
ar
X

iv
:2

50
5.

18
55

1v
1

 [
cs

.C
R

]
 2

4
M

ay
 2

02
5

LAMDA: A Longitudinal Android Malware
Benchmark for Concept Drift Analysis

Md Ahsanul Haque1, Ismail Hossain1, Md Mahmuduzzaman Kamol1, Md Jahangir Alam1, Suresh
Kumar Amalapuram2, Sajedul Talukder1, Mohammad Saidur Rahman1

1Department of Computer Science, University of Texas at El Paso
2School of Informatics, University of Edinburgh

{mhaque3,ihossain,mkamol,malam10}@miners.utep.edu
samalapu@ed.ac.uk, {stalukder,msrahman3}@utep.edu

Abstract

Machine learning (ML)-based malware detection systems often fail to account for
the dynamic nature of real-world training and test data distributions. In practice,
these distributions evolve due to frequent changes in the Android ecosystem,
adversarial development of new malware families, and the continuous emergence
of both benign and malicious applications. Prior studies have shown that such
concept drift—distributional shifts in benign and malicious samples, leads to
significant degradation in detection performance over time. Despite the practical
importance of this issue, existing datasets are often outdated and limited in temporal
scope, diversity of malware families, and sample scale, making them insufficient
for the systematic evaluation of concept drift in malware detection.
To address this gap, we present LAMDA, the largest and most temporally diverse
Android malware benchmark to date, designed specifically for concept drift analy-
sis. LAMDA spans 12 years (2013–2025, excluding 2015), includes over 1 million
samples (approximately 37% labeled as malware), and covers 1,380 malware fami-
lies and 150,000 singleton samples, reflecting the natural distribution and evolution
of real-world Android applications. We empirically demonstrate LAMDA’s utility
by quantifying the performance degradation of standard ML models over time
and analyzing feature stability across years. As the most comprehensive Android
malware dataset to date, LAMDA enables in-depth research into temporal drift,
generalization, explainability, and evolving detection challenges. The dataset and
code are available at: https://iqsec-lab.github.io/LAMDA/.

1 Introduction

Android malware poses a growing threat to user privacy and security, with over 33 million attacks
blocked in 2024 alone [30, 29, 10, 21]. Machine learning (ML)-based detectors, which analyze
features extracted from Android application packages (APKs), have emerged as a promising defense
mechanism [9, 6, 46, 5, 34, 1, 37]. However, these detectors often suffer performance degradation
over time due to concept drift — gradual shifts in the feature distribution caused by the evolving
nature of both malicious and benign software [18, 17, 57, 12, 28, 42].

Concept drift can result from several factors, including changes in developer practices, updates to
Android APIs, and, most significantly, the evolving and adaptive strategies of malware authors [38, 25].
To evade detection, adversaries frequently obfuscate or modify their code by injecting alternative API
calls, altering manifest components, or exploiting newly introduced services [25, 38]. For example,
the Android trojan SoumniBot obfuscates its manifest file to evade analysis and detection [38]. These

Preprint.

https://arxiv.org/abs/2505.18551v1

tactics lead to observable shifts in static features over time, undermining the robustness of ML-based
detection systems. Prior studies have shown that malware families (i.e., clusters of samples exhibiting
similar behavioral traits) play a central role in driving such drifts [18, 12, 9].

Although concept drift plays a central role in the evolution of Android malware, most existing datasets
are not designed to support its analysis. Datasets such as Drebin [9], TESSERACT [42], and API
Graph [58] are limited in temporal coverage, family diversity, or structural organization for studying
drift. Similarly, Windows-based datasets like EMBER [8], SOREL-20M [26], and BODMAS [56]
are constrained by short collection periods or focus on different ecosystems. While EMBERSim [20],
MalNet [23], and AnoShift [19] offer task-specific contributions, they do not provide longitudinal
support for drift analysis in Android malware classification. To address these gaps, we introduce
LAMDA, a novel Android malware benchmark dataset curated for temporal drift analysis with family
evolution. LAMDA spans over 12 years (i.e., 2013–2025, excluding 2015 due to the unavailability of
hashes in the AndroZoo repository [3, 2]), covering 1,008,381 APK samples across 1,380 unique
malware families and over 150,000 Singleton samples (i..e, samples without av class labels) from
AndroZoo repository [3, 2]. Each sample is labeled using VirusTotal’s vt_detection count [51]
reported in AndroZoo database [3, 2]. The samples are decompiled to extract fine-grained static
features based on the feature definitions of Drebin [9].

We validate LAMDA through a series of comprehensive evaluations, including longitudinal degra-
dation analysis of the supervised binary classification under concept drift (AnoShift-style [22]),
temporally disjoint training (testing), and family-wise feature stability assessments. LAMDA enables
explanation-guided analysis of concept drift and combines long-term structural modeling with SHAP-
based attributions [36], allowing researchers to trace how feature relevance shifts over time and better
understand the underlying causes of model degradation.

In summary, the contributions of this paper are as follows:

• We present LAMDA, a large-scale Android malware benchmark comprising over 1 million
APKs across 1,380 unique families spanning for 12 years (2013 to 2025, excluding 2015),
built on static features based on Drebin [9] features.

• We conduct longitudinal evaluations under structured temporal splits [22], analyze per-
feature distribution shifts, and perform feature stability analysis of malware families [58].

• LAMDA facilitates explanation-driven drift analysis through SHapley Additive exPlanations
(SHAP)-based attributions [36], supporting investigations into how feature importance shifts
as malware evolves.

Contributions in the Appendices and Supplementary Materials. We include additional analyses
and supporting experiments in the appendices, including dataset statistics (Appendix A), feature
descriptions (Appendix B), model architectures and evaluation results (Appendix C), practical
considerations in dataset construction (Appendix D), handling of label noise (Appendix E), temporal
label drift (Appendix F), dataset scalability (Appendix G), concept drift adaptation on LAMDA
(Appendix H), SHAP-based explanation drift for top 1000 features (Appendix I), continual learning
experiments (Appendix J), and computational resources used for LAMDA generation (Appendix K).

2 Related Work

In this section, we discuss prior work and their limitations that motivate the creation of LAMDA.
Furthermore, we review prior work on continual learning (CL) to position LAMDA as a timely
benchmark for studying concept drift analysis and CL in malware analysis.

Evolution of Malware Datasets and Benchmarks. Early malware datasets such as Drebin [9]
(Android) and EMBER [8] (Windows) have played a pivotal role to study concept drift in malware
analysis. More recent efforts—including SOREL-20M [26] and BODMAS [56] for Windows, and
TESSERACT [42], API Graph [58], and AL-Chen [17] for Android attempt to address limitations
in scale and recency. Nonetheless, these datasets suffer from one or more major limitations — they
are often outdated, contain either relatively few malware samples or families, or lack long-term
temporal coverage necessary for studying the evolution of malware. For example, Drebin spans only
2010–2012 with 5,560 samples from 179 families; TESSERACT covers 2014–2016 with 12,735
samples; API Graph spans 2012–2018 with 32,089 samples from 1,120 families; and AL-Chen [17]
includes 10,200 samples across 254 families from 2019–2021. Despite their temporal spread, these

2

datasets are not explicitly structured to support longitudinal drift analysis or capture evolutionary
patterns in malware behavior.

Explainability and Semantic Features. Explainability is critical for understanding how feature
importance shifts under concept drift. While Drebin [9] and BODMAS [55] introduced interpretable
features and temporal structure, few studies have systematically used them to analyze drift. TRAN-
SCENDENT [11] incorporates semantic reasoning for selective prediction, but longitudinal robustness
of explanations remains underexplored due to limited dataset support. LAMDA fills this gap by
providing a temporally structured benchmark with interpretable features and SHapley Additive ex-
Planations (SHAP)-based explanations [36], enabling fine-grained, longitudinal analysis of model
behavior and drift.

Continual Learning for Malware Analysis. Continual learning (CL) in malware analysis remains
fairly underexplored. Rahman et al. [43] is the first to explore CL to this domain, found that
catastrophic forgetting (CF) occurs due to the diverse yet semantically limited nature of tabular
malware features, with replay-based approaches showing better resilience. Chen et al. [17] used
contrastive and active learning to detect drift but did not address CF. Recent work explores CL via
diversity-aware and generative replay on modified EMBER and small-scale Android datasets [40, 44].

3 LAMDA Creation

In this section, we describe the construction process of the LAMDA. We have downloaded APKs
from AndrooZoo repository [3, 2] and decompiled APKs to extract static Drebin [9] features and
then transformed the features into binary vectors for downstream analysis.

Label Assignment and Collection Strategy. To construct a large-scale, temporally diverse dataset,
we use metadata from AndroZoo [3, 2], including APK hashes, VirusTotal (VT) results, and submis-
sion dates. For each year from 2013 to 2025 (excluding 2015, which lacks valid entries), we collect
APKs and assign binary labels using the vt_detection field. Following prior heuristics [9, 42], we
define: (i) Benign for vt_detection = 0, (ii) Malware for vt_detection ≥ 4, and (iii) discard
Uncertain samples with scores in 1, 3. The ≥ 4 threshold mitigates label noise by requiring stronger
AV consensus [15].

To reduce sampling bias in learning systems, we collected 50,000 malware and 50,000 benign samples
per year, while preserving month-wise temporal distributions across both categories. Although prior
work such as TESSERACT [42, 17] adopts a 90:10 benign-to-malware ratio, we attempt to maintain
a balanced 50:50 ratio [8]. This choice is motivated by the need to mitigate the risk of skewed
learned representations (such as overfitting [48], disparity in learning [59]) that can arise from class
imbalance. A balanced dataset helps ensure that the model learns meaningful distinctions between
classes, captures a wider range of malware families, and is exposed to a broader spectrum of behaviors
and evasive techniques. Such diversity not only enables longitudinal generalization studies but also
increases the difficulty of the detection task, particularly for learning systems that must contend with
rare, novel, or semantically similar malware families [8]. Nonetheless, due to limited availability of
malware samples in certain years such as 2017, 2023, 2024, and 2025, LAMDA still exhibits class
imbalance, particularly in those periods.

Another practical challenge during data collection involved download and decompilation failures,
requiring us to over-fetch APKs to meet target counts. To mitigate this, we included a 20% overhead
in the number of APK hashes per year. All APKs are retrieved via authenticated academic access
to the AndroZoo repository 1 and stored in a consistent directory structure ([year]/malware/,
[year]/benign/) to facilitate temporal slicing and cross-year analysis. Corrupted or undecompil-
able samples are excluded and logged for transparency. The final dataset comprises over one million
APKs. A detailed year-wise breakdown is provided in Appendix A.

Family Label Acquisition. To support more detailed analysis beyond binary classification, we
assign family-level labels to all malware samples. These labels offer a finer-grained perspective
on how malware behavior evolves over time, which is important for developing detection systems
that can generalize to new threats. We use AVClass2 [47], a widely used tool that standardizes
noisy and inconsistent labels from antivirus vendors into meaningful malware family names. The

1https://androzoo.uni.lu/access

3

https://androzoo.uni.lu/access

F
a
m

il
y
 C

o
u

n
t

(a)

(b)

3064430020

0

0 0

F
a
m

il
y
 C

o
u

n
t

0

651

Figure 1: Temporal trends in mal-
ware family evolution.

(a) LAMDA. (b) API Graph.

Figure 2: F1-score over time across different temporal splits.

labeling process involves collecting VirusTotal [51] reports for each sample, converting them to the
required format, running AVClass2, and post-processing the output to retain links to individual files
via SHA256 hashes. Figures 1(a) and 1(b) illustrate the yearly distribution of recurring versus newly
observed families and the count of singleton families—those that appear only once—respectively.
These trends highlight the inherent difficulty of LAMDA. A growing number of novel and singleton
families suggests that many malware instances exhibit unique or rare behaviors, limiting the effec-
tiveness of detection systems. Family labels will facilitate research into more complex tasks such as
multi-class classification and the study of temporal trends across malware families. In LAMDA, the
labels are provided as an optional extension, allowing researchers to conduct either standard binary
classification or more advanced analyses, depending on their goals.

Decompilation and Static Feature Extraction. Each APK is statically decompiled us-
ing apktool [13], producing a disassembled smali representation and the original
AndroidManifest.xml. We parse these artifacts to extract a diverse set of static features com-
monly used in Android malware detection [9]. Specifically, the AndroidManifest.xml file is
analyzed to obtain the list of requested permissions (e.g., ACCESS_FINE_LOCATION, INTERNET),
declared activities and services, broadcast receivers, required hardware components, and intent
filters [9]. Meanwhile, the disassembled smali code is scanned to identify invocations of restricted
APIs (e.g., NotificationManager.notify), suspicious API usages (e.g., getSystemService),
and embedded hardcoded IPs/URLs (e.g., e.crashlytics.com). The extracted Drebin [9] feature
sets comprises several static categories derived from Android APKs [9, 15]. A detailed list of features
is provided in Appendix B.

Vectorization and Temporal Feature Alignment. After decompiling each APK, we extract static
features into a .data file (see Appendix B). Each year’s data is split into 80% training and 20%
testing sets using stratified sampling to preserve class balance. From the training set, we construct
a global vocabulary by taking the union of unique tokens across all samples, yielding 9,690,482
(≈ 9.69 million) raw features [44, 57]. Each APK is then represented as a high-dimensional binary
vector using a bag-of-tokens model, where each token corresponds to a binary feature indicating its
presence or absence in the sample [9, 15].

To reduce dimensionality and ensure computational feasibility, we apply VarianceThreshold from
scikit-learn to eliminate low-variance features. For all experiments, we use the Baseline variant,
which applies a threshold of 0.001 [57, 43, 40, 44], resulting in 4, 561 final features. This compact
and consistent representation supports a range of downstream tasks, including supervised learning,
drift analysis, and continual learning [44, 40].

The dataset is initially created in a sparse matrix format, storing binary feature vectors and metadata
as compressed .npz files to optimize for storage efficiency and computational performance. These
NPZ files are organized by year and stratified into training and test splits. To enhance accessibility
and integration with machine learning pipelines, particularly for the Hugging Face 2 ecosystem, we
have converted the data into tabular .parquet files.

The final dataset is also organized into year-based folders, each containing stratified training and
test splits. For each split, we provide two .parquet files within the corresponding year-specific
folder (e.g., YYYY/X_train.parquet and YYYY/X_test.parquet), where YYYY denotes the year.
Each file is a tabular dataset in which the first five columns represent metadata fields: hash, label,

2https://huggingface.co/docs/hub/datasets-adding#file-formats

4

https://huggingface.co/docs/hub/datasets-adding#file-formats

Split Model LAMDA API Graph
F1 ROC-AUC PR-AUC FNR FPR F1 ROC-AUC PR-AUC FNR FPR

IID

LightGBM 97.49 ± 0.17 99.55 ± 0.03 99.50 ± 0.11 1.74 ± 0.34 2.69 ± 0.48 85.95 ± 0.00 98.91 ± 0.00 95.20 ± 0.00 22.39 ± 0.00 0.33 ± 0.00
MLP 97.21 ± 0.12 99.48 ± 0.04 99.38 ± 0.20 2.50 ± 0.06 2.58 ± 0.85 85.79 ± 0.00 96.37 ± 0.00 88.49 ± 0.00 20.31 ± 0.00 0.67 ± 0.00
SVM 94.98 ± 1.07 98.89 ± 0.28 98.75 ± 0.46 4.82 ± 0.76 4.09 ± 0.55 82.00 ± 0.00 97.33 ± 0.00 90.94 ± 0.00 26.74 ± 0.00 0.60 ± 0.00
XGBoost 97.05 ± 0.14 99.15 ± 0.16 97.68 ± 1.16 2.20 ± 0.43 2.96 ± 0.01 80.33 ± 0.00 96.05 ± 0.00 89.74 ± 0.00 28.35 ± 0.00 0.75 ± 0.00

NEAR

LightGBM 59.48 ± 28.20 74.05 ± 23.76 70.18 ± 27.10 50.51 ± 30.82 1.85 ± 0.95 66.77 ± 0.00 95.94 ± 0.00 83.01 ± 0.00 47.68 ± 0.00 0.48 ± 0.00
MLP 56.57 ± 28.41 82.71 ± 11.19 67.94 ± 24.59 51.95 ± 30.42 3.98 ± 1.19 68.72 ± 0.00 86.79 ± 0.00 68.31 ± 0.00 38.80 ± 0.00 1.87 ± 0.00
SVM 52.91 ± 28.40 75.18 ± 17.98 62.53 ± 29.82 55.62 ± 28.88 4.71 ± 0.97 63.06 ± 0.00 89.25 ± 0.00 70.15 ± 0.00 45.48 ± 0.00 2.03 ± 0.00
XGBoost 55.84 ± 29.73 77.75 ± 16.85 68.14 ± 26.55 53.84 ± 30.94 2.14 ± 0.86 51.47 ± 0.00 86.90 ± 0.00 65.69 ± 0.00 60.41 ± 0.00 1.57 ± 0.00

FAR

LightGBM 47.24 ± 27.33 78.04 ± 20.83 63.45 ± 35.80 64.10 ± 22.97 1.30 ± 0.95 68.20 ± 4.63 95.68 ± 0.81 81.69 ± 1.59 45.04 ± 5.72 0.61 ± 0.07
MLP 47.59 ± 25.30 84.04 ± 11.23 66.16 ± 34.34 64.40 ± 20.63 1.14 ± 0.71 63.92 ± 5.39 87.10 ± 1.95 64.22 ± 4.19 46.45 ± 6.10 1.40 ± 0.15
SVM 41.86 ± 22.55 79.07 ± 15.06 62.27 ± 34.09 69.93 ± 16.85 1.27 ± 0.76 66.18 ± 6.21 93.44 ± 0.52 75.46 ± 2.58 44.26 ± 8.35 1.23 ± 0.14
XGBoost 42.75 ± 25.86 76.85 ± 16.49 60.33 ± 35.88 68.11 ± 20.43 1.69 ± 0.57 54.88 ± 9.26 83.44 ± 4.79 65.03 ± 6.67 56.68 ± 8.92 1.41 ± 0.35

Table 1: Comparison of performances on LAMDA and API Graph across three temporal splits.

(a) LAMDA (b) API Graph

Figure 3: Jeffreys divergence heatmaps across
years for LAMDA and API Graph datasets.

Figure 4: t-SNE projections showing feature
space evolution for LAMDA and API Graph.

family, vt_count, and year_month. The remaining columns contain binary features, with the exact
number depending on the applied variance threshold. A detailed breakdown of feature dimensions
under varying VarianceThreshold settings is provided in Appendix B. For scalability of LAMDA,
we also published global features, variance threshold objects and selected features after applying
VarianceThreshold.

4 Concept Drift Analysis

We first examine performance degradation of supervised models across temporally distant splits [22]
(Section 4.1), followed by distributional shifts using Jeffreys divergence and t-SNE visualizations
(Sections 4.1 and 4.2). We then assess feature stability in top malware families (Section 4.3), drift in
common families (Section 4.4), and conclude with SHAP-based explainability analysis (Section 4.5).
Each analysis includes a comparison with API Graph [58], which spans seven years, longer than prior
datasets, and captures long-term API call evolution with greater malware family diversity.

4.1 Concept Drift Analysis with Supervised Learning

Experimental Setting. To evaluate the robustness of malware detectors under temporal distribution
shifts, we perform supervised learning experiments using four widely adapted detector models from
the malware research — Linear SVM, LightGBM, MLP, and XGBoost [9, 8, 56, 17]. Detailed model
configurations are provided in Appendix C.

Inspired by the AnoShift benchmark [22], we divide LAMDA into three temporally separated regions:
TRAIN (i.e., initial training set) with Independent and Identically Distributed (IID), NEAR, and FAR.
We construct the TRAIN+IID set using samples from 2013 and 2014. Models are trained on samples
from all months of these two years, excluding the final month of each, which is reserved for IID
evaluation. This held-out portion serves as an in-distribution test set, allowing us to measure baseline
performance on temporally adjacent, yet unseen data. To examine generalization under increasing
drift, we define two additional test regions: NEAR (2016–2017) and FAR (2018–2025), both
strictly used for evaluation. These splits enable a principled analysis of how detection performance
degrades as the temporal gap from the training data widens, thereby reflecting progressively stronger
distributional shifts.

For comparison, we evaluate the same malware detectors on the API Graph dataset [58] using a
similar AnoShift-style [22] split: training on 2012, IID on 2013, NEAR on 2014, and FAR on
2015–2018. All experiments are repeated five times with different random seeds. For each split:
IID (2013–2014), NEAR (2016–2017), and FAR (2018–2025). We report the results on different

5

evaluation metrics in Table 1 as mean±std, averaged over all runs and all years within each split. In
Figure 2 results are averaged across all runs, but shown separately for each year.

Results. Table 1 summarizes the performance of malware detectors on both LAMDA and API
Graph under the IID, NEAR, and FAR evaluation splits. All detectors perform strongly under IID
conditions, but their effectiveness declines sharply as the temporal gap from training increases. For
instance, LightGBM’s F1-score on LAMDA drops from 97.49% (IID) to 59.48% (NEAR) and 47.24%
(FAR), alongside a significant rise in the false negative rate, from 1.47% to 50.51% and 64.10%,
respectively,—demonstrating increased difficulty. In contrast, the false positive rate (FPR) remains
low and stable, likely due to the more consistent behavior of benign apps over time. Figure 2(a)
further visualizes this trend, showing how F1-scores decline over time. Notably, we observe a sharp
drop in performance between 2016 and 2017, indicating a significant distributional shift. A similar
decline is evident from 2023 to 2024. In contrast, F1-scores increase from 2018 to the 2019–2022
period, suggesting that these intermediate years exhibit less drift relative to 2017 and 2018.

In API Graph, LightGBM’s F1-score drops from 85.95% (IID) to 66.77% (NEAR), but stabilizes at
68.20% on FAR. The F1-scores over the years in Figure 2(b) indicate a smaller degree of temporal
drift, with only modest changes in performance between years. Compared to the API graph, LAMDA
shows a higher standard deviation in both NEAR and FAR, suggesting more pronounced and variable
distributional shifts. This supports our claim that LAMDA introduces stronger concept drift, making
it a more challenging and realistic benchmark for evaluating long-term malware detection.

4.2 Visual Analysis of Concept Drift

Visualization Setting. To better understand how malware and benign class distributions evolve
over time, we employ two complementary visualization techniques: Jeffreys divergence heatmaps
and t-SNE projections. Jeffreys divergence [27, 22] is a symmetric information-theoretic measure
that quantifies how the distribution of individual static features shifts across years. We compute this
metric pairwise between all yearly combinations in both LAMDA (2013–2025, excluding 2015)
and API Graph (2012–2018), producing yearly heatmaps that capture the extent and direction of
temporal drift [22]. Additionally, we use t-SNE [50], a non-linear dimensionality reduction technique,
to project high-dimensional feature vectors into 2D space. To ensure a fair comparison, we selected
four common years available in both datasets – 2013, 2014, 2016, and 2017. This setting has been
widely adopted in prior work on malware drift and structure visualization [42, 53]. Full year-wise
t-SNE projections for both datasets are provided in Appendix B.

Analysis. Figure 3 presents the Jeffreys divergence heatmaps for both datasets. In both LAMDA
and API Graph, we observe increasing divergence values as the gap between years widens, confirming
the presence of non-trivial concept drift. However, LAMDA exhibits a broader range of divergence,
particularly from 2022 to 2025, indicating substantial changes in the distribution of static features.
These changes likely arise from evolving APIs, development practices, and new malware behaviors.
In contrast, API Graph shows relatively stable patterns, with limited divergence in its final years.
Figure 4 provides t-SNE projections for the selected years. While t-SNE visualizations suggest
that malware samples in LAMDA appear more scattered in later years (2016–2017), this may
reflect increasing structural diversity or sparsity in feature space. However, as t-SNE distorts global
distances, we corroborate these patterns with quantitative measures like Jeffreys divergence to assess
real distributional shifts. On the other hand, API Graph maintains tightly clustered and relatively
static distributions throughout, indicating limited structural evolution. These visual trends reinforce
LAMDA’s value as a temporally rich benchmark for studying real-world concept drift.

4.3 Feature Space Stability Analysis on Top Malware Families

Analysis Setting. Understanding the temporal consistency of malware families is essential for
developing robust detection systems. We evaluate this using two complementary metrics — stability
scores and Optimal Transport Dataset Distance (OTDD) [4], following prior work [58, 19]. The
analysis is performed in the original feature space, focusing on the top 100 malware families with
the highest number of samples. Samples within each family are temporally ordered from 2013 to
2025; however, not all families have data for every year. Inspired by [58], we partition each family’s
samples into ten equal subsets, each representing 10% of the total. For API Graph, we identified 58

6

S
ta

bi
lit

y
sc

or
e

1.0

0.8

0.6

0.4

0.2

0.0

Figure 5: The distribution of feature stability scores for top 100 malware families. 58 families are
common in both LAMDA (green) and API Graph (blue) datasets, and families marked as red labels
along x-axis available in LAMDA with minimum family size criteria.

OTDD on LAMDA Dataset OTDD on APIGraph Dataset

Figure 6: Optimal Transport Distance of 60 common families. Each of the plots shows the area of
nine OTDD scores of 10 groups of 10 families in LAMDA (left) and API Graph (right).

Train (2013) - Test (2014-2024) samples

S
ta

b
ili

ty
 s

co
re

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

2013

2014

2014

2016

2016

2017

2017

2018

2018

2019

2019

2020

2020

2021

2021

2022

2022

2023

2023

2024

airpush
dianjin

ewind
dnotua

fakeapp
plankton
smsagent
smspay
smsreg
umpay

(a) Stability scores.

D
is

t.
 t

o
n
ea

re
st

 c
en

tr
oi

d

0.8

Common malware families

Airp
us

h

Pla
nk

to
n

Fa
ke

ap
p

Smsre
g

Umpa
y

Ew
ind

Smsp
ay

Smsa
ge

nt

Dian
jin

Dno
tu

a

0.6

0.5

0.4

0.3

0.2

0.1

Non-drift
Drift

0.0

0.7

364
11293

6
1238

3
1338

8
1216

30
2007

33
1310

2
149

8
426

310
13632

16
10152

(b) Distribution distances.

Figure 7: Stability and distribution analysis on
malware families.

(a) LAMDA. (b) API Graph.

Figure 8: SHAP-based explanation drift on
LAMDA and API Graph datasets.

families with at least 10 samples within the year range 2013 and 2018, meeting the requirements for
this subdivision. We then compute the stability score using the Jaccard similarity metric, as in [58],
across the ten subsets for both LAMDA and API Graph.

Stability Scores Analysis. Figure 5 shows the distribution of consecutive pairwise stability scores
across ten groups for each of the top 100 malware families. The number of samples per family varies
considerably, ranging from 186 to 32,475, with a mean of 1,984 and a median of 535. The green box
plots correspond to LAMDA, while the blue box plots represent API Graph. Both datasets capture
the temporal evolution of malware families, as reflected in the spread and median of stability scores.
Broader spreads and lower medians in both datasets indicate greater behavioral variability over time.
Notably, LAMDA includes more families and reflects broader evolutionary patterns than API Graph.
These differences suggest that detection models trained on LAMDA may offer improved insight into
concept drift, benefiting from greater sample diversity and family coverage.

Optimal Transport Dataset Distance (OTDD) Analysis. Figure 6 illustrates temporal distri-
butional shifts using Optimal Transport Dataset Distance (OTDD) [4], a geometric method for
quantifying differences between probability distributions. To assess intra-family drift, we partition
each malware family in the LAMDA and API Graph datasets into ten chronological subsets and
compute OTDD between consecutive pairs. The results are visualized via radar plots, where each axis
represents a subset transition. Compact, regular shapes indicate temporal stability, while larger or
irregular shapes signal drift. Comparing the two datasets, the LAMDA radar plots show both regular
and irregular patterns indicating temporal shifts of malware families that causes concept drift. Similar
behavior is also observed in the API Graph dataset for the same families.

4.4 Temporal Drift Analysis on Common Malware Families

Analysis Setting. We assess the drifting behavior over the years for the common families present
from 2013 to 2025. We observe that only 10 families appear consistently each year, except for

7

2025. Subsequently, we compute the year-wise stability score for the original feature set within
each of these 10 common families. Additionally, we measure the distribution distances based on the
CADE [54] latent features in the test set. This experiment uses 2013 dataset for training and 2014 to
2024 samples serve as test sets.

Feature-Based Stability Evaluation. In Figure 7a, we present the stability scores (jaccard sim-
ilarity) across consecutive year-wise malware sample sets for 10 common malware families. A
flatter curve across the years indicates stronger temporal consistency within a family, whereas sharp
variations reflect instability or feature drift over time. Most families, such as airpush, dianjin,
plankton, smsagent, smspay, and smsreg, demonstrate relatively flat trends, suggesting stable
feature distributions across years. In contrast, families like umpay, fakeapp, and dnotua exhibit
significant fluctuations, notably a major spike around the fourth group (2017-2018), indicating periods
of high instability. The especially large peak observed for umpay indicates a considerable temporal
drift, which may be attributed to evolving malware behaviors during that time. Overall, the results
show that while several malware families maintain stable characteristics over time, certain families
undergo notable shifts, highlighting the need for dynamic adaptation in detection models.

Latent Space Drift Detection via Distance Metrics. Figure 7b presents the distribution of distances
to the nearest class centroids for testing samples (2014-2024) across 10 common families, computed
based on the contrastive latent space representations [57]. We encode each test samples with the
trained contrastive autoencoder and compute the Euclidean distance to each class centroid [57].
Afterwards, we utilize the Median Absolute Deviation (MAD) to normalize these distances within
each class. In particular, a test sample is classified as a drifted sample if its normalized MAD
score, A(k), exceed an empirically set threshold TMAD = 3.5; otherwise, it is classified as a non-
drifted sample. This decision rule ensures that samples deviating significantly from the learned
class distributions are detected as potential concept drift instances. The resulting boxplots show
a clear separation between non-drifted (green) and drifted (red) samples across families. Drifted
samples consistently exhibit higher distance values relative to non-drifted samples, with especially
pronounced separation observed for families such as plankton, umpay, dianjin, and dnotua. Non-
drifted samples demonstrate tight clustering around the respective centroids, indicating stability
within the known malware families.

4.5 Temporal Analysis of SHAP-based Explanation Drift

Analysis Setting. Explanation drift occurs when the features a malware detector (model) relies
on for its predictions change over time, even if accuracy remains stable. To assess explanation
drift over time in the LAMDA and API Graph [58] datasets, we compute Jaccard and Kendall
distances [14, 33, 32] over SHapley Additive exPlanations (SHAP) [36] feature attributions. Jaccard
distance measures changes in the set of important features to find the feature set overlap, while
Kendall distance captures shifts in their ranking to find feature ranking consistency. Low distances
suggest consistent model reasoning, while high Jaccard or low Kendall values indicate significant
drift in explanations. This can result from retraining, data shifts, or adversarial influence, and may
signal the need for closer model monitoring. We generate SHAP values using KernelExplainer
proposed in [36] with 100 background and 100 test samples per month. Kernel SHAP algorithm
is a model agnostic optimization algorithm. Results using the top 1,000 features are reported in
Appendix I. For readability, the x-axis in Figure 8a is labeled every third month, spanning June 2013
to January 2025 (labels shown from September 2013 to December 2024). For API Graph [58], the
range is January 2013 to December 2018, with similar labeling (see Figure 8b).

Jaccard and Kendall Distance Analysis. To evaluate the temporal consistency of model explana-
tions, we compute Jaccard and Kendall distances between consecutive months based on the top-100
SHAP feature indices. As shown in Figure 8a, our proposed LAMDA dataset displays consistently
high Jaccard distances (close to 0.9), indicating significant variability in the feature sets used by
the model for prediction across time. A sharp drop around September 2017 suggests a rare period
of stability or possibly an anomaly in model behavior. The corresponding Kendall distances show
a moderate but steady pattern, further reinforcing that both the set and order of important features
fluctuate over time. In contrast, the API Graph dataset, depicted in Figure 8b, exhibits a gradual
downward trend in both Jaccard and Kendall distances. This suggests that the features influencing
model predictions in API Graph remain relatively stable across time. SHAP-based explanation drift

8

reveals that the LAMDA dataset induces significantly more volatile model behavior, as shown by
higher and more variable Jaccard and Kendall distances (Figure 8a), indicating greater temporal
variation in feature importance. In contrast, the API Graph dataset (Figure 8b) exhibits more stable
patterns over time. These results highlight LAMDA’s suitability for evaluating concept drift, continual
learning, and model robustness in dynamic malware detection settings [58].

5 Discussion

We introduce LAMDA, the most extensive and temporally diverse Android malware dataset to date,
spanning 2013–2025 (excluding 2015). Unlike prior datasets with limited temporal scope or family
diversity [9, 58], LAMDA supports long-term, realistic evaluations of malware detectors under
evolving threat landscapes. Through a series of systematic evaluations including supervised detection,
per-feature divergence, and feature stability analysis across top and common malware families, SHAP
based drift explanation analysis, we show that LAMDA is a strong benchmark for real-world concept
drift analysis in malware detection. While supervised learners perform well on in-distribution data
(IID), their effectiveness declines on temporally distant samples evident in sharp F1-score drops
between 2016–2017 (NEAR) and 2023–2024 (FAR). This degradation aligns with Jeffreys divergence
values up to 7.0 between 2014 and 2025, indicating significant shifts in static features like API calls
and permissions. t-SNE visualizations further reveal increasingly fragmented malware clusters over
time, underscoring growing behavioral diversity and structural sparsity.

Our study on feature stability reveal that the importance of certain features, such as permissions and
intent filters, change over time. Furthermore, SHAP-based [36] explanation drift analysis exhibits
persistent shifts in feature sets and rankings especially around 2014, 2017, and 2021 indicating
evolving model reasoning despite stable classification performance. In contrast, API Graph shows
lower, more stable distances, reflecting limited temporal variation.

Broader Adoptions. In addition to concept drift analysis, supervised detection, and feature stability
assessments, LAMDA can support a range of adjacent research directions in cybersecurity and
machine learning. Its temporal structure enables evaluation of generalization under distributional
shift, while its family diversity allows for studying malware evolution and model adaptation with
limited data, including transfer and few-shot learning. As one of the largest Android malware datasets,
LAMDA can also be used to train feature extractors for related tasks such as domain adaptation.
Moreover, its global feature vocabulary allows researchers to align newly collected samples with
LAMDA, supporting scalable benchmarking. The provided variance-threshold objects further enable
transformation of future test features, facilitating continuous dataset expansion.

Limitations. While LAMDA provides a strong foundation for studying concept drift in malware
analysis, we acknowledge a few limitations. It relies exclusively on static features, omitting dynamic
behaviors observable only at runtime. While prior work suggests a 10:90 malware-to-benign ratio,
LAMDA attempts to maintain a 50:50 ratio, which may be viewed as downplaying the role of benign
software distributions. However, we argue that LAMDA is constructed as a challenging dataset
with greater family diversity and balanced class distribution. As such, LAMDA will facilitate the
investigation of detectors that are more resilient to distributional shifts and capable of generalizing
across a broad spectrum of evolving malware behaviors.

6 Conclusion

In this paper, we introduce LAMDA, a large-scale and temporally structured Android malware dataset
designed to support long-term evaluation of detection systems as threats evolve. Spanning over a
decade, the dataset enables detailed analysis of how model performance changes over time due to
shifts in malware behavior and feature distributions. Evaluations in supervised learning, feature
stability, and explanation analysis highlight the impact of these shifts on detection performance.
With extensive temporal coverage, diverse malware families, and static features, LAMDA provides
a practical and reproducible foundation for research in cybersecurity and machine learning. We
envision that LAMDA benchmark would serve as a resource for advancing more resilient and adaptive
malware detection systems against evolving threat landscape.

9

References
[1] Yousra Aafer, Wenliang Du, and Heng Yin. DroidAPIMiner: Mining api-level features for

robust malware detection in android. In International Conference on Security and Privacy in
Communication Networks (SecureComm), 2013.

[2] Marco Alecci, Pedro Jesús Ruiz Jiménez, Kevin Allix, Tegawendé F Bissyandé, and Jacques
Klein. AndroZoo: A Retrospective with a Glimpse into the Future. In International Conference
on Mining Software Repositories (MSR), 2024.

[3] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. AndroZoo: Collecting
Millions of Android Apps for the Research Community. In International Conference on Mining
Software Repositories (MSR), 2016.

[4] David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport.
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[5] Mohammed K Alzaylaee, Suleiman Y Yerima, and Sakir Sezer. Emulator vs real phone: Android
malware detection using machine learning. In ACM International Workshop on Security and
Privacy Analytics (IWSPA), 2017.

[6] Brandon Amos, Hamilton Turner, and Jules White. Applying machine learning classifiers to
dynamic android malware detection at scale. In International Wireless Communications and
Mobile Computing Conference (IWCMC), 2013.

[7] Hyrum S Anderson and Phil Roth. Ember: An open dataset for training static pe malware
machine learning models. In Proceedings of the AAAI Workshop on Artificial Intelligence for
Cyber Security (AICS), 2018. URL https://github.com/elastic/ember. Available at
https://github.com/elastic/ember.

[8] Hyrum S Anderson and Phil Roth. EMBER: An open dataset for training static PE malware
machine learning models. arXiv:1804.04637, 2018.

[9] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT
Siemens. Drebin: Effective and explainable detection of android malware in your pocket. In
Network and Distributed System Security Symposium (NDSS), 2014.

[10] AV-TEST. Malware statistics and trends report. https://www.av-test.org/en/
statistics/malware/, 2025.

[11] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro. Transcending
transcend: Revisiting malware classification in the presence of concept drift. In IEEE Symposium
on Security and Privacy (S&P), 2022.

[12] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro. Transcend-
ing Transcend: Revisiting malware classification in the presence of concept drift. In IEEE
Symposium on Security and Privacy (S&P), 2022.

[13] Brut. Apktool. https://apktool.org/, 2025. Accessed: 2025-04-26.

[14] Christopher Burger. Improving Robustness Estimates in Natural Language Explainable AI
though Synonymity Weighted Similarity Measures. arXiv preprint arXiv:2501.01516, 2025.

[15] Sen Chen, Minhui Xue, Zhushou Tang, Lihua Xu, and Haojin Zhu. Stormdroid: A streamin-
glized machine learning-based system for detecting android malware. In ACM ASIA Conference
on Computer and Communications Security (AsiaCCS), 2016.

[16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 785–794, 2016.

[17] Yizheng Chen, Zhoujie Ding, and David Wagner. Continuous learning for android malware
detection. In USENIX Security Symposium, 2023.

10

https://github.com/elastic/ember
https://github.com/elastic/ember
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://apktool.org/

[18] Theo Chow, Zeliang Kan, Lorenz Linhardt, Lorenzo Cavallaro, Daniel Arp, and Fabio Pierazzi.
Drift forensics of malware classifiers. In ACM Workshop on Artificial Intelligence and Security
(AISec), 2023.

[19] Andrea Civitarese, Luca Demetrio, Fabio Pierazzi, and Lorenzo Cavallaro. Anoshift: A
distribution shift benchmark for unsupervised anomaly detection under label scarcity. In
Advances in Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track,
2022.

[20] Dragos Georgian Corlatescu, Alexandru Dinu, Mihaela Gaman, and Paul Sumedrea. Embersim:
A large-scale databank for boosting similarity search in malware analysis. In Advances in
Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, 2023.

[21] Counterpoint-Research. Global smartphone os market share. https://www.
counterpointresearch.com/insights/global-smartphone-os-market-share/,
2025. Accessed: 2025-04-18.

[22] Marius Dragoi, Elena Burceanu, Emanuela Haller, Andrei Manolache, and Florin Brad. Anoshift:
A distribution shift benchmark for unsupervised anomaly detection. Advances in Neural
Information Processing Systems (NeurIPS), 2022.

[23] Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. Malnet: A large-scale malware
network dataset for graph representation learning. In Advances in Neural Information Processing
Systems (NeurIPS) Datasets and Benchmarks Track, 2020.

[24] Daniele Ghiani, Daniele Angioni, Angelo Sotgiu, Maura Pintor, and Battista Biggio. Under-
standing regression in continual learning for malware detection. 2025.

[25] Andy Greenberg. Android ransomware’s evolution is worrying researchers, 2020. URL
https://www.wired.com/story/android-ransomware-worrying-evolution. Ac-
cessed: 2025-05-06.

[26] Richard Harang and Ethan M. Rudd. Sorel-20m: A large scale benchmark dataset for malicious
pe detection, 2020.

[27] Harold Jeffreys. An invariant form for the prior probability in estimation problems. Proceedings
of the Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1007):
453–461, 1946.

[28] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini, Ilia Nouretdinov,
and Lorenzo Cavallaro. Transcend: Detecting concept drift in malware classification models. In
USENIX Security Symposium, 2017.

[29] Stefan Karpenstein. G data mobile malware report, 2017. URL https://www.gdata.nl/
news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps.
Accessed: 2025-05-06.

[30] Kaspersky. Mobile threat report 2024. https://securelist.com/
mobile-threat-report-2024/115494/, 2024. Accessed: 2025-04-18.

[31] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

[32] Maurice G Kendall. A new measure of rank correlation. Biometrika, 1938.

[33] Sven Kosub. A note on the triangle inequality for the jaccard distance. Pattern Recognition
Letters, 2019.

[34] Eduard Kovacs. FireEye MalwareGuard uses machine learn-
ing to detect malware. https://www.securityweek.com/
fireeye-malwareguard-uses-machine-learning-detect-malware/, 2018.

11

https://www.counterpointresearch.com/insights/global-smartphone-os-market-share/
https://www.counterpointresearch.com/insights/global-smartphone-os-market-share/
https://www.wired.com/story/android-ransomware-worrying-evolution
https://www.gdata.nl/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps
https://www.gdata.nl/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps
https://securelist.com/mobile-threat-report-2024/115494/
https://securelist.com/mobile-threat-report-2024/115494/
https://www.securityweek.com/fireeye-malwareguard-uses-machine-learning-detect-malware/
https://www.securityweek.com/fireeye-malwareguard-uses-machine-learning-detect-malware/

[35] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis,
Gregory G. Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in
classification tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2019.

[36] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Advances in Neural Information Processing Systems (NeurIPS), 2017.

[37] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristofaro, Gordon
Ross, and Gianluca Stringhini. MAMADROID: Detecting android malware by building markov
chains of behavioral models. In Network and Distributed System Security Symposium (NDSS),
2017.

[38] The Hacker News. New android trojan ‘soumnibot’ evades detection by ob-
fuscating manifest file, 2024. URL https://thehackernews.com/2024/04/
new-android-trojan-soumnibot-evades.html. Accessed: 2025-05-06.

[39] Diane Oyen, Michal Kucer, Nicolas Hengartner, and Har Simrat Singh. Robustness to label
noise depends on the shape of the noise distribution. Advances in Neural Information Processing
Systems, 35:35645–35656, 2022.

[40] Jimin Park, AHyun Ji, Minji Park, Mohammad Saidur Rahman, and Se Eun Oh. MalCL: Lever-
aging gan-based generative replay to combat catastrophic forgetting in malware classification.
In AAAI Conference on Artificial Intelligence (AAAI), 2025.

[41] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vander-
plas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard
Duchesnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[42] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo Cavallaro.
TESSERACT: Eliminating experimental bias in malware classification across space and time.
In USENIX Security Symposium, 2019.

[43] Mohammad Saidur Rahman, Scott E. Coull, and Matthew Wright. On the limitations of
continual learning for malware classification. In First Conference on Lifelong Learning Agents
(CoLLAs), 2022.

[44] Mohammad Saidur Rahman, Scott Coull, Qi Yu, and Matthew Wright. MADAR: Effi-
cient continual learning for malware analysis with diversity-aware replay. arXiv preprint
arXiv:2502.05760, 2025.

[45] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Expe-
rience replay for continual learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[46] Justin Sahs and Latifur Khan. A machine learning approach to android malware detection. In
European Intelligence and Security Informatics Conference (EISIC), 2012.

[47] Manuel Sebastián, Raul Rivera, Paraskevas Kotzias, and Juan Caballero. Avclass: A tool for
massive malware labeling. In International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2016.

[48] Ravid Shwartz-Ziv, Micah Goldblum, Yucen Li, C Bayan Bruss, and Andrew G Wilson.
Simplifying neural network training under class imbalance. Advances in Neural Information
Processing Systems (NeurIPS), 2023.

[49] Gido M van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental
learning. Nature Machine Intelligence, 2022.

[50] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research (JMLR), 2008.

12

https://thehackernews.com/2024/04/new-android-trojan-soumnibot-evades.html
https://thehackernews.com/2024/04/new-android-trojan-soumnibot-evades.html

[51] VirusTotal. VirusTotal – Stats. https://www.virustotal.com/gui/stats, 2025.

[52] Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. Droidevolver: Self-evolving android
malware detection system. In IEEE European Symposium on Security and Privacy (EuroS&P),
2019.

[53] Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. Droidevolver: Self-evolving android
malware detection system. In IEEE European Symposium on Security and Privacy (EuroS&P),
2019.

[54] Limin Yang, Yizheng Chen, and Gang Wang. Cade: Detecting and explaining concept drift
samples for security applications. In USENIX Security Symposium, 2021.

[55] Limin Yang, Aravind Ciptadi, Ilya Laziuk, Amin Ahmadzadeh, and Gang Wang. Bodmas: An
open dataset for learning based temporal analysis of pe malware. In IEEE Security and Privacy
Workshops (SPW), 2021.

[56] Limin Yang, Arridhana Ciptadi, Ihar Laziuk, Ali Ahmadzadeh, and Gang Wang. BODMAS:
An open dataset for learning based temporal analysis of PE malware. In IEEE Security and
Privacy Workshops (SPW), 2021.

[57] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh, Xinyu Xing, and
Gang Wang. CADE: Detecting and explaining concept drift samples for security applications.
In USENIX Security Symposium, 2021.

[58] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun Zhang, Mi Zhang,
and Min Yang. Enhancing state-of-the-art classifiers with api semantics to detect evolved android
malware. In ACM Conference on Computer and Communications Security (CCS), 2020.

[59] Zhihan Zhou, Jiangchao Yao, Feng Hong, Ya Zhang, Bo Han, and Yanfeng Wang. Combating
representation learning disparity with geometric harmonization. Advances in Neural Information
Processing Systems (NeurIPS), 2023.

[60] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and Gang Wang.
Measuring and modeling the label dynamics of online anti-malware engines. In USENIX
Security Symposium, 2020.

[61] Shuofei Zhu, Ziyi Zhang, Limin Yang, Linhai Song, and Gang Wang. Benchmarking label
dynamics of virustotal engines. In ACM Conference on Computer and Communications Security
(CCS), 2020.

13

https://www.virustotal.com/gui/stats

Overview of Appendix

Supplementary Material. The following appendices provide further information:

1. A Dataset Statistics: Year-wise malware/benign counts and family distributions.

2. B Feature Description: Overview of all static features extracted from APKs.

3. C Model Architectures and Detail Results: Architectures and extended evaluation on
LAMDA variants.

4. D Behind the Scenes: Practical Challenges: Technical and operational challenges during
dataset construction.

5. E Effect of Label Noise in Training Data: Impact of different VirusTotal thresholds on
labeling.

6. F Label Drift Across Years Based on VirusTotal Label Changes: Year-wise analysis of
evolving VirusTotal labels.

7. G Scalability of LAMDA: Instructions for extending LAMDA with new samples using our
codebase.

8. H Concept Drift Adaptation on LAMDA: Results of prior adaptation methods (e.g.,
CADE, Chen) on LAMDA.

9. I SHAP-Based Explanation Drift: Temporal trends in top 1000 feature attributions.

10. J Continual Learning on LAMDA: Class- and domain-incremental learning benchmarks.

11. K Computational Resources: Hardware and runtime configuration for dataset generation.

12. L Dataset Documentation: Details about dataset documentation.

A Dataset Statistics

LAMDA benchmark is constructed from a total of 1,008,381 Android APKs, comprising 369,906
malware samples and 638,475 benign samples. Table 2 summarizes the yearly distribution of both
malware and benign APKs. To mitigate class imbalance during training, our initial goal was to collect
approximately 50,000 malware and 50,000 benign samples per year; this target could not be met in
certain years. Specifically, we were unable to collect sufficient samples for the years 2017, 2021, 2023,
2024, and 2025 due to our labeling criterion—requiring a VirusTotal detection count of 4 or more
for malware—and the limited availability of up-to-date samples in the AndroZoo repository [3, 2].
Additional constraints, such as corrupted downloads and decompilation failures, further reduced
the effective sample count in those years. Despite these limitations, LAMDA remains the largest
Android malware dataset to date in terms of both total sample count and temporal coverage.

Table 2: Year-wise distribution of total, malware, and benign samples.
Year Total Samples Malware Samples Benign Samples
2013 86,431 44,383 42,048
2014 101,183 45,756 55,427
2016 109,193 45,134 64,059
2017 99,144 21,359 77,785
2018 104,292 39,350 64,942
2019 91,050 41,585 49,465
2020 102,073 46,355 55,718
2021 81,155 35,627 45,528
2022 86,416 41,648 44,768
2023 54,354 7,892 46,462
2024 48,427 794 47,633
2025 44,663 23 44,640

Total 1,008,381 369,906 638,475

14

Table 3: Year-wise breakdown of malware family distributions in LAMDA.
Year New Existing Valid Family #of Singleton #of Unknown
2013 213 0 213 1550 24
2014 91 140 231 2482 345
2016 179 196 375 5861 177
2017 88 119 207 9063 1108
2018 153 220 373 20579 1242
2019 259 376 635 18916 22
2020 141 447 588 30644 25
2021 43 252 295 30020 23
2022 161 490 651 24927 4
2023 37 187 224 5922 15
2024 14 50 64 626 0
2025 1 7 8 14 0

Total 1,380 150,604 2,985

Table 4: Distribution of unknown malware samples by VirusTotal detection count.
VT Detection 4 5 6 7 8 9 10 11 12 13 14 15 18 19 Total

of Unknown Sample 1643 664 226 153 133 65 68 15 3 4 5 4 1 1 2,985

Beyond binary labels, LAMDA also includes family-level annotations for malware samples. As
shown in Table 3, the dataset spans 1,380 distinct malware families, offering rich diversity for future
analysis. Additionally, 150,604 samples are singletons, belonging to families that appear only once in
the dataset, representing rare or unique variants. Moreover, 2,985 samples are marked as “unknown",
where AVClass2 is unable to confidently assign a family label. Table 4 reports the VirusTotal [51]
detection counts for these unknown-labeled samples, offering insight into their potential threat level
even in the absence of a family tag.

This comprehensive summary, encompassing both class labels and family-level information, supports
a wide range of research directions, including supervised detection, rare variant modeling, family
classification, and concept drift analysis across diverse malware behaviors.

B Feature Description

Built upon static analysis of Android APKs, LAMDA incorporates a broad spectrum of execution-free
features based on the features of Drebin [9]. Table 5 summarizes the key categories of static features
used in LAMDA [9]. These include declared components (e.g., services, activities), permissions
(requested and used), intent filters, restricted or suspicious API calls, and embedded network indicators
such as hardcoded IPs and URLs.

Each APK is converted into a binary feature vector using a bag-of-tokens representation. Tokens are
derived from the presence or absence of the static properties listed in Table 5. Since each application
typically uses only a small fraction of the global feature space, the resulting vectors are sparse and
high-dimensional. To address this, we apply different VarianceThreshold feature selection [41],
resulting in three dataset variants with different dimensionalities and sizes. Table 6 summarizes
these variants. The Baseline variant uses a threshold of 0.001 [44] and yields 4,561 binary features.
Increasing the threshold to 0.01 results in a smaller, more compressed feature space with 925 features,
while lowering it to 0.0001 expands the feature space to over 25,000 features.

To visualize the structural differences these features capture, we present t-SNE projections comparing
LAMDA and API Graph [22] in Figure 9. LAMDA shows more scattered and diverse malware
clusters over time, suggesting richer feature representations and stronger concept drift compared to
the relatively compact structure in API Graph. This diversity, driven by the dynamic use of static
tokens such as APIs and permissions, highlights the importance of broad and representative feature
sets for modeling evolving malware behavior. Figure 12 further validates this hypothesis with varying
number of virus total engine detection count.

15

Table 5: Static Features and Their Descriptions.
Feature Description
Requested permissions Permissions declared in the manifest (e.g., CAMERA, BLUETOOTH)

indicating intended access to sensitive resources.
Declared activities and
services

Registered components of the application, providing insight into its
structural and behavioral composition.

Broadcast receivers Components that handle specific system or custom intents (e.g.,
BOOT_COMPLETED), often linked to persistence or event-driven be-
havior.

Hardware components Device capabilities required by the app (e.g., camera, Bluetooth),
implying functional intent.

Intent filters Define the types of intents components can respond to; critical for
modeling potential entry points.

Used permissions Permissions referenced in the smali code, reflecting actual permis-
sion usage.

Restricted API calls APIs that are protected by system permissions or grant access to
sensitive resources.

Suspicious API calls APIs heuristically associated with malicious or abnormal behavior.
Embedded IP addresses
and URL domains

Hardcoded network endpoints that may indicate command-and-
control (C&C) servers or tracking mechanisms.

(a) LAMDA. (b) API Graph.

Figure 9: t-SNE projection of LAMDA and API Graph dataset, (a) t-SNE project of LAMDA from
2013 to 2025 (excluding 2015) and (b) t-SNE projection of API Graph from 2012 to 2018.

B.1 LAMDA Variants

For the LAMDA dataset variants, we apply different thresholds using the VarianceThreshold
(varTh) feature selector. In the baseline configuration (varTh = 0.001), we retain 4,561 features
with a total in-memory size of 222 MB. For a more relaxed threshold (varTh = 0.0001), we preserve
25,460 features, resulting in a memory size of 554 MB. Conversely, applying a stricter threshold
(varTh = 0.01) yields 915 features with a reduced storage size of 138 MB. These information are
summarized in Table 6.

Table 6: Summary of Dataset Variants by Variance Threshold.
Variant Threshold # Metadata # Binary Features Size

Baseline 0.001 5 4561 222MB
var_thresh_0.0001 0.0001 5 25460 554MB
var_thresh_0.01 0.01 5 925 138MB

16

C Additional Experimental Details

In this section, we summarize the details of the model architectures and the training setup for each
method used in our experiments. In addition, we present supplementary results.

C.1 Details of the baseline methods

Multi-Layer Perceptron (MLP). The MLP model used for the experiments is adapted from prior
work [43, 44] and is composed of four fully connected layers with the following sizes: 1024, 512,
256, and 128. Each hidden layer is followed by batch normalization, ReLU activation, and a dropout
layer with a dropout rate of 0.5. The final output layer uses a sigmoid activation function for binary
classification. The model is trained using Adam optimizer with a learning rate of 0.001, and batch
size 512, as it stabilizes by this point, avoiding unnecessary GPU time.

LightGBM. In addition to MLP, we also use LightGBM [31], gradient-boosted decision tree
ensemble, for binary classification. LightGBM is trained with up to 5000 estimators and a learning
rate of 0.02, with early stopping based on Area Under the Curve (AUC) metric if no improvement is
observed for 100 rounds. Each tree is allowed up to 256 leaves to provide high capacity for learning
complex patterns. We apply 80% subsampling of both rows and features to mitigate overfitting. We
also include L1 and L2 regularization to further penalize methods complexity to prevent overfitting.
These hyperparameters are selected based on practices in malware detection benchmarks such as
EMBER [7] and TESSERACT [42].

XGBoost. The adapted XGBoost is configured with a tree depth of 12 and a learning rate of 0.05.
We use log loss objective for binary classification [16, 8]. The method is trained for up to 3000
boosting rounds and uses the gpu_hist tree construction method to accelerate training. The input
data is loaded in XGBoost’s DMatrix format, which is optimized for memory efficiency and fast
training. We train the method on the full training data without applying early stopping and evaluate
using log loss.

Support Vector Machine (SVM). A linear SVM model is implemented using LinearSVC and
calibrated using CalibratedClassifierCV to enable probability outputs. This is essential for
downstream evaluation where probabilistic thresholds or ranking-based metrics are used. Following
prior work, the method is trained on the full dataset with a maximum of 10,000 iterations [17].
Post-training, model memory usage is reported using psutil to assess resource footprint.

All models are trained on three different LAMDA variants with VarianceThreshold (VarTh)
∈ {0.01, 0.001, 0.0001} where VarTh = 0.001 is the baseline. No task-specific tuning or dataset-
specific hyperparameter adjustments are performed to ensure fair comparisons across splits and
datasets.

C.2 Baseline Performance

We compare LAMDA baseline with API Graph [58] dataset and provide a comprehensive results on
four methods discussed above using AnoShift-style [22] splits. A subset of Table 7 and Table 8 are
explained in the main body of the paper. We present the results with more performance metrics.

We compare the LAMDA baseline with the API Graph [58] dataset and present comprehensive results
using four models under AnoShift-style [22] splits. While a subset of results is highlighted in Table 7
and Table 8 in the main paper, we report extended metrics here for completeness.

Across both NEAR and FAR splits, LAMDA consistently exhibits lower scores across all performance
metrics compared to API Graph, and notably higher false negative rates (FNR). These trends clearly
indicate that LAMDA captures a significantly higher degree of concept drift. Furthermore, the
standard deviation across metrics is substantially higher in LAMDA, especially for drifted years,
underscoring the dataset’s temporal instability in detection performance—validating the presence of
concept drift.

17

Table 7: Performance of models across IID, NEAR, and FAR splits for LAMDA on Baseline
(VarianceThreshold = 0.001).

Split Model Accuracy Precision Recall F1 ROC AUC PR AUC FPR FNR

IID

LightGBM 97.74 ± 0.35 96.74 ± 0.31 98.26 ± 0.34 97.49 ± 0.17 99.55 ± 0.03 99.50 ± 0.11 2.69 ± 0.48 1.74 ± 0.34
MLP 97.50 ± 0.44 96.91 ± 0.29 97.50 ± 0.06 97.21 ± 0.12 99.48 ± 0.04 99.38 ± 0.20 2.58 ± 0.85 2.50 ± 0.06
SVM 95.61 ± 0.61 94.78 ± 1.41 95.18 ± 0.76 94.98 ± 1.07 98.89 ± 0.28 98.75 ± 0.46 4.09 ± 0.55 4.82 ± 0.76
XGBoost 97.36 ± 0.15 96.32 ± 0.70 97.80 ± 0.43 97.05 ± 0.14 99.15 ± 0.16 97.68 ± 1.16 2.96 ± 0.01 2.20 ± 0.43

NEAR

LightGBM 85.83 ± 3.96 90.36 ± 5.21 49.49 ± 30.82 59.48 ± 28.20 74.05 ± 23.76 70.18 ± 27.10 1.85 ± 0.95 50.51 ± 30.82
MLP 83.90 ± 3.75 78.12 ± 13.98 48.05 ± 30.42 56.57 ± 28.41 82.71 ± 11.19 67.94 ± 24.59 3.98 ± 1.19 51.95 ± 30.42
SVM 82.08 ± 3.11 72.56 ± 18.38 44.38 ± 28.88 52.91 ± 28.40 75.18 ± 17.98 62.53 ± 29.82 4.71 ± 0.97 55.62 ± 28.88
XGBoost 84.59 ± 3.75 86.18 ± 9.02 46.16 ± 30.94 55.84 ± 29.73 77.75 ± 16.85 68.14 ± 26.55 2.14 ± 0.86 53.84 ± 30.94

FAR

LightGBM 83.94 ± 10.61 74.65 ± 34.66 35.90 ± 22.97 47.24 ± 27.33 78.04 ± 20.83 63.45 ± 35.80 1.30 ± 0.95 64.10 ± 22.97
MLP 83.45 ± 10.74 76.12 ± 33.39 35.60 ± 20.63 47.59 ± 25.30 84.04 ± 11.23 66.16 ± 34.34 1.14 ± 0.71 64.40 ± 20.63
SVM 80.99 ± 11.98 72.89 ± 35.60 30.07 ± 16.85 41.86 ± 22.55 79.07 ± 15.06 62.27 ± 34.09 1.27 ± 0.76 69.93 ± 16.85
XGBoost 82.03 ± 11.07 70.00 ± 37.26 31.89 ± 20.43 42.75 ± 25.86 76.85 ± 16.49 60.33 ± 35.88 1.69 ± 0.57 68.11 ± 20.43

Table 8: Performance of models on across IID, NEAR, and FAR splits for API Graph.
Split Model Accuracy Precision Recall F1 ROC AUC PR AUC FPR FNR

IID

LightGBM 97.02 ± 0.00 95.78 ± 0.00 73.44 ± 0.00 83.14 ± 0.00 98.93 ± 0.00 94.92 ± 0.00 0.36 ± 0.00 26.56 ± 0.00
MLP 97.35 ± 0.20 94.84 ± 1.49 77.79 ± 2.85 85.43 ± 1.35 94.62 ± 0.92 89.33 ± 1.75 0.47 ± 0.16 22.21 ± 2.85
SVM 96.64 ± 0.00 94.12 ± 0.00 70.85 ± 0.00 80.84 ± 0.00 97.27 ± 0.00 90.90 ± 0.00 0.49 ± 0.00 29.15 ± 0.00
XGBoost 96.30 ± 0.00 91.57 ± 0.00 69.37 ± 0.00 78.94 ± 0.00 95.93 ± 0.00 89.08 ± 0.00 0.71 ± 0.00 30.63 ± 0.00

NEAR

LightGBM 94.84 ± 0.00 94.07 ± 0.00 51.33 ± 0.00 66.42 ± 0.00 96.28 ± 0.00 83.45 ± 0.00 0.36 ± 0.00 48.67 ± 0.00
MLP 94.66 ± 0.34 88.22 ± 3.83 53.67 ± 4.84 66.55 ± 3.19 85.97 ± 1.25 72.24 ± 2.46 0.81 ± 0.37 46.33 ± 4.84
SVM 94.01 ± 0.00 81.70 ± 0.00 51.18 ± 0.00 62.93 ± 0.00 90.29 ± 0.00 70.84 ± 0.00 1.26 ± 0.00 48.82 ± 0.00
XGBoost 92.76 ± 0.00 77.60 ± 0.00 38.11 ± 0.00 51.12 ± 0.00 92.13 ± 0.00 65.74 ± 0.00 1.21 ± 0.00 61.89 ± 0.00

FAR

LightGBM 95.31 ± 0.61 87.48 ± 2.48 57.41 ± 6.57 69.07 ± 4.73 96.11 ± 0.40 80.94 ± 1.17 0.84 ± 0.24 42.59 ± 6.57
MLP 94.50 ± 0.84 82.31 ± 6.28 51.14 ± 7.90 62.80 ± 6.68 90.02 ± 2.91 71.38 ± 5.89 1.12 ± 0.43 48.86 ± 7.90
SVM 94.33 ± 0.60 77.38 ± 0.33 54.34 ± 7.27 63.56 ± 5.08 92.73 ± 0.92 71.46 ± 2.43 1.60 ± 0.20 45.66 ± 7.27
XGBoost 93.70 ± 0.35 75.99 ± 2.62 46.04 ± 1.92 57.29 ± 1.45 87.78 ± 1.90 66.49 ± 4.80 1.49 ± 0.28 53.96 ± 1.92

C.3 LAMDA Variants and Drift Sensitivity

LAMDA offers flexibility to researchers for Android malware analysis by supporting different feature
selection variants. In this section, we evaluate two additional variants of LAMDA. As shown in
Table 9 and Table 10, we report detailed performance results for the four methods and configurations
used in the primary analysis of concept drift with VarianceThreshold of 0.001. The variant using a
threshold of 0.01 exhibits a relatively higher average F1-score across NEAR and FAR splits compared
to that of the Baseline (0.001) and var_thresh_0.0001 variants. Figure 10 shows this trend as
well, highlighting the comparative performance of the LAMDA variants.

To further understand how these feature selection variants influence drift sensitivity, we focus on
the NEAR split with the SVM. For false positive rate (FPR), both the baseline and varTh=0.0001
maintain relatively low values (∼4.07 ± 0.18), whereas varTh=0.01 shows a sharp increase to
17.09 ± 2.87. This suggests that reducing the feature set too aggressively may misclassify benign
as malware. Conversely, the false negative rate (FNR) slightly improves under varTh=0.01, de-
creasing from ∼55.62 ± 28.88 and ∼57.72 ± 28.87, baseline and varTh=0.0001, respectively, to
46.22 ± 23.97. This indicates that even with fewer features, the model may still capture certain
generalizable malware traits, improving detection of some malicious samples.

However, for the LightGBM model, this change is accompanied by a drop in precision. While in
NEAR region both the baseline and varTh=0.0001 variants maintain high precision scores (around
90.36 ± 5.21), the varTh=0.01 variant yields a lower precision of 75.03 ± 15.03. This reflects a
shift in the methods decision behavior under more aggressive feature selection, emphasizing the
importance of balancing dimensionality reduction with predictive consistency.

In summary, while varTh=0.01 may occasionally help with generalization under drift, it also ampli-
fies misclassification of benign apps and reduces predictive stability. The baseline and varTh=0.0001
offer more shift in data distribution.

18

(a) VarianceThreshold = 0.01 (b) VarianceThreshold = 0.0001

Figure 10: F1-scores on different models on based on AnoShift-style split on LAMDA. (a) for
VarianceThreshold 0.01 and (b) for VarianceThreshold 0.0001.

Table 9: Performance of models across IID, NEAR, and FAR splits for LAMDA variant of
VarianceThreshold (0.01).

Split Model Accuracy Precision Recall F1 ROC AUC PR AUC FPR FNR

IID

LightGBM 97.08 ± 0.21 96.40 ± 0.22 96.95 ± 1.02 96.67 ± 0.61 99.42 ± 0.00 99.33 ± 0.13 2.94 ± 0.43 3.05 ± 1.02
MLP 96.89 ± 0.32 96.11 ± 0.37 96.84 ± 1.26 96.47 ± 0.67 99.29 ± 0.08 99.15 ± 0.18 3.18 ± 0.54 3.16 ± 1.26
SVM 94.13 ± 0.87 92.59 ± 2.43 94.10 ± 0.84 93.33 ± 1.65 97.86 ± 0.54 97.34 ± 1.15 5.83 ± 0.90 5.90 ± 0.84
XGBoost 96.65 ± 0.60 95.59 ± 1.37 96.74 ± 0.80 96.16 ± 1.09 99.01 ± 0.26 98.00 ± 0.36 3.45 ± 0.43 3.26 ± 0.80

NEAR

LightGBM 84.17 ± 3.77 75.03 ± 15.03 54.00 ± 27.34 61.38 ± 24.22 73.58 ± 22.25 66.97 ± 27.37 5.86 ± 0.94 46.00 ± 27.34
MLP 83.39 ± 3.52 73.64 ± 16.21 52.23 ± 26.78 59.77 ± 24.33 79.17 ± 14.79 66.60 ± 24.33 6.09 ± 1.22 47.77 ± 26.78
SVM 75.73 ± 6.47 54.52 ± 25.76 53.78 ± 23.97 54.13 ± 24.86 74.88 ± 14.32 58.72 ± 25.70 17.09 ± 2.87 46.22 ± 23.97
XGBoost 81.63 ± 3.39 68.78 ± 20.03 47.48 ± 27.52 54.98 ± 26.43 77.32 ± 14.71 62.60 ± 26.89 6.57 ± 0.68 52.52 ± 27.52

FAR

LightGBM 84.68 ± 9.54 71.15 ± 35.65 39.50 ± 23.10 50.13 ± 27.27 75.80 ± 21.64 61.66 ± 35.89 2.34 ± 1.72 60.50 ± 23.10
MLP 85.15 ± 9.23 76.93 ± 33.45 41.38 ± 21.41 53.00 ± 25.53 87.00 ± 10.48 68.52 ± 33.91 1.80 ± 1.61 58.62 ± 21.41
SVM 77.50 ± 10.05 55.00 ± 32.97 36.40 ± 16.42 42.16 ± 23.50 76.19 ± 12.22 52.48 ± 31.86 9.28 ± 3.56 63.60 ± 16.42
XGBoost 76.73 ± 6.52 56.84 ± 36.66 34.05 ± 17.19 40.84 ± 25.02 69.95 ± 15.23 51.85 ± 34.08 8.71 ± 3.04 65.95 ± 17.19

Table 10: Performance of models across IID, NEAR, and FAR splits for LAMDA variant of
VarianceThreshold (0.0001).

Split Model Accuracy Precision Recall F1 ROC AUC PR AUC FPR FNR

IID

LightGBM 97.73 ± 0.04 96.80 ± 0.33 98.11 ± 0.12 97.45 ± 0.23 99.58 ± 0.00 99.54 ± 0.09 2.61 ± 0.25 1.89 ± 0.12
MLP 97.42 ± 0.21 96.44 ± 0.35 97.80 ± 0.23 97.12 ± 0.15 99.31 ± 0.06 99.24 ± 0.17 2.92 ± 0.41 2.20 ± 0.23
SVM 96.68 ± 0.02 96.68 ± 0.08 95.77 ± 0.72 96.22 ± 0.40 99.13 ± 0.20 99.13 ± 0.29 2.69 ± 0.48 4.23 ± 0.72
XGBoost 97.39 ± 0.26 96.27 ± 0.69 97.83 ± 0.53 97.04 ± 0.61 99.35 ± 0.08 98.92 ± 0.10 3.01 ± 0.04 2.17 ± 0.53

NEAR

LightGBM 85.55 ± 3.91 90.24 ± 5.75 48.34 ± 30.74 58.46 ± 28.66 74.58 ± 23.25 70.47 ± 26.85 1.70 ± 0.80 51.66 ± 30.74
MLP 84.22 ± 3.38 80.23 ± 13.34 49.38 ± 27.83 58.79 ± 25.81 81.65 ± 13.28 69.02 ± 25.24 3.71 ± 0.95 50.62 ± 27.83
SVM 81.79 ± 3.36 71.61 ± 21.55 42.28 ± 28.87 51.19 ± 29.64 76.15 ± 16.45 63.54 ± 29.13 4.07 ± 0.18 57.72 ± 28.87
XGBoost 84.58 ± 3.41 86.82 ± 6.81 46.86 ± 30.72 56.40 ± 28.84 77.29 ± 18.06 69.61 ± 25.51 2.52 ± 1.41 53.14 ± 30.72

FAR

LightGBM 83.96 ± 10.66 75.34 ± 34.34 35.62 ± 23.11 47.02 ± 27.47 77.98 ± 21.70 64.21 ± 35.59 1.18 ± 0.85 64.38 ± 23.11
MLP 80.88 ± 11.82 71.93 ± 36.09 29.64 ± 17.51 40.99 ± 23.11 82.52 ± 12.80 63.53 ± 35.27 1.47 ± 1.11 70.36 ± 17.51
SVM 81.23 ± 11.94 73.48 ± 34.34 32.40 ± 16.44 44.08 ± 21.95 76.94 ± 16.51 63.06 ± 32.51 1.31 ± 0.86 67.60 ± 16.44
XGBoost 83.47 ± 10.41 73.53 ± 35.83 35.43 ± 20.83 46.97 ± 25.75 77.49 ± 19.29 63.56 ± 34.89 1.32 ± 0.67 64.57 ± 20.83

D Behind the Scenes: Practical Challenges in LAMDA Creation

D.1 Administrative Challenges

Downloading large volumes of real-world malware presents significant cybersecurity risks within any
institutional environment. During our data collection process, the downloading and unpacking of live
malware samples triggered internal threat detection systems, as automated security tools flagged these
activities as potential breaches. To mitigate these risks, we implemented strict containment policies,
such as disabling execution permissions. Additionally, we worked closely with the university’s
cybersecurity team to obtain the necessary approvals and ensure compliance with all relevant security
policies. We maintained continuous communication with them throughout the process to ensure
proper coordination and promptly address any emerging issues.

19

Table 11: Effect of thresholding on sample counts and relative percentage change (w.r.t. threshold 4).
Threshold Benign Samples Malware Samples % Change (Benign) % Change (Malware)

1 638,475 369,906 0.0% 0.0%
2 638,475 369,906 0.0% 0.0%
3 638,475 369,906 0.0% 0.0%
4 638,475 369,906 0.0% 0.0%
5 638,475 324,927 0.0% ↓ 12.16%
6 638,475 281,824 0.0% ↓ 23.81%
7 638,475 241,690 0.0% ↓ 34.66%
8 638,475 206,644 0.0% ↓ 44.14%
9 638,475 177,707 0.0% ↓ 51.96%

10 638,475 155,376 0.0% ↓ 58.00%
11 638,475 138,041 0.0% ↓ 62.68%
12 638,475 123,783 0.0% ↓ 66.53%
13 638,475 111,350 0.0% ↓ 69.89%

Figure 11: Sample Count Year-wise for Each VT Detection Threshold.

D.2 Technical Challenges

We faced several technical constraints during the sample collection and processing pipeline. The
AndroZoo platform imposes strict download rate limits, allowing only 40 concurrent downloads
per user. As a result, we had to be extremely cautious to avoid violating their terms and conditions.
Unfortunately, accidental oversights on our part led to temporary request blocks which disrupted the
collection process. Similarly, the VirusTotal API has strict rate limits, which can significantly slow
down the retrieval of metadata. Additionally, a considerable number of APKs failed to decompile
successfully using Apktool. These failures were often due to obfuscation, corrupted files, or non-
standard packaging formats. So, we had to perform multiple rounds of sampling to reach our target
number of usable samples.

E Effect of Label Noise in Training Data

Label noise in Android malware family classification, particularly when using the Drebin [9] feature
set can significantly impact model performance due to ambiguous and overlapping feature represen-
tations. As demonstrated in recent work [39], the robustness of classification models depends not
only on the amount of label noise but also on its distribution within the feature space. Specifically,
feature-dependent label noise, where the probability of a label flip is contingent on the position of a
sample in feature space, can cause a substantial drop in accuracy, even at low noise levels.

This is especially relevant for Drebin features, where different malware families may share static
features like permissions (x1 = INTERNET, x2 = SEND_SMS), API calls (x3 = getDeviceId),
and hardware access (x4 = READ_PHONE_STATE). Samples with minimal or ambiguous patterns
(e.g., x5 = ACCESS_NETWORK_STATE and x6 = RECEIVE_BOOT_COMPLETED) are likely to fall
near decision boundaries, increasing the risk of mislabeling. Such feature-dependent noise is more
detrimental than uniform or class-dependent noise and warrants careful consideration in malware
classification tasks.

20

Figure 12: t-SNE visualization of benign and malware samples at varying Virus Total (VT) detection
threshold.

Table 11 shows the effect of increasing the VirusTotal (VT) detection [51] threshold on malware
labeling in the LAMDA dataset. According to previous studies [42, 43, 57], a sample is considered
benign if vt_detection = 0, and labeled as malware if vt_detection ≥ 4. As seen from the
Benign sample column in the Table 11, the number of benign samples remains unchanged across
all thresholds, since the benign definition is fixed and independent of the malware thresholding rule.
However, the number of malware samples decreases significantly as the threshold increases from 4
to 13. For instance, at a threshold of 10, the number of malware samples drops by 58% compared
to the baseline at threshold 4. This trend continues, reaching a 69.89% reduction at threshold 13.
These results demonstrate that requiring stronger agreement among antivirus engines (i.e., a higher
threshold) leads to more conservative malware labeling, effectively excluding a substantial portion
of potentially malicious samples. While this may improve the confidence in the labeled malware, it
also drastically reduces dataset coverage. Therefore, the choice of VT threshold directly impacts the
balance between label precision and data availability, and threshold 4 provides a practical trade-off
commonly adopted in existing literature [52, 42, 40].

Figure 11 illustrates the distribution of malware sample counts across different VirusTotal (VT)
threshold [51] values for each year from 2013 to 2025 (except 2015). The VT count, plotted on the
x-axis, represents the number of antivirus (AV) engines that flagged a sample as malicious, serving
as a metric for detection consensus or confidence. A consistent trend is observed across all years —
as the VT threshold increases, the number of flagged samples decreases. This suggests that only a
small fraction of malware samples achieve strong consensus among AV engines, while the majority
are detected by relatively few engines. The sample count is highest between VT counts of 5 to 7,
especially in earlier years such as 2013–2017, indicating a moderate level of agreement in those
periods. In contrast, from 2022 onward, the overall volume of detected samples decreases sharply,
and the detections are largely concentrated in the lower VT ranges, which may reflect advancements
in malware evasion techniques or shifts in detection criteria. These observations justify the use of a
VT threshold. Using a higher threshold (e.g., ≥10) may lead to overly conservative labeling with
potential false negatives, while lower thresholds increase coverage but may introduce noise. Thus,
this temporal analysis provides critical insight into threshold selection and highlights the evolving
nature of malware detection over time.

Figure 12 shows the t-SNE projections across varying VirusTotal (VT) detection [51] thresholds.
At lower thresholds (e.g., VT ≥ 4 to 6), there is significant overlap between the malware and
benign clusters, indicating that many samples labeled as malware may exhibit similar characteristics
to benign samples. This suggests that lower thresholds capture a broader range of potentially
ambiguous or borderline malicious behaviors. As the VT detection count increases (e.g., VT ≥ 10),
the overlap diminishes, and malware samples become more distinct and spatially separated from
benign samples in the embedded space. This indicates that higher-threshold malware samples possess
more distinguishable feature representations, likely reflecting stronger and more consistent malicious
behaviors detected by a greater number of antivirus engines. Furthermore, the density of malware
samples decreases as the threshold rises, aligning with the observed reduction in malware counts
from the dataset.

21

Figure 13: Malware AV detection drift over the years Virustotal vs AndroZoo Metadata. BC :
Currently Labeled as Benign, DImproved: Improved Detection, DWeakened: Weakened Detection,
DUnchanged: Unchanged Detection.

Table 12: F1 scores of the baseline malware detectors with varying VT thresholds.
Split Model VT=4 VT=5 VT=6 VT=7 VT=8 VT=9 VT=10 VT=11 VT=12 VT=13

IID

LightGBM 0.8515 0.8566 0.8148 0.8397 0.8172 0.8511 0.8574 0.8364 0.6889 0.8385
MLP 0.8364 0.8173 0.8166 0.8319 0.8393 0.8232 0.8102 0.8628 0.7536 0.8623
SVM 0.7898 0.7954 0.7605 0.7543 0.8153 0.7492 0.7598 0.7353 0.6559 0.7462
XGBoost 0.8456 0.8028 0.8298 0.8255 0.8119 0.8370 0.8273 0.7844 0.7324 0.7538

NEAR

LightGBM 0.2423 0.2008 0.2308 0.1994 0.2470 0.1962 0.1956 0.2178 0.1639 0.2133
MLP 0.1971 0.1894 0.2191 0.2201 0.2223 0.2275 0.2249 0.1771 0.1867 0.2098
SVM 0.1330 0.1512 0.1569 0.1763 0.1971 0.2712 0.1386 0.1381 0.1261 0.1865
XGBoost 0.2221 0.2064 0.2703 0.2788 0.2761 0.1937 0.2788 0.2361 0.2563 0.2241

FAR

LightGBM 0.1284 0.1477 0.1559 0.1039 0.0852 0.1562 0.1551 0.0935 0.0511 0.2306
MLP 0.1284 0.2716 0.0918 0.0721 0.1362 0.1873 0.1954 0.0841 0.0912 0.0947
SVM 0.2393 0.2272 0.1503 0.0655 0.0938 0.1104 0.1322 0.0540 0.0508 0.0706
XGBoost 0.1560 0.3513 0.2926 0.2613 0.1971 0.1787 0.2133 0.1067 0.1385 0.1452

To assess the impact of label noise on malware detection, we conduct a set of experiment varying the
VirusTotal (VT) labeling Threshold. We first create a set of LAMDA datasets, where in each dataset
contain all benign samples and only malware samples with a specific VT labeling count. For example,
for the first dataset, we keep all benign samples and those malware samples that were flagged exactly
by 4 antivirus engines (VT=4). In the next dataset, we include malware samples with VT=5, and so
on, up to VT=13. This resulted in creating ten separate LAMDA dataset variants, each reflecting a
different level of confidence in the AV engines.

Next, We evaluate standard malware detectors (LightGBM, MLP, SVM, and XGBoost) on these
datasets using the AnoShift-style splits, which simulate temporal concept drift by training on IID
split and tested on NEAR and FAR splits. Each malware detector’s performance is evaluated using
F1-score metric.

Table 12 presents performance details of the baseline malware detectors using F1-scores metric with
varying VT count. We made the following observations. LightGBM with VT=4, we observe an
F1-score of 0.8515 under the IID split, however it drops significantly to 0.2423 on NEAR and to
0.1284 on FAR splits. This decline highlights the degradation of malware detector over time.

Figure 15 illustrates the average F1, PR-AUC, and ROC-AUC scores of the baseline malware detectors
with varying VT labeling threshold. While Figure 15a is the summarization of Figure 14, subplots (a),
(b) and (c) illustrate how performance metrics vary when the VT threshold is set to different values.
Across all these three evaluation metrics, we observe only minor differences in baseline malware

22

Figure 14: Combined F1 score plots for VT thresholds 4 to 13.

(a) (b) (c)

Figure 15: Comparison of model performance across VirusTotal detection thresholds for (a) F1-score,
(b) PR-AUC, and (c) ROC-AUC.

detectors performance. This suggests that, varying the VT labeling threshold has minimal impact
on baseline accuracy. This result suggests that the primary causes of performance degradation in
our main experiments may not be the labeling noise from VT, but rather factors such as temporal
concept drift and class imbalance. The observed performance degradation is more likely attributed to
the distributional shifts over time, reinforcing the relevance of concept drift in real-world malware
detection scenarios.

F Label Drift Across Years Based on VirusTotal Label Changes

Prior works [61, 60] show that a significant portion of malware samples are observed to changes
their labels over time, with some initially labeled as malicious later reclassified as benign, and vice

23

Table 13: This table summarizes label drift for Android malware samples, highlighting shifts in
detection status over time. TS: Total #of Malware Samples, BC : Currently Labeled as Benign, %BC :
Percentage of Total Malware Samples Currently Labeled as Benign. DImproved: Improved Detection,
DWeakened: Weakened Detection, DUnchanged: Unchanged Detection, DSDrop: Significant Drop
of Detection Count, DSImprove: Detection Count Significantly Increased.

Year TS BC %BC DImproved DWeakened DUnchanged DSDrop DSIncrease

2013 44383 24 0.05 40436 439 3484 85 34481
2014 45756 345 0.75 37108 1554 6749 863 27239
2016 45134 177 0.39 26963 7485 10509 1160 13581
2017 21359 1108 5.19 7765 10289 2197 5061 3362
2018 39350 1242 3.16 17561 15346 5201 7304 7600
2019 41585 22 0.05 22905 9294 9364 467 7518
2020 46355 25 0.05 20755 3931 21644 294 8001
2021 35627 23 0.06 10385 4482 20737 176 2531
2022 41648 4 0.01 10445 3629 27570 121 2719
2023 7892 15 0.19 1763 1979 4135 592 416
2024 794 0 0.00 74 319 401 79 19
2025 23 0 0.00 6 2 15 0 2

versa. Based on these studies, we analyze how sample labels have evolved within our dataset, using
VirusTotal and AndroZoo as reference points. Table 13 summarizes how malware sample labels have
changed over time according to VirusTotal and AndroZoo metadata. The table depicts the yearly
statistics from 2013 to 2025 (excluding 2015), including the number of samples now considered
benign, and how many show improved, weakened, or unchanged detection. The significant drop
and significantly increased columns highlight cases with drastic shifts (more than 50%) in detection
confidence.

In addition to the table, we include a visualization of how detection counts have changed over time. As
shown in Figure 13, it clearly illustrates how metadata from prior state-of-the-art diverges from current
data. This drift contributes to label uncertainty; for instance, LAMDA includes approximately 2,985
samples in Table 4 as unknown family. LAMDA captures this real-world variability, highlighting the
importance of regularly updating metadata to minimize label noise and maintain the reliability of
malware analysis.

To the best of our knowledge, LAMDA is the only public android malware dataset that tracks label
drift, showing how “malicious” and “benign” verdicts shift as antivirus engines advance. By updating
the metadata for over a million of samples, it allows researchers to avoid relying on outdated labels
from prior works. LAMDA also highlights a critical issue in malware research: static labels can
quickly become obsolete, and updating metadata over time is must.

G Scalability of LAMDA

To support long-term use and extensibility, we have designed LAMDA with scalability in mind.
In the context of LAMDA, scalability refers to the extensibility of the dataset—specifically, its
ability to be easily expanded with new samples. We have published three variants of LAMDA on
the HuggingFace repository, each supporting a different VarianceThreshold configuration. The
dataset creation process begins by splitting the static feature files (i.e., .data files extracted from
each APK) into stratified train and test splits. From the training split, we collect the global set of
all unique tokens (i.e., features), encode both train and test samples into binary vectors in this raw
feature space, and apply VarianceThreshold to select high-variance features from the training data.
The same selected features are then applied to the test data using the saved threshold object.

We publish the following artifacts to facilitate scalability: raw feature matrices (before thresholding),
reduced feature matrices (after thresholding), and the serialized VarianceThreshold object (in
joblib format). Using these resources and the accompanying codebase, researchers can seamlessly
extend LAMDA by collecting newer APKs, extracting static features, encoding them, and applying
the same thresholding object to map them into LAMDA’s feature space. While it is not feasible to add
new samples to the training set—because doing so would alter the global vocabulary and invalidate

24

Table 14: Performance comparison of CADE [57] on API Graph and LAMDA datasets. Reported as
average of each metric.

Dataset Method F1-score FNR FPR
API Graph CADE 0.8904 0.1191 0.0101
LAMDA CADE 0.4407 0.4734 0.1729

the original thresholding, researchers can add test-time samples for evaluation. This supports drift
detection on newer and future malware variants without requiring retraining. Thus, LAMDA enables
reproducible research and practical testing of detection models against evolving threats.

H Concept Drift Adaptation on LAMDA

Concept drift adaptation remains a significant challenge in Android malware detection. As Android
malware evolves, detection models must adapt to shifting feature distributions and the emergence of
new malware. LAMDA captures this evolution over a 12-year span, offering a realistic and temporally
diverse benchmark for evaluating concept drift adaptation techniques.

We evaluate CADE [57], a concept drift adaptation method on the API Graph dataset [58] and
LAMDA. However, API Graph only spans 2012 to 2018 and lacks sufficient representation of recent
malware evolution. To assess robustness under more severe and recent drift, we compare this method
on both datasets.

Figure 16 demonstrates that while CADE [57] performs strongly on the API Graph dataset, its
effectiveness declines when applied to LAMDA. On API Graph, CADE achieves an impressive F1-
score of 0.8904 with a low false negative rate (FNR) of 0.1191 and false positive rate (FPR) of 0.0101,
reflecting its strong capability in handling moderate concept drift. However, when evaluated on
LAMDA that spans a longer temporal range and introduces more severe drift—CADE’s performance
deteriorates significantly, with the F1-score dropping to 0.4407, the FNR rising to 0.4734, and the FPR
increasing to 0.1729. These results highlight that existing adaptation methods struggle to generalize
under the more challenging and realistic drift scenarios captured by LAMDA, emphasizing the need
for more robust drift-aware detection techniques.

Figure 16: Comparison with F1-score, False negative rate (FNR) and False positive rate (FPR) of
CADE on LAMDA and API Graph dataset.

These findings reinforce the necessity of LAMDA to study longitudinal and modern threats, and
provide a stronger foundation for evaluating concept drift adaptation methods in real-world malware
detection settings.

25

(a) Analysis on LAMDA dataset from 2013 to
2024.

(b) Analysis on APIGraph dataset from 2013 to
2018.

Figure 17: Monthly explanation drift measured by Jaccard and Kendall distances between top-1000
SHAP features.

I Temporal Analysis of SHAP-Based Explanation Drift (Top 1000 Features)

I.1 Analysis Setting

For the analysis of explanation drift using the top-1000 SHAP features, we adopt the same experimen-
tal configuration as the top-100 feature setting. Specifically, we use an MLP-based malware classifier
following the architecture in Chen-AL. [17], and compute SHAP values using the KernelExplainer
with 100 background samples and 100 test samples per month. Each monthly run is repeated 5 times
to ensure statistical stability. The only difference in this setting is that distances are computed based
on the top-1000 ranked SHAP features instead of the top-100.

I.2 Jaccard and Kendall Distance Analysis

To validate the effectiveness of our proposed dataset LAMDA we also compute Jaccard and Kendall
distances across monthly SHAP attributions using the top-1000 most important features. As shown
in Figure 17a, the LAMDA dataset exhibits moderate to high Jaccard distance values with frequent
spikes, especially in early 2017, 2018, and 2024, indicating substantial shifts in the broader set
of influential features. The Kendall distances remain relatively stable yet fluctuate noticeably in
the same periods, suggesting not only changes in which features matter, but also in their relative
rankings. This behavior implies strong temporal variability in the model’s decision logic driven by
evolving data patterns. Conversely, the APIGraph dataset, illustrated in Figure 17b, demonstrates
much lower overall distance values, with both Jaccard and Kendall distances remaining mostly below
0.3. This pattern indicates limited month-to-month variability in explanation behavior, reflecting a
more static and homogeneous data distribution over time [58]. These trends further highlight the
superior effectiveness of the LAMDA dataset over APIGraph, as SHAP explanations [36] more
clearly capture the dynamic shifts in feature importance and explanation drift across time in LAMDA,
reflecting its richer temporal variability and evolving behavior patterns.

I.3 LAMDA and APIGraph Comparative Analysis

From the 1000-feature analysis, it is evident that the LAMDA dataset presents a more dynamic and
variable model explanation pattern than the APIGraph dataset. The broader feature set allows us to
detect finer-grained shifts in the importance landscape, and the higher variance and frequent spikes
in Jaccard and Kendall distances for LAMDA (Figure 17a) suggest that it better reflects evolving
malware behaviors and concept drift. In contrast, the APIGraph dataset (Figure 17b) maintains a
relatively stable feature importance distribution across time, with limited explanation diversity. These
findings reinforce the conclusion that LAMDA is more suitable for benchmarking adaptive models
that need to operate effectively under changing threat environments and shifting decision boundaries.

26

J Continual Learning on LAMDA

In real-world settings, a large number of new benign and malicious Android applications are intro-
duced each year. As a result, both benign (e.g., due to changes in user demands, Android APIs,
security practices) and malicious (e.g., the emergence of novel malware variants) behaviors evolve
over time, leading to concept drift. This makes it challenging for static machine learning models to
maintain reliable performance over time without retraining regularly. However, complete retraining
of past data becomes impractical due to the massive volume of Android applications released daily
and the high computational cost associated with retraining. On the other hand, training solely on
recent data often leads to catastrophic forgetting [35, 43], where previously acquired knowledge
is overwritten or lost. In such a situation, continual learning (CL) offers a compelling solution by
enabling the detection models to adapt incrementally to new benign and malware applications without
the need to retrain with all past data [40, 43, 24]. However, some CL techniques may require access
to a small subset of past data.

J.1 LAMDA for Continual Learning

LAMDA can be a natural choice for benchmarking CL due to several key properties of its design and
structure:

I. Temporal granularity: It spans over a decade (2013–2025, excluding 2015) with available
both monthly and yearly splits, allowing custom CL as per need.

II. Concept drift: As shown in Section 4, LAMDA exhibits significant distributional changes
over time, both in feature and label space.

III. Flexible task construction:
– Domain-IL: Using yearly data splits while maintaining a consistent malware or benign

labeling.
– Class-IL: Leveraging AVClass2-labeled malware families to incrementally expand the

label space.

IV. Real world relevance: LAMDA is derived from real-world Android APKs and VirusTotal
reports, introducing authentic drift and noise.

We evaluate CL on the LAMDA benchmark using two established baselines, Naive (i.e., None)
and Joint, inspired by the prior work [43, 24]. Additionally, we include Replay (i.e., Experience
Replay) [45], a state-of-the-art memory replay based CL method, configured with a buffer size of
200 samples per experience. The Naive baseline trains the model sequentially on each experience or
task without any access to past data, while the Joint baseline retrains the model from scratch using
the cumulative data observed up to the current experience or task.

These baselines are tested under two settings: Domain Incremental Learning (Domain-IL), which
involves binary malware vs benign classification across yearly tasks, and Class Incremental Learning
(Class-IL), where each task introduces new malware families to classify [49, 43]. Due to the lack of
available prior work that can assign a single behavioral label, we didn’t consider Task Incremental
Learning (Task-IL) in our experimental setups.

We define each experience or task in the Domain-IL experiment as all samples (both benign and
malicious) collected within a specific calendar year (e.g., 2013, 2014, ..., 2025). However, for the
Class-IL experiments, each experience or task consists of only the malware samples collected during
the corresponding year.

J.2 Continual Learning Experimental Setup

Domain-IL. In this setting, each experience or task corresponds to samples collected during a
specific year (i.e., 2013, 2014, ... and so on). The model is designed to continuously learn to
distinguish between malware and benign samples as the data distribution evolves over time. We
use the Baseline variant of our published dataset, treating each year as a separate task in the
learning sequence. The objective is for the model to adapt and maintain accurate binary classification
performance despite the temporal distribution shifts.

27

Class-IL. In this setting, we utilize a different dataset derived from the Baseline variant of our
published dataset. We selected only those malware families that contained more than 10 samples
in the test set, resulting in a total of 154 families for our experiment. Consequently, we excluded
the year 2025 from our experiments, as no family in that split met the minimum sample threshold.
Additionally, we omit standard class incremental learning [40, 43], where entirely new classes are
introduced in each experience. This approach does not reflect how malware appears in real-world
scenarios, malicious samples often come from a mix of previously seen and new families. This claim
is supported by the analysis presented in Table 3. The model is expected to learn incrementally to
classify samples across all malware families encountered.

Model Architecture. We use a shared base architecture, a multi-layer perceptron (MLP) for both
Class-IL and Domain-IL settings, consisting of four hidden layers — 512, 384, 256, 128, with
ReLU activation. However, Task-specific heads are added to support each learning scenario. For
Class-IL, we add a single linear layer outputting logits for all classes and train with categorical
cross-entropy loss. For Domain-IL, we use a two-layer MLP head (100 units each, with dropout
p=0.2) and a final sigmoid output, trained with binary cross-entropy. All networks are optimized with
SGD (learning-rate 0.01, momentum 0.9, weight-decay 0.000001).

Evaluation Metrics. We evaluate classification performance using F1 score, which is the harmonic
mean of precision and recall. It provides a balanced measure of a model’s predictions, particularly
important in imbalanced datasets. Following the prior work [24], and we compute the F1 score after
training on the k-th experience using two complementary evaluation modes:

• Backward Transfer Performance: We measures the model’s ability to retain knowledge
from previous tasks. After training on experience k, we compute the F1 scores on all
previously seen experiences (≤ k). This helps quantify the extent of catastrophic forgetting
(CF).

• Forward Transfer Performance: We measures the model’s ability to generalize to future,
unseen tasks. After training on experience n, we compute the F1 score on all future
experiences (> k). This indicates how well the model’s current knowledge transfers to
upcoming distributions.

J.3 Continual Learning Experimental Results

Figures 18, 19, 20, and 21 demonstrate the effectiveness of the CL methods in evaluating in realistic
scenarios using LAMDA benchmark. In the Class-IL setting, we observe strong signs of catastrophic
forgetting, especially in the Naive and Replay (Experience Replay) strategies. Backward F1 scores
drop sharply after certain years, showing that learning new classes without retaining the previous
knowledge leads to forgetting. Joint retains high performance as expected due to its exposure to all
the previous data. In the Domain-IL setting, we observe that forgetting is relatively limited due to the
fixed set of classes (malware or benign). Although the data distribution evolves over time, which
leads to all strategies experiencing a gradual decline in forward F1 scores as they fail to adapt to
new distributions. Additionally, we report the average F1 scores of LAMDA across all tasks under
the Class-IL and Domain-IL scenarios in Tables 16 and 15. In the Class-IL setting (Table 16), the
Joint strategy consistently achieves the highest performance, as expected, due to its access to the
full dataset during training. However, this advantage also implies the need for significantly higher
computational resources which makes it less practical for real-world settings. The Naive and Replay
strategies perform considerably worse, which was also expected as the continual introduction of
new classes. In contrast, the Domain-IL results (Table 15) show generally higher and more stable
F1 scores across all strategies. Since the label space remains fixed over time, both Replay and even
the Naive strategy perform reasonably well. This observation suggests that the primary challenge in
Domain-IL is not always forgetting, but rather adapting to distributional shifts in the data.

These results highlight LAMDA’s ability to capture both key challenges in continual learning: class
expansion and distributional shift. As such, LAMDA serves as a realistic and challenging benchmark
that supports future research in continual learning.

28

Figure 18: F1 Score in Domain-IL (Forward) Figure 19: F1 Score in Domain-IL (Backward)

Figure 20: F1 Score in Class-IL (Forward) Figure 21: F1 Score in Class-IL (Backward)

Table 15: Average F1 scores of Domain-IL across all experiences or tasks for LAMDA.
Year Strategy Average F1 Score Year Strategy Average F1 Score

2013
Naive 48.86 ± 1.15 2020 Naive 80.26 ± 0.27
Joint 46.89 ± 0.33 Joint 83.08 ± 0.13
Replay 46.56 ± 0.00 Replay 79.93 ± 0.27

2014 Naive 59.36 ± 0.99 2021 Naive 78.61 ± 0.33
Joint 57.38 ± 1.67 Joint 84.12 ± 0.18
Replay 57.13 ± 1.71 Replay 79.46 ± 0.55

2016 Naive 68.07 ± 0.82 2022 Naive 75.86 ± 0.48
Joint 69.21 ± 0.78 Joint 85.02 ± 0.03
Replay 68.75 ± 1.20 Replay 77.02 ± 0.52

2017 Naive 77.79 ± 0.31 2023 Naive 78.10 ± 1.28
Joint 77.05 ± 1.13 Joint 85.59 ± 0.23
Replay 77.93 ± 1.27 Replay 80.74 ± 0.73

2018 Naive 76.64 ± 1.06 2024 Naive 82.54 ± 0.81
Joint 76.61 ± 0.15 Joint 87.86 ± 0.11
Replay 75.94 ± 1.46 Replay 84.77 ± 0.11

2019 Naive 79.74 ± 0.16 2025 Naive 72.71 ± 0.83
Joint 82.76 ± 0.41 Joint 88.52 ± 0.46
Replay 79.72 ± 0.09 Replay 80.57 ± 0.15

K Computational Resources for LAMDA generation

All dataset processing and experiments for LAMDA were conducted on a high-performance compute
server with the following configuration:

• CPU: Dual-socket Intel Xeon Gold 6430 with a total of 128 logical cores (64 physical
cores, 2 threads per core).

• Memory: 1 TB RAM, with approximately 810 GB available during runtime.

• GPU: 4× NVIDIA H100 NVL GPUs with 95.8 GB memory per GPU. Experiments were
conducted under CUDA 12.8 and driver version 570.124.06.

This infrastructure enabled us to efficiently process over 1 million APKs, large-scale temporal
benchmarking over 12 years of Android malware data.

29

Table 16: Average F1 scores of Class-IL across all experiences or tasks for LAMDA.
Year Strategy Average F1 Score Year Strategy Average F1 Score

2013
Naive 12.60 ± 0.65 2020 Naive 53.50 ± 0.18
Joint 12.89 ± 0.37 Joint 68.63 ± 0.67
Replay 12.75 ± 0.48 Replay 52.67 ± 1.34

2014 Naive 25.01 ± 0.28 2021 Naive 51.83 ± 0.87
Joint 28.64 ± 0.49 Joint 72.23 ± 0.46
Replay 24.07 ± 0.74 Replay 50.21 ± 1.51

2016 Naive 32.64 ± 0.72 2022 Naive 53.91 ± 0.42
Joint 40.14 ± 0.22 Joint 76.98 ± 0.36
Replay 32.60 ± 0.36 Replay 54.74 ± 0.43

2017 Naive 19.68 ± 1.12 2023 Naive 38.39 ± 1.84
Joint 51.14 ± 0.09 Joint 80.88 ± 0.25
Replay 16.92 ± 1.21 Replay 37.65 ± 2.46

2018 Naive 32.47 ± 2.06 2024 Naive 13.27 ± 1.33
Joint 59.66 ± 0.31 Joint 81.79 ± 0.29
Replay 23.86 ± 2.22 Replay 12.49 ± 1.76

2019 Naive 47.98 ± 1.71
Joint 65.86 ± 1.20
Replay 44.43 ± 0.26

L Dataset Documentation

L.1 Hosted URLs

DOI. https://doi.org/10.57967/hf/5563

Hugging Face. https://huggingface.co/datasets/IQSeC-Lab/LAMDA.

Croissant. https://huggingface.co/api/datasets/IQSeC-Lab/LAMDA/croissant

GitHub Code Access. https://github.com/IQSeC-Lab/LAMDA

Project Page. https://iqsec-lab.github.io/LAMDA/

L.2 Dataset Curation and Preprocessing Methodology

• Dataset Construction: A corpus of over one million Android Package Kits (APKs),
spanning the years 2013 to 2025 with the exclusion of 2015, is compiled from the An-
droZoo repository [3, 2]. A 20% overhead hases is included in the downloading process
to account for download and decompilation failures. The collected APKs are systemati-
cally organized into year-specific directories, with subdirectories designated for malware
([year]/malware/) and benign applications ([year]/benign/).

• Label Assignment: Binary classification labels is assigned based on the output of VirusTotal
(VT) analysis reported in the AndroZoo repository [3, 2]:

– Benign: vt_detection = 0

– Malware: vt_detection ≥ 4

– Uncertain: vt_detection ∈ [1, 3] (discarded)

• Malware Family Labeling: AVClass2 [47] is used to standardize malware family labels
using VirusTotal reports. Labels are linked to APKs using SHA256 hashes to support
multi-class and temporal malware analysis.

• Static Feature Extraction based on Drebin: Each APK is decompiled using apktool [13]
to extract static features:

– From AndroidManifest.xml: permissions, components (activities, services, re-
ceivers), hardware features, intent filters

– From smali code: restricted/suspicious API calls, hardcoded URLs/IPs

30

https://doi.org/10.57967/hf/5563
https://huggingface.co/datasets/IQSeC-Lab/LAMDA
https://huggingface.co/api/datasets/IQSeC-Lab/LAMDA/croissant
https://github.com/IQSeC-Lab/LAMDA
https://iqsec-lab.github.io/LAMDA/

• Vectorization & Preprocessing: Extracted features are vectorized into high-dimensional
binary vectors using a bag-of-tokens approach. A global vocabulary (∼9.69M tokens) was
constructed. Dimensionality was reduced using VarianceThreshold (threshold = 0.001),
resulting in 4,561 final features.

• Data Splitting: Each year’s data is split using stratified sampling:
– Training: 80%
– Testing: 20%

Class balance is maintained within each split.
• Storage & Format: Final dataset is saved in both .npz (sparse matrix) and .parquet

(tabular) formats. Each year’s folder includes:
– X_train.parquet
– X_test.parquet

Metadata columns include: hash, label, family, vt_count, year_month, followed by
binary features.

• Scalability Support: We have released global vocabulary, selected features, and preprocess-
ing objects (e.g., VarianceThreshold) to enable integration with ML pipelines, including
Hugging Face.

L.3 Accessibility and Reproducibility

The dataset has been made publicly available on Hugging Face at https://huggingface.co/
datasets/IQSeC-Lab/LAMDA and has been assigned a permanent Digital Object Identifier (DOI):
https://doi.org/10.57967/hf/5563. Furthermore, a dedicated GitHub project page has been
created at https://iqsec-lab.github.io/LAMDA/, which includes detailed instructions and
code to reproduce the reported results.

We are committed to the long-term preservation of our dataset through regular checks aimed at identi-
fying and rectifying any data anomalies. Moreover, we are dedicated to the continuous maintenance
of this resource by promptly addressing user inquiries and issues, and by releasing updates and
enhancements informed by user feedback.

31

https://huggingface.co/datasets/IQSeC-Lab/LAMDA
https://huggingface.co/datasets/IQSeC-Lab/LAMDA
https://doi.org/10.57967/hf/5563
https://iqsec-lab.github.io/LAMDA/

	Introduction
	Related Work
	LAMDA Creation
	Concept Drift Analysis
	Concept Drift Analysis with Supervised Learning
	Visual Analysis of Concept Drift
	Feature Space Stability Analysis on Top Malware Families
	Temporal Drift Analysis on Common Malware Families
	Temporal Analysis of SHAP-based Explanation Drift

	Discussion
	Conclusion
	Dataset Statistics
	Feature Description
	LAMDA Variants

	Additional Experimental Details
	Details of the baseline methods
	Baseline Performance
	LAMDA Variants and Drift Sensitivity

	Behind the Scenes: Practical Challenges in LAMDA Creation
	Administrative Challenges
	Technical Challenges

	Effect of Label Noise in Training Data
	Label Drift Across Years Based on VirusTotal Label Changes
	Scalability of LAMDA
	Concept Drift Adaptation on LAMDA
	Temporal Analysis of SHAP-Based Explanation Drift (Top 1000 Features)
	Analysis Setting
	Jaccard and Kendall Distance Analysis
	LAMDA and APIGraph Comparative Analysis

	Continual Learning on LAMDA
	LAMDA for Continual Learning
	Continual Learning Experimental Setup
	Continual Learning Experimental Results

	Computational Resources for LAMDA generation
	Dataset Documentation
	Hosted URLs
	Dataset Curation and Preprocessing Methodology
	Accessibility and Reproducibility

