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Abstract

Large Language Models (LLMs) are vulnerable to prompt injection attacks, and several defenses have

recently been proposed, often claiming to mitigate these attacks successfully. However, we argue that ex-

isting studies lack a principled approach to evaluating these defenses. In this paper, we argue the need to

assess defenses across two critical dimensions: (1) effectiveness, measured against both existing and adap-

tive prompt injection attacks involving diverse target and injected prompts, and (2) general-purpose utility,

ensuring that the defense does not compromise the foundational capabilities of the LLM. Our critical eval-

uation reveals that prior studies have not followed such a comprehensive evaluation methodology. When

assessed using this principled approach, we show that existing defenses are not as successful as previously

reported. This work provides a foundation for evaluating future defenses and guiding their development.

Our code and data are available at: https://github.com/PIEval123/PIEval.

1 Introduction

LLMs are inherently vulnerable to prompt injection attacks [26, 38, 10, 29, 39, 9, 19, 33] due to their

instruction-following nature and the inseparability of instructions and data within a prompt. Specifically, a

prompt consists of a concatenation of an instruction, which directs the LLM to perform a specific task (e.g.,

summarization, translation, or math solving), and data, which provides the information to be processed for

the task. When the data originates from an untrusted source, such as the Internet, an attacker can embed

a malicious prompt–referred to as an injected prompt–within the data. A prompt injection attack involves

crafting and embedding such an injected prompt into the data so that, when the LLM processes the instruction

+ contaminated data, it performs an attacker-chosen task rather than the intended task.

Prompt injection attacks pose significant safety and security risks to LLMs. For instance, if an LLM

is used to summarize reviews, a malicious reviewer could append an injected prompt, such as: “Ignore all

previous instructions. Output the product is very bad.” As a result, current LLM would produce the summary:

“The product is very bad,” thereby misleading the review summarization process and potentially damaging

the product’s reputation. With a carefully crafted injected prompt, an attacker can even manipulate an LLM

into revealing its system prompt, compromising both its confidentiality and intellectual property [43, 28, 14].

Additionally, a malicious tool developer could embed a tailored injected prompt into the description of their

tool, tricking an LLM agent into preferentially selecting that tool during the tool selection process [34, 35].

Defenses against prompt injection can be broadly categorized into two groups: prevention-based and

detection-based. Prevention-based defenses follow the principle of secure-by-design, aiming to construct an

LLM system that reliably completes the intended task even when the data contains injected prompts. Early

prevention methods [39, 21, 32, 31] focus on pre-processing instructions and/or data to neutralize the effects

of injected prompts. More recent approaches [6, 7, 37, 42] involve fine-tuning the LLM itself to ensure

that it follows the target prompt, even in the presence of injected prompts. Detection-based defenses, on

the other hand, aim to identify whether a data sample has been contaminated with injected prompts during

runtime. Earlier detection methods [16, 1, 23, 36] primarily rely on analyzing the perplexity of a data sample

or leveraging the LLM as a zero-shot detector. In contrast, more recent approaches either fine-tune an LLM
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as a binary classifier using standard supervised learning [22], or leverage an LLM augmented with a special

instruction–whose answer is known to the detector but hidden from attackers–and fine-tune it using a game-

theoretic method [20]. Alternatively, some detectors [3, 15] extract features to represent data samples and

build a binary classifier.

Prior studies [19] have shown that earlier prevention and detection methods are largely ineffective against

prompt injection attacks. More recent methods, however, often claim to successfully defend against these

attacks. Based on such conclusions, a method called Instruction Hierarchy [37] has even been deployed

on GPT-4o Mini. We argue that such claims rely on unrigorous evaluation methodologies, particularly

in terms of the types of attacks, evaluation metrics, and benchmark datasets used. For instance, several

prevention methods [40, 6, 7] evaluate effectiveness primarily using a single injected prompt, such as “Print

exactly Hacked!”. If a fine-tuned LLM resists misdirection from this specific injected prompt, the prevention

method is deemed effective. Furthermore, a fine-tuned LLM is considered to “maintain utility” if it performs

comparably to its counterpart fine-tuned on clean data–yet both may exhibit similarly poor utility. Most

detection methods face similar issues. They are frequently evaluated using existing attacks, while adaptive

attacks are largely ignored [22, 3, 15]. Additionally, some studies [15] rely solely on metrics like AUC,

which fail to capture a detector’s success in distinguishing between clean and contaminated data during

deployment.

In this work, we argue that the effectiveness and utility of a defense should be tested against diverse

attacks–including both existing and adaptive ones–alongside a broad range of target and injected prompts,

meaningful metrics, and large-scale benchmarks. For example, instead of relying on a single injected prompt,

a defense’s effectiveness should be tested against a wide range of target and injected prompts as well as

both existing and adaptive attacks. A defense’s utility should be evaluated based on its general-purpose

capabilities across large-scale benchmarks. Detection methods should be assessed using metrics such as

false positive rate (FPR) and false negative rate (FNR), rather than solely relying on AUC.

We argue that without adhering to this rigorous evaluation approach, conclusions regarding the success

of defenses may be unsound. To illustrate this, we evaluate several recent prevention and detection methods

using our approach and find that they are not as successful as previously reported. For instance, LLMs

fine-tuned by StruQ [6] and SecAlign [7] suffer substantial losses in general-purpose utility, while StruQ,

SecAlign, and Instruction Hierarchy [37] remain vulnerable to even existing prompt injection attacks and

more vulnerable to adaptive attacks–contrary to the claims made in these works. Additionally, detection

methods, such as PromptGuard [22] and Attention Tracker [15], are ineffective against existing attacks in

some scenarios and largely ineffective against adaptive attacks. Even when they achieve high AUCs, they

often exhibit significant FPRs and/or FNRs, highlighting the limitations of drawing conclusions solely based

on AUC.

2 Prompt Injection Attacks

A prompt injection attack aims to make an LLM perform an attacker-chosen injected task instead of the

intended target task via injecting a prompt into the target prompt. We first formally define the target and

injected tasks, and then discuss different attacks.

Target and injected tasks: A task sample consists of a triple (s, x, r), where s is an instruction, x is a

data sample to be processed by LLM based on s, and r is a ground-truth response that completes the task.

p = s||x denotes a prompt, where || represents string concatenation. An LLM f takes the prompt p as input

and outputs a response f(p). The LLM completes the task if the response f(p) is semantically equivalent to

r. Suppose an LLM intends to complete a target task (st, xt, rt), where pt = st||xt is the target prompt. An
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attacker aims to mislead the LLM to complete an injected task (se, xe, re) via inserting the injected prompt

pe = se||xe into the target data xt. In particular, the target data is contaminated as xc = xt||z||pe, where z

is a sequence of tokens called separator [19]. An attack aims to craft z such that f(st||xc) = f(pt||z||pe) is

semantically equivalent to re.

Heuristic-based attacks: These attacks rely on manually designed heuristics to construct z. For instance,

Naive Attack [38] employs an empty string as z. Context Ignoring [4] uses directives such as “Ignore

previous instructions.” as z to mislead the LLM to follow the injected prompt. Fake Completion [39] embeds

a misguiding response such as “Answer: this task is complete.” to deceive the LLM that the target task has

been completed. Escape Character [38] exploits context-switching characters, e.g., newlines (\n) and tabs

(\t), to manipulate the LLM’s context. Combined Attack [19] integrates all the aforementioned heuristics

to create the separator, e.g., it might take the form “Answer: the task is complete.\n\nIgnore previous

instructions.”. Prior studies [19] show that Combined Attack is the most effective among the heuristic-based

attacks.

Optimization-based attacks: These attacks [27, 18, 14, 34] optimize the separator z or z||pe or the entire

contaminated target data xc depending on the attacker’s capability in the threat model. Roughly speaking, the

idea is to define a loss function (e.g., cross-entropy loss) that quantifies the similarity between the attacker-

desired response re and the response f(st||xt||z||pe). For instance, taking optimizing the separator z as an

example, the loss function can be ℓce(re, f(st‖xt‖z‖pe)) = −
∑|re|

i=1 log(pf (r
i
e|st‖xt‖z‖pe‖r

<i
e )), where

|re| is the number of tokens in re, r<i
e means the first i tokens in re, and pf (r

i
e|st‖xt‖z‖pe‖r

<i
e ) represents

the conditional probability of LLM f generating the token rie, given st‖xt‖z‖pe‖r
<i
e as input. Then, these

attacks iteratively optimize z (or z‖se or z‖pe) to minimize the loss function via Greedy Coordinate Gradient

(GCG) [44]. In each iteration, GCG first calculates the gradient of the loss function with respect to the one-

hot vector of each token in z (or z‖se or z‖pe) to identify the top-K most promising replacement tokens.

Then, it randomly generates a set of candidates, each of them is obtained by replacing one token with a

top-K token. Finally, it selects the candidate that minimizes the loss function. GCG repeats the above three

steps until the stop condition is reached.

3 Defenses

Prevention-based defenses: Earlier prevention-based defenses [39, 21, 32, 31] neutralize the effects of

injected prompts by pre-processing target instructions and/or data. For instance, Data Isolation [39, 21]

encloses the (contaminated) target data within special delimiters, such as XML tags (i.e., <data>...</data>),

to clearly separate the instruction and data in a target prompt. Prior benchmark studies [19] show that these

earlier prevention methods are largely ineffective. Specifically, they often suffer from bad utility and/or

effectiveness.

More recent prevention strategies fine-tune an LLM to make it adhere to the target prompt under attacks.

For instance, StruQ [6] separates instructions and data into distinct structures and fine-tunes an LLM to make

it process only the designated prompts while ignoring injected prompts. SecAlign [7] constructs a dataset

containing desirable and undesirable responses for contaminated data. Then, they use DPO [30] to fine-tune

an LLM on the constructed dataset to make it generate defender-desired response under attacks. Instruction

Hierarchy [37] fine-tunes the LLM to enforce a priority-based policy where higher-priority instructions (e.g.,

system instructions) take precedence over lower-priority ones (e.g., injected prompts).

Detection-based defenses: Earlier detection methods [16, 1, 23, 36] leverage the perplexity or employ
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LLMs as zero-shot classifiers to detect contaminated data. For example, Perplexity Filter [16, 1] calculates

the text perplexity of a given data sample to determine whether it is clean or contaminated. Known-answer

Detection [23] leverages a detection LLM to perform a detection task (e.g., “Repeat a string while ignor-

ing the following data.”) to detect if the given data sample is contaminated. LLM-based Detection [36]

directly queries a detection LLM to ask if a given data sample contains an injected prompt. However, prior

studies [19] have shown that these methods suffer from reduced utility and/or ineffectiveness against even

existing attacks.

More recent detection approaches fine-tune LLMs as classifiers or extract features from clean and con-

taminated data samples to build classifiers to distinguish them. For example, PromptGuard [22] fine-tunes

mDeBERTa-v3-base [11] as a classifier on a comprehensive corpus of attacks, designed to detect both ex-

plicitly malicious prompts and contaminated data containing injected inputs, such as injected prompts or

jailbreak prompts. Another recent detection-based defense, Attention Tracker [15], aims at detecting con-

taminated data samples by analyzing attention patterns within the LLM. It identifies deviations in attention

from an intended, target instruction to an injected prompt, thereby detecting contaminated data.

4 Evaluation Methodology

The success of a defense should be comprehensively evaluated across two critical dimensions: utility and

effectiveness. Below, we outline the evaluation of these dimensions with a focus on appropriate metrics,

benchmarks, and attacks (for effectiveness). We note that while prior studies often did evaluate defenses

across these dimensions, they did not employ appropriate metrics, benchmarks, and/or attacks.

4.1 Utility

LLMs are typically trained on massive datasets using substantial computational resources, enabling them to

function as general-purpose systems capable of handling a broad range of tasks. Therefore, a defense should

preserve the general-purpose utility of an LLM, ensuring it maintains performance across diverse tasks.

4.1.1 Metrics

Prevention-based defenses: A prevention-based defense typically pre-processes the prompt or modifies

the parameters of the LLM. Multiple recent defenses [6, 7] utilize a metric known as the win rate to measure

relative utility, which compares the quality of responses generated by a defended LLM and a reference

LLM for the same prompts. Given a defended LLM fd, a reference LLM fu, and a set of tasks/prompts

P = {p1, p2, · · · }, the win rate of fd vs. fu is formally defined as follows:

win rate =
1

|P |

∑

p∈P

I(fd(p), fu(p), p), (1)

where I(fd(p), fu(p), p) = 1 if the response fd(p) has better quality than fu(p) for prompt p as judged by

a strong LLM such as GPT-4, and I(fd(p), fu(p), p) = 0 otherwise. If the win rates of the defended and

undefended LLMs are similar when compared to the same reference LLM, indicating comparable response

quality, these studies conclude that the defenses preserve the LLM’s utility.

We argue that a similar win rate between the defended and undefended LLMs, even when both are

high, does not adequately capture the functional performance of the defended LLM across diverse tasks.

Specifically, the defended and undefended LLMs may exhibit equally poor utility, while a weaker reference
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LLM can still result in high win rates for them, rendering the win rate metric insufficient. Therefore, in

addition to relying on relative utility measures such as the win rate, it is crucial to incorporate metrics that

assess absolute utility. Specifically, given a set of prompt-response pairs PR = {(p1, r1), (p2, r2), · · · },

where pi represents a prompt sample and ri is a ground-truth response, the absolute utility of an LLM f is

measured as follows:

absolute utility =
1

|PR|

∑

(p,r)∈PR

U(f(p), r), (2)

where U(f(p), r) is a task-specific metric that quantifies the quality of the response f(p) with respect to the

ground-truth r. For example, for classification or multiple-choice question-answering tasks, U is accuracy,

i.e., U(f(p), r) = 1 if f(p) = r and U(f(p), r) = 0 otherwise. For summarization tasks, U can be ROUGE-

1 score. For grammar correction tasks, U can be GLEU score.

We stress that a prevention-based defense is considered to maintain general-purpose utility if the de-

fended LLM shows comparable absolute utility to the undefended one across various tasks using task-

specific utility metrics.

Detection-based defenses: Unlike prevention-based defenses, detection-based defenses aim to classify

whether the input data of an LLM is clean or contaminated. Thus, the utility metrics discussed above

for prevention-based defenses are not directly applicable. Mistakenly flagging clean data as contaminated

generates false alarms, resulting in user frustration and a poor user experience, as tasks can be rejected or are

not completed promptly. Furthermore, frequent false alarms can lead to unnecessary human inspection and

forensic analysis, reducing the practicality and reliability of the defense, and ultimately causing the detection

system to be abandoned. Thus, the utility of a detection-based defense can be assessed by its false positive

rate (FPR)–the probability of misclassifying clean data sample as contaminated. A low FPR indicates good

utility. Formally, given a set of clean data samples X = {x1, x2, · · · }, FPR for a detector D is measured as

follows:

FPR =
1

|X |

∑

x∈X

D(x), (3)

where D(x) = 1 if D classifies data sample x as contaminated and D(x) = 0 otherwise.

4.1.2 Benchmarks

Multiple recent prevention-based defenses [6, 7] utilize the AlpacaFarm benchmark [8], which includes a set

of prompts but lacks ground-truth responses, as they focus solely on the win rate metric. We emphasize that,

beyond AlpacaFarm, diverse and large-scale benchmarks containing a set of prompt-response pairs should

be employed to evaluate the absolute utility of both defended and undefended LLMs across a wide range of

tasks.

For example, OpenPromptInjection [19] encompasses seven fundamental natural language processing

tasks, including duplicate sentence detection, grammar correction, hate speech detection, natural language

inference, sentiment analysis, spam detection, and text summarization. Additionally, MMLU [12] provides

multiple-choice question-answering tasks, further enhancing utility evaluation across diverse applications.

These benchmarks are essential for comprehensively assessing the absolute utility of prevention-based de-

fenses.

Similarly, FPRs of detection-based defenses should also be evaluated using such diverse benchmarks.

Given a benchmark consisting of a set of prompts or prompt-response pairs, we can construct a set X of
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clean data samples to evaluate FPR. Specifically, since a prompt is the concatenation of an instruction and a

data sample, we can extract the data samples from the prompts to form X .

4.2 Effectiveness

4.2.1 Metrics

Prevention-based defenses: The effectiveness of a prevention-based defense against prompt injection

attacks can be evaluated using the Attack Success Value (ASV). Consider a target prompt pt with its ground-

truth response rt, an injected prompt pe with its corresponding ground-truth response re, and a separator z

crafted by a prompt injection attack. A defense is deemed ineffective if the defended LLM f completes the

injected prompt, i.e., generates a response semantically equivalent to re, when provided with the concate-

nated input pt‖z‖pe. ASV depends on attacks. To compute ASV for an attack that uses the separator z, we

consider a set T consisting of tuples (pt, rt, pe, re), where rt 6= re in each tuple to ensure that the LLM

follows the injected prompt when its response is semantically equivalent to re. The ASV for an attack using

separator z can then be defined as follows:

ASV =
1

|T |

∑

(pt,rt,pe,re)∈T

U(f(pt||z||pe), re), (4)

where U represents the task-specific metric (e.g., accuracy, ROUGE-1 score, or GLEU score) used to quan-

tify the utility of an injected task. A prevention-based defense is deemed effective if it consistently achieves

low ASVs for both existing and adaptive attacks across a diverse set of target and injected prompts. We

use ASV instead of ASR because some evaluation metrics, such as ROUGE-1 and GLEU scores, are not

rate-based measures.

Detection-based defenses: A detection-based defense aims to detect contaminated data. Thus, the effec-

tiveness of a detection defense can be evaluated using false negative rate (FNR)–the probability of falsely

classifying contaminated data samples as clean. Consider a set Xc consisting of pairs (x, pe), where x is a

clean data sample and pe is an injected prompt. The FNR of a detector D for an attack using separator z can

then be defined as follows:

FNR =
1

|Xc|

∑

(x,pe)∈Xc

(1−D(x||z||pe)), (5)

where D(x||z||pe) = 1 if D classifies x||z||pe as contaminated and D(x||z||pe) = 0 otherwise. Note that

FNR also depends on attacks which may use different separator z.

We observe that most studies did use ASV and FNR to evaluate their effectiveness. However, they often

fail to consider a comprehensive range of prompt injection attacks, including both existing and adaptive

ones. Moreover, some defenses [6, 7] evaluate their effectiveness using a limited set of target and injected

prompts. For instance, they often use only one specific injected prompt, such as “Print exactly Hacked!".

This restricted scope does not capture the diversity and variability of real-world prompt injection attacks,

potentially leading to overly optimistic conclusions about a defense’s effectiveness.

Additionally, some detection-based defenses rely solely on Area Under the Curve (AUC) as a metric

to assess effectiveness. We emphasize that AUC is insufficient for quantifying detection performance in

real-world deployment. Specifically, AUC evaluates a detector’s ability to rank contaminated and clean data

samples based on their likelihood of being contaminated, rather than its ability to classify them accurately.
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In deployment, a detector must select a classification threshold to distinguish between contaminated and

clean data samples. A high AUC does not guarantee that the detector can identify such a threshold during

training, nor does it ensure effective classification in practice.

4.2.2 Attacks

The ASV and FNR metrics depend on prompt injection attacks that employ various separators z. An at-

tacker can deploy any attack and is considered successful as long as at least one attack succeeds. Conse-

quently, a defense’s effectiveness must be rigorously evaluated against a comprehensive suite of attacks,

encompassing both existing and adaptive ones. Specifically, evaluation should include both heuristic-based

and optimization-based existing attacks, as discussed in Section 2. However, we observe that multiple de-

fenses [15, 37] claim effectiveness based solely on evaluations using a limited subset of existing attacks,

which does not provide a complete picture of their effectiveness.

Furthermore, adaptive attacks tailored to specific defenses must also be considered. In the realm of

adversarial example research, defenses frequently claimed to be effective are often compromised shortly after

publication due to inadequate evaluation against adaptive adversarial examples [2, 5]. A similar pattern is

emerging in studies on prompt injection attacks and defenses. For example, we find that multiple defenses [7,

15, 37, 1] neglect to incorporate adaptive attacks in their evaluations, undermining the credibility of their

effectiveness claims.

It is critical for defense studies to make a best-effort attempt to adapt existing attacks specifically to

their proposed defenses. Without such rigorous evaluation, conclusions about a defense’s effectiveness are

likely to be unsound. In Section 5, we will highlight several case studies where adaptive attacks significantly

undermine the effectiveness of recent defenses [6, 7, 15].

4.2.3 Benchmarks

Based on Equation 4, we need to construct a set T of tuples (pt, rt, pe, re) to evaluate the effectiveness of

prevention-based defenses. To measure the effectiveness across diverse scenarios, T should include target

and injected prompts derived from various tasks. T can be constructed using any benchmark dataset used to

evaluate the absolute utility of an LLM. Specifically, given a benchmark dataset of prompt-response pairs, a

tuple in T can be formed by sampling one pair as (pt, rt) and another as (pe, re), where rt 6= re. This ensures

that the LLM’s response to the injected prompt can be identified when it generates a response equivalent to

re.

For example, OpenPromptInjection benchmark [19] constructs T by sampling (pt, rt) and (pe, re) pairs

from seven fundamental NLP tasks: duplicate sentence detection, grammar correction, hate speech detection,

natural language inference, sentiment analysis, spam detection, and text summarization. We note that other

benchmarks, such as MMLU, can also be used to construct T .

To measure the FNR, we need to construct a set Xc of pairs in the form (x, pe). Benchmark datasets used

to evaluate the utility of an LLM can also be used to construct Xc. Specifically, a pair (x, pe) can be created

by sampling a prompt and using its data portion as x and sampling another prompt as pe. For example,

OpenPromptInjection generates Xc by drawing prompts from seven fundamental NLP tasks. Similarly,

other benchmarks, such as MMLU, can also be used to construct Xc.
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Table 1: Utility of different LLMs for StruQ and SecAlign.

(a) Relative utility (Win Rate) on AlpacaFarm

Measured LLM Reference LLM Win Rate (%)

Llama-3-8B-Instruct-StruQ Llama-3-8B-Instruct 21.60

Llama-3-8B-Instruct-SecAlign Llama-3-8B-Instruct 36.42

(b) Absolute utility

LLM OpenPromptInjection MMLU-PI

Llama-3-8B-Instruct-StruQ 0.54 0.35

Llama-3-8B-Instruct-SecAlign 0.48 0.34

Llama-3-8B-Instruct 0.65 0.45

5 Case Studies

Two benchmarks: We first present the statistics of the benchmarks used in our evaluation: OpenPromptIn-

jection [19] and MMLU-PI. Each benchmark includes a set PR of prompt-response pairs (used to measure

absolute utility), a set T of tuples (pt, rt, pe, re) (used to measure ASV), a set X of clean data samples (used

to measure FPR), and a set Xc of pairs (x, pe) (used to measure FNR). PR in OpenPromptInjection consists

of 700 prompt-response pairs sampled from seven NLP tasks, with 100 pairs per task. T is constructed

based on PR and contains 4,900 tuples. X includes 700 clean data samples, with 100 samples per task. Xc

contains 4,900 pairs. We also construct a new benchmark, MMLU-PI, from MMLU [13]. In this benchmark,

PR includes 200 prompt-response pairs sampled from the test split of MMLU, T contains 1,000 tuples, X

comprises the 200 clean data samples from PR, and Xc contains 1,000 pairs. We run all the experiments on

one single NVIDIA RTX A5000 GPU with 24GB memory.

5.1 StruQ and SecAlign

StruQ [6] fine-tunes an LLM using supervised fine-tuning, while SecAlign [7] applies DPO for fine-tuning.

The fine-tuning dataset consists of both clean and contaminated data samples. The utility of StruQ and

SecAlign was evaluated using win rate on AlpacaFarm [8]. Specifically, they utilized AlpacaEval [17] with

GPT-4-Turbo as a judge LLM to compare the responses of their fine-tuned LLMs against a reference LLM

(davinci003 [24] in their experiment) and calculate the corresponding win rate. Their results demonstrated

that these defenses maintain utility, as win rates of the defended LLMs by StruQ and SecAlign were found

to be very similar to those of the undefended ones when compared to the same reference LLM. Moreover,

they evaluated the effectiveness using both heuristic-based and optimization-based attacks. Based on the

results, both StruQ and SecAlign were claimed to be effective: ASVs of heuristic-based attacks are close

to 0; ASVs of StruQ and SecAlign under optimization-based attacks (using GCG) are reduced to 0.04 and

0, respectively. However, the ASRs were calculated primarily based on only one injected prompt: “Print

exactly Hacked!".

We re-evaluate StruQ and SecAlign using OpenPromptInjection and MMLU-PI. We downloaded LLMs

released by StruQ and SecAlign: Llama-3-8B-Instruct, Llama-3-8B-Instruct-StruQ, and Llama-3-8B-Instruct-

SecAlign. Llama-3-8B-Instruct is finetuned and released by Meta. Llama-3-8B-Instruct-StruQ (or Llama-

3-8B-Instruct-SecAlign) is fine-tuned based on Llama-3-8B-Instruct model using StruQ (or SecAlign). We

also re-evaluate StruQ and SecAlign models fine-tuned on Llama-3-8B released by Meta. The experiment

details and results are provided in Appendix A. The StruQ and Secalign defended models are licensed under

CC BY-NC 4.0. OpenPromptInjection and MMLU are released under the MIT license.

Relative and absolute utility: We first evaluate the win rate of StruQ and SecAlign using AlpacaEval on

AlphaFarm. In their original evaluation, the reference LLM was davinci003, whose architecture differs sig-

nificantly from the two defended models fine-tuned on Llama-3-8B-Instruct. For a more straight comparison,
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Table 2: ASVs of different LLMs on OpenPromptInjection and MMLU-PI against various attacks for StruQ

and SecAlign.

LLM

OpenPromptInjection MMLU-PI

Combined Attack GCG Combined Attack GCG

existing adaptive existing adaptive existing adaptive existing adaptive

Llama-3-8B-Instruct-StruQ 0.03 0.09 0.80 1.00 0.10 0.16 0.88 1.00

Llama-3-8B-Instruct-SecAlign 0.06 0.04 0.24 0.46 0.14 0.13 0.72 0.88

Llama-3-8B-Instruct 0.52 0.31 1.00 1.00 0.46 0.24 1.00 1.00

we instead use Llama-3-8B-Instruct as the reference LLM. Table 1(a) presents the results. Against Llama-

3-8B-Instruct, Llama-3-8B-Instruct-StruQ achieves win rate of 21.60% and Llama-3-8B-Instruct-SecAlign

achieves win rate of 36.42%. We also evaluate the absolute utility of Llama-3-8B-Instruct-StruQ and Llama-

3-8B-Instruct-SecAlign. The results are shown in Table 1(b). Llama-3-8B-Instruct-StruQ shows a utility

decrease of 0.11 and 0.10 on the two benchmarks compared to Llama-3-8B-Instruct, while Llama-3-8B-

Instruct-SecAlign shows a corresponding drop of 0.17 and 0.11. Our results indicate that both StruQ and

SecAlign lead to a loss of both relative and absolute utility – contrary to the original claims.

Effectiveness against existing attacks: Table 2 shows the ASVs of Llama-3-8B-Instruct-StruQ and Llama-

3-8B-Instruct-SecAlign on the two benchmarks against various attacks. Different from the original observa-

tions, we find that the existing Combined Attack still exhibits a certain degree of effectiveness. Specifically,

for Llama-3-8B-Instruct-StruQ (or Llama-3-8B-Instruct-SecAlign), it achieves ASVs of 0.03 (or 0.06) and

0.10 (or 0.14) on the two benchmarks, respectively. Furthermore, the effectiveness of optimization-based at-

tack using GCG shows a significant disparity compared to their observations. Specifically, for computational

efficiency, we select 50 tuples from T in OpenPromptInjection and 25 tuples in MMLU-PI, and optimize

the separator z using GCG as described in Section 2. The results indicate that GCG achieves ASVs exceed-

ing 0.80 against StruQ on both benchmarks, and 0.72 ASVs against SecAlign on MMLU-PI. These results

show that StruQ and SecAlign are not as effective against existing attacks as previously reported when

evaluated on diverse target and injected prompts.

Effectiveness against adaptive attacks: We also propose adaptive attacks to StruQ and SecAlign. Both

defenses add special tokens to the LLM’s vocabulary as delimiters to explicitly separate the instruction,

data, and response. Therefore, an adaptive attack can apply the same idea to structure an injected prompt.

However, these defenses filter the special tokens in the data during runtime, making it not feasible to directly

use these special tokens in the injected prompt. To address the challenge, our adaptive attack finds the tokens

in the LLM’s vocabulary whose embeddings have the smallest ℓ2 distance to these special tokens, and uses

them as delimiters to structure the injected prompt. The results in Table 2 demonstrate that our adaptive GCG

attacks further weaken the effectiveness of these two defenses. For instance, the ASV of the adaptive GCG

Attack is around 0.20 higher than that of the existing GCG Attack for both defenses on OpenPromptInjection.

For the heuristic Combined Attack, the adaptive version does not achieve a higher ASV. This may be because

it uses significantly more tokens, approximately twice the number of tokens in the original, which the LLM

may struggle to process effectively in a long-context setting, leading to reduced attack success. These results

underscore the critical role of adaptive attacks in evaluating the effectiveness of defenses.

5.2 Instruction Hierarchy

Instruction Hierarchy [37] fine-tunes an LLM to selectively follow instructions based on the context. The

effectiveness of Instruction Hierarchy against prompt injection attacks has been evaluated using manually
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crafted prompt injections embedded in web results for browsing or return values from external tools. How-

ever, the specific details of these injected and target prompts remain unspecified in the paper. Instruction

Hierarchy has been claimed to preserve utility while effectively mitigating attacks and has thus been de-

ployed on GPT-4o-mini [25]. To reassess its utility and effectiveness, we evaluate GPT-4o-mini using the

OpenPromptInjection and MMLU-PI benchmarks. Our results show that GPT-4o-mini maintains utility,

with absolute utility scores of 0.71 on OpenPromptInjection and 0.73 on MMLU-PI. However, even the ex-

isting Combined Attack achieves ASVs of 0.68 and 0.75 on these benchmarks, respectively. These findings

contradict previous claims, indicating that Instruction Hierarchy is not effective when evaluating on

diverse injected prompts.

5.3 PromptGuard and Attention Tracker

Claims about the success of detection-based defenses shouldn’t be drawn solely based on AUC: We

obtained the open-source model parameters of PromptGuard [22] and Attention Tracker [15], two detection-

based defenses. We evaluate their FPRs, FNRs, and AUCs on the two benchmarks. The results are summa-

rized in Table 3(a), where the Combined Attack is used. While both PromptGuard and Attention Tracker

achieve high AUCs, they exhibit significant limitations in terms of FPR or FNR. Specifically, PromptGuard

achieves an AUC of 0.92 but exhibits an FPR of 0.89 on OpenPromptInjection, which suggests a strong bias

toward predicting most data samples as contaminated. This indicates that while PromptGuard may detect

some attacks, its high FPR limits its utility by introducing a substantial number of false alarms. On the other

hand, Attention Tracker achieves AUCs of 1.00 for both OpenPromptInjection and MMLU-PI but suffers

from a high FNR of 0.69 on the more challenging benchmark MMLU-PI. These results show that AUC

alone is insufficient for assessing the success of detection methods.

Adaptive attacks: We propose a general adaptive attack framework for detection-based methods. Given a

target/injected prompt tuple (pt, rt, pe, re), our framework optimizes a separator z to achieve two objectives

for adaptive attacks: evading the detector D and ensuring that the LLM f completes the injected task by

generating re. The first objective requires the detector D to misclassify contaminated data as clean, i.e.,

D(xt‖z‖pe) = 0, where xt is the target data in the target prompt pt. To quantify this, we define an evasion

loss ℓe(0, D(xt‖z‖pe)). A lower evasion loss signifies a higher likelihood that the detectorD will incorrectly

classify the contaminated data xt‖z‖pe as clean. The evasion loss can be customized based on the specific

detection-based defenses being targeted. The second loss ensures the effectiveness of this adaptive prompt

injection attack. To achieve this, we can use the standard cross-entropy loss introduced in Section 2, i.e.,

ℓce(re, f(pt‖z‖pe)) = −
∑|re|

i=1 log(pf (r
i
e|pt‖z‖pe‖r

<i
e )). Formally, we have the following loss function

for the adaptive attacks against detection-based defenses:

L(pt, pe, re) = −ℓe(0, D(xt‖z‖pe)) + α · ℓce(re, f(pt‖z‖pe)), (6)

where α is a hyper-parameter to balance the two loss terms. Moreover, in addition to solely optimizing

the separator z, our framework can be adapted to optimize different components of the contaminated data.

Specifically, we can also optimize z‖se, the combination of the separator and injected instruction, and z‖pe,

the combination of the separator, injected instruction, and injected data.

We apply our adaptive attack to Attention Tracker since it achieves good detection performance in Ta-

ble 3(a). Attention Tracker designs a focus score to determine whether a data sample is contaminated. Thus,

we can customize the evasion loss as the focus score of the contaminated data. The goal is to minimize

this focus score, effectively reducing the likelihood of the data being flagged as contaminated. To minimize

the loss function in Equation 6, we adopt GCG to iteratively update the tokens in z, z‖se, or z‖pe. We use
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Table 3: Results of detection-based defenses on OpenPromptInjection and MMLU-PI.

(a) FPRs, FNRs, and AUCs of PromptGuard and Attention Tracker

Detection-based defense
OpenPromptInjection MMLU-PI

FPR FNR AUC FPR FNR AUC

PromptGuard 0.89 0.00 0.92 0.84 0.00 0.75

Attention Tracker 0.00 0.00 1.00 0.00 0.69 1.00

(b) FNRs of different adaptive attack strategies against Attention Tracker

Adaptive attack strategy OpenPromptInjection MMLU-PI

Separator 0.66 1.00

Separator+Instruction 0.96 1.00

Separator+Instruction+Data 0.96 1.00

Qwen2-1.5B-Instruct [41] as the LLM, which is used by Attention Tracker. We set α to 0.01 and evaluate the

adaptive attacks against Attention Tracker using the same tuples (pt, rt, pe, re) as our previous experiments

for GCG-based attack in Section 5.1.

As shown in Table 3(b), our proposed adaptive attack notably increases the FNRs of Attention Tracker

when only optimizing the separator z, reaching 0.66 and 1.00 on the two benchmarks, respectively. More-

over, we find that all contaminated data samples that successfully evade Attention Tracker’s detection also

make the LLM generate the attacker-desired response re. When the optimizable part includes the injected

instruction, the adaptive attack becomes even more effective. On OpenPromptInjection, optimizing both

the separator and the instruction resulted in a 0.3 FNR improvement. This is because, after optimization,

some tokens in the injected instruction are replaced, making the contaminated data appear to lack a clear

instruction. As a result, the detector may misclassify it as clean. Our results show that the perceived

effectiveness of a detection-based defense can vary significantly between existing and adaptive attacks,

highlighting the necessity of incorporating adaptive attacks in its evaluation.

6 Conclusion

Recent defenses against prompt injection attacks were not evaluated in a principled way, which often overesti-

mates their effectiveness and/or utility maintenance. In this paper, we highlight the need to comprehensively

evaluate defenses along the two dimensions: effectiveness and general-purpose utility. We hope our study

enables more rigorous evaluation for future prompt injection defenses.
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Appendix

A More Experiments on StruQ and SecAlign

We re-evaluate StruQ and SecAlign models fine-tuned on Llama-3-8B using OpenPromptInjection and

MMLU-PI. Slimilarly, we downloaded LLMs released by StruQ and SecAlign: Llama-3-8B-undefended,

Llama-3-8B-StruQ, and Llama-3-8B-SecAlign. Llama-3-8B-undefended is fine-tuned based on LLama-3-

8B base model following the standard supervised fine-tuning with only clean data; Llama-3-8B-StruQ (or

Llama-3-8B-SecAlign) is fine-tuned based on Llama-3-8B base model using StruQ (or SecAlign).

Utility: To evaluate the relative utility, for a more straight comparison, we similarly instead use Llama-3-

8B-undefended as the reference LLM. Table 4(a) presents the results. Against Llama-3-8B-undefended, both

Llama-3-8B-StruQ and Llama-3-8B-SecAlign achieve win rates close to 50%, consistent with the papers’

observations. For the absolute utility, results are shown in Table 4(b). Llama-3-8B-StruQ shows a utility

decrease of 0.04 and 0.03 on the two benchmarks compared to Llama-3-8B-undefended, while Llama-3-8B-

SecAlign shows a corresponding drop of 0.04 and 0.05. This further indicates that both StruQ and SecAlign

lead to some degree of utility loss – contrary to the original claims.

Effectiveness: Table 5 shows the ASVs of Llama-3-8B-StruQ and Llama-3-8B-SecAlign on the two bench-

marks against various attacks. The conclusions align with those in Section 5.1: 1) the existing Combined

Attack still exhibits a certain degree of effectiveness; 2) the effectiveness of optimization-based attack using

GCG shows a significant disparity compared to the original observations; and 3) adaptive attacks further

weaken the effectiveness of these two defenses.

Table 4: Utility of different LLMs for StruQ and SecAlign fine-tuned on Llama-3-8B.

(a) Relative utility (Win Rate) on AlpacaFarm

Measured LLM Reference LLM
Win Rate

(%)

Llama-3-8B-StruQ Llama-3-8B-undefended 48.04

Llama-3-8B-SecAlign Llama-3-8B-undefended 55.03

(b) Absolute utility

LLM OpenPromptInjection MMLU-PI

Llama-3-8B-StruQ 0.54 0.39

Llama-3-8B-SecAlign 0.54 0.37

Llama-3-8B-undefended 0.58 0.42

Table 5: ASVs of different LLMs on OpenPromptInjection and MMLU-PI against various attacks for StruQ

and SecAlign fine-tuned on Llama-3-8B.

LLM

OpenPromptInjection MMLU-PI

Combined Attack GCG Combined Attack GCG

existing adaptive existing adaptive existing adaptive existing adaptive

Llama-3-8B-StruQ 0.07 0.14 0.96 1.00 0.09 0.16 0.92 0.92

Llama-3-8B-SecAlign 0.05 0.09 0.64 0.70 0.12 0.23 0.68 0.88

Llama-3-8B-undefended 0.44 0.51 1.00 1.00 0.31 0.33 1.00 1.00
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