
Exemplifying Emerging Phishing: QR-based
Browser-in-The-Browser (BiTB) Attack
Muhammad Wahid Akram∗, Keshav Sood∗, Muneeb Ul Hassan∗, and Basant Subba+

∗School of IT, Deakin University, Geelong, Australia
+Indian Institute of Technology Ropar (IIT Ropar), Punjab, India

Email: {s224289198, keshav.sood}@deakin.edu.au, muneebmh1@gmail.com, basant.subba@iitrpr.ac.in

Abstract—Lately, cybercriminals constantly formulate produc-
tive approaches to exploit individuals. This article exemplifies
an innovative attack, namely QR-based Browser-in-The-Browser
(BiTB), using proficiencies of Large Language Model (LLM)
i.e. Google Gemini. The presented attack is a fusion of two
emerging attacks: BiTB and Quishing (QR code phishing). Our
study underscores attack’s simplistic implementation utilizing
malicious prompts provided to Gemini-LLM. Moreover, we
presented a case study to highlight a lucrative attack method,
we also performed an experiment to comprehend the attack
execution on victims’ device. The findings of this work obligate
the researchers’ contributions in confronting this type of phishing
attempts through LLMs.

Index Terms—Phishing, Quick response (QR) code, browser-
in-the-browser, quishing attacks, large language models (LLMs)

I. INTRODUCTION AND BACKGROUND

Over almost last three decades, since the inception of digi-
tization, humans are continuously being the target of phishing
scams. In cybersecurity, humans are especially considered the
most vulnerable link in the success of phishing attacks [1].
The authors in [2] comprehensively classified various classes
of mobile phishing. This includes smishing (SMS phish-
ing), vishing (voice phishing), QRishing or Quishing (Quick
Response (QR) code phishing), etc. Similarly, in [3] the
authors proposed an innovative form of phishing attack named
Browser-in-The-Browser (BiTB) attack. In fact, attackers can
also launch these attacks in combination, such as sending a
phishing email containing a QR code attachment that leads
to a malicious website. Furthermore, this article showcased
how Large Language Models (LLMs) i.e. Google Gemini
can helpful in generating malicious content for the successful
execution of QR-based BiTB phishing attacks.

Currently, many individuals and businesses use QR codes
for multiple benefits, for example, embedding website URLs
in it, sending via emails, and more. Similarly, LLMs have
emerged as a significant tool across several applications in-
cluding AI-driven chatbots, research, innovation, and content
generation to data analysis. However, their availability and
productiveness make them vulnerable to exploit for creation
of malicious content for phishing attacks [4]. In the existing
literature various works reported phishing attacks via QR
codes (please note that phishing via QR codes is known as
Quishing). In this regards, Bekavac et al. [5] underlines QR
code tampering approach in which, attackers either physically
replace the whole QR code with a fake one or interfere

with the pixels (white and black) of QR code. Moreover, [6]
illuminates the effectiveness of barcode-in-barcode attack.

Regarding phishing with LLMs, [4] and [7] comprehen-
sively studied LLMs and Vision Language Models (VLMs)
models respectively. They highlighted the competencies of
LLMs and VLMs in generating malicious content for specific
phishing attacks including email phishing, Quishing, and
BiTB. Generally, LLMs did not respond to given malicious
prompts. However, if the same malicious prompt(s) submitted
to the LLM in a sophisticated way as highlighted by [4] then
attackers can be successful in producing phishing content.
Similarly, in context of BiTB, [8] and [9] attempts to present
the practical implementation of this attack. Whereas the pro-
posed methodologies from both studies are far more complex
to implement in realistic settings.

Motivated from QR-phishing and involvement of LLMs in
social engineering schemes, in our work, we are highlighting
an evolving attack, i.e., BiTB (in QR context) named as QR-
based BiTB phishing attack. The authors in [3] have described
BiTB attack (in non QR-code scenarios), where a popup
modal shows a real browser which contains a phony URL
and phishing web page. This paper has taken BiTB phishing
attack one step ahead from an attacker’s perspective. We have
shown the BiTB attack with malicious dynamic QR code
and Gemini-LLM which renders it into a compelling attack
vector. Therefore, the combination of dynamic QR code, and
Gemini-LLM could empower BiTB attack to certainly bypass
the standard phishing detection mechanisms.

Moreover, the aim of our study is not only to illuminate
technique of this attack but also to emphasize its consequences
on the attackers’ capabilities. Through evaluating its antic-
ipated impact, we are looking to contribute in continuing
discussion on productive counter frameworks. Below are the
contributions of our study:
• We discussed a novel phishing attack namely QR-based

BiTB which is a novel attack in QR-Codes platform and
has never been studied before in the existing literature (in
QR context). A step-by-step detailed discussion is given
to better comprehend how to launch this attack. This
discussion is extremely helpful from the reproducibility
perspective (of our work).

• We utilized the Gemini-LLM in integrating QR-based
BiTB phishing attack which generating the malicious
content through providing malicious prompts. The ma-
licious content further exploits while the execution of

ar
X

iv
:2

50
5.

18
94

4v
1 

 [
cs

.C
R

] 
 2

5 
M

ay
 2

02
5



QR-based BiTB attack in real-time.
• We presented a case study to demonstrate the execution

phase of this attack which helps readers to understand a
lucrative approach an attacker can use to successfully
launch this attack. This is presented with an overall
aim to further investigate novel threat models/approaches
in future and to contribute in continuing discussion on
productive counter frameworks applicable to mitigate this
attack in wider attack scenarios.

• A Proof-of-Concept (PoC) is given which shows a suc-
cessful launch of this attack using a practical and simple
approach. This is to show how publicly available tools
and resources, attacker could utilize to commence this
attack which is practical and easy to launch.

II. OVERVIEW OF THE QR-BASED
BROWSER-IN-THE-BROWSER (BITB) ATTACK

In this section, firstly we described the capabilities of
a dynamic QR code and then presented a case study to
understand an attackers’ approach to attract a potential victim.
Rest of the section includes a high level attack framework,
implementation setup, and execution part of proposed attack
as depicted in Fig. 2.

A. Capabilities of Dynamic QR codes

QR codes can be of two types: static and dynamic. Static
QR codes can be generated without any cost. The main
difference is, when a static QR code created with some content
(e.g. URL or text) it cannot be modified later. Whereas,
dynamic QR codes has a feature to update the embedded
content after its generation. Individuals and organizations
can acquire further details whenever an individual scan a
dynamic QR code such as the location, operating system (OS)
of scanning device, browser type (where link opens), and
current IP address of device, etc. To exemplify, we performed
an experiment with an online QR code generator (which
supports dynamic QR codes). We registered a trial account on
QRFY1 and generated a dynamic QR code. The results of this
experiment is presented in Fig. 1 (i). It clearly indicates that
user’s personal information is being sent on this site through
QR code.

B. Our Case Study

In our experiment, we consider an attacker, who offers
a potential victim the lifetime ‘YouTube Ads Free Access’.
To redeem offer, a potential victim requires to scan the
malicious dynamic QR code generated by the attacker. Upon
scanning, victim redirects to the phishing site, where attacker
mimicked the official web page of ‘YouTube premium’ access
i.e. https://www.youtube.com/premium with additional BiTB
attack settings which are real-time begin generating by pro-
viding specific malicious prompts to Gemini-LLM using its
API. The moment malicious site opens on victims’ browser,
the popup modal 1 generates using Gemini-LLM and shows
up as shown in Fig. 6 (a). This modal requests victim to input
his/her ‘First Name’. On submitting ‘First Name’, the popup

1https://qrfy.com/

Fig. 1: QRFY results upon scanning dynamic QR code.

modal 2 generates using Gemini-LLM and appears with the
Google signin form Fig. 6 (b). When victim provides his/her
signin credentials, then malicious script redirects victim to the
official app/site (app in case of mobile device and site in case
of desktop) of ‘YouTube’. Eventually, victims’ credentials gets
stored into the attackers’ database. The detailed description of
Fig. 6 is discussed in the following sections.

C. The High-Level Framework of the Proposed Attack

The step wise description of the high level framework in
Fig. 2 is discussed below:

Fig. 2: The point-by-point flow of QR-based BiTB attack.

Step 1: The operations 1(a), 1(b), and 1(c) executes simul-
taneously. In 1(a), an attacker creates a malicious
web page that shows up in victims’ browser (Chrome
in our experiment) running on local server link
(i.e. http://192.168.1.1:3000/claim-now). Afterwards,
1(b), opens the automated browser with a legit site on
attackers’ machine. During 1(c), the source of legit
site is captured and displayed on the malicious web
page (see Algorithm 1) using Selenium.

Step 2: In operation 2, attacker modifies the extracted source
by applying the BiTB settings on the malicious
web page using API of Gemini-LLM. This in-
cludes, appending fake address bar on top repre-

https://qrfy.com/


senting legitimate URL, a fake progress bar, a fake
popup modals, modified header, which are generated
through Gemini-LLM API. The intention of modals
is to prevent victims’ interaction with the web page
(like scrolling) and also to collect his/her sensitive
credentials.

Step 3: If victim falls into the trap of BiTB settings of
attacker and submits his/her credentials. Then in
operation 3, these credentials saved to MongoDB
database.

Step 4: In operation 4, the attacker embeds the server link
into the QR code. So that, victim cannot recognize
the malicious link before accessing it.

Step 5: Now, attacker is ready to disperse QR-based BiTB
attack and can utilize any resource to forward mali-
cious QR code to the victims such as by sending an
email with fake offer like our case study or posting
on social platforms, etc.

III. THE ATTACK IMPLEMENTATION SETUP: ATTACKERS’
SIDE

This section discussed the integral components involved
in our experiment to launch the QR-based Browser-in-The-
Browser (BiTB) attack which is divided into three modules.
Two of those modules are illustrated in this section. In addi-
tion, Algorithm 1 is also presented to better comprehend the
step-by-step process of QR-based BiTB attack from attackers’
end. Whereas, the third module is explained in the next
section.

Fig. 3: Detailed architecture of attack implementation setup.

A. Module 1:- Writing and launching the BiTB Attack using
Selenium:

In this module, the entire setup of Selenium with NodeJS
including the Gemini-LLM’s API is described and pictured in
Fig. 3.

1) New Project in NodeJS: Once NodeJS is installed, the
attacker creates a New Project with a server file bitb testing.js
in a specified directory. The entire malicious code is written

in NodeJS including the script of Selenium, database and
Gemini-LLM’s APIs to design settings of BiTB.

2) Defining PORT: To run project on local machine, a
specific port is defined for example, port = 3000 as shown in
Fig. 3 and Algorithm 1.

3) Selenium WebDriver: Next, from Algorithm 1, a func-
tion executeSelenium() for Selenium script is defined which
generates an automated browser (i.e. copy of Chrome) and
opens a legitimate site as shown in in simultaneous operations
1(a), 1(b), 1(c) in Fig. 2.

4) Route for Malicious Web Page: Now, attacker creates a
route ‘/clain-now’ for the malicious web page which appears
on victims’ browser and runs the malicious script. Firstly,
the executeSelenium() executes from its body and returns the
source of legitimate site. This process is outlined in operation
2 of Fig. 2 and Algorithm 1 where Gemini-LLM is also
employed to generate malicious code for BiTB settings. Later,
the attacker embeds this route with malicious link in the QR
code.

5) Route for Database API: The attacker also establishes
an API for database to save credentials of victim. For this,
attacker defines a post request as showing in Algorithm 1 and
connect the API with online database (MongoDB Atlas) using
a config-link.

Fig. 4: MongoDb Atlas Setup.

B. Module 2:- Storing victim’s sensitive credentials using
MongoDB Atlas online database:

Fig. 4 illustrates the process of the attacker creating online
database with MongoDB Atlas and connects this database
with NodeJS project with a configuration link and API. The
fundamental parts of this process are described below:

1) MongoDB Atlas: First, attacker signed up on official site
of MongoDB Atlas (https://www.mongodb.com/) and creates
a new project with name “QR-based BiTB Attack”.

2) Cluster and Database: To generate database inside the
project, attacker creates a cluster with name “BiTB-cluster-
db” and set up the username and password credentials to
access database.

3) Config Link: Following this, the created cluster provides
a configuration link and attacker modifies this link with
credentials to use in NodeJS project for database connectivity.

IV. QR-BASED BROWSER-IN-THE-BROWSER (BITB)
ATTACK EXECUTION: VICTIMS’ SIDE

This section presents the execution of QR-based BiTB
attack from victims’ end. Moreover, the working of first (se-
lenium module) and second (mongodb atlas module) module



Algorithm 1 Attackers’ settings for QR-based BiTB Attack
1: import libraries and set-up PORT = 3000

2: function executeSelenium()
3: pageSource← callAutomatedBrowser(‘https://youtube.com’)

4: return pageSource

5: app.get(‘/claim-now’)
6: modifiedContent ← executeSelenium()
7: modifiedContent ← pageContent + GemeniLLM_API(‘malicious

prompts’)
8: send(modifiedContent)

9: app.post(‘/api/save-user’)
10: save_result ← saveUser(first_name, email, password)
11: return ‘User saved successfully’

12: {Gemini-LLM generate and operates below function}
13: function saveUser(first_name, email, password)
14: user ← new User({first_name, email, password})
15: return ‘Success’

16: {Gemini-LLM generate and operates below functions}
17: function updateFakeAddressBar()
18: Input new legitimate address into the address bar
19: function runFakeProgressBar()
20: Progress bar executes
21: function modifyHeader()
22: Changes applied to header

can be seen in this (third) module. Additionally, Algorithm 2
is scripted to better comprehend the method.

For execution of BiTB attack, we deploy a Windows
laptop where module 1 and module 2 are already config-
ured. The NodeJS project is executed on local server url:
‘http://localhost:3000’. By default, this URL is inaccessible
on mobile. To enable this, attacker uses current IP address of
machine which is connected with available Wi-Fi network. Af-
terwards, the mobile accessible URL embeds in malicious QR
code was‘http://ip-addr:3000’. In Fig. 5 (a) and Algorithm 2,
victim scans the malicious QR code using built-in QR scanner
of mobile device. As a result, he/she gets embedded link to
open in default browser. The moment link open in browser,
the malicious script executes and initiates the Automated
Browser on attackers’ machine with a legitimate link of
https://www.youtube.com/premium as scripted in Algorithm 2.
The malicious script waits until page loads in Automated
Browser and instantly it returns the source code to the victims’
browser as shown in Fig. 5 (b) and (c), where, the original
address and progress bars are also visible.

While loading of the malicious web page, the requests of
malicious prompts also simultaneously sent to the Gemini-
LLM by triggering its API to implement and present the BiTB
attack settings on the malicious web page as highlighted in
Fig. 6 (a) and Fig. 6 (b). This includes, alluring heading and
paragraph texts, fake address bar displaying legit URL, fake
progress bar, modified header, a fake popup modal 1, and
modal 2 to acquire victim details. These settings from attacker
can easily trick an individual. In Fig. 6 (a) and Algorithm 2,
popup modal 1 requires victim to input his/her ‘First Name’ to
proceed further with claiming the offer. On submission, the
popup modal 1 hides and popup modal 2 shows up on the
malicious page as represented in Fig. 6 (b). Also, header and
progress bar of the page is further modified with ‘First Name’
of the victim using malicious script. Whereas, the URL in fake
address bar is also altered to new legit URL. In addition, the

Fig. 5: (a) QR Code Scanner output, (b) Automated Browser,
and (c) Victims’ Browser.

Fig. 6: (a) BiTB settings with Popup Modal 1 and (b) BiTB
settings with Popup Modal 2.

attacker keeps entered ‘First Name’ in variable first name as
highlighted in Algorithm 2.

Modal 2 is the final stage of the BiTB attack, where attacker
laid the trap of stealing victims’ sensitive credentials. To
manifest the legitimacy, attacker mimics the Google sign-in
form in modal 2 as depicted in Fig. 7 (a) and Algorithm 2,
whenever victim inputs his/her credentials in fake Google
form and submits it. Then after submission, the fake progress
bar refreshes again. Moreover, from Fig. 7 (b) and Algo-
rithm 2, victim redirected to the official app of ‘YouTube’
if he/she is using a smartphone. For desktop users, they
are redirected to official site of ‘YouTube’. Simultaneously,
victims’ credentials gets stored in MongoDB database. In
addition, dynamic QR codes captures individuals personal

http://localhost:3000


Fig. 7: (a) User inputting credentials in popup Modal 2,
(b) User redirects to official ‘YouTube’ app/site, and (c)
Screenshot from MongoDB database.

details upon scanning as shown in Fig. 2. This signifies that
the attacker eventually holds the credentials of a victim using
QR-based BiTB attack. Here, it is worth noticing that all of
above steps are executed and generated in real-time using
the malicious prompts which are requested to Gemini-LLM.
This indicates the explicit illustration of how LLMs can be
maliciously utilized in the execution of phishing attacks like
the one proposed in this article i.e. QR-based BiTB.

Algorithm 2 Execution of QR-based BiTB attack from vic-
tims’ end
Require: Algorithm 1 already defined, Malicious QR code embeds with a URL

1: Call app.get(‘/claim-now’) from Algorithm 1
2: Call function executeSelenium() from Algorithm 1

3: Modal 1 operates on victims’ browser and require ‘First Name’ using Gemini-LLM

4: if Details submitted then
5: Hide Modal 1 and keep input value in variable ‘first_name’
6: Call modifyHeader() from Algorithm 1
7: Call updateFakeAddressBar() from Algorithm 1
8: Call runFakeProgressBar() from Algorithm 1
9: Reveal Modal 2

10: end if

11: Modal 2 operates on victims’ browser and require ‘Email’ and ‘Password’ using
Gemin-LLM

12: Victim inputs credentials and submits it
13: if Details submitted then
14: Call runFakeProgressBar() from Algorithm 1
15: Hide Modal 2 and keep input values in variable ‘email, password’

16: Call app.post(‘/api/save-ser’) from Algorithm 1
17: Redirects victim to official app/site
18: end if

A. Key Insights

To sum up, the execution of QR-based BiTB attack from
scanning malicious QR code to showcasing multiple BiTB
settings, the attacker drives victim(s) during the whole process
of phishing attempt. Below are the core findings of our work:

• In our experiments, the manipulation of fake config-
urations are much simple and effective in terms of
vulnerabilities. We depicted how attacker utilizes easily
accessible tools to execute the proposed phishing activity.

• QR-based BiTB using Gemini-LLM brought up as a
novel social engineering attack technique that emphasizes
essential demand to further strengthen defenses that can
effectively withstand the evolving attack challenges.

• We demonstrated our case study using Chrome browser
on Android mobile, however, because of attacks’ general-
izability initiated from scanning a QR code to a browser
where subsequent steps executes, this attack is practically
possible with any browser and smartphone device.

V. CONCLUSION AND FUTURE DIRECTIONS

Our work shows a peculiar form of a novel phishing attack
i.e., QR-based BiTB attack using Gemini-LLM. The impact
of this attack magnified due to the concatenation of two in-
novative attacks including Quishing and BiTB, and utilization
of LLM. We demonstrated how simple compositions of open-
source available resources can initiate this attack. Attackers
continuously developing contemporary tactics to mislead users
through presenting seemingly authentic information. The pro-
posed QR-based BiTB is a prime example of it.

Lastly, this study has few shortcomings. Firstly, we utilized
Selenium webdriver tool on local server, however, this tool is
not supported by online servers due to its appearance in GUI
form like an actual browser (i.e. Chrome). Secondly, operating
this attack on local server requires attackers’ machine and
victims devices to connected on same network. This is because
an attacker needs to use the IP address while connecting with
network. We aim to address these gaps in future.

REFERENCES

[1] L. Huang, S. Jia, E. Balcetis, and Q. Zhu, “Advert: an adaptive and
data-driven attention enhancement mechanism for phishing prevention,”
IEEE Transactions on Information Forensics and Security, vol. 17, pp.
2585–2597, 2022.

[2] R. Goenka, M. Chawla, and N. Tiwari, “A comprehensive survey of
phishing: Mediums, intended targets, attack and defence techniques and
a novel taxonomy,” International Journal of Information Security, vol. 23,
no. 2, pp. 819–848, 2024.

[3] S. Asiri, Y. Xiao, S. Alzahrani, and T. Li, “Phishingrtds: A real-time
detection system for phishing attacks using a deep learning model,”
Computers & Security, vol. 141, p. 103843, 2024.

[4] S. S. Roy, P. Thota, K. V. Naragam, and S. Nilizadeh, “From chatbots
to phishbots?: Phishing scam generation in commercial large language
models,” in 2024 IEEE Symposium on Security and Privacy (SP). IEEE,
2024, pp. 36–54.

[5] L. J. L. Bekavac, S. Mayer, and J. Strecker, “Qr-code integrity by design,”
in Extended Abstracts of the CHI Conference on Human Factors in
Computing Systems, 2024, pp. 1–9.

[6] M. S. Al-Zahrani, H. A. Wahsheh, and F. W. Alsaade, “Secure real-time
artificial intelligence system against malicious qr code links,” Security
and Communication Networks, vol. 2021, no. 1, p. 5540670, 2021.

[7] M. Taeb, J. Wang, M. H. Weatherspoon, S. Bernadin, and H. Chi, “Seeing
the unseen: A forecast of cybersecurity threats posed by vision language
models,” in 2024 IEEE International Conference on Big Data (BigData).
IEEE, 2024, pp. 5664–5673.

[8] F. Tommasi, C. Catalano, and I. Taurino, “Browser-in-the-middle (bitm)
attack,” International Journal of Information Security, vol. 21, no. 2, pp.
179–189, 2022.

[9] J. Tzschoppe and H. Löhr, “Browser-in-the-middle-evaluation of a mod-
ern approach to phishing,” in Proceedings of the 16th European Workshop
on System Security, 2023, pp. 15–20.


	Introduction and Background
	Overview of The QR-based Browser-in-The-Browser (BiTB) Attack
	Capabilities of Dynamic QR codes
	Our Case Study
	The High-Level Framework of the Proposed Attack

	The Attack Implementation Setup: Attackers' Side
	Module 1:- Writing and launching the BiTB Attack using Selenium:
	New Project in NodeJS
	Defining PORT
	Selenium WebDriver
	Route for Malicious Web Page
	Route for Database API

	Module 2:- Storing victim's sensitive credentials using MongoDB Atlas online database:
	MongoDB Atlas
	Cluster and Database
	Config Link


	QR-based Browser-in-The-Browser (BiTB) Attack Execution: Victims' side
	Key Insights

	Conclusion and Future Directions
	References

