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Towards Anonymous Neural Network Inference

Liao Peiyuan

Abstract

We introduce funion, a system providing end-to-end sender-
receiver unlinkability for neural network inference. By lever-
aging the Pigeonhole storage protocol and BACAP (blinding-
and-capability) scheme from the Echomix anonymity system,
funion inherits the provable security guarantees of modern
mixnets. Users can anonymously store input tensors in pseu-
dorandom storage locations, commission compute services
to process them via the neural network, and retrieve results
with no traceable connection between input and output parties.
This store-compute-store paradigm masks both network traf-
fic patterns and computational workload characteristics, while
quantizing execution timing into public latency buckets. Our
security analysis demonstrates that funion inherits the strong
metadata privacy guarantees of Echomix under largely the
same trust assumptions, while introducing acceptable over-
head for production-scale workloads. Our work paves the
way towards an accessible platform where users can submit
fully anonymized inference queries to cloud services.

1 Introduction

The advancement of a gradually ubiquitous technology
should not come at the cost of diminishing personal
privacy or increasing reliance on operator benevolence.

Neural networks, especially large language models (LLM),
are increasingly deployed via cloud and third-party services.
This trend is driven by their emergent capabilities and im-
mense computational and memory demands, making on-
premise deployment impractical for many users [3]. Using
neural networks in critical services (search engines, medical
or legal assistants, enterprise automation, etc.) yields great
utility, but it also raises privacy concerns. Users must send
sensitive data (prompts, inputs) to remote servers, providing
a need for anonymous neural network execution.

When a user queries a model, neither the content of the
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Figure 1: funion store→ compute→ store workflow. Bob
and Ben are storage couriers inside the mixnet; Charlie is a
compute courier whose fetch/store requests are themselves
anonymized by first entering the mixnet. B/E mark the BA-
CAP boxes handled along each chain.

query, the response, nor the fact that such a user made the
query should be exposed to prying eyes. At the time of writing,
most cloud LLM services lack any type of anonymity; their
operating model requires the ability to identify, meter, and
moderate neural network executions to charge their users,
maintain compliance, and train on user data [2].

Fortunately, the principles of decades-old anonymous com-
munication networks can be adapted for neural network in-
ference. Specifically, we leverage Echomix, a state-of-the-art
mix network [18], to provide anonymity guarantees for neu-
ral network inference. This approach, which we call funion,
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orchestrates the inference of neural networks across service
nodes, using the mix network’s anonymity properties to en-
sure that no single server can link an input to its final output,
even if the model is public.

At a high level, funion separates the concerns of anonymity
and neural (network) inference. The mix network handles
anonymity through layered routing, cover traffic, and crypto-
graphic protections, while the service nodes focus on efficient
distributed neural inference. They store input tensors, perform
computations on them, and allow clients to retrieve results-all
while maintaining the anonymity guarantees provided by the
underlying mixnet.

Our approach builds upon proven security mechanisms in
Echomix-specifically the BACAP (Blinding-And-Capability)
scheme and Pigeonhole storage protocol-to achieve sender-
receiver unlinkability even against sophisticated adversaries.
Our contributions include:

1. A system design that leverages Echomix anonymity mech-
anisms for neural inference through a store-compute-store
workflow

2. A formal security analysis that shows correspondence
to the established properties of BACAP and Echomix,
thereby inheriting its anonymity guarantees

3. A theoretical estimation showing the latency and band-
width overhead compared to an unprotected inference
server on a particular workload serving Llama-3-70B

2 Threat Model

To establish our anonymity guarantees, we adopt and extend
the threat model from Echomix [18].

2.1 Client’s Perspective
Neural inference services operate fundamentally as remote
procedure calls. When a client, Alice, wishes to utilize a
neural network model, she provides input tensors x ∈ X and
receives output tensors y ∈ Y . In typical inference systems,
Alice connects directly to a provider’s API endpoint, authen-
ticates, sends serialized tensors, and awaits results. This
workflow, while computationally efficient, exposes signifi-
cant metadata.

2.2 What Metadata Might We Leak
There is a variety of metadata we may leak even if we are just
querying an API:

• Identity information: Client identifiers, authentication
tokens, and network addresses that directly link a user to
specific queries

• Temporal patterns: Timing of requests that may corre-
late with external events or reveal usage frequency patterns
characteristic to specific users

• Workload characteristics: Input tensor dimensions, se-
quence lengths, and computational requirements that can
serve as request fingerprints

• Input-output linkability: Correlation between which in-
puts produce which outputs, potentially revealing sensitive
query patterns

• Request volume: Number and size of queries that may
indicate business activities or usage patterns

Even with encrypted content over SSL/TLS, this meta-
data leakage creates significant privacy risks, particularly for
users whose inference queries contain sensitive information
or would reveal privileged activities [4]. Systems that protect
only content but neglect metadata protection leave substantial
attack surfaces for both sophisticated adversaries with passive
monitoring and active manipulation capabilities, and compli-
ant but curious providers who can derive value from the data
they observe.

2.3 Adversary Classes
We now characterize the adversaries who might attempt to
exfiltrate it. Following Echomix’s threat model, we consider
multiple adversary classes:

1. Global Passive Adversary (GPA): The GPA can observe
all network traffic between nodes but cannot modify mes-
sages or compromise nodes. This adversary sees the com-
munication metadata: timing, size, and routing informa-
tion of all packets.

2. Partially Global Active Adversary: Beyond GPA capa-
bilities, this adversary controls a subset of nodes NA ⊂N .
Controlled nodes can deviate from the protocol, drop mes-
sages, or perform arbitrary computations.

3. Honest-but-Curious Service: This adversary controls a
service node, observing all hidden states it processes but
following the protocol specification.

Each adversary class is further characterized by its traits:

• Model Knowledge: All adversaries have complete knowl-
edge of the public model parameters θ, as well as how to
run the neural network (attention mechanisms, activation
functions, etc.).

• Hidden State Access: For a compromised or a curious
service s ∈ S processing layer j, the adversary observes
the hidden state h j produced during the forward pass of the
neural inference. We acknowledge that services process
plaintext hidden states, but protection of these states is
outside the scope of this work.
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• Has Context: The adversary may have access to rich con-
textual information from other data sources and can supple-
ment network observations with this context.

• Sophistication: The adversary may have large computa-
tional resources and can perform cryptanalysis on par with
frontier research, including access to quantum computing
resources.

2.4 Attack Vectors

Given these adversary capabilities, we need to protect against
three fundamental categories of attacks that threaten mix net-
work anonymity [17] in the context of neural network infer-
ence:

1. Traffic Pattern Analysis [7, 31]: Attacks that exploit sta-
tistical correlations in observable network metadata over
time. These attacks analyze message volumes, frequen-
cies, and recipient distributions to gradually narrow the
anonymity set through correlation and intersection. In
neural inference, an adversary might identify common
input size patterns (e.g., prompt lengths) or output gener-
ation characteristics specific to certain users. Even with
encrypted payloads, these analyses can eventually distin-
guish actual communication relationships from cover traf-
fic by observing multiple rounds of communication.

2. Active Manipulation [5, 8, 14, 27]: Attacks where the ad-
versary directly interferes with network operation through
selective blocking, infrastructure compromise, node infil-
tration, or cryptographic subversion. For neural inference,
this could involve infiltrating a service node, delaying
specific tensor transfers, or manipulating routing to force
predictable packet paths. The essence of these attacks is
forcing the mix network into states where anonymity guar-
antees break down, creating observable discontinuities that
reveal message paths or content.

3. Timing Side Channels [4, 9, 28]: Attacks that specifically
exploit fine-grained timing measurements and process-
ing duration correlations. Unlike broad pattern analysis,
timing side channels directly measure computational or
transmission latencies to infer properties about the work-
load. For neural inference, this is particularly dangerous as
computation time varies significantly with input complex-
ity (e.g., sequence length, prompt types). An adversary
measuring the precise time between input submission and
result retrieval can potentially determine characteristics of
the query or even identify the specific input among a set of
candidates, even when the packet contents are encrypted
and traffic patterns are obfuscated.

2.5 Security Objectives
Assuming the query payload is already encrypted in transit
(e.g., via TLS), these attack vectors determine the security
properties our system must achieve:

1. Sender-Receiver Third-Party Unlinkability (SRTU):
For any two honest senders S1,S2 ∈ U and receivers
R1,R2 ∈ U, the adversary cannot distinguish between
the communication patterns {S1 → R1,S2 → R2} and
{S1→ R2,S2→ R1} with non-negligible advantage. For-
mally, let X be the event that senders and receivers are
paired as in the first pattern, and X ′ that they are paired as
in the second pattern, with XA being the adversary’s guess.
Then:

|Pr(XA |X)−Pr(XA |X ′)| ≤ δ

for negligible δ.

In a neural inference setting, the "sender" is the
client who uploads the input tensor(s), and the "re-
ceiver" is that same client when she later fetches the
result tensor(s). SRTU therefore guarantees that no
observer-not even a global passive adversary-can link
a particular uploaded input to the matching fetched
output.

2. Input-Output Unlinkability (IO-U): For any two input
tensors and their corresponding output tensors, the ad-
versary cannot determine with non-negligible advantage
which input produced which output. This property ensures
that even the storage boxes containing inputs and outputs
cannot be linked based on their identifiers or timing pat-
terns.

IO-U strictly implies SRTU in the funion work-
flow; see §4 for proof.

3. Sender Online Unobservability: For any sender S ∈U,
the adversary cannot determine with non-negligible ad-
vantage whether S is communicating with any receiver
({S→}) or not ({S ̸→}). This is achieved through the un-
observable coupling of application traffic with echo decoy
traffic.

4. Receiver Unobservability: For any receiver R ∈U, the
adversary cannot determine with non-negligible advantage
whether any sender is communicating with R ({→ R}) or
not ({̸→ R}). This is achieved through the Sphinx packet
format’s Single Use Reply Blocks (SURBs) [6] and the
carefully designed echo-based traffic patterns.

5. Protection Against Traffic Analysis: Through memory-
less mixing, funion ensures that network observers cannot
correlate input and output packets. Each message has its
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delay independently sampled from the exponential distri-
bution:

f (x≥ 0,λ) = λe−λx

which has the critical memoryless property that Pr(X >
t + s|X > t) = Pr(X > s) for any t,s≥ 0. This means that
at any point in time, each message sitting in a mix node
has the same probability distribution of remaining delay,
regardless of how long it has already been waiting.

6. Computation-Time Unlinkability [4]: Correlation be-
tween a user’s input-dependent compute cost and any ob-
servable on-wire timing should be negligible.

2.6 Security Non-Objectives
Certain adversarial behaviors fall outside our current threat
model, but may be addressed in future works:

1. Hidden State Privacy: Our design intentionally does not
protect the plaintext hidden activations processed by ser-
vice nodes. While this is an important privacy concern for
neural inference, addressing it would require techniques
like cryptographic inference, obfuscated representations,
or trusted execution environments, which we defer to fu-
ture work.

2. Dishonest Computation Nodes: Services that claim to
perform specific computations but deliberately provide
incorrect results or follow a different algorithm are not
addressed in our security framework. The system assumes
computational correctness from non-compromised nodes.

3. Straggler Nodes: Nodes that introduce arbitrary delays or
fail to complete assigned computations within reasonable
time bounds fall outside our threat scope. Our exponen-
tial delay distribution provides protection against timing
analysis but assumes eventual computation completion.

4. Resource Exhaustion Attacks: While funion includes
mechanisms to handle standard network congestion, de-
liberate resource exhaustion attacks aimed at degrading
service quality rather than breaking anonymity are not
directly addressed.

2.7 Pigeonhole Storage, BACAP, and SURB
We summarize the three cryptographic building-blocks that
funion inherits from Echomix:

Sphinx & SURBs (routing layer). Every message that en-
ters the mixnet is a constant-length Sphinx packet [6]: an
onion-encrypted header plus an encrypted payload. A sender
chooses a k-hop route, wraps the packet in k layers of
public-key encryption, and attaches a Single-Use Reply Block

(SURB)-another onion header that encodes a return path, en-
crypted such that neither the recipient nor any intermediate
hop can link it back to the sender. When the recipient later
replies, the SURB is consumed, guaranteeing unlinkability
and non-replay. Packets that carry data and a SURB are col-
loquially called echoes; packets without a SURB form the
loop-cover traffic that each client emits continuously, so that
an external observer cannot tell the two apart.

Pigeonhole storage (service layer). On top of Sphinx,
Echomix offers a stateless courier API: clients deposit or
fetch opaque blobs at replica servers through echoes. Each
blob sits in a "Pigeonhole" identified by a pseudorandom
32-byte string, its Box-ID. Uploads, downloads, and replica-
to-replica gossip are all ordinary Sphinx packets, so a global
passive adversary sees nothing but cover traffic.

BACAP vanilla (cryptographic core). BACAP (Blinding-
And-Capability) deterministically turns one 256-bit seed into
an infinite one-way chain of storage locations and keys:

Hi,Ei,Ki = KDF(Hi−1, i)

Kctx
i = KDF(Ki,ctx)

Mctx
i = PR·Kctx

i (Box-ID)

Sctx
i = SR Kctx

i mod ℓ

where B is the Ed25519 base point and ℓ its prime order. Each
piece of data that lands in a Pigeonhole is the signed triple

(M, c, s)

produced as shown in Table 1. Because a Box-ID is the
product of a public point and a pseudorandom scalar, it is
computationally indistinguishable from a fresh Ed25519 pub-
lic key; different boxes appear unlinkable.

Table 1: The BACAP record format

Field Symbol How it is derived

Box-ID M Mctx
i =PR·Kctx

i

Ciphertext c cctx
i =AES-256-GCM-SIV(mi, Ectx

i )

Signature s sctx
i =Ed25519-SIGN(cctx

i , Sctx
i )

BACAP cleanly separates write and read authority:

Write capability W = (SR,H0) lets the holder create new
boxes by signing fresh triples (M,c,s).

Read capability R = (PR,H0) lets the holder enumerate the
same Box-ID sequence, decrypt each c with Ectx

i , and
verify s - but cannot forge writes.

The Pigeonhole storage protocol features four operational
roles-each equipped with only the minimum capability it re-
quires:
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Client. Generates fresh W or R, selects couriers and repli-
cas, and wraps every request in a Sphinx echo. A client
may delegate R to other principals but never discloses its
private W .

Courier. A stateless relay that terminates client echoes and
forwards opaque envelopes to the chosen replicas over a
fixed-rate side channel. The courier sees timing and size
only-it never learns the Box-ID.

Replica (storage server). A key–value store indexed by
Box-ID. It accepts a write when the signature verifies
under the public key implicit in M and gossips records to
peer replicas so that any k-of-n subset can satisfy a read.

Mix node. Part of the Echomix transport fabric; it han-
dles only fixed-length, onion-encrypted packets and con-
tributes the exponential per-hop delay that gives the net-
work its memoryless-mixing property.

Pigeonhole message flow A client writes by sending
(M,c,s) under a fresh W through a courier to its desig-
nated replicas. Anyone holding the corresponding R can
later read the same chain of boxes but cannot alter them.
Because no external party sees both the user’s network
identity and the Box-ID, unlinkability is preserved.

3 System Definition

funion operationalizes the insight that we can treat a mix
network as a secure pathway to stateful service nodes that both
store input tensors and perform computations on them. Our
design builds directly on Echomix’s Pigeonhole storage and
BACAP protocol, recasting neural inference as "Pigeonhole-
style store→ compute→ store" to inherit security guarantees.

3.1 System Architecture and Components
funion consists of three primary component types, each with
specific roles and trust assumptions (Figure 1):

User (u ∈ U): Performs critical anonymous operations lo-
cally, including: (i) local tokenization of input x ∈ X , (ii)
wrapping requests into Sphinx packets, and (iii) speci-
fying valid mix network routes. The user interacts with
the mixnet through a gateway node.

Mixnet (N ∈N ): An Echomix network consisting of gate-
way nodes, mix nodes arranged in three layers, and ser-
vice nodes. The mixnet routes packets between users
and service nodes while hiding metadata through memo-
ryless mixing, cover traffic, and layered encryption.

Service Node (s ∈ S ): A node at the service layer of the
mixnet that processes Sphinx echoes. funion employs
two specialized service types:

Storage Courier (Bob, Ben): A service node that for-
wards encrypted BACAP operations to a swarm
of k-of-n storage replicas chosen by consistent
hashing for each Box-ID. Couriers never see Box-
IDs themselves, as these are encrypted within en-
velopes addressed to the replicas.

Compute Courier (Charlie): A specialized courier that
additionally performs neural inference on tensors
retrieved from replicas. It acts as a client with
respect to the storage couriers, creating standard
read and write envelopes.

Replica (r ∈ R ): Storage nodes positioned outside the
mixnet that implement the actual key-value store. Each
Box-ID is deterministically mapped to k replicas using
Pigeonhole’s consistent hashing scheme. Replicas verify
BACAP operations and maintain the tensor data.

3.2 BACAP for Neural Inference
For neural network inference, we make the following exten-
sions to BACAP:

• Separate read/write capabilities: Alice generates a write
capability Win for herself but only shares a read capability
Rin with Charlie. This ensures Charlie can read but not
forge inputs.

• Fresh capabilities for outputs: Alice generates a new
write capability Wout and corresponding read capability Rout.
She keeps Rout and gives Wout to Charlie to use for storing
computation results.

• Different contexts for input/output: By binding differ-
ent context values (e.g., ctxin, ctxout) to input and output
sequences, even a global adversary cannot match the two
blinded ID streams.

3.3 Pigeonhole Inference
Under Echomix’s Pigeonhole storage protocol and BACAP
scheme, we can treat neural inference as a sequence of stor-
age and computation operations, all mediated through the
anonymizing mixnet. A client first writes tensors into "input
Pigeonholes" through Bob, hands Charlie a read-only ticket
for those boxes plus a write-ticket for a fresh "output Pigeon-
hole" set, and finally reads the results back from Ben. Every
communication step is an ordinary Echomix echo, so a global
passive adversary sees five fixed-size packets and nothing
else. The protocol operates as follows:

1. Upload: Alice splits her input tensor into fixed-size chunks
and uploads them to a randomly chosen storage service
(Bob) using a BACAP write capability Win with context
ctxin. Each upload is an ordinary Echomix echo that is
indistinguishable from cover traffic.

5



2. Dispatch: Alice randomly selects a compute service (Char-
lie) and sends an envelope containing a read capability Rin
for the input tensors and a freshly generated write capabil-
ity Wout for the output with context ctxout. This is delivered
via a standard SURB echo.

3. Computefetch: Charlie uses the read capability to fetch the
input tensors from Bob through the mixnet, introducing
another round-trip echo that preserves unlinkability.

4. Computestore: After performing the neural network infer-
ence locally, Charlie stores the results on another randomly
chosen service (Ben) via a full mixnet echo using the write
capability Wout.

5. Fetch: Alice retrieves the results from Ben using the read
capability Rout that corresponds to the write capability she
gave to Charlie.

Table 2: Pigeonhole Inference

Echo Operation Security Properties

Upload Alice→ Bob: encrypted
input chunks written
with Win

Indistinguishable
from decoy traffic

Dispatch Alice→ Charlie: enve-
lope with Rin and Wout

Indistinguishable
from decoy traffic

Computefetch Charlie↔ Bob: pull
input tensors with Rin
from replicas with ctxin

Charlie learns no
client ID; replicas
see no Box-ID link

Computestore Charlie↔ Ben: store
results with Wout to repli-
cas with ctxout

Outputs unlinkable
from inputs

Fetch Alice → Ben: retrieve
results from replicas
with ctxout using Rout

Readers unlinkable
from writers

Charlie’s Store→Compute→Store Loop. At the core of
the protocol is Charlie’s computation process:

Algorithm 1 Charlie’s inner loop for one inference job

1: x, t j← Fetch(Rin) ▷ via Bob through mixnet
2: y← Fθ(x) ▷ local forward pass
3: WaitForBucketEdge(t j,y) ▷ Algorithm C
4: Store(Wout,y) ▷ to Ben through mixnet

Why Charlie tunnels via the mixnet. Crucially, Charlie’s
communication with both Bob and Ben occurs through the
mixnet rather than directly. Charlie never learns replica IDs
because envelopes are end-to-end encrypted to the replicas.

This preserves the uniform wire-image of all traffic and main-
tains the three-party trust split (Charlie, courier, replica) that
our security reduction relies upon.

Every step in this pipeline is implemented as a standard
Echomix echo and every piece of stored data is a BACAP
box. The split-capability pattern established here forms the
foundation for our IO-U⇒ SRTU reduction in §4.

3.4 Latency-Bucket Release Policy

The latency-bucket release policy is an additional safeguard
that does not contribute to Sender–Receiver Third-Party Un-
linkability (SRTU). Its sole purpose is to blunt a separate
side channel: an on-path observer who watches Charlie’s
packet timings (but cannot see payloads, identify endpoints,
or compromise Charlie) might otherwise infer query char-
acteristics from raw execution time. By forcing all visible
wall-clock delays into coarse, publicly advertised buckets,
we tackle the computational-time unlinkability threat high-
lighted by [4]. This countermeasure acts at the granularity
of network-level message release; micro-architectural leaks
such as L1/L2 cache or CPU-cycle timing channels are out-
side its concern and, in practice, are already drowned out by
the high variability of modern neural-inference workloads
(kernel-launch jitter, payload-specific optimizations, tensor-
shape shifts, GPU scheduling noise, etc.).

1. Client-chosen bucket: Upon creating a compute request,
the client Alice chooses a latency bucket t j from a public
grid of times 0 = t0 < t1 < · · · < tn, evenly spaced by ∆.
This represents her expectation of how long the computa-
tion should take.

2. Service commitment: The service Charlie promises to
complete the computation before time t j. This commit-
ment is based on the public parameters of the request.

3. Timing discipline: When computation completes, Charlie
waits until the grid edge t j before releasing the result. This
ensures that the observable release time is quantized to the
public grid.

4. Handling overruns: If the computation doesn’t complete
by time t j (the client-chosen bucket), the service returns
a failure/overflow message, instructing Alice to resubmit
with a larger bucket selection.

This graduated-bucket approach preserves timing guaran-
tees: all timing information visible to adversaries remains a
deterministic function of public metadata (the chosen bucket
index j) with no dependence on private computation charac-
teristics.
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4 Security Analysis

Our security analysis relies on a direct reduction to the estab-
lished security properties of Echomix and BACAP.

4.1 Modeling Assumptions
Memoryless mixing. All gateways, mixes and services ad-

here to Echomix’s timing discipline: messages leave
each participant after an independent, exponentially dis-
tributed Exp(λ) delay; clients emit application and loop
packets according to Pois(λs) processes.

Path independence. At every layer of the mixnet topology,
the next hop is selected independently of all previous
routing decisions, and the resulting choice is computa-
tionally indistinguishable from a uniform draw over the
nodes in that layer.

Constant packet size. All observable packets have the exact
Sphinx echo size, making them indistinguishable to a
passive observer.

Capability freshness. Each inference uses a freshly gener-
ated Win, Wout. Re-using a write seed would leak the
public root key PR and break BACAP unlinkability.

Padding. For public parameters ∆ and latency grid 0 = t0 <
t1 < · · ·< tn, each inference advertises a bucket index j.
The service releases the result at the first edge tm ≥ tfinish.
If tfinish ≥ t j, it instead returns a special OVERFLOW
marker (sent at t j).

Hence the adversary’s observable state over n slots be-
comes

(n, ⟨(b1,o1), . . . ,(bn,on)⟩),

where each slot now contains the public bucket index bs
and a one-bit overflow flag os ∈ {0,1}.

No early release. Honest services never release results be-
fore a bucket edge even if the computation is finished
earlier.

Limited courier–replica collusion. For every inference job
either the compute courier Charlie is honest or none of
the k replicas that store that job under ctxin or ctxout
collude with him.

Non-critical mix corruption. The adversary may compro-
mise any subset of gateways, mix nodes, couriers, and
replicas except those critical combinations that simul-
taneously observe (i) a client’s ingress identity and (ii)
the replica set that holds the same client’s Box-ID se-
quence. The directory-authority quorum contains at least
one honest key and provides a consistent directory view
to all honest participants.

Self-receiver model. Each logical sender is the sole autho-
rized receiver of the corresponding output; delegation of
fetch rights is outside the scope of the present proof.

Gateway cover-traffic floor. To keep every gateway-mix
link active with high probability during one mean-delay
interval µ, each gateway must emit Θ(n2logn/g) packets
in that time, where n is the layer size of the mixnet and
g the number of gateways (Echomix’s Coupon-Collector
bound).

Lemma 4.1 (Bucket-edge timing leaks ≤ 1 extra bit). Let
o ∈ {0,1} be the overflow flag returned by the service ("1"
iff tfinish ≥ t j). The adversary’s observable tuple is (o, trelease).
Given the public bucket index j and grid t0, . . . , tn, (o, trelease)
is a deterministic function of ( j,o), so the view leaks at most
one additional bit (the value of o) beyond j.

Proof. If o = 0 the service releases exactly at the grid edge
t j ≥ tfinish; if o = 1 the service releases OVERFLOW. Hence
timing is fully determined by ( j,o) and cannot encode any-
thing else about the private running-time distribution.

Lemma 4.2 (Buckets + overflow leak ≤ log2(n + 1) bits).
With n+1 public grid edges and one possible overflow marker,
the attacker’s uncertainty set has size n+1, so the Shannon
leakage is bounded by log2(n+1) bits. Because the bucket
index j is already public, this reduces to a single extra bit (the
overflow flag).

4.2 Security Definition
Lemma 4.3 (Self-receiver IO-U⇒ SRTU). Consider a funion
deployment in which every message is eventually fetched
only by the sender that created it ("self-receiver model").
Under this condition, any adversary that breaks SRTU can
be turned into an adversary that breaks IO-U with the same
advantage.

Proof. Let A be an adversary that wins the SRTU game with
advantage ε. Because each logical job has exactly one sender
and that same principal is the unique authorized fetcher, we
can embed A as the environment inside the IO-U game:

1. The reduction simulates the entire network for A , for-
warding every sender’s two challenge jobs (in0,out0) and
(in1,out1) to its own IO-U challenger.

2. Which input the challenger actually processes determines
the concrete receiver-side traffic pattern (because the re-
ceiver equates sender).

3. A outputs a bit b′ guessing which sender/receiver pair was
used. The reduction outputs the same bit as its IO-U guess.

Since the simulation is perfect in the self-receiver model, the
reduction wins the IO-U game with the same ε.
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The implication holds for any adversary that observes at
least one end-point event (upload or fetch); all GPA adver-
saries do so by definition.

Definition 4.1 (Input-Output Unlinkability, restated). Let
two honest clients S0,S1 ∈ C each submit one inference job,
resulting in output box sequences {N(0)

j } j and {N(1)
j } j on

Ben. The challenger flips b∈{0,1} and tells Ben to deliver
{N(b)

j } to S0 and {N(1−b)
j } to S1. A GPA outputs a bit b′. The

advantage is |Pr(b′ = b)− 1
2 |.

This is the usual Echomix unlinkability game applied to
pairs of echoes (upload + fetch) rather than single messages,
and strictly implies the standard sender-receiver unlinkability
property, as stated in Lemma 4.3.

Think of the two "messages" in the game as:
1) the "upload" of an input tensor, and
2) the "download" of its processed output. Breaking
IO-U would allow an adversary to pair them together,
revealing which input produced which output.

Theorem 4.4 (funion inherits Echomix + BACAP anonymity).
Let ε be the maximum advantage of any probabilistic
polynomial-time global passive adversary (GPA) in the IO-U
game defined above. Assume the following parameters of the
two building blocks:

εE = advantage against one Echomix echo,
δ = advantage to link one BACAP box pair.

Then, under Assumptions 4.1,

ε ≤ 4εE +δ

In other words, any GPA that distinguishes funion’s real
world from the ideal world with advantage ε can be trans-
formed into

1. an adversary that breaks the anonymity of one Echomix
echo with advantage ≥ ε/4, or

2. an adversary that links two BACAP records with advantage
≥ ε.

Hence funion leaks no more information than the sum
of four independent Echomix echoes plus one BACAP box.
When εE and δ are negligible, so is ε.

4.3 Proof Sketch
We prove by a standard hybrid game argument [10, 11]. Start-
ing from the real execution, we scrub, step by step, every
piece of information that an adversary could use, until only
uniformly random Sphinx traffic remains.

Five Sphinx echoes per inference. For clarity we name the
round trips that occur in one funion job:

Echo Initiator Outbound Inbound Purpose

E1 Alice A→Bstore Bstore→A Upload input tensor
E2 Alice A→C C→A Dispatch (Rin,Wout)

E3 Charlie C→Bstore Bstore→C Fetch input with Rin
E4 Charlie C→Bresult Bresult→C Store result with Wout
E5 Alice A→Bresult Bresult→A Fetch result with Rout

Only E3 and E4 are started by Charlie; each of them has
a reply that flows into Charlie. Those four Charlie-visible
packets are the ones that can reveal extra routing information
and thus need to be masked in the proof.

Let εE be the anonymity advantage against one Echomix
echo (from the Echomix security theorem) and let δ be the
unlinkability bound for one BACAP box pair.

Hybrid H0 (real world). The genuine funion execution,
with all BACAP triples and Charlie’s computation intact.

Hybrid H1 (hide replies into Charlie). We replace the two
inbound packets Bstore→C (echo E3) and Bresult→C (echo
E4) with fresh, uniformly random Sphinx echoes of the same
length. By the Echomix anonymity theorem each substitution
changes the adversary’s view by at most εE ; a union bound
gives |Pr(A distinguishes H0,H1)| ≤ 2εE .

Hybrid H2 (hide outbound packets from Charlie). Next,
we randomize the two outbound packets C→Bstore (E3) and
C→Bresult (E4) in exactly the same manner, delivering them
to the mix-net at the same bucket-edge time (Assumption
4.1). Again, Echomix anonymity bounds the distinguishing
advantage by another 2εE .

Hybrid H3 (random BACAP triples). Reveal all symmet-
ric keys and replace every BACAP record (M,c,s) with ran-
dom bits of equal length. BACAP’s unlinkability property
guarantees that the adversary’s advantage drops by at most δ.

Hybrid H4 (ideal world). After the previous steps every
observable packet is now an independent, uniformly random
Sphinx echo. Hence the adversary’s view is identical whether
the challenge bit b = 0 or b = 1; she can do no better than
guess, i.e. her advantage is 0.

Collecting the losses across hybrids we obtain

ε ≤ 2εE︸︷︷︸
H0→H1

+ 2εE︸︷︷︸
H1→H2

+ δ︸︷︷︸
H2→H3

= 4εE +δ.□
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4.4 Capabilities of Colluding Pairs of Compro-
mised Network Elements

Mirroring the presentation style of Echomix [18, §6.2], we
enumerate what pairs of funion components could learn if both
are actively malicious. A global passive adversary (GPA) is
always assumed.

• Gateway + Mix layer(s): Both only see uniformly padded,
cover-mixed Sphinx echoes. Because service nodes are
chosen independently of traffic history and payloads remain
indistinguishable, they cannot separate Upload, Dispatch,
Compute, or Fetch echoes from loop cover traffic. No
practical linkability is obtained.

• Gateway + Storage Courier. A courier can batch up the
client’s repeated SURB-bearing retries and release them
in one burst; the gateway sees that burst and therefore
learns when a given client initiated a copy/write request
and roughly how large it was. Because the envelope that
carries the request is still end-to-end encrypted to replicas,
neither party learns which Box-IDs (or which replicas) are
involved, so they get timing/volume information only.

• Gateway + Compute Courier: Charlie observes a Dis-
patch envelope plus the ensuing compute workload bucket;
the gateway sees when that envelope left a client. Jointly
they can say "client A originated a job using latency-bucket
j," thereby learning per-client workload volume. They still
cannot link to the specific input or output Box-IDs (pro-
tected by envelope encryption to replicas), so SRTU and
IO-U remain unbroken.

• Gateway + Replica: The replica can see every time a
particular Box-ID is read, and the gateway can see which
clients are active at those moments. By comparing these
two timelines over many days, they may eventually guess
which client owns a given Box-ID. This "intersection"
attack is slow, because each read is routed through random
couriers and released only at coarse, pre-set time steps, so
the timing clues are fuzzy.

• Mix layer(s) + Courier/Replica:

– Mix + Courier. A compromised mix can tag or delay
packets that head to one specific courier and later watch
them return, linking those packets to a particular gateway
(but not to an individual user). It still cannot see Box-IDs,
so the courier’s view remains "opaque envelopes plus
timing".

– Mix + Replica. The mix learns one hop of the path; the
replica sees Box-IDs. Because at least one other mix
hop is honest, the pair cannot connect ingress user traffic
to any specific Box-ID or client—they only learn that
"some user of this gateway wrote/read this Box-ID."

• Storage Courier + Compute Courier: These two services
can line up when Charlie fetched an input (from the stor-
age courier) with when he later stored the result (via the

compute courier’s outbound write), effectively pairing the
input-fetch echo E3 with the result-store echo E4 for a sin-
gle job. That reveals an input-output link for that job’s data
flow, but because neither courier sees client IPs or Box-IDs,
they still lack both the user’s identity and the blinded storage
locations. Charlie rotation and per-job replica randomness
keep this leakage bounded to the job being processed.

• Compute Courier + Replicas: This is the strongest collu-
sion. Charlie holds plaintext tensors after retrieval, and the
replicas know the Box-IDs and can link different BACAP
operations on the same sequence. Jointly they can observe
which input produced which output, revealing the input-
output link. funion therefore requires Assumption 4.1 and
rotates compute services per job to make repeated collusion
statistically unlikely.

Crucially, however, they still lack the user’s ingress
identity: any real read is still buried among thou-
sands of messages via the rest of funion’s mix mech-
anisms. Because each inference randomly selects a
fresh courier and a fresh k-of-n replica subset, the ad-
versary must repeatedly compromise the correct nodes
and gather many aligned observations before intersec-
tion or volume analysis shrinks the anonymity set, ren-
dering practical deanonymization statistically costly
even though the formal IO-U⇒ SRTU guarantee no
longer holds.

• Replicas for both contexts: Even if one physical opera-
tor stores every input ctxin record and every output ctxout
record, the two Box-ID sequences are generated under dif-
ferent BACAP contexts and therefore look like unrelated
random Ed25519 keys. Linking them requires breaking
BACAP’s one-way chain, so the attacker’s advantage is at
most δ (negligible).

Key takeaways:

• No single service role plus network-level vantage leaks
both ends of an inference request

• The strongest risk (Compute Courier + Replicas collusion)
is mitigated by Assumption 4.1

• funion does not widen the adversarial surface beyond
Echomix; therefore its resistance to the standard catalog
of mixnet active attacks—including the n−1 attack, Sybil
attack, and intersection / statistical-disclosure attacks—is
exactly that of Echomix. The security bounds and mitiga-
tion surveyed in [17] apply mostly unchanged, and we shall
observe it empirically in future works targeting real-world
deployment.
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5 Performance Estimation

We attempt to quantify funion’s estimated overhead in latency
and packet size. All timing figures combine (i) published
Echomix parameters and (ii) vendor-supplied benchmarks for
Llama-3-70B inference.

5.1 Packet Capacity and Efficiency
We consider the scenario where a single language model
is served by all instances of Charlie in the mixnet. In this
case, a full neural inference request fits into a single Sphinx
packet, so no fragmentation is needed. Katzenpost’s reference
implementation fixes

• Sphinx payload capacity: 30 000 bytes

• Token representation: 4 bytes/token (32-bit integer)

• Maximum prompt: ⌊30000/4⌋= 7500 tokens

Hence even a 5 000-token prompt (≈ 20 kB) leaves ample
room for the BACAP envelope and padding.

5.2 Inherited Mixnet Parameters
We use values in Echomix’s deployment by Zero Knowledge
Network unchanged:

Parameter Value Meaning

µ 0.20 s Mean delay per hop
k 3 Mix depth (one way)
λs 2.5 pkt/s Client loop-cover rate

One echo. The full round-trip timing follows an
Erlang(k=9,λ=5s−1) distribution with: E[X ] = 9/5 = 1.8 s,
Var[X ] = 9/25 = 0.36 s2.

Five echoes per inference. A single forward pass touches
the mixnet five times:

1. Upload - Alice→ Bob: 1 Sphinx packet (≈31 kB) carry-
ing the input tensor encrypted under Win.

2. Dispatch - Alice→ Charlie: 1 packet with the job ticket
(Rin,Wout).

3. Computefetch - Charlie→ Bob: 1 packet requesting the
stored tensor via Rin.

4. Computestore - Charlie→ Ben: 1 packet that writes the
result under Wout.

5. Fetch - Alice→ Ben: 1 packet that retrieves the output
tensor with Rout.

E[Xmix] = 5×1.8= 9.0 s, Var[Xmix] = 5×0.36= 1.8 s2.

5.3 LLM Inference Latency
Table 3 presents canonical inference latencies for Llama-3.3-
70B-Instruct (fp16, tensor-parallel=4) on 4×H100 GPUs us-
ing NVIDIA’s NIM platform [23], where: TTFT = Time
To First Token; ITL = Inter-Token Latency; tLLM = TTFT+
nout× ITL.

Scenario nin nout TTFT (ms) ITL (ms) tLLM (s)

Balanced 200 200 32.78 19.11 3.85
Medium 1000 1000 103.20 19.31 19.41
Output-heavy 500 2000 71.82 19.26 38.59
Input-heavy 5000 500 368.11 19.94 10.34

Table 3: Latency on 4×H100 80GB (NIM, fp16, TP=4)

5.4 Latency Overhead
Let tLLM be the pure compute time and tmix = 9.0 s the ex-
pected networking delay. With bucket quantization using
∆ = 0.2 s, the computation time is rounded up to the next
bucket edge:

trounded
LLM =

⌈ tLLM

∆

⌉
·∆

the mix percentage is then:

ρ =
trounded
mix

trounded
mix + tLLM

.

Scenario trounded
LLM (s) tmix (s) Total (s) Mix %

Balanced (200/200) 4.00 9.0 13.00 69 %
Medium (1k/1k) 19.60 9.0 28.60 31 %
Output-heavy 38.60 9.0 47.60 19 %
Input-heavy 10.40 9.0 19.40 46 %

Table 4: End-to-end latency with 5 Sphinx echoes (µ = 0.20s)

Even for the 38 s output-heavy case, networking contributes
less than one fifth of total latency. For shorter prompts, the
privacy budget is paid largely in delay; deployments that
co-locate couriers and replicas could drop the two Charlie-
internal echoes and shrink tmix to 5.4 s (three echoes) at the
cost of a weaker trust split.

The values in Table 4 represent a best-case scenario be-
cause they are based on Llama-3.3-70B—one of the larger
publicly benchmarked models. For smaller LLMs (e.g., 7
B–13 B parameters) whose forward pass often finishes in ≤1
s on a single GPU, the fixed tmix≈9 s term would dominate
the end-to-end latency, pushing the Mix % well above 90 %
and, in the extreme, making network delay the primary cost of
anonymity. The anonymity budget incurred by funion grows
with the volumes of the requests, but not the computational
intensity of requests themselves. Therefore, it is more suited
for large models.
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5.5 Bandwidth Constraints
funion requires continuous cover traffic to maintain anonymity
guarantees. Using Echomix’s established parameters (λs =
2.5 packets/second with 31 kB per packet), we calculate the
baseline bandwidth requirement per client:

Baseline bandwidth = 2.5 pkt/s×31 kB/pkt×86400 s/day
≈ 6.7 GB/day

This 6.7 GB/day represents the minimum bandwidth foot-
print for maintaining anonymity through loop-cover traffic
for a single client, irrespective of actual inference usage. The
X25519 NIKE Sphinx configuration in Echomix introduces
1 kB of overhead that we have already factored in for each
inference query.

Per-Inference Costs. From client’s perspective (§5.2), each
complete inference requires 3 Sphinx packets, and consumes
approximately 93 kB of bandwidth. Under a substitution
model where application packets replace loop packets, a client
with the minimum 6.7 GB/day bandwidth allocation could
perform:

Max inferences/day =
λs× seconds/day
packets/inference

=
2.5 pkt/s×86400 s

3 pkt/inference
≈ 72000 inferences/day
≈ 50 inferences/minute

Contextualization with ServeGen. To understand whether
this bandwidth constraint is practical, we analyze it in the con-
text of ServeGen workload characteristics from [35]. Serve-
Gen shows that request rates are highly skewed: 29 clients
(1.2%) are responsible for 90% of traffic. The quiet majority
send requests far less frequently than our 50-inference/minute
cover-traffic budget, whereas the noisiest client (Client A in
their analysis) bursts to∼150 req/s (9,000 req/minute) - about
180× more than our budget.

This comparison reveals that funion’s anonymity overhead
is negligible for typical human users or chatbot interfaces
that generate sporadic traffic. However, power users or API-
driven applications that represent the top 1-2% of clients in
production environments would require either:

1. Higher bandwidth allocation during peak periods

2. Request buffering/throttling mechanisms to smooth bursts

3. Adjustments to the anonymity parameters (λs or µ) to trade
off anonymity strength against throughput

6 Limitations and Future Work

While funion demonstrates that mix networks can effectively
enable anonymous neural inference, several important limita-
tions and directions for future research remain:

6.1 Hidden-state Privacy

Our design intentionally addresses network-level anonymity
rather than representation-level privacy. The plaintext hidden
activations processed by services represent a separate privacy
domain that is orthogonal to the sender-receiver unlinkability
that funion successfully establishes.

A compromised service processing a model could extract
the hidden state and run subsequent layers locally to gener-
ate outputs or apply techniques described by [25] to attempt
reconstruction of inputs. In our case analyzed above with no
split of model inference across multiple providers, the input is
directly available. This is an inherent limitation of our current
approach.

Importantly, funion’s store-compute-store architecture pro-
vides a foundational defense by allowing model sharding
across independent service nodes-forcing adversaries to com-
promise multiple specific nodes to observe a complete model.
To fully protect hidden states, future work could explore:

Private models. Store partitions of models [16] on disjoint
services and issue sequential Compute requests, allowing
each service only observing part of the network.

Representation obfuscation via LoRA. Even with a public
model, low-rank adaptations [15] could create private compu-
tational pathways where hidden states remain meaningfully
obfuscated [20] such that it is hard, if not impossible, to re-
construct either the output or the original input.

6.2 Verifiable Computation

Recent work on verifiable neural network inference offers
complementary defenses that ensures a compute provider’s
honest computation in funion.

Hash–based commitments. TOPLOC shows that locality-
sensitive hashes over carefully-chosen intermediate activa-
tions can catch model, prompt or precision tampering at
≈100× faster than re-running the full inference while adding
only 258 B/32 tokens of storage [24]. Because verification is
just a hash comparison, a client (or even Charlie) could em-
bed TOPLOC checks inside a funion envelope with negligible
overhead.
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Succinct proof systems. Fully cryptographic approaches
generate a zero-knowledge, succinct proof that the claimed
neural-network execution is correct:

• Kaizen [1] verifies training of deep neural networks.

• zkLLM [30] produces <200 kB inference proofs for 13B-
parameter LLMs in under 15 min.

These schemes reduce the need to trust either Charlie or the
replicas, but today they impose prover overheads 102−104×
the original computation, circuit-translation constraints, and
sometimes model-specific optimizations. Until prover cost
reaches near-real-time parity, we view zkSNARK-style verifi-
cation as adjacent future work rather than a core assumption
for funion.

Trusted-Execution Environments (TEE). Hardware-
based security mechanisms like Intel SGX provide isolated
execution environments with remote attestation capabilities,
allowing clients to verify that computations ran on genuine,
unmodified code [21]. Several prototypes have demonstrated
that neural network inference inside these protected enclaves
is viable [22].

funion could leverage TEEs to run complete inference
queries or just lightweight verification checks, providing
hardware-backed assurance as an alternative to cryptographic
proofs. However, TEEs introduce a hardware trust depen-
dency and remain vulnerable to sophisticated side-channel
attacks like SIGY [29]. Additionally, current enclave mem-
ory constraints (e.g., SGX’s 128/256 MB limit) are ill-suited
for billion-parameter models, resulting in substantial perfor-
mance penalties.

TEEs and hash-based commitments currently represent a
pragmatic compromise that trades formal security guarantees
for practical deployability, a reasonable interim solution until
fully succinct proofs become computationally feasible.

6.3 Evaluation In The Wild
While we have established the security properties of funion
through formal analysis and estimated its theoretical perfor-
mance characteristics in §5, an actual implementation and
empirical evaluation of the system deployed on real devices
remains an important direction for future work.
Key aspects that require empirical validation include:

1. Implementation overhead: Assessing the engineering
complexity and deployment considerations that arise when
implementing the complete protocol stack in production
environments, as the underlying mixnet, Katzenpost/E-
chomix, is still under active development.

2. Practical end-to-end latency: Validating our theoretical
latency estimations with measurements from actual system

deployments, including the effects of real network condi-
tions, computation variability, and compute heterogeneity
not captured in our model.

3. Achievable throughput: Determining the maximum num-
ber of inference operations that can be processed per unit
time in practice.

4. System scalability: Measuring how performance and
anonymity metrics vary with model size, network complex-
ity, and concurrent user load in deployed environments,
particularly focusing on how active disruptions affect prac-
tical mixing quality.

6.4 Deployment Considerations

Deploying funion presents several practical challenges:

1. Infrastructure costs: Maintaining a distributed network
of mix nodes and service nodes requires significant re-
sources from multiple stakeholders, which must be bal-
anced against the privacy benefits.

2. Network dynamics: As nodes join or leave the network,
ensuring consistent anonymity properties and performance
requires careful management.

3. Incentive alignment: Creating sustainable economic in-
centives for operating mix nodes and service nodes while
preserving anonymity remains an open challenge.

Future work could explore decentralized governance mod-
els and incentive mechanisms to address these deployment
challenges.

7 Conclusion

We present funion, a system for anonymous neural network
inference that leverages the Echomix mix network to provide
strong theoretical guarantees. By introducing a Pigeonhole-
based store-compute-store approach with BACAP capabili-
ties, we achieve sender-receiver unlinkability even against
sophisticated adversaries.

As neural network inference increasingly moves to cloud
and distributed settings, the need for privacy will only grow.
funion represents a first step toward fully anonymous neural
inference, where neither the content of the query, the response,
nor the fact that such a user made the query are exposed.
Our future work will focus on quantifying the performance
characteristics of this approach and extending it to address
hidden state privacy.
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A Position Statement

Privacy is a fundamental human right. funion embodies this
principle while intentionally sidestepping the complex policy
debates that properly belong in political discourse. We respect
the unique positions of sovereign states and offer a technical
solution that exists within-not above-these diverse regulatory
frameworks.
Frontier models are scaling at an appalling rate. A growing
consensus suggests we are approaching natural limits of avail-
able human-generated data for training [33]. This scarcity
has driven large corporations to deploy consumer applica-
tions with the plausible goal of mass-level surveillance for
corporate gain. The integration of these models into critical
services creates powerful incentives for data collection far
beyond what is necessary for service delivery.
funion is an experimental prototype specifically designed to
disincentivize corporate malfeasance in language model in-
ference. As history has shown, general-purpose anonymous
communication networks carry risks of misuse. funion’s nar-
row focus on neural network inference represents a targeted
approach to a specific privacy concern.
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The current lack of hidden state privacy may serve as an op-
portunity for responsible content monitoring without reveal-
ing user identities. Privacy and safety need not be mutually
exclusive goals.
Mixnet deployment does not necessitate cross-border data
flows. funion can be instantiated within a single geographi-
cal region while maintaining similar anonymity guarantees.
The architecture adapts to deployment models that respect
geopolitical boundaries while providing meaningful privacy
protections. Our technical contribution should not be inter-
preted as advocating for any particular deployment model that
might conflict with local regulations.

B Notation

Entity sets
U Set of users / clients.

C ⊆U Honest (non-malicious) clients.

A Adversarial parties (may include users or nodes).

N All mix nodes in the network.

G ⊆N Honest mix nodes (g = |G |).
S Service nodes (couriers) in the mixnet.

R Replica servers that store data outside the mixnet.

Traffic parameters
λ Parameter of the exponential delay distribution at a mix.

λs Client Poisson send rate.

BACAP notation (inherited from Echomix)
B Ed25519 base point, ℓ its prime order, and ctx the network-
wide context.

SR ∈ Zℓ, PR = B·SR Root private / public key for a message.

Hi,Ki,Ei key derivation function (KDF) state, location-
blinding factor, and symmetric payload key, respectively.

Mctx
i = PR·Ki Box ID; Sctx

i = SR Ki (mod ℓ) per-box signing
secret key.

Rin/out, Win/out Public read / private write capabilities.

Latency-bucket timing
∆ Public spacing between bucket edges.

t0 < t1 < · · ·< tn Global grid of bucket edges advertised by
the client.

j Bucket index selected by the client when dispatching a job.

tfinish Wall-clock time at which the service finishes comput-
ing.

t j Bucket edge ≥ tfinish; the service releases results at t j.

Negligible functions [10]

negl(λ) A function negl : N→R+ is negligible if for every
polynomial p : N→R+ there exists an integer Λ such that for
all λ≥ Λ

negl(λ) ≤ 1
p(λ)

.

Equivalently, negl(λ) = o(λ−c) for every constant c > 0.

δ/ε A concrete placeholder for a negligible value; we often
write δ = negl(λ). For example, in the Ed25519 setting one
obtains the concrete bound δ≤ 2−128.

Probability

Exp(λ) Exponential distribution.

Pois(λ) Poisson process.

E(·), Pr(·) Expectation and probability operators.

C Latency Bucket Wait Algorithm

The pseudocode below illustrates the wall-clock wait mecha-
nism for the latency-bucket release policy:

Algorithm 2 Latency Bucket Wait

1: function WAITFORBUCKETEDGE(t j, result)
2: tfinish← CurrentTime()
3: if tfinish ≥ t j then
4: return 0 ("OVERFLOW")
5: end if
6: wait until CurrentTime() = t j
7: SendResult(result) ▷ Send result via mixnet
8: return 1 ("OK")
9: end function

D Neural Network Preliminaries

This section provides a formal treatment of feedforward neu-
ral networks and autoregressive models, providing context for
readers who may not be familiar with the literature.

D.1 Feedforward Neural Networks
A feedforward neural network F is a parameterized function
that maps inputs to outputs through a series of sequential
transformations [12]. Formally, we define F as Fθ : X → Y ,
where X is the input space, Y is the output space and θ

represents the network parameters, or weights. The defin-
ing characteristic of a feedforward network is its directional,
acyclic flow of information.

The computation, sometimes referred to as inference, in
Fθ proceeds through L sequential layers, where each layer
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j ∈ {1,2, . . . ,L} applies a transformation f j parameterized
by θ j. If we denote the input as x ∈ X , then the computation
proceeds as follows:

h1 = f1(x;θ1)

· · ·
hL = fL(hL−1;θL)

y = hL ∈ Y

Here, h j ∈ H j represents the hidden state or activation at
the layer j, and H j is the corresponding hidden space. The
complete network can be expressed as the composition of
these layer-wise functions:

Fθ(x) = ( fL ◦ fL−1 ◦ · · · ◦ f1)(x)

In modern neural networks, particularly those used for nat-
ural language processing, each layer f j is typically composed
of multiple sublayers and operations such as attention [32]:

f j(h j−1;θ j) = Norm(SubLayer(h j−1;θ
sub
j )+h j−1)

where Norm is a normalization function and SubLayer
represent operations like self-attention or feedforward neural
networks with non-linear activation functions. The parameters
are usually multi-dimensional arrays, also called tensors.

D.2 Self-Attention
The self-attention sublayer, introduced in the Transformer
architecture [32], is a critical component of many language
models that enables their emergent capabilities to focus on
different parts of the input sequence. At its core, self-attention
relies on matrix multiplications. The scaled dot-product at-
tention, a key operation in self-attention, is defined as:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V

where Q ∈ Rn×dk , K ∈ Rm×dk , and V ∈ Rm×dv represent
the query, key, and value matrices respectively, and dk is the
dimension of the keys. The scaling factor 1√

dk
prevents the

dot products from growing too large in magnitude, which
could push the softmax function into regions with extremely
small gradients [32].

In self-attention, the Q, K, and V matrices are obtained by
linear projections of the same input:

Q = XW Q,K = XW K ,V = XWV

where X ∈ Rn×dmodel is the input matrix and W Q ∈
Rdmodel×dk , W K ∈ Rdmodel×dk , and WV ∈ Rdmodel×dv are the pa-
rameter matrices.

Transformer models employ multi-head attention, which
runs several attention operations in parallel. Each head uses
its own set of projection matrices, allowing the model to
jointly attend to information from different representation
subspaces. The final output is:

MultiHeadAttn(X) = Concat(head1, . . . ,headh)W O

headi = Attention(XW Q
i ,XW K

i ,XWV
i )

and W O ∈ Rhdv×dmodel is the output projection matrix.

D.3 Hidden State Size
Names of language models sometimes are demarcated with
their size, such as the widely deployed Llama-3-8B, where
"8B" denotes that the network contains 8 billion parameters
that are used during a forward execution. Using a 16-bit
floating-point precision (2 bytes per element), this sums up
to approximately 16 GB of memory that the model occupies
during execution. Due to their feed-forward nature, not all
of the parameters are used at a given time—in fact, the pa-
rameters are usually layer-stratified. Computations in neural
networks take place with an operation (such as self-attention)
performed on the input and the parameter, the output some-
times also called activation, or hidden state. The size of the
hidden state could be much smaller than the parameters in-
volved, but still substantial if they were to travel on the wire
if computations of different layers of the network take place
on different compute services.

Specifically, with a hidden dimension of 4096 and a se-
quence length of 4096 tokens, each layer activation occupies:

bsize× seq_len×hidden_dim×bytes_per_element

For a batch size of 1 with sequence length of 4096 tokens (a
medium-length article) using 16-bit floating-point precision,
this amounts to approximately 32 MB per layer activation.
With Llama-3-8B’s 32 layers, the total activation memory
across all layers is around 1024 MB, or 1 GB, for a single
forward pass.

At network speeds of 10 Gbps, transferring a single layer’s
activations would take approximately 25 milliseconds, while
a full forward pass would require around 800 milliseconds
just for data transfer.

D.4 Low-Rank Adaptations (LoRA)
Low-Rank Adaptations (LoRA) modify an existing neural net-
work by introducing trainable low-rank matrices [15]. Specif-
ically, given a weight matrix W ∈ Rd×k in the original model,
LoRA introduces the update:

Ŵ =W +∆W =W +AB (1)
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where A ∈ Rd×r and B ∈ Rr×k are low-rank matrices with
rank r≪ min(d,k). During inference, the computation be-
comes:

ĥ = Ŵx =Wx+ABx

This formulation allows us to maintain the original net-
work’s parameters while introducing trainable components
that can modify the network’s behavior with minimal parame-
ter overhead.

LoRA is particularly effective when applied to the key ma-
trix operations in self-attention layers, as these operations
dominate the computational graph of modern language mod-
els. By applying LoRA to the W Q, W K , WV , and W O matri-
ces in the attention mechanism, we can efficiently modify the
model’s behavior while preserving its overall structure and
performance characteristics.

D.5 Language Models

Large language models function as autoregressive predic-
tors, generating text by sequentially predicting one token at a
time based on previous tokens. This process involves three
key components: tokenization, autoregressive prediction, and
sampling.

D.5.1 Tokenization

Before processing by a neural network, text must be converted
into a numerical format through tokenization:

Tokenize : String→ V ∗

where V is a fixed vocabulary. Modern tokenizers typi-
cally employ subword techniques such as Byte-Pair Encoding
(BPE) [26] or SentencePiece [19], which decompose text into
frequent subword units. A text sequence s is converted into
tokens:

x = Tokenize(s) = (x1,x2, . . . ,xM)

where each xi ∈ V is a token from the vocabulary.

D.5.2 Autoregressive Prediction

Given a sequence of tokens x = (x1,x2, . . . ,xT ) where each
xt ∈ V , an autoregressive model computes the conditional
probability of the next token:

Pr(xt+1|x1,x2, . . . ,xt) = Fθ(x1,x2, . . . ,xt)

For text generation, the process begins with an initial
prompt p = (p1, p2, . . . , pM) and generates subsequent tokens
through repeated application of the feedforward network Fθ:

Pr(xM+1|p) = Fθ(p)
Pr(xM+2|p,xM+1) = Fθ(p,xM+1)

· · ·

Each token prediction constitutes a complete feedforward
pass through the network, creating a chain of sequentially
dependent computations.

D.5.3 Sampling

After computing the probability distribution over the next
token, a sampling strategy selects the token to generate:

xt+1 = Sample(Pr(xt+1|x1,x2, . . . ,xt))

Common sampling methods include:

• Greedy decoding: xt+1 = argmaxv Pr(v|x1,x2, . . . ,xt)

• Temperature sampling: Pτ(v) ∝ Pr(v|x1,x2, . . . ,xt)
1/τ

• Top-k sampling: Restricting to the k most probable next
tokens

• Nucleus (top-p) sampling: Restricting to the smallest set of
tokens whose cumulative probability exceeds threshold p

We define the complete process as dec = Decode(Fθ,p,T )
where (g1,g2, . . . ,gT ) is the generated sequence of length T .
This process is also known as decoding.

D.6 Batched Matrix Multiplication and Layer
Parallelism

Neural network computations are naturally amenable to paral-
lelization through batching, which processes multiple inputs
simultaneously [13]. In the context of service nodes, where
different requests may arrive at the same node performing
computations for different users, we leverage batched matrix
multiplication to maintain efficiency.

For a service node processing L different inputs simultane-
ously, each with potentially different weights, we can employ
strided-batched matrix multiplication. Given inputs from L
different users:

{H(1),H(2), . . . ,H(L)}

where each H( j) ∈ RS×D represents hidden states with se-
quence length S and model dimension D for user j, we can
stack these into a 3D tensor:

H ∈ RL×S×D

Similarly, for the weight matrices of each layer, such as the
query, key, and value projections in self-attention:
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WQ,WK ,WV ∈ RL×D×d

where d is the dimension of the attention heads.
Using batched matrix multiplication, we compute all user

projections simultaneously:

Q = BMM(H ,WQ)

Batched computation provides substantial throughput ben-
efits due to hardware architecture characteristics. Modern
GPUs and TPUs follow a roofline model where performance
is limited by either compute capability or memory band-
width [34]. Matrix multiplication has high arithmetic inten-
sity, performing roughly O(N3) operations on O(N2) data.
By batching operations, we increase arithmetic intensity, re-
duce kernel launch overhead, and maximize data reuse from
fast on-chip memory. For large language models with hidden
dimensions of 4096-8192, batching is essential to approach
peak hardware utilization.

This batched approach to layer parallelism allows services
to maintain high throughput despite the higher latency intro-
duced by distributed computation across multiple nodes.
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