obtain
the following new findings that are unique to patching:

• Using one model for localization and generation performs similarly to using separate models.

• Multiple models for PoC generation provide necessary diversity that a single model cannot achieve.

• Critique is important for generation, and multi-source data is important for validation.

• Simply increasing data or model size is not always helpful; data scale should match model size.

• Rejection sampling-based data filtering helps all components; but rationalization does not.

2 Existing Works and Limitations

LLM-based patching agent. There are several works on designing a patching agent using general-
purpose LLMs [25, 7, 6, 27, 2, 20, 8, 14, 13, 56, 59, 5, 42, 35]. Some agents achieve remarkable
performance on the SWE-bench benchmark [22], a benchmark for real-world GitHub issues written in
Python. The top-ranked open-source agents are OpenHands [48], Agentless [53], and PatchPilot [24].
Here, Agentless and PatchPilot follow a pre-defined workflow, where PatchPilot introduces a number
of optimizations over Agentless. OpenHands, on the other hand, gives more freedom to the LLM to
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Figure 1: The overall training recipes and inference pipeline of Co-PatcheR. We design one model
for localization and generation, where each component has two steps. We further design two models
for PoC generation with/without assertions. During inference, we conduct a PoC and functionality
testing to select the final patch and conduct a majority vote when dynamic testing has ties.

decide its workflow on the fly. OpenHands can have a higher performance but is less stable and more
costly than PatchPiolt. We use PatchPiolt as the agent scaffold as it is more cost-efficient.

Specified models for patching. There are some early explorations on training customized LLMs for
the patching task. At a high level, most methods train one model for the end-to-end pipeline, and they
use relatively large models. Specifically, SWESynInfer [27] and SWE-Gym [36] train a model with
72 billion (72B) and 32B parameters, respectively, to perform the end-to-end pipeline. Both models
are trained with supervised fine-tuning (SFT) without a testing-phase reasoning. Their resolved rate
on SWE-bench-Verified is around 30%. SWE-Fixer [54] trains one 7B model for fault localization
and a 72B model for patch generation with a resolved rate of 33% on SWE-bench-Verified.

Follow-up works explore training the model with reinforcement learning to enable testing-phase
reasoning [58, 29, 50]. SEAlign [58] continues training on SWE-Gym [36] using Direct Preference
Optimization [40] to retain preferred solution paths. SoRFT [29] and SWE-RL [50] define rule-based
rewards and train the model with policy gradient methods (PPO [43] and GRPO [44]) for both
localization and generation. Among these three methods, SWE-RL achieves the highest resolve rate
of 41% on SWE-bench-Verified with a 70B model. A concurrent work, SWE-Reasoner [28], on the
other hand, applies SFT-based model distillation (from DeepSeek-r1 [15]) to train a 32B reasoning
model for the end-to-end pipeline. They further trained two 32B critique models for localization and
patch selection. They achieve 46% resolved rate on SWE-bench-Verified with all three models.

Other code LLMs. First, there are some coding LLMs for general coding tasks (e.g., LeetCode, Data
Science), including Qwen2.5-Coder [19], DeepSeek-Coder [61], WizardCoder [26], CodeLlama [41],
and reasoning models (e.g., S* [23] and CYCLE [9]). Second, existing works also explored devel-
oping models for debugging [10, 21, 60, 52, 45], testing case generation [1, 18, 38], function and
API calling [11, 37], secure code generation [17, 12, 47, 16, 55]. These efforts are orthogonal to our
work on training patching-specific models.

3 Key Technique

3.1 Overview

Problem setup. We are given a software repository with one or multiple issues/bugs. Each issue
has a simple text description, which may contain additional information such as desired behaviors
and vulnerable inputs. Each issue may affect one or more functions in the repository. Our goal is to
automatically analyze the issue and generate patches that fix all affected functions while preserving
the behaviors of the unaffected functions (which are evaluated by running the hold-out unit test).
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Technical insight. In this paper, we first argue that designing small and specialized patching models
improves the overall efficiency of the patching system, as general-purpose LLMs are way larger.
Besides, we do not need the model to process images or video; instead, it must precisely understand
the repository, reason about issues, and generate correct patches. Second, we argue that having
a single model for the end-to-end patching pipeline may not be the optimal solution given the
differences between components and the collaborative nature of software patching. Specifically, both
localization and generation need to interpret the issue description and connect it to the target codebase,
especially the code chunks responsible for the issue (root cause). Localization needs this capability
to scan the entire codebase to pinpoint the root cause, and generation then relies on that information
to craft patch candidates. By contrast, test case generation during validation demands an even deeper
understanding of the issue description, yet it does not need to analyze the full codebase (given that the
test cases are typically generated only based on the issue description). Besides, test case generation
is typically not aware of patch candidates in order to generate more objective and comprehensive
testing. This hypothesis is supported by existing works [50, 54] that trained large models (>70B)
using various methods (SFT, offline and online RL) yet achieved relatively low performance (See
Section 4). Based on these findings, we propose to train small but fine-grained models for different
components and use them together in the agent system.

Technical challenges and key novelties. The high-level challenge is to reduce each model to the
smallest feasible size without sacrificing too much performance. More concretely, we need to first
design a data-efficient training recipe for each model (Challenge ❶). Once we have the models, we
also need to decide how to effectively integrate them into the overall agent system (Challenge ❷).

Solve challenge ❶. We propose to train three reasoning models, Loc-Gen model for localization and
generation, Val-no-assert model and Val-assert model for vulnerable test cases (PoC) generation
with and without assertions (Figure 1). First, as shown in Section 4, training reasoning models
can achieve a better performance than non-reasoning models even with fewer training samples,
making the model training even more data- and cost-efficient. We propose to distill a large reasoning
model with supervised fine-tuning. Recent research shows that high-quality distillation data enables
training effective small reasoning models for math and coding tasks with limited computational
resources [46, 31]. In contrast, training reasoning models with RL requires substantially more
samples and computational power, contradicting our efficiency goals. Additionally, without well-
designed intermediate process rewards, training based solely on outcome rewards becomes costly
and unstable [36]. Second, we train one model for localization and generation as they share similar
capabilities. As shown in Figure 1, we divide the localization task into two lower-complexity sub-
tasks, generate training data separately, and mix the data for model training. For generations, we
integrate “critique training data” where the model reviews its own patches, enabling better reasoning
about patching errors. Third, we design two models for PoC generation to enable more diverse PoC
testing. For each model, we train it to (1) generate PoCs that potentially trigger the target issue and
(2) evaluate patch correctness based on issue descriptions and PoC execution outcomes.

Solve challenge ❷. Figure 1 shows our proposed agent workflow, which is inspired by the efficient
designs of PatchPilot [24]. Our localization first identifies the files and then the lines in the pinpoint
files for locating potential root causes. The generation component then generates multiple patch
candidates. Finally, we use our two PoC generation models for patch correctness testing, followed by
a model-free functionality test that runs patches against public functionality tests. We rank patches
based on dynamic testing results (Num. of passed PoC and functionality tests) to identify the highest-
scoring candidates. When multiple patches achieve the same highest score, we apply majority voting
based on normalization [53] to select the final patch.

3.2 Training Recipe for Loc-Gen model

Our training recipe has four key components: training issue selection, training task construction,
reasoning data generation, and filtering. Issue selection and data filtering are common across all
components, while task construction and reasoning data generation are tailored to each model.

3.2.1 Issue Selection

We select training issues and the corresponding codebases from the SWE-bench training set and
SWE-Gym dataset, which contains different repositories from our testing set. Our selection criteria
focus on two key factors: First, we prioritize diversity by selecting issues from different repositories
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across different time periods to improve model generalization. Second, we include issues with
varying difficulty levels, following recent work by S1 [31] showing that challenging cases improve
reasoning abilities with limited training data. We quantify the difficulty using the number of files
changed in the fix. For example, simple issues require changing only one file, while difficult issues
require changes to five or more files. As shown in Figure 4, in general, the performance of our models
first increases as the training data grows and then remains at a similar level. Guided by this trend, we
select only 2,000 training issues, which is significantly fewer than existing RL-based methods, e.g.,
11M in SWE-RL [50]. To avoid data leakage, we check the selected issues, making sure they come
from different codebases from the testing ones and do not have overlapping functions.

3.2.2 Task Construction and Reasoning Data Generation

Localization. The key challenge for localization is to efficiently identify root causes while keeping
the task manageable for a small model. To achieve this, rather than training the model to directly
identify root causes from the entire repository, we decompose localization into two sequential sub-
tasks: file localization and line localization. File localization identifies issue-related files based on
the file structure, while line localization pinpoints the specific code chunks within selected files.
This decomposition creates simpler sub-tasks with shorter context, better suited for small models.
It also provides explicit guidance to the localization process. Specifically, for file localization, we
provide the issue description and codebase file structure as input. For line localization, we input the
issue description and the code from each selected file (splitting files that exceed the model’s context
limit) (see Appendix D for the prompts). Based on this task design, we use Claude-3.7-Sonnet [4] to
generate distillation data with a reasoning chain. The reasons for choosing Claude-3.7-Sonnet over
other reasoning models are that some models (e.g., OpenAI models) do not provide their reasoning
chains. Among the two main open-source models, DeepSeek-R1 [15] tends to give overly long
reasoning chains, making it easy for our model to learn noisy steps. QwQ [39], meanwhile, performs
poorly on patching-related tasks.

Generation. The key novelty of our generation model is to combine the patch critique with the patch
generation. For patch generation, we design the input as the issue description and the identified root
causes, and the output as a patch candidate. For the patch critique, our input is the issue description
and a patch candidate, and the designed output is the review of the candidate as well as a correct
answer if it is wrong [49]. We still use Claude-3.7-Sonnet to generate the reasoning data for these two
sub-tasks. Having the critique data can guide the model to learns not only to produce an answer but
also to diagnose and refine existing ones, thereby acquiring stronger reasoning skills during training.
Such a process could further deepen the model’s understanding of the target issues and potentially
yield higher-quality patches. Appendix D specifies our input prompts.

3.2.3 Reasoning Data Filtering

After generating the data, we apply filters based on two aspects: final answer correctness and
reasoning length. First, based on our empirical observation, we conduct a rejection sampling to
filter out the training samples that lead to wrong answers, as training with these noisy samples will
jeopardize our model performance. This is a unique recipe for patching, as it does not align with
existing work, Sky-T1 [46] and S1 [31], where they state that data with wrong answers is still useful
for models to learn the reasoning structure in math problems. We believe the difference stems from
the specialized nature of patching, where the related tasks are not frequently encountered during
pre-training. As such, a small model needs access to correct answers to learn the correct knowledge.
For general maths problems, however, the model has likely seen enough examples in pre-training and
the model can tolerate occasional wrong answers. Here, reasoning data mainly teaches it to perform
reasoning following a certain structure. Second, we filter out samples with excessively long reasoning
chains, as these kind of long reasoning does not offer too much benefit even on general-purpose LLMs
(Appendix B). A deep inspection of the reasoning chain shows that the model tends to overthink and
repeat reasoning paths. Such data can even cause model collapse and jeopardize training efficiency.

3.3 Training Recipe for Val-assert model and Val-no-assert model

Rationale for having two models. The high-level goal of validation is to decide whether a candidate
patch fixes the issue (patch correctness) and whether it affects other benign functions (functionality
correctness). For functionality correctness, we can retrieve the public testing cases from each project
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Table 1: Co-PatcheR vs. baselines on SWE-bench-Verified. N/A means not available.

Model Agent scaffold Reasoning Resolved (%) Training data # candidates
General Commercial LLMs

Claude-3.5-Sonnet Agentless ✗ 50.80 N/A 40
Claude-3.5-Sonnet OpenHands ✗ 53.00 N/A N/A
Claude-3.5-Sonnet PatchPilot ✗ 53.60 N/A 12
Claude-3.7-Sonnet OpenHands ✓ 60.60 N/A N/A

Specialized Open-source Models

Lingma-SWE-GPT-72B SWE-SynInfer ✗ 30.20 90K N/A
SoRFT-32B Agentless ✗ 30.80 30K N/A

SWE-Fixer-72B SWE-Fixer ✗ 32.80 110K 1
SWE-RL-70B Agentless-mini ✓ 41.00 11M 400

Co-PatcheR (3×14B) PatchPilot ✓ 46.00 6K 60

and run dynamic testing against our patches. The key challenge is to design the patch-correctness
validation. To enable dynamic testing, we propose to train two validation models to generate PoC test
inputs and make a patch correctness judgment. The insights for having two models are as follows.
First, existing patching agents have two ways of generating PoC tests: with or without assertions.
Here, assertions mean specific assertion instructions in the PoC test that judge whether the PoC
execution triggers the target issue. The test cases with and without assertions typically cover different
program paths to the root cause site. To enable more comprehensive and sound PoC tests, we aim to
generate PoCs in both styles. As such, we train two different models, one for each style. As shown in
Appendix B.3, we also train one model to generate both types of PoCs with different input prompts
and special tokens. However, the model cannot give PoCs with enough diversity, even with a high
temperature during testing.

Training recipe. Here, we use the same set of training issues as the Loc-Gen model. We design two
types of input prompts to instruct the teacher model to generate PoCs with and without assertions
(Appendix D). Both input prompts contain the issue description and a format instruction (with/without
assertions). Different from Loc-Gen model, we use two teacher models, Claude-3.7-Sonnet and
o4-mini, to collect the reasoning data. The goal here is again to increase the PoC diversity and thus
path coverage to the root causes. For Val-no-assert model, we further gather judgment data, where
the input is the issue description, the current patch, and its PoC execution outcomes, and the output
is whether the patch fixes the issue. We train Val-no-assert model to generate the PoCs and judge
the patch correctness at the same time. For Val-assert model, we only train it to generate the PoCs,
as the PoC correctness can be decided by assertions. As shown in Figure 1, we run dynamic testing
with PoC and functionality tests, and conduct a majority vote to select the final patch when dynamic
testing has ties.

4 Evaluation

4.1 Co-PatcheR vs. Baselines on SWE-bench

Setup and design. We adopt the Qwen-2.5-Coder-14B model [19] as our base model for all three
components. Compared to more recent models, Qwen-2.5-Coder-14B has the knowledge cut of
March 2024, which is prior to the SWE-bench benchmark (published in May 2024). It is less likely to
be trained specifically for the SWE-bench data. As introduced in Section 3.2.1, we select 2K training
issues from the SWE-bench training set and the SWE-Gym [36] dataset and conduct filtering to avoid
data leakage. After training our three customized models, we integrate them into our end-to-end
pipeline (Figure 1) and evaluate our system (Co-PatcheR) on the SWE-bench-Verified dataset. The
specific training hyper-parameters are shown in Appendix A. During the inference, for every issue,
we generate 5 root causes from localization, 60 candidate patches, and 4 PoCs, using them to get one
final patch. We compare Co-PatcheR with SOTA agents built on commercial LLMs and those with
open-source models. We report the resolved rate of these agents’ final patch (best@k), as well as their
number of patch candidates k (if available). For open-source models, we also compare Co-PatcheR
with them in training data and model size. Note that a recently released concurrent arXiv work
(SWEReasoner [28]) claims a 46% resolved rate with 3× 32B models. We achieve the same resolved
rate with over 50% smaller models.

Results. Table 1 shows the comparison between Co-PatcheR and the baseline methods. As we
can first observe from the table, most existing specialized models have a large performance gap
from the agents with commercial models. SWE-RL archives the highest resolved rate with a 70B
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model with 110M training data and 500 candidate patches. In comparison, Co-PatcheR sets a new
open-source record with a resolved rate of 46.00% using only 3 × 14B models trained with 6K
training data. This result validates the advantage of having component-specific models over one
end-to-end model when patching with small models. It also demonstrates the effectiveness of our
issue selection and reasoning data generation and filtering methods, which significantly improve
Co-PatcheR’s data efficiency. Besides, the resolved rate of Co-PatcheR ranks among the top-10
open-source tools on SWE-bench-Verified, beating many agents with commercial models. The result
shows the importance of having specialized models for software patching. Finally, Table 1 shows the
advantages of reasoning models for both general and specialized LLMs. For example, OpenHands has
a 7% improvement when using Claude-3.7-Sonnet (reasoning model) compared to Claude-3.5-Sonnet
(non-reasoning model). At the same time, Co-PatcheR and SWE-RL also have significant advantages
over other baselines with non-reasoning models.

4.2 Effectiveness and Ablation Study of Each Component

4.2.1 Localization
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Figure 2: The top@5 file-level and line-
level accuracy for localization.

Design. We evaluate our localization component against
three commercial LLMs (GPT-4o, Claude-3.7-Sonnet, o4-
mini) on SWE-bench-Verified, measuring both file-level
and line-level localization accuracy. To isolate the effect
of our data filtering strategy, we also train a comparison
model (Loc-NoFilter) with unfiltered data containing both
correct and wrong answers, using the same 2K data size for
fair comparison. We also compare against our base model
(Qwen-2.5-Coder-14B) to demonstrate the impact of our
specialized training. For all models, we select Top@5
files and report whether the correct answer appears in the
root causes identified from these files. For issues affecting
multiple files or lines, we enforce strict evaluation criteria, counting a localization as correct only
when it identifies the complete set of affected files and lines. Note that we do not consider training a
model to directly identify vulnerable lines from the entire repository, as it will exceed the model’s
context limit.

Results. As shown in Figure 2, SOTA commercial reasoning models o4-mini and Claude-3.7-Sonnet
achieve the highest performance on both file and line levels, marginally outperforming Co-PatcheR-
Loc. However, Co-PatcheR-Loc achieves comparable performance to GPT-4o, demonstrating the
advantage of specialized reasoning models over general non-reasoning models. These results support
our claim that specialized models with proper testing-phase scaling can compete with much larger
commercial LLMs on specialized tasks. The substantial performance gap between Co-PatcheR-Loc
and both Qwen-2.5-Coder-14B and Loc-NoFilter validates the effectiveness of our training recipe,
particularly our reasoning data filtering approach.

4.2.2 Generation
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Figure 3: The pass@1 resolved rate
for generation.

Design. Following the experiment design for localization
model, we evaluate our generation component against com-
mercial LLMs (GPT-4o, o4-mini, Claude-3.7-Sonnet) and our
base model (Qwen-2.5-Coder-14B). To isolate the contributions
of our training innovations, we test two additional variants: Gen-
Base (using unfiltered reasoning data without critique training)
and Gen-NoFilter (adding critique data but without data filter-
ing) to verify the effectiveness of both data filtering and critique
training techniques. For a fair comparison and to focus specif-
ically on patch generation capabilities, we use GPT-4o local-
ization results as consistent input across all models, evaluating
the performance using the pass@1 metric, which evaluates the
successful issue resolution with only one generated patch.

Results. Figure 3 shows the pass@1 performance across mod-
els, with results consistent with our localization experiments: o4-mini and Claude-3.7-Sonnet
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outperform Co-PatcheR-Gen in single-patch performance. However, as demonstrated in Figure 5b, if
effectively leveraging our testing-phase scaling approach, Co-PatcheR-Gen achieves comparable per-
formance to these much larger models when generating only 4 more patch candidates. Furthermore,
the performance advantage of Co-PatcheR-Gen over both Gen-Base and Gen-NoFilter validates our
novel designs: critique training and data filtering substantially improve patch quality. We note that
GPT-4o’s unexpectedly low performance stems primarily from formatting issues, as it frequently
generated syntactically invalid patches that did not follow our required format specification.

4.2.3 Validation
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Design. We conduct the ablation study for both the
PoC generation model and the validation workflow,
respectively. For the PoC generation model, we com-
pared four variants: (1) Val-no-assert-Base model,
trained with reasoning data from Claude-3.7-Sonnet
without filtering, (2) Val-no-assert-NoFilter, trained
using both Claude-3.7-Sonnet and o4-mini reason-
ing data without filtering; (3) Val-no-assert model
only, and (4) Co-PatcheR-Val: Val-assert model +Val-
no-assert model. We integrated each model into our
validation pipeline and measured their resolved rates
on an identical set of 20 patch candidates produced
by our generation component. A higher resolved rate
indicates more effective validation.

To evaluate our validation workflow design, we test three strategies with the same Val-assert model
+Val-no-assert model: (1) Co-PatcheR-Val, which applies the whole workflow, (2) Co-PatcheR-
NoPoC, which omits PoC testing and relies solely on functionality tests and majority voting, and (3)
Co-PatcheR-NoDyn, which applies majority voting directly to patch candidates without any dynamic
testing. Each workflow also processed the same set of 20 patch candidates for fair comparison.

Results. Figure 4 presents the comparative performance of different validation models and workflows.
First, using two models performs better than only having Val-no-assert model, confirming the better
PoC diversity. Second, Val-no-assert model outperforms Val-no-assert model-NoFilter, confirming
the generalizable effectiveness of our data filtering strategy across all components. Comparing
Val-no-assert model-NoFilter with Val-no-assert model-Base further justifies the necessity of having
diverse PoCs in training data, which guide our model to learn to generate multiple PoCs for the same
issue. The results in Figure 4 further show the necessity of having both PoC tests and function tests
during validation. In Appendix C, we show that when having 60 patch candidates, majority vote is
more effective than the outcome reward model used in SOTA agents [48] and even Claude-3.7-Sonnet.
As such, we stick to the majority vote as the final patch selection.

4.3 More Ablation Study and Sensitivity Test

We use our generation model to conduct the ablation study on data size, model size, and testing-phase
scaling strategy. The results of the other two components are consistent (Appendix B).

Data size. We randomly sample a subset of 500 and 1K cases from our current 2K training set and
train two models using our proposed recipe. We report the Pass@1 performance of these models in
Figure 5a. The result shows that the performance increases more as the parameters grow from 500 to
1K than from 1K to 2K. As shown in Appendix B.2, the model performance for localization no longer
increases as we further increases the training data to 5K. As such, we select 2K as our final training
data size. The findings show that, for small models, continually adding more data does not guarantee
better performance (given the risk of overfitting). We further train a non-reasoning model for patch
generation (SFT with ground truth patches). Our result shows that a non-reasoning model trained
with 2K training data performs even worse than our reasoning model trained with 500 samples. It
further shows that the reasoning model is more data-efficient.

Model size. We change our base model to Qwen-2.5-Coder-7B and Qwen-2.5-Coder-32B (same
model family with different sizes) and retrain our patch generation model with the same training
data. The Pass@1 results in Figure 5a show that a larger model indeed improves the performance.
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Figure 5: More ablation studies on the generation component.

However, considering that the improvement of the 32B model over the 14B model is not significant,
we still choose the smaller one.

Testing-phase scaling. We test two scaling performances. We fix the output context limit and ask the
model to generate K=1, 10, 20, 40, 60, and 80 candidate patches. For each setting, we 1) compare
the pass@K resolved rate (whether correct patch is in the generated candidates) to obtain the upper
bound of patch generation; 2) run our validation to select the final patch (best@K) to assess the
upper bound of Co-PatcheR. As shown in Figure 5b, increasing the sample numbers can prompt the
model to generate more diverse patches, which increases the chances of hitting the correct one. This
validates our arguments that small models with many samples can reach a similar performance to
large models with fewer samples (without requiring significantly more computing, as the models are
much smaller). Increasing sample numbers can also help the system as a whole; however, having too
many samples will add a burden to validation and may jeopardize the validation accuracy.

5 Discussion

Rationalization does not always help. In patch-generation training data collection, we tried a
rationalization scheme [57]: We provide the teacher model with the ground-truth patch and force
it to generate a reasoning without mentioning the ground truth patch. When context is insufficient,
the model invents latent details (e.g., suggesting a likely some_function that is not in the context),
causing the student model to learn hallucinated patterns. Of ten instances that Co-PatcheR originally
solved but fail after fine-tuning with the reasoning data, six fail due to hallucinated identifiers. Thus,
rationalization can degrade patch-generation performance.

Component specific models vs. one model. In this paper, we argue that to minimize the model
sizes, we need to train models specific to individual components. However, a counterargument for
promoting one end-to-end model could be that all three tasks work on the same codebase, and the
knowledge about the codebase can be shared across tasks. Although we acknowledge the validity of
this argument, we do not take this route as we aim to push the limits for small models, and existing
works following this methodology show limited performance. Future works can explore the efficient
training methods and proper model sizes for such a unified model.

Limitations and future works. First, designing specific and effective reward functions requires
non-trivial effort. We defer to future work to explore effective RL methods to continue training our
current models and see if the performance can be further improved. Second, given our focus on the
model side, the current patching leverages a simplified agent scaffold without complex tool calls. We
will further enrich the agent with more tool calls and train specified models for tool call planning.
Third, with large samples, our localization and generation components can reach the performance of
SOTA commercial models. Future works will explore how to design more effective validations to
pinpoint the correct patch from many candidates.

6 Conclusion

In this paper, we propose Co-PatcheR, a novel software patcher with collaborative small reasoning
models. We develop a unique training recipe for models in three major components of the patching
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pipeline (localization, generation, and validation). Our results show that Co-PatcheR achieves one
of the highest resolved rate among patchers with customized models with the smallest models,
outperforming many commercial LLM-based patchers. Our ablation studies validate the key designs
in our proposed recipes as well as our choices on data, model, and testing-phase scaling strategy.
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A Training Details

Hyper-parameters. We train all three customized models (Loc-Gen, Val-no-assert, Val-assert) using
the same settings. Table 2 summarizes the key hyper-parameters.

Table 2: Training hyper-parameters for the Qwen-2.5-Coder-14B model
Hyperparameter Value

Peak learning rate 1×10−5

Warmup ratio 0.10 of total steps
LR scheduler Cosine decay (with 10% linear warmup)
Batch size (per GPU) 1 (effective batch size = 1×12 accumulations)
Weight decay 1×10−5

Number of training epochs 3.0
Maximum sequence length 32768 tokens

B Ablation Study

B.1 Whether Long Reasoning Help

Design. To compare the impact of reasoning length in the patching task, we ran an ablation study
on the SWE-bench–Verified dataset using Claude-3.7-Sonnet. For a fair comparison and to focus
specifically on patch generation capabilities, we use GPT-4o localization results as consistent input
as 4.2 to patch generation. We then varify the maximum reasoning output length, setting it to
0 tokens("no-reason"), 2K tokens ("short-reason") and 8K tokens ("long-reason"), and evaluate
performance with the pass@1 metric, which counts issues successfully resolved by the first generated
patch.

Results. The pass@1 results were 43.8% for the short reasoning setting(2K) and 44.2% for the long
reasoning setting(8K), while 40.6% for the no-reasoning settings. These results show that considering
the random deviation of the model inference, extending the reasoning budget beyond 2K tokens
yields no appreciable gain in our experiments.

B.2 Localization

We use our localization model to conduct the ablation study on data size, model size, and testing-phase
scaling strategy.

Data size. We randomly sample a subset of 500, 1K, and 2K cases from our 5K training set and
train four models in total using our recipe. We report both the file-level and line-level localization
performance of these models in Figure 6a. The result shows that the performance keeps increasing
from 500 to 1K and from 1K to 2K, and the model performance for localization no longer increases
as we further increase the training data to 5K. As such, we select 2K as our final training data size.
We further train a non-reasoning model for localization (SFT with ground truth files and lines). Our
result shows that a non-reasoning model trained with 2K training data performs even worse than
our reasoning model trained with 500 samples. It further shows that the reasoning model is more
data-efficient.

Model size. We change our base model to Qwen-2.5-Coder-7B and Qwen-2.5-Coder-32B (same
model family with different sizes) and retrain our model with the same localization training data. The
localization results in Figure 6b show that a larger model indeed improves the performance. However,
considering that the improvement of the 32B model over the 14B model is not significant, we still
choose the smaller one.

Testing-phase scaling. We test two scaling performances here. The generation setting is kept fixed,
whereas the localization model predicts N=1, 2, 4, 6, 8, 10 times for each issue, including both
line-level and file-level. For each setting, we 1) fix the top 5 files as file-level results and merge
the line-level localization outputs as the line-level results accuracy. 2) generate 20 patches with the
generation model with the different localization results as input, then record the pass@20 resolved
rate(the percentage of which at least one of the 20 candidate patches fixes the issue)—this serves as
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Table 3: Effect of reasoning length on patch generation (pass@1) on the SWE-bench–Verified dataset.
Setting Max reasoning tokens pass@1 (%)
No-reason 0 40.6
Short-reason 2K 43.8
Long-reason 8K 44.2
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Figure 6: Ablation studies on data size (A) and model size (B) for localization.

the upper bound of the localization module. To clarify the relationship between our localization and
patching metrics, we first note that line-level localization accuracy is defined by whether the model’s
returned lines fully cover all modified lines in the golden patch—only perfect coverage counts as
“correct”. In other words, our line-level metric is very strict: it says a location is “correct” only if the
predicted lines match the golden patch line for line. But an issue can be fixed without copying the
golden patch exactly—any edit that makes the tests pass is accepted. So a patch can solve the issue
even when its edited lines do not align with the golden patch, which is why the pass@20 success
rate can be higher than the measured line-level accuracy. As illustrated in Figure 7, supplying more
localization samples broadens the search space, boosting the chance that the correct file appears in
the pass@20 candidates. This confirms our intuition that “wider” localization (more samples) can
offset a smaller model size just as “wider” generation does, without incurring the cost of a larger
backbone. However, pushing the number N too high again shifts the burden to generation and can
confuse the generation by a large number of false positives of code chunks, resulting in a decrease in
performance.

B.3 Validation

Combine training. In the original pipeline, we train two separate PoC-generation models— Val-
assert model and Val-no-assert model —and use them to create four PoCs (two of each type) for
validating the candidate patches produced by the generator. To test whether a single, mixed validator
can do better, we merge the two training sets, train one unified model, and invoke it with two prompt
templates (assert / no-assert) to generate the same four PoCs. Everything else is held constant: the
localization and generation results, the dynamic tester, and the ranking heuristic. We then compare
the best@20 resolved rate after validation has selected the final patch as our result. Table 4 indicates
that keeping the PoC generation model separate still yields the higher accuracy; combining the data
into a single model does not translate into better PoC generation due to a lack of diversity.

Table 4: Split vs. unified PoC-generation models (best@20 on SWE-bench–Verified).
Training scheme PoC prompts best@20 (%)
Split models (Co-PatcheR) 2 assert + 2 no-assert 43.20
Unified model 2 assert + 2 no-assert 42.60

Data size. We randomly sample a subset of 500 and 1K from our 2K training set and train in total
of three models for our Val-no-assert models training. We report the best@20 final resolved rate
performance of these models in Figure 8a. The result shows that the performance keeps increasing
from 500 to 1K and from 1K to 2K. As such, we select 2K as our final training data size.
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Figure 8: More ablation studies on the validation component.

Model size. We change our base model to Qwen-2.5-Coder-7B and Qwen-2.5-Coder-32B (same
model family with different sizes) and retrain our Val-no-assert model with the same training data.
The localization results in Figure 8a show that a larger model indeed improves the performance.
However, considering that the improvement of the 32B model over the 14B model is not significant,
we still choose the smaller one.

Testing-phase scaling. We reuse the same 60 candidate patches from the generation and vary only the
number of PoCs supplied to the dynamic test. Specifically, we let both Val-no-assert and Val-assert
generate N=1, 2, 3, 4, 5 PoCs each, yielding 2N=2, 4, 6, 8, 10 PoCs per issue. For every 2N, we
measure the best@60(The final resolved rate of the patches that chosen from 60 cases) resolved rate
after validation chooses a single patch from the 60 candidates. As shown in Figure 8b, increasing
from N=1(2 PoCs total) to N=2 (4 PoCs) per model brings a clear boost, but adding more PoCs
provides no further gains. The plateau occurs because the same validation model tends to emit highly
similar PoCs; once two distinct checks are present, additional ones rarely catch new failures and
instead lengthen the test phase without improving accuracy.

C Majority Voting vs. ORMs

Design. After dynamic testing, we often obtain several patch candidates that all pass the same subset
of PoCs and functionality tests. Our default system selects the final patch via majority voting. To
assess whether more reranking methods help, we keep every other component fixed—the 60 patch
candidates, the four PoCs used for dynamic validation, and all hyper-parameters from 4.1—and only
swap the tie-breaking strategy: Majority Vote (what we use). ORM Score, we feed each surviving
candidate into the ORM model from SWE-Gym [36] and pick the highest-scoring patch. Claude
Vote, we prompt Claude-3.7-Sonnet with the issue description, the localization results, and the patch
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candidates, and let it rank the patches; the top suggestion is selected. This setup isolates the impact
of the tie-breaking itself, because every method starts from exactly the same candidate pool and the
same dynamic-testing evidence.

Results. With 60 patching candidates, majority voting achieved the best accuracy (46.00% best@1),
ahead of the ORM score (36.40%) and the Claude vote (45.00%). Because majority voting is cost-
free(neither needs commercial credits nor computation resources), it remains the simplest and most
effective option when many patches are still in play. Besides, its performance is better than even the
SOTA commercial LLMs when dealing with a large pool, demonstrating its effectiveness.

Table 5: Effect of different tie-breaking strategies after dynamic testing.
Final patch selection best@60 (%)
Majority Vote 46.00
ORM Score 36.40
Claude Vote 45.00

D Prompts for Each Component

D.1 Localization Prompt

D.1.1 File Localization Prompt

User Prompt:
Please look through the following GitHub problem description and Repository structure, and
provide a list of files that one would need to edit to fix the problem.

### GitHub Problem Description ###
{problem_statement}
###

### Repository Structure ###
{structure}
###

After analyzing the problem, provide the full path and return at most {file_number} files.
The returned files should be separated by new lines, ordered by most to least important, and
wrapped with ```
For example:
```
file1.py
file2.py
```

D.1.2 Line Localization Prompt

User Prompt:
Please review the following GitHub problem description and relevant files, and provide a set
of locations that need to be edited to fix the issue.
The locations should include exact line numbers that require modification.
Pay attention! You should identify the method responsible for the core functionality of the
issue. Focus on areas that define or enforce foundational behavior rather than case-specific
issues.
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### GitHub Problem Description ###
{problem_statement}

###
{file_contents}

###

{last_search_results}

After analyzing the problem, please provide the class name, function or method name, or the
exact line numbers that need to be edited.
If you want to provide the line number, please give me a number in the middle every time.
If you need to edit multiple classes or functions, please provide all the function names or the
line numbers in the class.
You should always include a class or function; do not provide just the line numbers without
the class or function name.
If you want to include a class rather than a function, you should always provide the line
numbers for the class.
Here is the format you need to strictly follow, don’t return any code content or other
suggestions, don’t forget the "```":
### Examples:
```
full_path1/file1.py
class: MyClass1
line: 51

full_path2/file2.py
function: MyClass2.my_method
line: 12

full_path3/file3.py
function: my_function
line: 24
line: 156
```

D.2 Generation Prompt

D.2.1 Patch generation Prompt

User Prompt:
We are currently solving the following issue within our repository.

You are a maintainer of the project. Analyze the bug thoroughly and infer the underlying real
problem, using your inherent knowledge of the project. Focus on resolving the root logic
issue rather than suppressing symptoms.

Note that if the issue description mentions file names or arguments for reproduction, the fix
must be generalized and not restricted to specific arguments. If the issue description includes
a recommended fix, adapt it to align with the codebase’s style and standards. Ensure your fix
maintains structural integrity, considering interactions across code sections, nested structures,
function calls, and data dependencies. Prefer solutions resilient to future structural changes
or extensions.
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The following is the issue description:

— BEGIN ISSUE —
{problem_statement}
— END ISSUE —

Below are the code segments from multiple files relevant to this issue. Each file is clearly
marked. Decide carefully and only modify necessary segments. Preserve original indentation
and formatting standards strictly.

— BEGIN FILES —
{content}
— END FILES —

Now, carefully analyze the files above. Determine which specific file segments require
modifications and provide your edits using the following structured format for easy parsing:

<<< MODIFIED FILE: path/to/filename >>>
```python
<<<<<<< SEARCH
from flask import Flask
=======
import math
from flask import Flask
>>>>>>> REPLACE
<<< END MODIFIED FILE >>>
...

Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION. If
you would like to add the line ’ print(x)’, you must fully write that out, with all those spaces
before the code!
Wrap the *SEARCH/REPLACE* edit in blocks ```python...```.

D.2.2 Patch Critique Prompt

User Prompt:
Please continue working on this code patching work. You need to review the patch thoroughly
to determine if it successfully fixes the issue without introducing any new bugs, and while
handling all possible edge cases.
If you determine that the patch is correct and complete, tell me you confirm that the patch
succeeded.
If you think the patch is incomplete, give me the reason and potential fixing suggestions.

You need to think:
1. What edge cases can break the patch? Consider complex cases such as nested structures
and recursive patterns. For example, if the patch fixes an issue with an empty string, consider
whether None, an empty list, or partially empty data structures might also trigger the bug.
2. Why the patch is incomplete or correct, whether the interaction between the patched part
and other parts of the codebase can be handled properly
3. whether the patch only fixes the issue for the specific case mentioned in the issue
description or for all similar cases
4. whether the patch follows the codebase’s style and standards, using the proper variable
types, error or warning types, and adhering to the established format
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If the patch is perfect, tell me why. If the patch is unfinished or wrong, give me the reason
and patch suggestions.
At the end, you should give me the critical result from you, if yes, give me "Conclusion:
Right", otherwise give me "Conclusion: Wrong".

D.3 Validation Prompt

D.3.1 PoC Generation Prompt

User Prompt:
When generating a PoC script, follow these steps **in order**:

[Optional] Always include assertions in the PoC to make the failure obvious when the script
is executed.
[Optional] The assertion should fail if the bug is present, and pass if the bug is not present.

**Try to extract an existing PoC from the issue description**
* Scan the **GitHub issue description** for Python code blocks or inline snippets that appear
to reproduce the bug.
* If such a snippet exists, **use it verbatim as the base PoC** and only make the minimal
edits needed to run:
- Remove interactive prompts (`>>>`, `$`, `In [ ]:`) and any captured output lines.
- Add any missing `import`statements.
- Convert Python2 syntax to Python3, if present.
- Merge multiple fragments into a single runnable file in their original order.

**If no valid PoC can be extracted, write one yourself**
* Use the *specific* classes, functions, or code paths named in the issue to trigger the bug.
* Keep the script minimal—just enough to demonstrate the failure (e.g., an `assert`, an
expected exception, or a visibly incorrect result).

**General rules for both cases**
* The PoC **must be a single, self-contained Python3 file**.
* If the issue description includes other languages or shell commands, recreate their behavior
in Python (e.g., with `subprocess`or file operations).
* If the snippet refers to external files, create them program matically inside the script.
* Always include `print()`or `assert`statements so the failure is obvious when the script is
executed.

**Output format**
Return **exactly** Python code wrapped in triple backticks, with no other text.

```python
{{poc_code here}}
```
### Context Provided to You
{last_time_poc_code}

{execution_output}

### GitHub Issue Description
— Begin Issue Description —
{problem_statement}
— End Issue Description —
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D.3.2 PoC Critique Prompt

User Prompt:
You are a code reviewer for a GitHub project. Your task is to evaluate whether a patch
successfully resolves an issue described in a GitHub issue.

You will be given the issue description, the PoC (Proof of Concept) code that demonstrates
the issue, and the PoC execution output before and after the patch.

Your goal is to determine if the patch resolves the issue. Please respond with "Yes" or "No"
and provide a brief explanation of your reasoning.
You should not assume that there is other output that is not shown in the Poc Output. The Poc
Output is the only output you should consider. You should not assume that a plot is generated
by the Poc.

- "Yes" means the patch successfully fixed the issue.
- "No" means the patch did not successfully fix the issue, either because the issue still exists
or because the patch introduced new issues.

### Raw Issue Description ###
{issue_description}

### Poc code ###
Here is the PoC code that demonstrates the issue:
{poc_code}

### Poc Output before the patch ###
{old_execution_output}

### Poc Output after the patch ###
{new_execution_output}

**Response Format:**

Example 1:
<judgement> Yes </judgement>
<explanation> The patch successfully fixed the issue since ... </explanation>
Example 2:
<judgement> No </judgement>
<explanation> The patch did not successfully fix the issue since ...
</explanation>
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