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Abstract—Machine learning (ML) has been developed to detect
malware in recent years. Most researchers focused their efforts
on improving the detection performance but ignored the robust-
ness of the ML models. In addition, many machine learning
algorithms are very vulnerable to intentional attacks. To solve
these problems, adversarial malware examples are generated
by GANs to enhance the robustness of the malware detector.
However, since current GAN models suffer from limitations such
as unstable training and weak adversarial examples, we propose
the Mal-D2GAN model to address these problems. Specifically,
the Mal-D2GAN architecture was designed with double-detector
and a least square loss function and tested on a dataset of 20,000
samples. The results show that the Mal-D2GAN model reduced
the detection accuracy (true positive rate) in 8 malware detectors.
The performance was then compared with that of the existing
MalGAN and Mal- LSGAN models.

Keywords– malware detection, adversarial malware examples,
generative adversarial network

I. INTRODUCTION

Malware, or malicious software, refers to programs or codes
intentionally designed to cause harm to personal computers,
servers, or computer networks. The primary purpose of mal-
ware is to execute unauthorized actions that can lead to various
illicit activities. Therefore, malware detection is an important
step in the incident response process for any organization, sys-
tem, or enterprise. Malware detection is divided into two main
types: signature-based detection and behavior-based detection
[1]

Signature-based detection is a technique that compares files
or network traffic with a database of known malware signa-
tures. A signature is a unique pattern or fingerprint of bytes
that identifies a specific malware. Signature-based detection
can quickly and accurately detect known malware variants, but
it can not detect new or unknown malware with no signature in
the database. In contrast, behavior-based detection can detect
new or unknown malware with no signature and malware that
tries to hide or disguise its signature. Behavior-based detection
is a technique that analyzes the actions or behavior of files or
network traffic to detect malware. Behavior-based detection
does not rely on predefined signatures, but on heuristic rules
or machine- learning algorithms that can identify suspicious
or malicious activities [2].
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Machine learning [3] can learn from the behavior of soft-
ware, not just rely on pre-known signatures. This allows the
detection of new variants of malware without frequent up-
dates to signatures. However, machine learning-based malware
detection systems face the drawback of susceptibility to ad-
versarial malware samples [4]. Adversarial samples generated
from Generative Adversarial Networks (GANs) [5] have led
to numerous adversarial attacks on machine learning-based
malware detection systems [6]. To create adversarial malware
examples to bypass ML based malware detector, Hu et al [7]
proposed the MalGAN model which uses adversarial samples
to bypass malware detectors (a.k.a black-box detectors). The
purpose of this work to enhance the robustness of malware
detector. In studies such as Mal-LSGAN [8] and LSGAN- AT
[9], improvements using integrated activation functions were
introduced to enhance the ability to bypass black-box detec-
tors. However, recent GAN models suffer from limitations
such as unstable training and weak adversarial examples. In
this paper, we propose the Mal-D2GAN model with double-
detector and a least square loss function and test on a dataset
of 20,000 samples. The experimental results show that adver-
sarial examples generated by our proposed model can bypass
malware black-box detectors with 8 common machine learning
algorithms. The proposed method’s results are higher than the
MalGAN and Mal- LSGAN models proposed.

The rest of the paper is organized as follows. We first review
the related work in Section 2. Section 3 presents the proposed
double detectors-based GAN for malware generation. Section
4 describes the experiment and results. We conclude the paper
with a conclusion and indicate possible research directions in
Section 5.

II. RELATED WORKS

Hu et al [7] introduced an algorithm based on GANs called
MalGAN, which creates adversarial malware examples that
can evade black-box machine-learning models. MalGAN uses
a substitute detector to fit the black- box malware detec-
tion, and it is trained to minimize the detection probability
of adversarial malware samples predicted by the substitute
detector. MalGAN’s advantage over traditional gradient-based
adversarial sample generation algorithms is its ability to reduce
the detection rate to nearly zero, making retraining-based
defenses against adversarial samples less effective.
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In the proposed Mal-LSGAN model to tackle these weak-
nesses. By using a least square (LS) loss function [10] and
new activation function combinations, Mal-LSGAN achieves
a higher Attack Success Rate (ASR) and a lower True Positive
Rate (TPR) in 6 ML detectors [8].

In the proposed AAGAN [11], an automated Android
malware generation system based on Generative Adversarial
Networks (GAN) that can successfully deceive current ML
detectors. Their experiment results indicate that adversarial
examples generated by their system can flip the prediction
of the state-of-the-art detection algorithms in 99% of cases
using a real-world dataset. To defend against AE attacks, they
improve the robustness of our detection system by alternatively
retraining with these newly generated AEs. Surprisingly, after
retraining five times, AAGAN can achieve an 89% success
rate in bypassing our malware detection system [12].

Shahpasand el al [13] show a model for generating highly
effective adversarial samples against machine learning-based
malware detectors. The gap covered by this contribution is the
threshold we provide on the maximum number of changes to
an original malware sample. They used the Drebin dataset,
choosing a subset of features that have the highest influence
on classification with the same performance as the complete
feature set. Their result shows that having a high performance
for classifier accuracy on the original samples, the proposed
model for generating adversarial samples can attack the clas-
sifiers with up to a 99% success rate but only shows that the
model can attack four different types of classifiers with a high
chance of evasion.

III. THE DOUBLE-DETECTORS BASED GAN FOR
MALWARE GENERATION

The proposed model includes 4 main blocks: generator,
black-box detector, substitute detector and additional detector.

Fig. 1. The architecture of Mal-D2GAN

A. Black-boxdetector

This external system utilizes machine learning-based al-
gorithms for malware detection. We assume that the mal-
ware author is only aware of the types of features used by
the black-box detector. They do not know which machine
learning algorithm is employed, nor do they have access

to the trained model parameters. The malware author can
receive the detection results of their programs from the black-
box detector. In this model, the black-box detectors uses 8
classification algorithms such as Random forest (RF), Linear
Regression (LR), Decision Tree (DT), Multilayer Perceptron
(MLP), Support Vector Machine (SVM), AdaBoost (AB),
GradientBoosting (GB), and K-nearest- Neighbor (KNN).

B. Generator

This block generates adversarial malware data by transform-
ing a malware feature vector into its adversarial sample. It
requires a combination of the malware feature vector m and
a noise vector z as input. Here, we use the design advantages
of the DCGAN [14] model for the generator block. The con-
volution layers in DCGAN are replaced with fully connected
layers. Malware is an M -dimensional binary vector, with each
element representing the presence or absence of a feature. z is
a Z-dimensional vector with Z being a hyperparameter. Each
element of z is a random number sampled from a uniform
distribution in the range [0, 1). The purpose of z is to allow the
generator to create diverse adversarial samples from a single
malware feature vector. The structure of the generator is shown
in Table I.

TABLE I
THE GENERATOR (G) NETWORK STRUCTURE

Layer Type Output Shape
Input Layer (Malware) (None, 160)
Input Layer (Noise) (None, 10)
Concatenate (Malware + Noise) (None, 170)
LeakyReLU (Dense) (None, 256)
BatchNormalization (None, 256)
LeakyReLU (Dense) (None, 256)
BatchNormalization (None, 256)
LeakyReLU (Dense) (None, 256)
BatchNormalization (None, 256)
Sigmoid (Dense) (None, 160)
Maximum (None, 160)

The input vector is fed into a multi-layer feed-forward
neural network with weights θg . The output layer of this
network has M neurons, and the activation function used by
the last layer is sigmoid, which limits the output to the range
(0, 1). The hidden layers use LeakyReLU as the activation
function due to its better performance and high learning cost
parameters. The loss function used in the generator block is
mean square error (MSE). The output of this generator network
is denoted as o.

Since the malware feature values are binary, a binary conver-
sion process is applied to o depending on whether the element
values are greater than 0.5 or not, creating a binary vector
o′. When creating adversarial samples for binary malware
features, we exclusively focus on adding unrelated features
to the original malware. The removal of any feature from the
original malware could potentially disrupt its functionality. For
example, if the API ”DeleteFile” is removed from a program,
the program will not be able to perform normal deleting
functions, and the malware may be detected.



The non-zero elements of the binary vector o′ are used
as unrelated features to add to the original malware. The
final adversarial example can be represented as m′ = m |o’,
where “|” is the element-wise binary OR operation. m′ is
a binary vector, so the gradient cannot propagate back from
the substitute detector to the generator. A smooth function G
is defined to receive gradient information from the substitute
detector, as shown in:

Gθg (m, z) = max(m, o) (1)

C. Detectors

1) Substitute Detector: Substitute detector is employed to
approximate its behavior and supply gradient information for
training the generator. Previously in , when there was no
additional detector, substitute detector was a multi-layer feed-
forward neural network with weights θd that received the
program feature vector m as input. It classifies the program
as either benign or malicious. We denote the probability of x
being predicted as malware as Dθd(x).

The substitute detector network plays a crucial role in
enabling gradient-based adversarial training by serving as a
differentiable approximation of the actual detection system.

TABLE II
THE NETWORK STRUCTURE OF THE SUBSTITUTE DETECTOR

Layer Type Output Shape
Input Layer (Malware) (None, 160)
Sigmoid (Dense) (None, 256)
Sigmoid (Dense) (None, 1)

The training data for the substitute detector includes adver-
sarial malware samples generated by the generator and benign
samples from a benign dataset collected from various sources.
Importantly, the training data for the substitute detector is all
labeled by the black-box detector. The actual labels of the
training data are not used to train the substitute detector. The
goal of the substitute detector is to fit the black-box detector.

The black-box detector will first detect this training data and
label it as either malicious or benign. Then, these samples are
used to train the substitute detector.

2) Additional Detector: In the new Mal-D2GAN model,
an additional detector block is designed to work alongside the
substitute detector to more effectively detect malware gener-
ated by the generator. Experimental results have demonstrated
this effectiveness.

TABLE III
NETWORK STRUCTURE OF THE SUBSTITUTE DETECTOR

Layer Type Output Shape
Input Layer (Malware) (None, 160)
Sigmoid (Dense) (None, 256)
Sigmoid (Dense) (None, 1)

The data used to train additional detector will include
benign data from the training set as well as data generated
directly from the generator block. The input for both substitute

detector and additional detector is malware represented as
an M-dimensional vector. Substitute detector and additional
detector will be designed to work together to predict whether
the received data is malicious or benign.

3) Adversarial example generation: To train MalGAN, the
malware author should first collect two datasets: one contain-
ing malicious code samples and another containing benign
samples.

The combined loss function of substitute detector (LD1 ) and
additional detector (LD2 ) is defined as in:

LD1
=

1

2
Ex∈BBBenign

[(
D1θd1

(x)
)2]

+
1

2
Ex∈BBMalware

[(
D1θd1

(x)− 1
)2]

(2)

LD2
=

1

2
Ex∈SBenign

[(
D2θd2

(x)
)2]

+
1

2
Ex∈GAdversarial

[(
D2θd2

(x)− 1
)2]

(3)

LD = αLD1
+ (1− α)LD2

(4)

BBBenign represents a set of programs identified as non-
malicious by the black-box detector, and BBMalware represents
a set of programs detected as malware by the black-box
detector. SBenign is the original dataset of benign samples
labeled to train the additional detector, and GAdversarial refers
to malware data generated by the generator for training the
additional detector. To train the detectors, LD needs to be
minimized with respect to the weights of the detectors. In (3),
α is used to represent the importance of LD1

and LD2
.

The loss function of the generator is defined as:

LG =
1

2
Em∈SMalware, z∼p(0,1)

[(
Dθd1d2

(
Gθg (m, z)

))2]
(5)

Algorithm 1 The Training Process of Mal-D2GAN
1: while not converging do
2: Sample a batch of malware M
3: Generate adversarial samples M ′ from Generator for

M
4: Sample a batch of benign samples B
5: Label M ′ and B using black-box detector
6: Label SBenign and GAdversarial using additional de-

tector
7: Update weights θd1 and θd2 of substitute detector

and additional detector by descending along the gradients
∇θ1LD1, ∇θ2LD2

8: Update weights θg of generator by descending along
the gradients ∇θLG

9: end while

SMalware represents a dataset of actual malware and is
not labeled by the black-box detector. LG is minimized with
respect to the weights of the generator during training. Mini-
mizing LG reduces the probability of the generated malware



being predicted as harmful, thereby encouraging the substitute
detector to classify malware as benign. Because the substitute
detector aims to align with the black-box detector, training
the generator will further deceive the black-box detector.
The entire training process of Mal-D2GAN is illustrated in
Algorithm 1.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The malware dataset used in the experiment was collected
from various sources such as VirusShare [15], consisting of
files in Portable Executable (PE) format. Each malware file,
after being processed, is represented as a 160-dimensional API
feature vector.

The dataset contains 20,000 samples, of which 70% are
malware files and 30% are benign files. In the experiment, the
value of α was selected as 0.5.

To build the malware dataset, a behavior-based malware
analysis system called Cuckoo Sandbox [16] is required. This
system helps to analyze malware samples and provides results
in a JSON file format.

Fig. 2. Collecting the report file from the Cuckoo sandbox

To build the malware dataset, a behavior-based malware
analysis system called Cuckoo Sandbox [16] is required. This
system helps to analyze malware samples and provides results
in a JSON file format.

There are many features, including static features and ma-
licious features, but for the experiment, we will select about
160 prioritized features. We use the Random Forest classifier
algorithm to determine the scores of the 160 dynamic features.

The testing process of the Mal-D2GAN model uses a
method for data splitting as follows: 80% of the dataset is
used as the training set, and 20% of the dataset is used as the
test set. The black-box detector block will use the training set
data for training.

We conducted experiments on a computer with an Intel Core
i5-12500H processor, 16GB of RAM, running Windows 11
and Anaconda [17], using 20 epochs fortraining and 5 epochs
for retraining [18].

B. Experimental Results

We will analyze the scenario where Mal-D2GAN and black-
box detector use the same training set. In malware detection,
the true positive rate (TPR) [19] represents the rate of correctly
detecting malware. After conducting adversarial attacks, the
generated adversarial malware samples gain the ability to
bypass detection algorithms. In the table below, a dataset with
20,000 samples is used to test this case [20].

TABLE IV
TRUE POSITIVE RATE (IN PERCENTAGE) ON ORIGINAL SAMPLES AND

ADVERSARIAL EXAMPLES MAL-D2GAN, MAL-LSGAN, MALGAN- ON
TRAINING SET. “ADVER.” REPRESENTS ADVERSARIAL EXAMPLES

Classifier Mal-D2GAN Mal-LSGAN MalGAN
Original Adver Original Adver Original Adver

RF 97.25 2.28 97.75 20.14 97.02 31.68
LR 94.69 0.00 94.52 20.39 94.50 0.61
DT 97.35 0.00 94.64 0.98 97.40 6.60

SVM 96.10 0.07 96.26 20.61 96.34 5.84
MLP 98.31 0.16 97.80 20.93 97.11 35.09
AB 93.66 0.00 93.86 14.42 94.01 16.02
GB 97.35 0.37 97.35 14.38 97.40 49.86

KNN 98.10 0.15 98.15 1.19 98.81 63.34

TABLE V
TRUE POSITIVE RATE (IN PERCENTAGE) ON ORIGINAL SAMPLES AND
ADVERSARIAL EXAMPLES WHEN MAL-D2GAN, MAL-LSGAN AND
MALGAN ON THE TEST SET. “ADVER.” REPRESENTS ADVERSARIAL

EXAMPLES

Classifier Mal-D2GAN Mal-LSGAN MalGAN
Original Adver Original Adver Original Adver

RF 94.74 2.38 98.16 20.59 97.10 31.80
LR 94.32 0.10 94.17 21.03 94.90 0.43
DT 94.45 0.10 93.80 1.20 97.36 6.33

SVM 95.82 0.00 95.78 19.71 96.22 5.20
MLP 96.48 0.18 96.22 20.33 97.54 37.15
AB 92.04 0.00 92.89 13.99 93.51 15.93
GB 96.11 0.18 96.00 14.07 97.06 51.33

KNN 97.50 0.16 97.80 0.95 97.44 61.31

Overall, the results in Table IV and Table V show that
the Mal-D2GAN model reduced the detection accuracy (true
positive rate) across 8 malware detection algorithms. The
experimental results of the Mal-D2GAN model, along with
comparisons with existing models such as Mal-LSGAN and
MalGAN, demonstrate its effectiveness. It is evident that
our Mal-D2GAN model surpasses the malware detection
benchmarks with high performance metrics. Across various
algorithms such as RF, LR, DT, SVM, MLP, AB, GB, and
KNN, the true positive rate (TPR) mostly decreases to near
0%. In comparison, for Mal-LSGAN, only DT approaches
0%, while for MalGAN, only LR decreases to nearly 0%.
Specifically, the MLP classifier in the Mal-D2GAN model
shows a dramatic drop in TPR from 98.31% to 0.16%. RF



also decreases significantly to 2.28%, and DT drops rapidly
from 97.35% to 0%.

These experimental results demonstrated the impact of the
additional detector in the Mal-D2GAN model, which dramat-
ically reduces the detection accuracy (true positive rate) in all
8 malware detectors.

C. Retraining the Black-box Detector

In this section, we will analyze the performance of Mal-
D2GAN under the retraining-based defensive [6] approach. If
an anti-malware vendor collects enough adversarial malware
examples, they can retrain the black-box detector on these
adversarial examples to learn their signature and detect them.

We use RF, DT, AB, GB, and KNN as the black-box
detectors due to their good performance. After retraining
the black-box detector 5 times, it can detect all adversarial
examples, as shown in the middle column, namely “Before
retraining GAN model” [21].

TABLE VI
TRUE POSITIVE RATE (IN PERCENTAGE) ON THE ADVERSARIAL EXAMPLES

AFTER THE BLACK-BOX DETECTOR IS RETRAINED

Classifier Mal-D2GAN Mal-LSGAN MalGAN
Before After Before After Before After

RF 100 0.29 100 100 100 16.96
DT 100 0.88 100 20.07 100 36.90
AB 100 0.00 100 14.37 100 20.72
GB 100 0.00 100 100 100 43.61

KNN 100 14.66 100 11.14 100 87.29

However, once antivirus vendors release the updated black-
box detector publicly, malware authors will have access to
it and can retrain Mal-D2GAN to target the new black-box
detector. Following retraining, Mal-D2GAN generates new
adversarial examples that remain undetected by RF, DT, AB,
GB, and KNN, as indicated in the ”After retraining model.”

Table VI shows the results of Mal-LSGAN after undergoing
5 rounds of retraining. It demonstrates that Mal-LSGAN
performs well with DT, AB, and KNN. Meanwhile, the
performance outcomes of MalGAN also plateaued at average
effectiveness levels after the model retraining process.

V. CONCLUSION AND FUTURE WORK

In this paper, we develop a novel Mal-D2GAN model to
enhance the robustness of the malware detector. The Mal-
D2GAN architecture was designed with a double-detector
and a least square loss function and tested on a dataset
of 20,000 samples. The results show that the Mal-D2GAN
model reduced the detection accuracy (true positive rate) in
8 malware detectors. This performance was then compared
with that of the existing MalGAN and Mal-LSGAN models.
The results also show that after retraining Mal-D2GAN, new
adversarial examples remain undetected.

Additionally, detailed experiments demonstrate that com-
bining the two detectors enhances the quality of adversarial
sample generation. Moving forward, our goal is to further
experiment with retraining using algorithms such as MLP, LR,

and SVM, focusing on generating high-quality malware and
testing it across various datasets.
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