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Abstract

Sixth Generation (6G) wireless networks, which are expected to be deployed in the
2030s, have already created great excitement in academia and the private sector with their
extremely high communication speed and low latency rates. However, despite the ultra-low
latency, high throughput, and AI-assisted orchestration capabilities they promise, they are
vulnerable to stealthy and long-term Advanced Persistent Threats (APTs). Large Language
Models (LLMs) stand out as an ideal candidate to fill this gap with their high success in
semantic reasoning and threat intelligence. In this paper, we present a comprehensive sys-
tematic review and taxonomy study for LLM-assisted APT detection in 6G networks. We
address five research questions, namely, semantic merging of fragmented logs, encrypted traf-
fic analysis, edge distribution constraints, dataset/modeling techniques, and reproducibility
trends, by leveraging most recent studies on the intersection of LLMs, APTs, and 6G wireless
networks. We identify open challenges such as explainability gaps, data scarcity, edge hard-
ware limitations, and the need for real-time slicing-aware adaptation by presenting various
taxonomies such as granularity, deployment models, and kill chain stages. We then conclude
the paper by providing several research gaps in 6G infrastructures for future researchers.
To the best of our knowledge, this paper is the first comprehensive systematic review and
classification study on LLM-based APT detection in 6G networks.

1 Introduction

The rapid development of wireless technologies increases expectations for 6G networks with
ultra-low latency and artificial intelligence-based orchestration architecture [1]. To meet these
expectations, 6G networks operate with a heterogeneous architecture where many layers, such
as physical and network layers, work together, which means a larger attack surface [2]. The
wide attack surface in 6G systems requires that measures be taken against Advanced Persistent
Threats (APTs), one of the hidden and long-stage attack methods that are difficult to detect
with traditional detection mechanisms [3].

Large Language Models (LLMs) with semantic and contextual reasoning features are one of
the most promising developments that can be used against APTs [4]. In particular, it can be used
for the detection of APT in 6G networks by analyzing fragmented logs and increasing situational
awareness [5]. Despite this potential, there is no comprehensive taxonomy or systematic analysis
in the literature on LLM-based APT detection for 6G networks.
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To the best of our knowledge, this paper is the first comprehensive systematic review and
classification study on LLM-based APT detection in 6G networks. As a result of the current
studies examined by the authors using identification, screening, eligibility, and inclusion (snow-
balling) techniques, 142 articles were analyzed. Our aimed is to synthesize the intersection of
LLM architectures, APT lifecycle modeling, and 6G-specific security challenges and provide
insights for future research.

1.1 Motivation and Contributions

LLMs and 6G technologies are very recent research areas and their intersection in cyber threat
detection, such as APT attacks, has not been sufficiently investigated in the literature. Exist-
ing studies are scattered across either LLM-based cybersecurity or 6G network security issues.
Furthermore, 6G networks are still in their infancy (expected to become widespread after the
2030s) and contain obstacles for AI and rule-based systems due to issues such as a fragmented
structure of source data and end device limitations [6]. For all these reasons, a detailed investi-
gation should be conducted to explore the potential of LLMs in providing explainable detection
mechanisms throughout the 6G infrastructure. The main contributions of this paper can be
summarized as follows:

• We present the first Systematic Literature Review (SLR)-based review focusing on LLM-
enabled APT detection in 6G networks. To do this, we searched more than 300 most
recent and relevant papers in academic and industrial databases between 2018-2025. As a
result of the systematic analysis (Kitchenham’s SLR approach and Petersen’s Systematic
Mapping Study (SMS) [7, 8]), the most relevant 142 papers in the field were obtained.

• We define five-point research questions to conduct the systematic review (Section 4.2).
In line with these questions: (i) Semantic correlation of fragmented logs generated in 6G
networks and how it can be used for LLMs threat detection (Section 5.1), (ii) Limita-
tions of 6G encrypted channels and how it can address LLMs visibility and reasoning
challenges (Section 5.2), (iii) Challenges of deploying LLM to edge nodes on 6G networks
and optimization techniques for these challenges (Section 5.3), (iv) Datasets and modeling
techniques used in LLM-based APT detection studies (Section 5.4), and (v) Exploration
of publication trends, platform distribution, and reproducibility for LLM-focused APT
research (Section 5.5).

• LLM deployment models, threat lifecycle stages, optimization strategies for edge inference,
and taxonomy studies for dataset types are presented.

• Research gaps, such as explainability gaps, dataset scarcity, and 6G orchestration risks,
are highlighted through critical analysis. And future directions, such as slice-aware XAI
pipelines and unified demand tuning techniques, are highlighted.

• A comparison of this paper with 16 previous reviews in the literature. The comparison is
made to highlight the novelty and necessity of the paper.

1.2 Article Organization

Figure 1 shows the organizational chart for this paper. Section 2 provides a comparison with
related surveys to highlight the novelty of the paper. Section 3 explains the basic background of
APTs, 6G networks, and LLMs, and explains their roles in cybersecurity. Section 4 explains the
methodological structure, such as the article selection methods and research questions for this
systematic review. Section 5 provides an in-depth analysis of five key research questions. Section
6 indicates open challenges and future directions for researchers in the relevant research area.
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Section 7 concludes the paper by summarizing the findings and emphasizing the importance of
LLM-based APT detection in 6G.
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LLM's for APT Detection in 6G Networks
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Figure 1: The Organization of the Survey

2 RELATED SURVEYS

The use of LLMs in the detection and prevention of APTs, which are potential cybersecurity
threats in 6G, is still an area that needs to be investigated. The main reason for this is that there
are limited datasets in the literature on APTs and 6Gs can only be modeled simulation-based.
When the literature is examined, it is seen that although there are surveys focused on 6G, APT,
LLMs, and LLM-based security, however, there is no systematic review and taxonomy study
that addresses LLM, APT, and 6G in a combined manner.

LLM-Focused Cybersecurity Surveys: Several recent studies in the literature have
examined the role of LLMs in the field of cybersecurity. Hassanin et al. [9] provide an overview
of the role of LLMs in applications such as threat intelligence and phishing detection in their
review. In [10, 11, 12, 13], they examine the architectures used for LLM-based attack detection
and threat analytics in a more systematic way. Zuo et al. [14] presented an analysis study
examining LLM’s usage for APTs. This study investigated the semantic augmentation of LLM’s
(such as GPT-4o) origin logs for APT detection. However, this study is superficial, not a survey
or taxonomy, and does not include the 6G context. In another study, the authors present a
review of language models (including APT), but do not include any information about 6G and do
not use a formal methodology such as SLR [15]. Although LLM’s sheds light on the applications
in cybersecurity, none of these studies cover 6G and its limitations and opportunities.

APT-Focused Surveys: Some of the literature studies investigated APT detection using
DL and rule-based learning. In [16, 17], classifications and threat lifecycle analyses of APTs are
examined, while in [18] DL-based cyber attack detection systems (partially addressing APT)
are investigated. Although all these survey studies partially or in detail mention APTs, none of
them provide detailed information about LLM-based approaches or 6Gs (such as network layer
dynamics).

6G Focused Surveys: Another area of survey research in the literature examines the
technical foundations of 6G. Shen et al. [19] covers five main aspects of 6G (such as spectrum
and positioning) in detail. In [20, 21, 22, 23], important components in 6G (such as IoT
integration and federated learning) are comprehensively examined. In another survey study,
Sun et al. [24] investigate the importance and use of explainable AI (XAI) in 6G network

3



slicing and vehicle contexts. However, none of these studies address LLM and security issues.
Among the reviewed literature studies, [10, 11, 12, 13, 18] examine model architectures and

use cases in detail in their focused research topic using systematic research methodology such as
PRISMA. Furthermore, some of the studies [11, 13] provide binary taxonomies of cybersecurity
tasks, while in [20, 19, 21, 23] they strongly address 6G at the architecture and protocol level.
However, none of the reviewed articles address LLM, APT, and 6G in a unified manner.

2.1 Critical Analysis

Table 1 provides a comparison of 16 recent survey studies with this paper. When the table is
examined, it is seen that this paper fills the following three critical gaps:

• Combining consideration of LLM, APT, and 6G: None of the reviewed studies
simultaneously address the intersection of LLM-based threat detection, APT lifecycle
modeling, and 6G network features.

• Providing a detailed taxonomy for APT detection: The vast majority of studies
are in the form of a general survey, and those that do include a taxonomy lack details
such as the lifecycle of APTs.

• Providing a comparative synthesis across fields: Few of the reviewed studies include
multidimensional comparisons (such as methodology, model types). The lack of such
comparative syntheses makes it difficult to assess the overlap and gaps between the topics
covered by the survey.

Table 1: Comparison of Our Systematic Review and Taxonomy with Existing Survey Studies
Paper Focus Area 6G-Specific APT-Specific LLM-Specific Type SLR Methodology Publisher Year

[9] General Cyber Defence ✗ ✗ ✓ Review ✗ Arxiv 2024
[10] LLMs in Cybersecurity ✗ ✓ ✓ Systematic Review ✓ Arxiv 2024
[11] IDS with Transformers & LLMs ✗ ✓ ✓ Review and Taxonomy ✓ Elsevier 2024
[12] LLMs in Cybersecurity ✓ ✓ ✓ Systematic Survey ✓ IEEE 2025
[13] LLMs in Cyber Threat Detection ✗ ✓ ✓ Systematic Review ✓ Elsevier 2024
[14] LLM-Augmented Provenance for APT Detection ✗ ✓ ✓ Research Paper ✗ Sandia TR 2025
[15] PLMs/LLMs in Cybersecurity ✗ ✓ ✓ Review ✗ IEEE (ISDFS) 2024
[16] APT Analysis & Countermeasures ✗ ✓ ✗ Review and Taxonomy ✗ Springer 2019
[17] APT Detection Techniques ✗ ✓ ✗ Survey ✓ TechScience (CMC) 2024
[18] DL Techniques for IDS ✗ ✓ ✗ Systematic Survey ✓ ACM 2025
[19] 6G Architectures & Networking ✓ ✗ ✗ Survey ✗ ACM CSUR 2023
[20] Federated Learning in 5G/6G Cybersecurity ✓ ✗ ✗ Comprehensive Survey ✓ IEEE 2025
[21] 6G and IoT Integration ✓ ✗ ✗ Comprehensive Survey ✗ IEEE 2022
[22] Optimization & Performance of LIS in 6G ✓ ✗ ✗ Survey ✗ IEEE Access 2020
[23] 6G Technologies & Architectures ✓ ✗ ✗ Survey ✗ IEEE 2022
[24] Explainable AI for 6G ✓ ✗ ✗ Systematic Survey ✓ IEEE OJ-COMS 2025

Our Paper LLMs for APT Detection in 6G ✓ ✓ ✓ Systematic Review and Taxonomy ✓ Computer Science Review (Planned) 2025

3 BACKGROUND

This section provides the basic background necessary for the reader to better understand the
concepts related to LLM-based APT detection in 6G networks.

3.1 Advanced Persistent Threats

Advanced Persistent Threats (APT) are one of the most effective cyber attacks known due to
their characteristics, such as stealth and longevity. This subsection defines APT and explains its
key characteristics, lifecycle, and attacker behaviors (TTPs). Then, a comparison of traditional
attacks and APTs is provided for APT.

3.1.1 Key Characteristics of APT

APTs use multiple vectors to gain long-term access to an IT environment and are like an attacker
with significant expertise and resources [25]. They have three basic characteristics [26]:
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• Advanced: These attacks specialize in zero-day attacks and tactics to evade detection.

• Persistent: They encourage new APT attacks by leaving backdoors in the systems they
penetrate.

• Threat: They carry out attacks such as espionage, sabotage, or exfiltration of critical
data from the systems.

3.1.2 The Lifecycle of APTs

The lifecycle for APT attacks is shown in figure 2 and can be summarized in five basic stages
[16, 17, 15]:

• Reconnaissance: This is the first stage of the attack, and information about the target
is collected (Open Source Scanning (OSINT)), and system vulnerabilities and weaknesses
are investigated.

• Initial Intrusion: The entry into the target system is achieved through methods such
as phishing and malware.

• Command and Control (C2): Preparation of the infrastructure to communicate with
the APT inserted into the target system (such as backdoor channels).

• Lateral Movement: Infiltration of other devices connected to the same network within
the system and detection of high-value targets.

• Data Exfiltration: The final stage involves malicious operations such as exfiltration of
data in the target system using APT and system sabotage.

Information Gathering
Investigating Vulnerabilities

Phishing
Entry to the System

Reconnaissance

1

Initial 
Intrusion

2

APT Lifecycle

Command &
 Control (C2)

3

Access to the System
Back Door  

Infiltration 
Target Detection

Data Theft
Sabotage

4

5

Lateral 
Movement

Data 
Exfiltration

Figure 2: The five-stage Lifecycle of an APT

3.1.3 Tactics, Techniques, and Procedures (TTPs)

TTPs are shown in Figure 3 and are the framework used to classify the behavior of an APT
attack. It can be defined as follows [27]:

• Tactics: Used to define the goal of the attack, such as gaining access to a system.

• Techniques: Refers to the technique used to achieve this goal. An example would be
DLL injection.

• Procedures: Refers to the way the attack is implemented, such as sending a special
email.
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TTPs

Tactics Techniques Procedures

Figure 3: The Hierarchical Structure of TTPs

3.1.4 APT vs. Traditional Attacks

APTs and traditional attacks differ from each other in many ways, such as target, tactics,
duration, and these differences are shown in Table 2. Traditional attacks aim to cause general
damage and aim for quick gain, while APTs are long-term and professional attacks (usually
state-sponsored) [26]. Traditional attacks identify weak systems by simultaneously attacking
many targets, while APTs are more target-oriented and the attack process is carried out in a
long and sneaky way [28].

Table 2: Comparative Characteristics: Traditional Attacks vs. Advanced Persistent Threats
(APT)

Attribute Traditional Attack Advanced Persistent Threat (APT)

Target Broad or Random Highly Specific
Duration Short-lived Prolonged (Months or Years)
Entry Vector Known Exploits Custom Zero-Days, Spear Phishing
Goal Financial Gain, Disruption Espionage, Strategic Access
Tools Used Commodity Malware Tailored, Multi-Stage Toolkits

3.2 6G Wireless Networks

3.2.1 Architectural Foundations of 6G

6G is the new generation of wireless communication paradigm that emerges with the integration
of advanced physical technologies and software-defined network solutions [29]. In order to
provide uninterrupted communication in the 6G architecture, it is a heterogeneous structure
(Ultra-Dense Heterogeneous Networks) that combines three basic layers: terrestrial, aerial, and
satellite [30]. In order to reach a data rate of more than 1 Tbps, technologies such as Terahertz
(THz) communication and Visible Light Communication (VLC) are used [31]. In addition,
power-sensitive technologies such as Reconfigurable Smart Surfaces (RIS) and Software-Defined
Metasurfaces (SDM) are used to reduce latency [32].

The 6G networks with heterogeneous architecture shown in Figure 4 try to reduce com-
putational loads with edge devices and AI-based systems [33]. While 5G architectures use a
centralized system, in the 6G architecture, thanks to decentralization, network slices can be
optimized autonomously via AI-based engines. However, despite these advantages, the hetero-
geneous and decentralized architecture offers a large attack surface and is exposed to cyberattack
threats [33].
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Figure 4: 6G Architectural Pillars and Deployment Layers

3.2.2 Key Features of 6G

Table 3 shows a feature comparison of 5G and 6G, and as can be seen, 6G (key features) is
superior in every aspect. 6G is expected to work in harmony with real-time holography and
trusted autonomous systems once it is available for daily use [34]. 6G relies on AI-powered
protocols and advanced infrastructure capabilities to meet these demands [35].

Table 3: Comparison of Key Features Between 5G and 6G Wireless Networks
Feature 5G 6G

Latency Approximately 1 millisecond Less than or equal to 0.1 milliseconds

Data Rate Up to 20 Gbps At least 1 Tbps

Frequency Range Sub-6 GHz and millimeter wave Sub-Terahertz (Sub-THz) and Visible Light Communication (VLC)

Architecture Centralized network control Distributed and AI-powered network architecture

Security Add-on security features Built-in, intent-aware security mechanisms

3.2.3 Vulnerabilities and Threat Landscape in 6G

Despite the high speed and wide infrastructure opportunities they offer, 6G networks also carry
risks such as misconfiguration and hostile exploitation due to AI-based control logic and network
software such as SDN/NFV [36]. If vertical slicing and segmentation operations in networks do
not work correctly, they become vulnerable to lateral attacks (sourced by APT’s etc.) [37].

Possible potential attacks that may occur in 6G are shown in Figure 5. Attack types can
range from physical layer compression to manipulation. Another potential danger is that the
AI mechanisms responsible for 6G orchestration are vulnerable to attack and data leakage in
cases where RIS and THz communication channels are not properly set [38]

THz/mmWave jamming 
and interception Physical & Data Link Layer

SDN hijacking Network Layer

Congestion-based 
attack vectors

Transport Layer

FL poisoning Application & Service Layer

Orchestration 
attacks 

Cross-Layer & Management Plane

Explainability-based 
adversarial attacks AI/ML-Specific Layer 

Attack Surfaces Layer

Figure 5: Illustration of Potential Attack Surfaces Across the Hierarchical 6G Network
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3.2.4 6G-Specific Challenges for APT Detection

APTs are expected to threaten the rapid lateral movements that 6G will bring to our lives
[39]. In addition, behavioral detection becomes more complex for traditional signature-based
intrusion detection systems (IDS) due to architectural features such as encrypted layers and
dynamic topologies [40].

Another challenge for 6G networks is the scarcity of APT datasets, which makes it difficult
to train security models [41]. Another challenge is the fragmented nature of source logs, as this
limits the correlation between layers that can be used in APT detection [42].

3.2.5 Research Trends Integrating 6G and AI for Security

Literature studies investigate the use of FL at edges to detect attacks while also concerning
privacy [43]. In addition, XAI methods for decision-making mechanisms are another frequently
investigated method [44]. Beyond these, mapping TTPs and analyzing logs with LLM’s based
systems are promising [45]. However, since edge devices are resource-constrained and storage-
limited devices, these limitations should be taken into consideration when deploying LLM’s at
edges, and strategies such as model distillation should be applied [46].

3.3 LLM’s for APT Detection in 6G Networks

3.3.1 Overview of LLM Architectures and Security-Oriented Specializations

Developed on Transformer architecture, LLM’s have made a great breakthrough in the field of
AI, and these models provide representation learning by making sense of the context [47]. In
other words, these LLM’s indicate the ability to understand the meanings of words in context
beyond their dictionary meanings. Thanks to this ability, they achieve great success in natural
language understanding (NLU) and generation (NLG) tasks [48].

This technological development (LLMs) has begun to be used in many areas, especially in
cybersecurity, and the evolution of LLMs in cybersecurity use is shown in Figure 6. These areas
of use can be examined under three main headings [49, 50]:

• General-Purpose: LLM models that can be trained with large text collections and used
for various purposes.

• Domain-Specific: LLM models trained (fine-tuned) using purpose-oriented cybersecu-
rity data.

• Emerging Techniques: These are methods that make LLM’s models lightweight and
specific to their intended use.

General-purpose models such as BERT (2018), GPT-2 (2019) have shown success in text
classification and question-answer tasks, and with the customization of these models, domain-
specific models such as SecBERT (2020), CyBERT (2021) have been developed and started to
be used in special tasks such as malware detection (such as APT). And studies on emerging
techniques continue to increase the performance of these models.

3.3.2 Applications in Cybersecurity and APT Detection

LLMs have been used in cybersecurity for multi-APT detection and response, returning based
on attack type [51]. LLM’s features, such as contextual reasoning and linguistic understanding,
make it particularly suitable for APTs with multi-stage attacks [52]. Figure 7 shows a tree
structure for LLM application areas in APT detection. As can be seen from the figure, LLMs
are versatile in the cybersecurity context [53, 54, 55]:
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Federated / 
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Figure 6: Evolution of Large Language Models (LLMs) for Cybersecurity

• Threat Intelligence: LLM’s models can extract TTPs using open-source data such as
threat reports.

• APT Behavior Modeling: Logs and lineage data can be used to semantically interpret
multi-stage APTs.

• Anomaly Detection: LLMs context-aware feature can detect anomalous behavior (net-
work and system logs).

• Alert Triage and Incident Response: Natural language summarization translates
alerts into insights to extract meaningful information (helpful for analysts).

• TTP Alignment: LLMs fine-tuning can map hostile behaviors for low-fire systems to
MITRE ATT&CK stages.

In dynamic networks (especially 6G networks), the GPT family provides situational aware-
ness in complex architectures where traditional detection methods can struggle.

Application Areas Of 
Llms In APT Detection

Threat 
Intelligence

Log & 
Provenance 

Analysis

Anomaly & 
Intrusion 
Detection

Incident 
Summarizati

on

APT Lifecycle 
Mapping 

Behavioral 
Deviation 
Detection

Ttps 
Extraction

APT Behavior 
Modeling

Alert And Log 
Summarizati

on

MITRE 
ATT&CK 

Alignment

Figure 7: Application Areas of LLMs in APT Detection

3.3.3 LLM Integration Challenges in 6G Edge Environments

Edge devices positioned close to the data source have advantages such as low latency and low
bandwidth usage, but also disadvantages such as heterogeneous structure and limited processing
power [56]. For this reason, problems arise due to these limitations when LLMs are deployed
on 6G-based edge devices. Figure 8 summarizes these limitations and possible solutions [1, 2]:

• Resource Constraints: Since LLMs require high processing power and storage, their
implementation on resource-constrained 6G edge devices (RAM & Compute Energy Effi-
ciency) is one of the major problems that can be encountered.

9



• Latency Constraints: Edge devices, which are expected to offer a low latency advantage
due to being positioned close to the data source, may lose this advantage due to the high
computational time of LLMs.

• Privacy & Compliance: Sensitive data such as biometrics must take into account some
privacy concerns when processed on edge devices [56, 57].

The methods to solve these challenges can be summarized as follows [58, 59]:

• Compression: LLMs can be downgraded to lower versions to reduce memory and pro-
cessing load.

• Knowledge Distillation: Information obtained from large models can be transferred to
smaller models to minimize performance loss.

• Federated/Split Inference: Both privacy and efficiency can be increased by distributing
the components of the LLM model to different edge nodes and processing them.

Challenges of LLM 
Deployment in 6G Edge 

Environments

Resource 
Constraints

Latency 
Constraints

Privacy & 
Compliance

Solutions

Model 
Compression

RAM & 
Compute

Energy 
Efficiency

Knowledge 
Distillation

Federated/
Split 

Inference

Figure 8: Challenges of LLM Deployment in 6G Edge Environments

3.3.4 APT Detection-Specific Benefits of LLMs in 6G Context

LLM models have great potential in APT threat reduction studies in 6G networks, which are
expected to be used in the near future. This potential stems from the success of LLM models
in establishing semantic correlations between data types and their ability to analyze the attack
lifecycle as a whole [60]. The contributions of LLM models for APT detection in 6G networks
can be generalized as follows [61, 62]:

• Cross-Layer Fusion: It can be used in the detection of multi-vector attacks by combining
log records from the control and user planes and the cloud layers.

• Lifecycle Prediction: LLM models can use past attack data to predict the next step in
the APT kill-chain.

• Semantic Generalization: LLM models can capture attacks in a contextual manner in
encrypted and hidden attack situations where traditional systems are inadequate.

Figure 9 shows the contributions of LLM models for layers. As can be seen from the figure,
LLM models can perform multi-layered threat modeling by performing detection not only at
the packet level but also at various levels of the network.

In addition, LLM models not only interpret the behavior of APT attacks but also provide
insight into the attack lifecycle phases and response mechanisms. Figure 10 shows the tasks
that LLMs undertake in the APT kill chain model.
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Figure 9: Cross-layer APT Detection with LLMs in 6G
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Figure 10: LLM-Driven APT Kill Chain Detection

3.3.5 Proposed Taxonomy: LLM-Driven APT Detection in 6G

This paper aims to classify LLM-based APT detection approaches in 6G networks and provide
a comprehensive taxonomy. Figure 11 shows this taxonomy and can be summarized in five
dimensions:

• Input Modalities: LLM models can be fed from various data sources such as logs and
PCAP.

• Detection Granularity: LLMs can perform APT detection at different levels, such as
single-packet analysis and session-based modeling.

• LLM Techniques: LLM models can be trained in various ways (prompt tuning, etc.)
according to different scenarios.

• Deployment Models: LLMs can be deployed on different platform environments, such
as cloud computing and edge computing.

• Threat Lifecycle Phase: LLM models can provide analysis and interventions at various
stages of the APT kill chain.

4 REVIEW METHODOLOGY

This section presents the methodologies employed in the systematic review of LLM-driven APT
detection approaches within 6G wireless networks and subsequently outlines the formulated
research questions.

11



Taxonomy of LLM-based APT 
Detection in 6G Networks

Input 
Modalities

Logs

Provenance 
Graphs

PCAPs

Detection 
Granularity

LLM 
Techniques

Deployment 
Models

Threat 
Lifecycle 

Phase

Exfiltration

Lateral 
Movement

Packet-level

Kill-chain 
Stage-level

Session-level

Prompt Tuning

Adapter-based 
Transfer

Fine-tuning

Cloud

Edge

Fog

Reconnaissan
ce

Privilege 
Escalation

Initial Access

Figure 11: LLM-Based APT Detection Taxonomy in 6G Networks

4.1 Papers Collection

Since LLM-focused APT detection approaches in 6G wireless networks are a very current topic,
we targeted the years 2018-2025 (current) to collect the relevant current literature studies. The
following keywords were used to identify the studies related to the research topic:

1. [(LLM) — (LargeLanguageModel)] & [(APT) —— (AdvancedPersistentThreat)]—

2. [(6G) — (WirelessNetworks)] & [(LLM) —— (APTDetection)] & [(Edge) —— (Cross-
LayerSecurity)]—

3. [(CyberThreatIntelligence) — (ProvenanceLogs)] & [(LLM) —— (APT)] & [(6G)]—

4. [(LLM)] — [(APT)] —— [(6G)]—

Figure 12 shows the collection and filtering process of the articles examined in this study.
The steps carried out for this process are aimed at providing a comprehensive and structured
analysis by following Kitchenham’s Systematic Literature Review (SLR) and Petersen’s System-
atic Mapping Study (SMS) approaches [7, 8]. The steps summarizing this process are explained
below:

• Identification: Known major academic literature sources (IEEE, ACM, Elsevier, Springer),
technical reports, book chapters, and reference lists were scanned.

• Screening: Duplicate documents were removed, and the number of papers decreased to
126.

• Eligibility: Papers collected by our expert authors were analyzed, and only quality and
scope-compliant papers were selected (the number of papers decreased to 120).

• Included: Additional relevant studies were added using the backward and forward snow-
ball method, and the paper set was determined as 142 [63].

4.2 Research Questions

The research questions used in the systematic review and the section in which they are examined
are shown in Table 4. Using these research questions, the current literature is examined and
analyzed.

5 ANALYSIS

In this section, we discuss how we addressed the research questions in this study.
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Figure 12: The Paper Collection Process

Table 4: Summary of Research Questions (RQs), Motivations, and Corresponding Sections
NO RQ Motivation Section

1
How can LLMs semantically use

fragmented provenance data from 6G sources in APT detection?
The aim of this RQ is to investigate how

fragmented resource records can be attributed by LLMs in 6G.
5.1

2
What are the limitations of encrypted 6G channels

in APT detection and what features of LLM can solve this problem?

The aim of this RQ is to examine the
potential challenges posed by 6G networks in APT

detection and how LLMs can solve them.
5.2

3
What are the resource constraints in LLMs deployment

to 6G edge devices and what techniques can be used to mitigate these limitations?
The aim of this RQ is to explore which compression strategies

can be applied when deploying LLMs models to 6G edge devices.
5.3

4
What are the datasets and modeling methods available for

LLM-driven APT detection approaches within 6G wireless networks?
The aim of this RQ is to investigate suitable datasets and dataset generation
methods for LLM-focused APT detection approaches in 6G wireless networks.

5.4

5
Where are existing LLM-based APT studies

published and do they support reproducibility?
The aim of this RQ is to evaluate the reproducibility of the

dataset and model usability of the reviewed studies.
5.5

5.1 Semantic Correlation of Fragmented Provenance Logs in 6G (RQ1)

6G networks contain a lot of fragmented lineage data due to their heterogeneous structure (edge,
cloud, etc.), and this data is distributed and inconsistent, which causes difficulties for security
analysts and attack systems in APT detection [64]. One example of these difficulties is that
rule-based and statistical detection methods fail to capture the nuanced context required for
attack detection [65, 66]. Recent studies have focused on LLM-based methods to semantically
combine fragmented lineage data and provide context-aware correlation. Figure 13 shows how
fragmented lineage data can be semantically associated with LLM-enabled systems in a multi-
layered manner. LLMs offer a promising solution by generating consistent security narratives by
syntactically and temporally handling various records (such as security logs) [67, 68, 69, 70, 71].

Recent findings have shown that LLM’s models can effectively utilize many different sources,
such as audit logs [67], IDS alerts [4], CTI reports [72], and even static code artifacts [73]. Mod-
els that transform low-level source sequences into textual formats, such as APT-LLM [67],
GENTTP [72], and LLMeLog [69], have been developed to reflect the system behavior seman-
tics of models such as BERT or RoBERTa. Frameworks based on multitasking instructions and
thought chains, such as SEVENLLM [74] and AnomalyGen [75], have been proposed for reason-
ing in data-scarce environments. For enrichment techniques, the literature includes studies such
as retrieval-augmented generation [68], clustering embedding [76, 69], and ATT&CK alignment
via request templates [77].

Many frameworks have been proposed that support fragmented logs with deep reasoning
by capturing temporal, causal, and entity-level relationships and that resort to graph-based
modeling. SHIELD [68], MultiKG [78], and MAD-LLM [79] frameworks use source graphs
that encode dependencies of edges and represent system events at nodes. Other works such as
AURORA [80] and DroidTTP [71] reconstruct attack sequences by applying classical planning
and LLM. Works such as LocalIntel [81] and MCM-LLAMA [82] prefer dynamic association of
SOC information and external alerts, while works such as LUNAR [76] and AnomalyGen [75]
prefer association with CTI corpora. For high-level reasoning and explanation generation, these
works resort to semantically annotated graph-based modeling.

Despite all these developments, there are still limitations that remain to be addressed. SEV-
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ENLLM [74] and SHIELD [68] frameworks use organized and synthetic logs, but this does not
fully reflect the dynamic, heterogeneous nature of 6G. Another point to note is that mitigation
strategies such as hybrid verification [67] and instruction fine-tuning [74] are rarely applicable
to edge contexts. In addition, LLMs’ high processing power and storage requirements make
their application in 6G edge nodes a serious challenge, and therefore, the need for lightweight
alternative methods such as TinyLM agents [83] or MoE-based distributed inference [79] is
increasing. For future research, areas such as cross-layer lineage fusion, real-time semantic
timeline reconstruction, and hallucination-aware causal modeling [73] stand out as a research
gap.
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Figure 13: RQ1 Taxonomy: LLM-based Semantic Correlation of Fragmented Provenance Data
Across Heterogeneous 6G Sources

5.2 Limitations of Encrypted 6G Channels and LLM-Driven Solutions (RQ2)

The widespread use of some communication protocols, such as DNS-over-HTTPS (DoH) and
end-to-end encrypted tunnels, in the transition to 6G wireless networks has made great contribu-
tions to security and user privacy. In addition to these contributions, it also brings disadvantages
like blind spots, such as traffic semantics obscurity for AI-supported detection systems. Fig-
ure 14 shows a taxonomy of LLM-focused solutions offered to address the challenges, limitations,
and risks of 6G networks due to encrypted channels.

5.2.1 Technical Limitations Imposed by Encryption

Encrypted 6G traffic channels limit the visibility of attack surfaces due to the techniques used
(such as DoH). Recent studies have shown that advanced DL models fail to detect malicious
traffic because semantic payloads become ambiguous while being encrypted [84]. In addition,
advanced attack methods such as APT try to avoid detection by using encrypted channels
such as DoH and embedding the C2 infrastructure in HTTPS payloads [85]. Edge-based data
isolation, whose main purpose is privacy, prevents correlation (temporal and spatial) between
devices. For example, since fragmented traffic logs are produced in UAV-based 6G networks,
anomaly monitoring becomes very difficult [86]
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5.2.2 LLM-Driven Mechanisms to Address These Gaps

To overcome all these limitations, LLMs are promising by making meaningful inferences with
their capabilities in semantic reasoning and contextual abstraction.

A recent study, APTSniffer, is a framework that detects APTs in encrypted channels by
converting flow features into textual prompts [87]. The results confirm that the framework is
successful with a 97% F1 score. Another study, MAD-LLM, is a framework that reconstructs
APT chains by semantically collecting them through LLMs despite fragmented IDS alerts and
encryption at the network layer [79]

Some malware (such as DoHunter, Godlua) are difficult to detect by detection systems
because they use encrypted channels, so researchers track some technical features of the traffic,
such as timing, length, and target domain structure, in addition to raw data with LLM models
[85].

5.2.3 Emerging Challenges and Threats

Although using LLM models in encrypted channels is a promising solution, it is important to
consider LLM-based vulnerabilities. One of these vulnerabilities is that LLM behavior can be
manipulated by hostile requests and poisoned rollbacks. Studies have confirmed that fine-tuned
LLM models based on RL can generate malicious traffic [84]. Furthermore, literature confirms
that LLM models inject hidden logic into LLM models that are activated by benign triggers in
encrypted channels [88]

In conclusion, while LLM models provide an advantage, such as semantic visibility for attack
detection in encrypted channels, they also inherently introduce attack surfaces.

Table 5 summarizes the main limitations of encrypted 6G environments in light of the current
literature reviewed.

Table 5: Mapping Encrypted 6G Challenges to LLM-Driven Solutions
Work Limitation LLM-Based Technique

Xu et al. [87] Payload Obfuscation Retrieval-Augmented Inference
Du et al. [79] Alert Fragmentation Multi-stage Reasoning via Prompt Engineering
Diao et al. [85] Covert DoH C2 Channels LLM + Expert Features for Tunnel Detection
Cheng et al. [89] Contextual Reasoning in Sparse Logs Log Fusion and Interpretation via Few-shot Learning
Sun et al. [84] LLM Model Poisoning via Traffic Adversarial Sample Generation with Reinforcement Learning (RL)
Liu et al. [88] Contextual Logic Corruption In-context Backdoor Prompt Manipulation
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5.3 Deploying LLMs at the Edge: Constraints and Optimization Techniques
(RQ3)

Despite the advantages of high speed and low latency offered by 6G networks, they consist of
many different distributed nodes and heterogeneous structures, such as edge devices. Therefore,
LLM models to be used for security, privacy, and context-adaptive smart applications should
also take into account the major computational, architectural, and security-related challenges
when deployed in 6G networks. This research question (RQ3) examines optimization tech-
niques for edge scenarios by categorizing these constraints. Figure 15 shows edge-oriented LLM
optimization strategies.
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Figure 15: RQ3 Taxonomy: Edge-Oriented LLM Optimization Strategies

Resource Constraints in Edge Environments: Edge devices (IoT, smartphones, etc.)
consist of devices with limited processing power and storage capabilities, and even very small
LLM models require more than 7GB RAM, which is usually beyond the capacity of edge com-
puting devices [90]. Furthermore, due to the nature of LLMs (autoregressive), sequential token
generation may cause latency bottlenecks [91].

Security and Fairness Considerations: Since LLM models deployed on edge nodes typi-
cally handle user data, privacy concerns may arise if this data is compromised [3]. Additionally,
recent studies have reported that compression techniques used to make LLM models lighter
for edge nodes may increase bias against underrepresented groups [92]. Therefore, the issue of
fairness and reliability in compression cases is an open research gap.

Model Compression Techniques: These are techniques used to reduce the memory and
processing load of LLM models, and one of the most popular methods is quantization. In this
method, the weights (such as FP32) are converted to lower bit representations (INT8 or FP4)
to reduce the model size and optimize the hardware speed [93, 94]. Another method where
the distribution is optimized is pruning, and in this method, the weights are rescaled before
quantization [90]. Distillation and low-rank approximation methods aim to provide additional
performance gains on the inference quality [92, 93].

Parameter-Efficient Fine-Tuning (PEFT): Fine-tuning of LLM models cannot be done
at edge nodes, and therefore PEFT methods (such as LoRA, Adapters, and Prompt-Tuning)
apply them to local tasks by updating a subset of the models’ parameters [95]. Another recent
research introduces a new collaborative training model that optimizes fine-tuning of early layers
at the edge device (mobile) and deep layers at the edge server [96]. In this model, the aim is to
reduce communication and energy costs while keeping the personalized performance constant.

Collaborative and Split Inference: Another rational approach is to distribute the LLM
model across the device-edge-cloud heterogeneity to achieve the balance of performance and
resource utilization. Yang et al. [97] propose a structure in which the cloud and edge are jointly

16



used to offload LLM inference with a UCB-based scheduler. The results show that the energy
usage is halved and the efficiency is doubled. Another approach is to share the converter layers
among the heterogeneous edge devices using the matching theory [98]

System-Level Runtime Optimizations: Another method of increasing efficiency is run-
time and architecture-based approaches:

• KV-cache compression: It is the process of reorganizing memory to save RAM on edge
devices [94]

• Contextual sparsity and batch-aware scheduling: In contextual sparsity, the process
of reducing the processing load by looking only at the important tokens of the model, while
in batch-aware scheduling, the process of running multiple tasks in the most efficient order
without blocking each other [96, 94].

• Speculative decoding: It is the process of predicting multiple tokens at the same time,
and the aim is to reduce the autoregressive latency bottleneck [91].

Table 6 summarizes the main optimization techniques developed against resource constraints
on edge devices, their usage scenarios, and the cost/benefit balances they bring.

Table 6: Optimization Techniques for Deploying LLMs under Edge Constraints
Reference Technique Constraint Addressed Use Case Trade-off

Wang et al. [93] INT4/INT8 Quantization Memory, Compute Mobile Edge Inference ↓Accuracy, ↑Speed
Wang et al. [90] Compression-aware Quantization Memory, Latency Smartphone + AI Assistant Low overhead
Qin et al. [95] LoRA / Adapters Fine-Tuning cost, Storage Personalized edge assistants ↓Flexibility, ↑Privacy
Yang et al. [97] PerLLM Scheduler QoS-aware Scheduling Edge-Cloud Mixed Load ↑Efficiency, ↑Throughput
Zhao et al. [91] Token Parallel Decoding Latency (token gen) Edge-terminal co-inference Complex sync
Picano et al. [98] Matching-based Layer Placement Device Heterogeneity Heterogeneous Edge Inference ↑Accuracy

5.3.1 Federated or Distributed Training of LLMs at the Edge

With the proliferation of user-centric applications, it is expected that deployment strategies
of LLM models will be developed on edge devices as well [88]. Cloud-based systems cause
additional latency and bandwidth loads in 6G environments compared to edge computing [1].
Therefore, Federated Learning (FL) and distributed tuning paradigms can be used to reduce
these loads by processing data on edge devices [1].

Motivation for Federated Edge Training:
Compared to traditional cloud-based systems, training on edge devices provides improve-

ments in the following limitations [3, 99, 91]:

• Privacy: Since sensitive data, such as biometric data, is processed on edge devices, there
are fewer privacy concerns than cloud systems that use central servers.

• Latency: Since data is processed close to the data source, there is less latency than
cloud-based systems.

• Bandwidth: Since cloud-based systems are used only for operations that require large
processing power, unnecessary communication bandwidth is not used.

Federated Fine-Tuning Techniques for LLMs:
In constrained environments (such as communication and computation), LLM model per-

sonalization schemes can be summarized as follows:

• Parameter efficient: In LoRA-based work, low-rank matrices are fine-tuned among
clients to reduce transmission volume [96].
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• Split Federation Learning: Qu et al. [99] propose to train the first layers of the model
on the device and optimize the deep layers on edge nodes in their proposed framework
called Mobile Edge Intelligence (MEI).

• Inter-device gradient fusion: In order to dynamically balance the update frequency
and energy budgets, distributed scheduling algorithms are proposed in [91].

Challenges in Federated LLM Training:
Despite the advantages of low latency and low bandwidth overhead, federated training at

the edge also suffers from statistical heterogeneity [93], system heterogeneity [100], and security
risks [3]. To overcome these challenges, recent research focuses on model-system co-design
based techniques. These techniques include adaptive aggregation [97] where clients are weighted
according to their trust scores, compression-aware updates [90] where updates are sparse before
transmission, and energy-aware scheduling [94] where the training frequency is dynamically
adjusted to preserve battery and network life. Table 7 provides a comparative overview of
federated and distributed education strategies.

Table 7: Federated and Distributed LLM Training: Constraints and LLM-Based Trade-offs
Work Constraint Addressed LLM-Based Technique / Trade-off

Liu et al. [96] Bandwidth, Memory LoRA-Based FL for Lightweight Personalization (Lower Global Accuracy)
Qu et al. [99] Compute Offloading Split Learning (MEI4LLM) with Multi-layer Collaboration (Sync Overhead)
Zhao et al. [91] Latency, Energy Parallel Token Learning at Edge-Terminals (Complex Scheduling)
Qin et al. [95] Fine-tuning Privacy Federated Prompting + PEFT (Bias Sensitivity in User-Tuning)
Yang et al. [97] Device Reliability Trust-Aware Aggregation in FL (Risk of Model Divergence)

5.4 Datasets and Modeling Techniques for LLM-Driven APT Detection (RQ4)

The quality of the datasets to be used to train models in LLM-based APT detection in 6G
networks directly affects the success rate. The datasets created as a result of examining 32
different studies and the results of the systematic and taxonomy study on modeling techniques
are examined in this subsection. Figure 16 shows this taxonomy and its subsections.
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Dataset Types for LLM-Based APT Detection: When the literature is examined, it
is seen that APT datasets can be examined under three main headings:
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• Semi-Synthetic Datasets: Semi-synthetic datasets that model APT attacks are as
follows: (i) Unraveled dataset [101], which combines real cloud infrastructure logs and
simulated APT stages, and (ii) edge-based CICAPT-IIoT dataset [102], which includes
UAV and ICS smart environment logs.

• Synthetic and Augmented Logs: Synthetic datasets that model APT attacks are
as follows: (i) SAGA [103], which consists of audit logs compatible with the ATT&CK
matrix, (ii) Twitter-APT [104], which is created by applying LLM’s to OSINT-based
threats, (iii) a dataset where labeled attacks are created using pcap filters, log records
and IDS simulation [105].

• Merged Benchmark Corpora: For APT detection, datasets that are based on a real
organization’s network traffic and model attacks such as trojans and spyware can be used
[106].

NSL-KDD or CICIDS data outside these categories are now outdated and fail to model real
APTs (stealth lateral movement or long-term dormancy strategies) [107, 108]

Data Modeling Techniques and Representations: Data modeling strategies that can
be used to combine 6G network data with LLM models can be summarized as follows:

• Behavioral Graph Profiling: In this modeling method, BiADG and MIG models are
obtained by applying Graph Convolutional Network (GCN) on IP flow graphs and behav-
ior patterns [109, 110]. In addition, there is the CONAN model that provides low-latency
matching for APT stages using a Finite State Machine (FSM) [111].

• Statistical + Feature Engineering Pipelines: As an example of these strategies, two
separate studies that apply preprocessing such as One-ANOVA based cleaning, decompo-
sition, and boosting by synthetic generation [106, 105] can be given as examples.

• Multi-Stage Autoencoders: In APTSID [106], where this strategy is applied, standard
and variational autoencoders are combined with statistical feature selection to achieve high
accuracy anomaly detection.

• ML + Expert System Hybrids: In the CDT system [105], where this technique is
used, an attack detection prediction is taken with an ML model and transmitted to the
rules used by systems such as SMORT.

Table 8 shows the comparison of datasets and modeling techniques in LLM-Driven APT
detection studies

LLM Integration Strategies: These are the methods used when integrating LLM models
into various systems, and the main purpose is to enable LLM models to be used with various
data.

• Prompt Templates + Simulation: LLM prompts are the methods used to generate
attack data and multiply training data, and SAGA and CyExec are two examples of this
in academia [103, 112].

• OSINT + NER Pipelines: Although LLM models are successful in detecting threats
in open source articles, fine-tuning is required for small details. Shafee et al.[104] tries to
find threats from open source information with LLM.

• Fusion Architectures: In these methods, after the data is processed with other models
and made meaningful, it is given to the LLM model to process, and thus it is expected
that LLM will perform a more successful analysis. Models such as AE+VAE and AE-CNN
use this method [106]
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Table 8: Comparison of Datasets and Modeling Techniques in LLM-Driven APT Detection
Studies

Reference Dataset Modeling Technique LLM Use Key Insight

Huang et al. [103] SAGA (Synthetic) Prompt-Based Log Generation Training Input
ATT&CK-aligned,

synthetic audit logs for
APT stages

Neuschmied et al. [106] CICIDS + Contagio AE + VAE Stack Feature Compression
Multi-stage anomaly detection

with zero-day support

Al-Aamri et al. [105] Custom Logs CDT + SNORT Rule Feed Manual LLM Friendly
Time-series + journaling logs

with rule generation

Ghiasvand et al. [102] CICAPT-IIoT Provenance + Network Flow Fusion LLM-Graph Possible
Audit trails + flow logs for

IIoT APT detection

Shafee et al. [104] Twitter Corpus OSINT Classification + NER NER and Prompt Evaluation
LLMs need domain adaptation

for threat-level NER
Xuan et al. [109] BiADG Behavioral GCN + LSTM Graph-to-LLM Potential IP-node behavior modeling over graph structures
Oleiwi et al. [107] NSL / CICIDS / UNSW Meta-Model Voting Ensemble Pre-LLM Classifier Layer Traditional ML stack for high-precision filtering

5.5 Reproducibility and Publication Trends in LLM-Based APT Studies
(RQ5)

This research question questions the reproducibility and other statistical information of LLM-
based APT detection studies. In order to provide a comprehensive assessment of the 142 recent
studies utilized throughout the paper, we have classified all papers in Appendix A according
to Code Availability, Dataset Evaluation, Protocol Venue/Platform, and Year. The description
of these features and the resulting statistical information are as follows:

Code Availability: This feature was used to classify studies according to their reproducibil-
ity. Figure 17 shows how many percentage of the studies shared their source code (YES/NO),
and on which platform (Github, etc.) they were published. As can be seen from the figure, only
a very small portion of the examined studies shared their source code, while most of their code
was published on the GitHub platform.

%19

%81

YES NO

Code Availability in LLM-Based APT Studies 

GitHub
%89

HuggingFace
%11

Code Sharing Platforms Used by Studies

Figure 17: The Percentage of LLM-based APT Studies that Shared Source Code (YES/NO)
and the Platforms where the Code was Hosted

Dataset: This column was used to measure the diversity of datasets used in the studies
and to determine how many of them used real-world data. Figure 18 shows the percentage
of datasets shared by year and the percentage of articles using synthetic-public datasets. The
results confirm that datasets used in APT detection studies tend to be shared and that the
most used dataset is synthetic dataset.

Evaluation Protocol: This column is to evaluate the level of empirical validity of the
reviewed articles based on whether they use robust protocols such as cross-validation. Figure
19 shows the frequency of the protocols used.

Venue / Platform: This column examines the publication quality and field spread by
examining the venue/platforms and types (conference/journal) where the reviewed studies were
published. Figure 20 shows a summary of this statistic.

Year: The last column shares the publication dates of the reviewed studies and evaluates
the increase in LLM-focused APT papers as we move towards the 6G wireless networks era.
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Figure 19: Evaluation Protocols Used in LLM-Based APT Studies

Figure 21 shows the change in LLM-focused APT papers by year.

6 OPEN CHALLENGES AND FUTURE DIRECTIONS

As the use of 6G networks and LLM deployments in 6G becomes widespread, many research
gaps and new open challenges to be solved will emerge for researchers. These challenges include
architecture and security issues, and we discuss the open challenges, a taxonomy of which is
given in Figure 22, in this section.

Semantic-Aware Reasoning and Limited Contextual Memory: LLMs are promising
for APT detection in 6G networks with their high performance in understanding causal relation-
ships and threat contexts using data such as system logs and audit trails [107]. However, LLM
models have limited performance in long-term and fragmented event sequences because their
architectures offer limited window sizes and context management. Therefore, it makes detection
difficult in multi-stage APTs with long processes such as infiltration and reconnaissance.

Future Directions: Future researchers can overcome these limitations by focusing on the
integration of memory modules and hierarchical memory structures. These structures make it
easier for the model to learn long-term correlations between events. An example of this is the
modeling of the relationship between system input and data exfiltration behavior to understand
the holistic behavior of an attack. In addition, models that can provide transformer-graph
synergy, such as GNNs, can effectively establish topological or temporal relationships between
events [18]. Thus, event traces can be modeled over a graph structure, enabling LLM models
to learn event dependencies in a scalable manner.

Real-Time Processing Under Edge Constraints: 6G lines provide great advantages for
time-constrained scenarios such as autonomous vehicles by offering high speed and low latency
[64]. In particular, since edge devices in their heterogeneous structure bring the processing
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power closer to the data source, it will enable real-time data processing with low latency and
low bandwidth usage [43]. However, since LLM models require high processing power and most
edge devices have low capacity and low processing power, this poses a serious challenge.

Future Directions: Future researchers can work on threat-aware and edge-adaptive LLM
models to overcome this challenge. For this, some techniques such as knowledge distillation,
quantization, and edge-aware fine-tuning come to the fore. These techniques are explained in
detail in section 5.3.

Lack of Grounded Explainability: Although LLM-based models have great potential
in cybersecurity, such as APT detection, most models can cause serious security vulnerabilities
in mission-critical tasks due to their black-box nature [24]. For this reason, it is necessary to
understand the inputs and probabilities that the model uses when making this decision. How-
ever, there is no system that shows the necessary causal traceability and root cause reasoning
information in LLM models to make this understanding. This causes gaps in forensic analysis,
such as explaining attacks and auditing sources.

Future Directions: Future researchers can design more transparent systems by examining
network slicing and decision-making processes for LLM models with new Explainable Artificial
Intelligence (XAI) frameworks. More transparent information can be obtained with techniques
that explain the training phase of models and the output phase of models, especially pre-hoc
XAI and post-hoc XAI.

Scarcity of Fine-Grained LLM Training Data: Data quality has a major impact on the
predictive performance of LLM models, and the volume and variety of APT-related data used
in the existing literature are limited in terms of real-world representation [102]. Studies (see
section 5.5) show that most studies rely on synthetic audit logs or CTIs with limited content.
This limits the generalizability of LLM models and their ability to detect threats in different
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environments.
Future Directions: To overcome this data limitation issue, steps can be taken such as col-

laboration between researchers and organizations (public-private), development of benchmark
datasets, and modeling of attack progression scenarios.

Integration with Emerging 6G Technologies: In addition to high data rates in 6G
networks, new generation technologies such as intelligent reflective surfaces (IRS) and terahertz
(THz) band communication will also provide more dynamic and uninterrupted communication
opportunities [23]. However, this also brings some challenges such as synchronization, spectrum
sharing, and secure orchestration. Adaptation of current LLM-based APT systems to such
complex and multi-layered environments requires great attention.

Future Directions: To overcome these challenges, researchers can develop multi-layered secu-
rity protocols. In this way, 6G networks will gain threat perception and response cycle capability
in ultra-dynamic and variable environments.

Underexplored Role of Network Slicing and XAI Fusion: With the network slicing
feature, 6G networks can run mission-critical scenarios such as autonomous vehicle communica-
tion and industrial control on dedicated and isolated resources [24]. However, incorrect resource
allocations and unexpected load shifts that may occur during slicing operations can cause se-
rious security problems [36]. An example is the autonomous vehicle experiencing signal delays
that are beyond the delay tolerance due to network slicing.

Although XAI techniques provide dynamic adaptation capabilities in network slicing, the
use of these capabilities in real-time environments is still limited [24]. Since most of the research
is theory or simulation-based, its use with real-world data from SDN infrastructures needs to
be investigated.

Future Directions: To overcome these limitations, researchers can develop slice-aware and
network state-oriented LLM models, and these models should be able to dynamically adjust
network slice configurations and allocation policies by continuously monitoring real-time data.
In addition, XAI techniques can be integrated with the obtained decisions to provide traceable
and reliable information for network operators.

7 CONCLUSIONS

This paper presents a comprehensive systematic review and taxonomy, the first of its kind, for
LLM-based Advanced Persistent Threat (APT) detection in 6G networks. Findings from 142
recent papers examine the interaction between the capabilities (semantics) of LLM models and
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the challenges (architecture, privacy, etc.) of 6G environments. We aim to provide new insights
for future research by presenting a taxonomy covering input types, model techniques, deploy-
ment settings, and threat lifecycle stages. Although LLM has great potential in APT attack
detection, it also has limitations such as limited context memory, opaque decision processes,
and real-time inference at the edge. In addition, reproducibility and dataset generalizability
stand out as important obstacles for research in this area. Based on the findings, we call for
joint efforts in the following research areas:

• Designing lightweight, unified LLMs for edge devices in 6G networks,

• Investigating new XAI-driven decision monitoring mechanisms to increase transparency
of LLMs,

• Enriching datasets used for APT detection using fine-grained, multimodal, and real-world
data,

• Integrating LLMs with slicing-aware orchestration systems in 6G for dynamic demands
on 6G links.

8 Appendix A: Research Selection Criteria and Article Overview

After a comprehensive literature search and systematic analysis (Kitchenham’s Systematic Lit-
erature Review (SLR) approach and Petersen’s Systematic Mapping Study (SMS) ), we used
the form in Table 9 to select the most relevant and high-quality articles from 142 obtained ar-
ticles. The questions in this form were used to select the articles focusing on LLM-based APT
detection solutions among the publications addressing the Advanced Persistent Threat (APT)
problem in the context of 6G wireless networks. Also, the lists of all these articles are provided
in Table 10, 11, 12, 13.

Table 9: Research Evaluation Questions for LLM-Based APT Detection Studies in 6G Networks

Question YES NO

Does the reviewed article detect APTs in 6G networks?

Does the reviewed article include an LLM-based solution method?

Does the reviewed article provide an approach or methodology that in-
cludes LLMs for APT detection?

Does the proposed method work under 6G-related constraints (such as
edge resource constraints)?

Is an optimization method suggested? If yes, which method (distillation
etc.)?

Are there datasets or simulated environments for LLM-based APT de-
tection?

Is the source code and/or dataset shared for reproducibility?

What is the publication location and year?
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Table 10: Overview of 58 Studies Related to RQ1
No Paper Code Availability Dataset Eval. Protocol Venue/Platform Year
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5 Ali et al. (5.pdf) NO NO NO SHIFRA Journal 2025

6 Zhang et al. (6.pdf) NO NO NO TechRxiv (preprint) 2025

7 Jeon et al. (7.pdf) NO NO RAG-based graph eval Conf. Paper (Korea) 2025

8 Blänsdorf (8.pdf) NO CTI list manual labeling MSc Thesis (Chalmers) 2024

9 Yin et al. (9.pdf) NO NO NO arXiv 2025

10 Antar (10.pdf) ECHO env. NO PromptPilot eval MSc Thesis (Queen’s) 2025

11 Xu et al. (11.pdf) NO CTI reports IntelEX framework arXiv 2025

12 Chen et al. (12.pdf) AECR pipeline NO F1, precision, recall Elsevier CoSE 2025

13 Tan et al. (13.pdf) NO NO temporal graph eval Conf. (Glasgow) 2025

14 Tan et al. (14.pdf / 16.pdf) NO NO survey + taxonomy IEEE IoT Journal 2025

15 Purba (15.pdf) NO NO Kibana-query generation PhD Diss. (UNC Charlotte) 2025

16 Wang et al. (17.pdf) pending APT dataset ¿1k AURORA system arXiv 2025

17 Kavousi (18.pdf) NO NO semantic security eval PhD Diss. (Northwestern) 2025

18 Zhang & Tenney (19.pdf) NO NO NO (survey only) OJBM 2024

19 Daniel et al. (20.pdf) NO Snort rules LLM vs. ML eval MDPI BDCC 2025

20 Ahmed (21.pdf) prototype impl. DARPA OpTC distributed eval PhD Diss. (UNC Charlotte) 2024

21 Du et al. (22.pdf) NO benchmark used MAD-LLM eval IEEE ISPA 2024

22 Mezzi et al. (23.pdf) Eval framework 350 CTI reports calibration, consistency arXiv 2025

23 Suomalainen et al. (24.pdf) NO Cyber Ops Tracker LLM for CTI metrics TechRxiv 2025

24 Alturkistani (25.pdf) NO NO systematic SLR analysis Research Square (SLR) 2024

25 Sultana et al. (26.pdf) NO NO LLM eval. framework IEEE CNS Workshop 2023

26 Cui et al. (27.pdf) NO NO LLM risk tax. + eval Tsinghua Lab + Ant Group 2024

27 Li et al. (28.pdf) NO NO agentic eval + 5G NYU Tech Report (arXiv) 2025

28 Daniel et al. (29.pdf) Snort parser 973 rules dataset LLM vs ML accuracy arXiv 2024

29 Mitra et al. (30.pdf) NO NO LocalIntel eval arXiv 2025

30 Wang et al. (31.pdf) – MultiKG MultiKG repo real CTI + logs cross-source KG eval arXiv 2024

31 Yao (32.pdf) 5GSecRec impl. 5G+Kube alerts QA + correlation MSc Thesis (Concordia) 2024

32 Mahboubi et al. (33.pdf) NO open ontologies survey + ML eval Elsevier JNCA 2024

33 Sammouri (34.pdf) – CAPEC model CAPEC model CAPEC taxonomy expert evaluation MSc Thesis (Miami Univ.) 2025

34 Sewak et al. (35.pdf) NO NO threat graph eval CIKM Workshop 2023

35 Kasri et al. (36.pdf) NO NO review + cases MDPI Computation 2025

36 Hasanov et al. (37.pdf) NO NO SLR criteria IEEE Access 2024

37 Keltek et al. (38.pdf) – LSAST LSAST prototype HackerOne dump LLM vs SAST arXiv 2024

38 Jawad (39.pdf) NO NO PhD eval phases PhD Plan (Spain) 2025

39 Würsch et al. (40.pdf) NO arXiv NLP corpus NER/ER comparison arXiv 2023

40 Diakhame et al. (41.pdf) – MCM-Llama LLM pipeline security events LLM vs NER/Sim ICECET (IEEE Conf.) 2024
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57 Benabderrahmane et al. (58.pdf) NO DARPA TC AE/VAE eval arXiv 2025

58 Ferrag et al. (59.pdf) – LLM Survey NO NO survey w/ benchmarks SSRN (preprint) 2025
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Table 11: Overview of 28 Studies Related to RQ2
No Paper Code Availability Dataset Eval. Protocol Venue/Platform Year

1 Albshaier et al. (Ä.pdf) NO Not specified (SLR only) YES Electronics (MDPI) 2025

2 Hameed et al. (A.pdf) NO IoT-based (SMPC, DP, HE) Preprint (SSRN) SSRN / Nuclear Phys. B 2025

3 Al-Kadhimi et al. (a1.pdf) NO Mobile APT data (1351 reviewed) YES (SLR + Framework) Applied Sciences (MDPI) 2023

4 Le & Shetty (B.pdf) NO 5G-based IoT Conceptual (no benchmarks) Ad Hoc Networks (Elsevier) 2021

5 Alkaeed et al. (C.pdf) NO AI-XR / Metaverse data YES (Survey) J. of Network and Comp. Apps 2024

6 Xu et al. (Ç.pdf) NO Multiple (127 reviewed) YES (Survey) LLM4Security Survey 2024

7 Zhang et al. (D.pdf) YES (planned) 4 RS models (LLM-based) Experiments on 4 models arXiv 2024

8 Guo et al. (E.pdf) YES Various LLMs (LLaMA, GPT) Extensive experiments ICML (PMLR) 2024

9 Cao et al. (F.pdf) NO Fine-tuned LLMs (backdoor) Experiments (safety test bypass) arXiv 2024

10 Aguilera-Mart́ınez & Berzal (G.pdf) NO Training + Inference threats YES (Survey) arXiv 2025

11 Lanka et al. (O.pdf) NO Honeypot + UEBA data YES (LLM-based analysis) Electronics (MDPI) 2024

12 Zhang et al. (H.pdf) NO Poisoned RAG documents YES FSE Companion (ACM) 2024

13 Rahman & Hossain (I.pdf) NO IIoT logs in 6G YES (SDS + DL) IEEE Wireless Comm. 2022

14 Wang et al. (ı.pdf) NO MEC + AI security logs YES (ETSI-based survey) IEEE IoT Journal 2023

15 Alevizos et al. (İ.pdf) NO Blockchain-based IDS in VSNs YES (Throttling eval) Sensors (MDPI) 2023

16 Nahar et al. (J.pdf) NO ZTA in 6G YES (Use case studies) IEEE Access 2024

17 Je et al. (K.pdf) NO Open 6G + AI systems YES (Threat mapping) IEEE Comm. Standards Mag. 2021

18 Xu et al. (L.pdf) YES APT Traffic (Anyrun2024) YES CAS / UCAS 2024

19 Du et al. (M.pdf) NO Multi-source alerts YES IEEE ISPA 2024 2024

20 Liu et al. (N.pdf) YES Contextual demos for agents YES (Backdoor trigger eval) IEEE TIFS 2025

21 Hassanin & Moustafa (Z.pdf) NO Survey on LLM for cyber defense YES arXiv 2024

22 Mao et al. (Ö.pdf) NO Edge computing / cache / intelligence YES IEEE COMST 2023

23 Yang et al. (P.pdf) NO 6G Security Protocols YES arXiv / ACM 2024

24 Hadi et al. (R.pdf) YES UAVIDS / NF-UQ / 5G-NIDD YES Expert Systems w/ Applications 2024

25 Chen et al. (Ş.pdf) NO Various threat logs + LLMs YES Computers & Security 2024

26 Sun et al. (T.pdf) YES DL model evasions (semantic traffic) YES WWW 2025 2025

27 Diao et al. (V.pdf) NO DoH tunnel traffic YES (Feature fusion, Recall: 0.9995) ACM CCS Poster 2024

28 Sun et al. (Y.pdf) YES Adversarial LLM traffic (6 datasets) YES (RL + Payload tuning) WWW 2025 2025

Table 12: Overview of 26 Studies Related to RQ3
No Paper Code Availability Dataset Eval. Protocol Venue/Platform Year

1 Liu et al. (a1.pdf) NO Not specified Review (model compression only) Frontiers in Robotics and AI 2025

2 Friha et al. (a2.pdf) NO Not specified Comprehensive survey IEEE OJCOMS 2024

3 Zhang et al. (a3.pdf) NO Llama2 Real testbed with Llama2 models IEEE IoT Journal 2025

4 Cai et al. (a4.pdf) NO LLaMA, ChatGLM Edge-LLM framework eval Conference (not stated) 2025

5 Qu et al. (a10.pdf) NO Not specified Survey on MEI for LLMs IEEE COMST (accepted) 2025

6 Picano et al. (a6.pdf) NO Testbed for autonomous driving Matching-based optimization IEEE OJCOMS 2025

7 Ray & Pradhan (a9.pdf) NO IoT edge, quantized LLMs LLMEdge Framework Demo Not stated 2025

8 Kim et al. (a20.pdf) NO Not specified Systematic review on compression & tuning ACM Computing Surveys 2025

9 Zhang et al. (a11.pdf) NO Not specified Quantization + batching (wireless constraint) IEEE TWC 2025

10 Wei et al. (a12.pdf) YES (T-MAC GitHub) LLaMA, BitNet LUT-based low-bit benchmarking EuroSys 2025 2025

11 Semerikov et al. (a13.pdf) NO LLM-edge cases, EdgeLLM, EdgeShard Comprehensive Survey CEUR Workshop Proceedings 2025

12 Dhar et al. (a14.pdf) NO LLaMA-2 7B INT4 Empirical edge inference eval ACMSE 2024 2024

13 Zheng et al. (a15.pdf) NO Meta LLaMA, DeepSeek Lifecycle review + hardware co-design ACM Computing Surveys 2025

14 Qin et al. (a16.pdf) NO LaMP datasets Empirical guidelines + compression comparison arXiv (Preprint) 2025

15 Yang et al. (a17.pdf) NO Not specified PerLLM edge-cloud scheduling arXiv (Preprint) 2024

16 Liu et al. (a18.pdf) NO Not specified Fractional programming optimization MOBIHOC ’24 2024

17 Zhu et al. (a19.pdf) NO Not specified Compression taxonomy (quant., prune, KD) TACL 2024

18 Zhao et al. (a29.pdf) NO Not specified Edge-terminal token decoding optimization IEEE (Wireless) 2024

19 Wang et al. (a21.pdf) NO Not specified Inference taxonomy (compression focus) IEEE (Preprint) 2024

20 Wang et al. (a22.pdf) NO Quantized OPT-1.3B Compression-aware quantization + pruning arXiv (Preprint) 2025

21 Xu et al. (a23.pdf) YES (GitHub) Multiple LLMs Multi-dimensional safety evaluation arXiv (Preprint) 2024

22 Liu et al. (a24.pdf) NO GPTQ, SmoothQuant Survey on efficient training/inference arXiv (Preprint) 2025

23 Wen et al. (a25.pdf) NO Custom telemetry logs LLM-based anomaly detection in 6G HOTNETS ’24 2024

24 Khowaja et al. (a26.pdf) NO Named Entity Recognition (NER) Membership inference on ZSM fine-tuning IEEE (Preprint) 2024

25 Qin et al. (a27.pdf) NO Multiple (SAGIN datasets) CoT-based security for 6G SAGIN IEEE (Preprint) 2025

26 Qu et al. (a28.pdf) NO MEI4LLM (LLMs + Edge) Survey + MEI framework IEEE COMST (Accepted) 2025

Table 13: Overview of 30 Studies Related to RQ4
No Paper Code Availability Dataset Eval. Protocol Venue/Platform Year

1 Abu Talib et al. (2.pdf) NO YES YES (Systematic Review) Computers & Security 2022

2 Abu Talib et al. (23.pdf) NO NO YES (Review on APT Beaconing) Computers & Security 2022

3 Al-Aamri et al. (32.pdf) NO YES (Custom logs + flow) YES (CDT model + IDS) Sustainability (MDPI) 2023

4 Do Xuan & Nam (3.pdf) NO NO YES (Domain monitoring) Procedia Computer Science 2019

5 Do Xuan & Nguyen (30.pdf) NO YES (APT IP traffic) YES (BiLSTM + Attention + DGCNN) Scientific Reports 2024

6 Do Xuan et al. (4.pdf) NO YES (Reconstructed flows) YES (BiLSTM-GCN based) J. Intelligent & Fuzzy Syst. 2020

7 El Alami & Rawat (16.pdf) NO YES (TON-IoT) YES (GAN, LSTM, AE eval) — 2024

8 Ferrag et al. (11.pdf) NO YES (FL/Edge datasets) YES (Comprehensive Survey) IEEE Com. Surveys & Tutorials 2023

9 Ferrag et al. (27.pdf) NO YES (42 models & datasets) YES (Taxonomy + LLM Eval) SSRN (preprint) 2024

10 Ghiasvand et al. (25.pdf) YES YES (CICAPT-IIoT Dataset) YES (Multi-phase APT dataset) arXiv 2024

11 Gupta et al. (15.pdf) YES (PyTorch model) YES (KDDCup) YES (DoS, Probe, Sybil attacks) — 2024

12 Huang et al. (24.pdf) YES (SAGA) YES (Synthetic Logs) YES (Technique-hunting, APT lifecycle) — 2024

13 Motlagh et al. (19.pdf) NO NO YES (Offensive & defensive use) arXiv 2024

14 Myneni et al. (20.pdf) NO YES (Unraveled dataset) YES (Semi-synthetic APT eval) Computer Networks 2023

15 Neuschmied et al. (31.pdf) NO YES (Contagio + CICIDS2017) YES (AE + VAE models) Applied Sciences (MDPI) 2022

16 Nezhadsistani & Stiller (8.pdf) NO YES YES (Survey, Challenges, Metrics) IEEE 6GNet 2024

17 Nguyen et al. (17.pdf) NO NO YES (Threat taxonomy, LLMSecOps) arXiv 2024

18 Nguyen et al. (5.pdf) NO YES YES (MIG: MLP + Inference + GCN) J. Intelligent & Fuzzy Syst. 2023

19 Oleiwi et al. (28.pdf) NO YES (NSL-KDD, CIC, etc.) YES (Stacked meta-model, classifiers) Electronics (MDPI) 2023

20 Rajendran & Vyas (6.pdf) YES YES (Custom) YES (Comparative Eval) SoutheastCon 2024

21 Saeed et al. (29.pdf) NO YES (Multiple APT datasets) YES (Hybrid EL, CFS-RF, Adaboost) Electronics (MDPI) 2023

22 Shafee et al. (18.pdf) NO YES (Twitter-CTI) YES (Binary Class. + NER) Expert Syst. with Applications 2025

23 Sharma & Rani (14.pdf) NO YES (RT-IoT) YES (Stacked-Hybrid ML eval) IEEE IoT Journal 2024

24 Stojanović et al. (1.pdf) NO YES YES (Review of 20+ datasets) Computers & Security 2020

25 Unnamed (22.pdf) NO YES (Semi-synthetic network traffic) YES (ML early detection comparison) LLM-Aided (Unspecified) 2024

26 Viswanathan et al. (21.pdf) NO YES (Partially synthetic MRI) YES (ML vs full/partial synthetic eval) BioMed (MRI Imaging) 2024

27 Xiong et al. (13.pdf) NO YES (Windows-host logs) YES (FSM + Real-time eval) IEEE TDSC 2022

28 Xylouris et al. (7.pdf) YES (XGBoost, CNN, etc.) YES (5G Testbed Dataset) YES (Real-time SHAP Eval) IEEE TCE 2024

29 Yamin et al. (10.pdf) YES (CyExec - GPT) NO YES (Scenario Gen, RAG prompts) IEEE Access 2024

30 Zhang et al. (26.pdf) NO YES YES (PADASYN + AdaBoost eval) — 2024
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