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Abstract

Recent advances in Large Language Models (LLMs) have led to the widespread
adoption of third-party inference services, raising critical privacy concerns. Exist-
ing methods of performing private third-party inference, such as Secure Multiparty
Computation (SMPC), often rely on cryptographic methods. However, these meth-
ods are thousands of times slower than standard unencrypted inference, and fail
to scale to large modern LLMs. Therefore, recent lines of work have explored
the replacement of expensive encrypted nonlinear computations in SMPC with
statistical obfuscation methods - in particular, revealing permuted hidden states to
the third parties, with accompanying strong claims of the difficulty of reversal into
the unpermuted states. In this work, we begin by introducing a novel reconstruction
technique that can recover original prompts from hidden states with nearly perfect
accuracy across multiple state-of-the-art LLMs. We then show that extensions
of our attack are nearly perfectly effective in reversing permuted hidden states of
LLMs, demonstrating the insecurity of three recently proposed privacy schemes.
We further dissect the shortcomings of prior theoretical ‘proofs’ of permuation
security which allow our attack to succeed. Our findings highlight the importance
of rigorous security analysis in privacy-preserving LLM inference.

1 Introduction

Recent advances in Large Language Model (LLM) capabilities have led to their widespread use
for a diverse range of tasks [Zhu et al., 2024, Kasneci et al., 2023, Thirunavukarasu et al., 2023].
These models have demonstrated remarkable performance across domains including natural language
processing, code generation, and complex reasoning tasks. However, modern LLMs are often very
large – sometimes comprising hundreds of billions of parameters – necessitating significant hardware
resources to deploy them for inference. Individuals and organizations therefore increasingly rely
on third-party LLM inference services. This raises significant privacy implications, particularly in
domains where confidentiality of data is paramount, such as healthcare, finance and legal applications,
and in jurisdictions where data privacy is subject to regulations (e.g. GDPR in Europe). As such, a
growing area of research interest is the creation of inference methodologies and schemes that protect
the privacy of user prompts.

One approach to privacy-preserving-inference is based on having multiple parties participate jointly
in performing the inference, with the idea that each party cannot itself reconstruct the input solely
with the information that it is given in the protocol. This approach is known as Secure Multi-Party
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Computation (SMPC) and has a long history of application to general functions [Yao, 1982, Goldreich
et al., 1987]. Recently, the methodologies of SMPC have been applied to LLMs [Huang et al., 2022,
Hao et al., 2022, Pang et al., 2023, Akimoto et al., 2023, Dong et al., 2023, Li et al., 2024]. A
difficulty uniformly faced by these protocols is the computation of the many non-linearities present
in transformer-based LLMs, which are not efficiently computable by standard SMPC approaches;
most of the works attempt to ameliorate this by using piecewise polynomial approximations which
are more well-suited for MPC algorithms. However, such approximation leads to degraded inference
results, and remains more expensive than direct computation of the non-linearities.

Therefore, other works seek to mitigate the punitive costs of standard SMPC approaches by addition-
ally utilizing statistical obfuscation approaches. In particular, recent work [Zheng et al., 2024, Yuan
et al., 2024, Luo et al., 2024] has leveraged the permutation-equivariance properties of transformers
[Xu et al., 2024] to propose permutation-based schemes for private inference. Under these schemes,
hidden states are revealed as permuted plaintext to the party performing the inference. These works
justify security by referring to the extremely large set of possibilities in the permutation space,
and concluding that the reversal of these permuted states to the original user prompts is practically
infeasible.

In this paper, we introduce a novel attack that is capable of reversing all permutation types used in the
schemes above nearly perfectly into the original input tokens. First, we lay out its basic concept, and
demonstrate its efficacy, in the unpermuted setting. We then extend the attack to the permuted setting.
We discuss the key assumptions required for our attack, and discover that LLM hidden states strongly
satisfy the property of various forms of non-collision which enable the high success rate of our attack.
We further dissect why the theoretical results of Zheng et al. [2022], Yuan et al. [2024], Luo et al.
[2024] on the security of permutations does not apply for LLMs, and thus does not anticipate our
attack. Finally, we investigate one line of possible defenses to our attack – the addition of noise to the
permutations [Morris et al., 2023a].

The main contributions of our paper are:

1. We introduce a new attack on the hidden states of transformers to reverse permutations of
them into the original prompts. We demonstrate the nearly-perfect performance of our attack
on three different variants of hidden state permutation on Gemma 2 and Llama 3.1 across
a range of layers. We discuss the key assumptions underlying the success of our attack,
including the property of LLM hidden state non-collision; the success of our attack provides
strong evidence of this property being satisfied.

2. We explain why the efficacy of our attack renders the schemes of Zheng et al. [2024], Yuan
et al. [2024], Luo et al. [2024] insecure; futher, we dissect the theoretical result based on
distance correlation theory of Yuan et al. [2024], Luo et al. [2024], and explain in detail why
it does not anticipate our attack.

3. Finally, we investigate a potential line of defenses to our attack, by the utilization of added
noise.

2 Setup & Threat Model

We assume the setting of a user U who wishes to perform inference with an LLM model M on some
input prompt x, which can be considered as an ordered sequence of tokens [x1, x2, ..., xN ]. We
denote the size of the hidden state of the LLM by d, and the sequence length by N .

As the user U does not have the resources to perform the inference themselves, they rely on a set of
third-parties P1, P2, ..., PK . We consider the setting where each of the parties behaves semi-honestly,
a common assumption of past works [Zheng et al., 2024, Luo et al., 2024, Dong et al., 2023, Yuan
et al., 2024]. Semi-honest parties will follow the defined protocol faithfully, but may exploit any
information that they receive during the execution of the protocol to attempt to recover the user’s
data.

3 Warmup: Unpermuted Hidden State Reversal

We begin by introducing our attack in the context of reversal of unpermuted hidden states – a problem
that has drawn prior attention in the literature in its own right (e.g. Wan et al. [2024]). The key

2



Figure 1: High-level representation of our attack to decode user text from LLM hidden states. This
attack, and extensions of it, achieve nearly perfect decoding accuracy, even when the hidden states
are permuted.

techniques we use to perform the attack in this setting will be the foundation that we further develop
to perform reversal of permutations of hidden states later.

Consider the general case where one of the parties performing inference, Pk, receives an intermediate
sequence of hidden states h = [h1, h2, ..., hN ] at some layer l of the LLM M . Can the party Pk

reverse the hidden states h to the input sequence of tokens x = [x1, x2, ..., xN ] that produced h?

3.1 Informal Attack Description

We outline our proposed attack below, and provide a visual depiction in Figure 1.

Our attack begins with a batched forward pass over all length-1 sequences [v], where v ranges over
tokens in the vocabulary V . From this, the adversary gets V = |V| candidate layer l hidden states
h(v) ∈ R1×d. They set the first predicted input token x̂1 to be the token v for which h(v) matches
the first hidden state h1.

Next, the adversary performs a batched forward pass over all length-2 sequences [x̂1, v] with v ∈ V ,
to get V candidate layer l hidden states h(x̂1, v) ∈ R2×d. Now, they set the second predicted input
token x̂2 to be the token v where the second row of h(x̂1, v) equals the second hidden state h2.

In general, at the nth stage, using the first n− 1 predicted input tokens x̂1, . . . , x̂n−1, the adversary
performs a forward pass over all length-n sequences [x̂1, . . . , x̂n−1, v] with v ∈ V . They obtain V
candidate layer l hidden states h(x̂1, . . . , x̂n−1, v) ∈ Rn×d, and set the nth predicted input token
x̂n to be the token v where the nth (last) row of candidate states matches the nth hidden state hn.
Iterating over n = 1, . . . , N , the adversary sequentially obtains the predicted input sequence x̂ from
the layer l hidden states h.

Thus, although naively one may expect that an exact match of h would require exponential search
(specifically, over all V N possible sequences of tokens x), we see that this is reduced to a linear
search; the total cost of this attack is O(V N).

3.2 Assumptions

The key assumptions necessary for our attack to succeed are:

1. The forward pass performed over the vocabulary in the attack will match the forward pass
that generated the given hiddens h.
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2. Hidden states of LLMs are non-colliding; that is, there is only one – or at worst, a small
number – of matches between candidate tokens v and hidden states hn at each step of the
attack. If the average number of matches at each step is M , then the search space grows
approximately as MN , which is infeasible when M or N is large. As we shall see, this
assumption turns out to be strongly satisfied in practice.

3. The LLM has a unidirectional attention structure. This is the case for decoder-only LLMs,
which is the de-facto standard architecture for many current state-of-the-art LLMs.

4. The model weights are available to the party Pk. Later, in the settings of Yuan et al. [2024],
Luo et al. [2024], we can relax this assumption.

Assumption 1 above is, however, not generally satisfied due to non-determinism.

3.3 Non-Determinism

Problem In general, due to the non-associativity of floating-point operations [Villa et al., 2009], we
cannot expect that the attacker’s candidate forward passes will exactly match the hidden states they
already hold. Particularly in the GPU setting with parallel asynchronous thread execution and pooling
without global synchronization, there can be considerable variation in the output [Shanmugavelu
et al., 2024]. In addition, differences in hardware, random number seeds, environment variables and
the state of initialized memory on the machine can all add to the variability, and these values may not
be known to the attacker. Due to the presence of this reducible and irreducible noise, exact matching
cannot be used successfully with this attack.

Proposed Solution To accommodate for this non-determinism, we loosen our matching require-
ments by computing the L1-distance between the last row of candidate hidden states and the given
hidden state, and accept a match for a token v if the distance is below some threshold ϵ. If no such
match is found, we choose the token v which gives minimal L1-distance.

However, by allowing an ϵ-ball for matching, we increase the possibility of collisions as described
above in Assumption 2. Is our attack still successful – i.e., are LLM states sufficiently non-colliding –
even with this fuzzy matching? We find the answer is emphatically yes – see Section 3.6 below.

3.4 Efficiency

We optimize runtime in practice using a proposal model to provide a likelihood-based order of
iteration through the vocabulary. We find that this modification reduces the average number of tokens
searched through at each step from V/2 to ∼ 100, resulting in a speedup of more than 1000×. In
addition, we implement a novel variation of key-value-caching to further reduce the computational
cost of our attack. Further details on these optimizations are given in Appendix A. With these
efficiency improvements, we reduce the decoding time of prompts of length 50 from many hours to
typically around 2 minutes.

3.5 Formal Attack Description

We now provide a formalized description of our attack, incorporating the modifications for efficiency
and handling nondeterminism described above, in Algorithm 1.

3.6 Experiments

We apply our attack on the hidden states of two state-of-the-art open-source LLMs, Gemma-2-2B-IT
[Team et al., 2024] and Llama-3.1-8B-Instruct [Grattafiori et al., 2024]. These models have different
sizes (numbers of parameters), training methodologies, and architectures. We conduct testing on
samples from the Fineweb-Edu dataset [Penedo et al., 2024]. The proposal model used is the same as
the model being attacked. To ensure that there is no data leakage and that the dataset is unseen by
the proposal model, we use the CC-MAIN-2024-10 data split, which postdates the models’ training
cutoff dates. We perform testing on hidden states taken from layers 1, 6, 11, 16, 21, and 26 of each
model. For each layer of interest, we tune ϵ by performing a ternary search on a small training set
comprising 50 prompts taken from FineWeb, to determine the optimal L1-threshold under which
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Algorithm 1 Attack on Unpermuted LLM Hidden States

input Model M , layer l hidden states h = [h1, . . . , hN ], vocabulary V , proposal model P , L1-
threshold ϵ

output Decoded token sequence x̂ = [x̂1, x̂2, . . . , x̂N ]
1: Initialize empty sequence x̂← []
2: for i = 1 to N do
3: Vordered ← argsort(P ([x̂, v]|x̂)) {Get ordered vocabulary from proposal model}
4: min_dist←∞
5: best_match← None
6: for v ∈ Vordered do
7: g ←M≤l([x̂, v]) {Forward pass up to layer l}
8: dist← ∥g − hi|∥1 {Calculate L1 distance}
9: if dist < min_dist then

10: min_dist← dist
11: best_match← v
12: end if
13: if dist < ϵ then
14: x̂i ← v
15: break
16: end if
17: end for
18: if min_dist ≥ ϵ then
19: x̂i ← best_match
20: end if
21: end for
22: return x̂

predicted tokens are accepted as matches (note that an adversary could replicate this same tuning
beforehand). We evaluate on 1000 held out prompts, and our results are shown in Table 1.

Table 1: Percentage of (unpermuted) LLM hidden states that are perfectly decoded by our attack at
different layers of Gemma-2-2B-IT and Llama-3.1-8B-Instruct, over 1000 samples of input prompts.

Layer Gemma Llama
1 100% 100%
6 100% 100%
11 100% 100%
16 100% 100%
21 100% 99.9%
26 100% 99.7%

We find that nearly all evaluation samples are perfectly decoded. Accompanying ϵ values are given in
Appendix B. Due to computational constraints, each evaluation prompt was truncated to a maximum
of 50 tokens; however, small-scale experiments with prompts exceeding 200 tokens demonstrated
that our results generalize to longer prompt settings – our attack still perfectly decodes nearly all
hidden states into their corresponding tokens.

We further examine the rare cases where perfect decoding was not achieved. Errors mainly occur
when prompts contain unexpected formatting characters, such as newline symbols (\n) or hyphens (-).
These artifacts sometimes cause the proposal model to favor an incorrect token, which is accepted
early because its L1 error was below the ϵ threshold. Although the correct token typically has a
smaller error, the use of a proposal list to speed up the attack introduces this rare issue; tuning ϵ using
a larger training set may mitigate these errors, and using a full vocabulary search would completely
avoid it, but at higher computational cost. Another source of error is prompts with accidental word
repetitions (such as ‘the price price was high’), which occasionally disrupt the proposal model’s
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predictions in a similar way. Natural repetitions that are grammatically correct, however – such as
‘he had had an operation’ – do not affect decoding accuracy.

4 Background: Permutation-Based Privacy-Preserving Schemes

Recently, a number of works have proposed utilizing permutations to perform privacy-preserving
inference of LLMs in a multi-party-computation (MPC) setup. We provide a description of three
such schemes below.

Zheng et al. [2024] introduces the PermLLM scheme. PermLLM permutes at the non-linear
components of the LLMs in order to reveal them ‘safely’ to one of the parties, and therefore avoid
expensive iterated inter-party communication. The permutation is done on the attention logits before
the softmax, at layer normalizations, and at the non-linear functions in the MLP block. The latter is
a purely elementwise function, so the authors can do a full permutation across the [N, d] elements,
resulting in a permutation space of size (Nd)!. However, softmax and layer-norm are row-wise
operations, so the permutation applied in this case is a (distinct) permutation to each of the columns,
followed by a permutation of the N rows, resulting in a permutation space of size N !(d!)N .

Yuan et al. [2024] introduces the STIP scheme. In STIP, there are three parties: the model developer
P1, the model server P2 (who carries out inference), and the user P3. The goal of STIP is to have
P2 carry out inference on P3’s input, protect P1’s private model weights Θ from P2 and P3, and
protect P3’s private input data from P1 and P2. This is accomplished with random permutation in the
hidden dimension. At initialization, P1 sends random d× d permutation matrices π, πc to the user
P3, where d is the token embedding dimension. They also randomly permute each weight matrix or
vector in the row and/or column dimensions, to obtain the altered model weights Θ′; these are given
to the model server P2, who cannot recover Θ from them. Then during inference, instead of sending
their private input data X ∈ RN×d, the user encrypts it with permutation π, i.e. they send Xπ. Then
a standard transformer forward pass is carried out, but with the weights Θ (unknown to the model
server P2) replaced by permuted weights Θ′. Finally, the results are sent to the user, who applies
permutation πc to obtain the output of the inference. The STIP authors show through orthogonality
of permutation matrices that the final output obtained is the same output as vanilla inference.

Luo et al. [2024] introduces the Centaur scheme. Centaur follows the three-party threat model of
STIP, and attempts to reconcile two problems. On the model weight privacy side, they aim to prevent
exposure of the lookup table to the user. On the user privacy side, they wish to avoid exposing certain
unpermuted intermediate results. For example, the authors observe that during the computation of
attention, the calculation of QKT at each layer in STIP is insecure due to the Q and K permutations
canceling. Therefore the authors apply the cryptographically-based technique of additive secret
sharing between the developer P1 and server P2 at most stages of self-attention, only requiring
reconstruction of additive shares (by the developer) during nonlinearities. Although this resolves the
previous two concerns, it is still the case that permutations of true layer l hidden states are exposed to
the model developer at nonlinearities.

All three schemes explicitly refer to the exponential difficulty of permutation reversal via brute-force
attack, and therefore deem the revelation of permuted hidden states as secure. STIP and Centaur
additionally make a theoretical claim of security based on distance correlation theory, which we
address in Section 7.

5 Permuted Hidden State Reversal

We now consider the case where one of the parties performing inference receives a permutation of the
intermediate sequence of hidden states h at some layer l of the LLM M . We examine three different
permutation types.

5.1 Sequence-Dim Permutation

First we consider a permutation in the sequence dimension. Assume that permutation has been
applied to layer l hidden states h = [h1, h2, ..., hN ] such that:
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hseq_perm = [hσ(1), hσ(2), ..., hσ(N)]

where σ is a permutation of [N ] = {1, 2, . . . , N}.

Key Idea The main insight we leverage to build our modified attack is that unidirectional attention
imbues a positional marker on hidden state elements. That is, in any permuted sequence of LLM
hidden states after at least one attention operation, there is exactly one ‘first’ element that is a
(non-linear) map of an embedding from the LLM’s vocabulary and is not a function of any other
element. Similarly, there is exactly one ‘second’ element that is a function of precisely the ‘first’
element and another vocabulary embedding; and so on for the n’th element.

Attack Extension We leverage the insight above to modify our attack from Section 3 as follows. At
the first iteration of Algorithm 1, instead of finding the match to h1, we now calculate the L1-distance
to each of the rows of h, and choose the vocabulary token v which is within an L1-distance of ϵ
from any row (if no match within ϵ is found, we pick the minimum over all v and rows of h). Let us
assume that the match is made with the jth row of h in the first iteration. In the second iteration, the
jth row is removed from consideration; otherwise, the attack proceeds similarly to the first iteration,
now considering all length-2 sequences [x̂1, v] with v ∈ V and matching against all remaining rows
of h. This idea repeats for all N iterations until the sequence is fully decoded.

The formal algorithm of our attack is given as Algorithm 2 in Appendix C.

Assumptions The main difference to our assumptions in the unpermuted setting (Section 3.2) is
that we now still require that hidden states of LLMs are non-colliding for a fixed position (or fixed
number of prior tokens in the prompt), but are additionally non-colliding across all possible positions
(and number of prior tokens). That is, whilst previously the assumption required that hi was unique
for a given i, at any layer l of the LLM, we now additionally require that hi is unique across all
position indices i.

5.2 Hidden-Dim Permutation

Next we consider the case where permutation has been performed on the hidden dimension of h
instead. That is, the party performing inference is now given:

hhidden_perm = [π1(h1), π2(h2), ..., πN (hN )]

where each πi permutes elements of a d-dimensional vector.

Key Idea In this setting, it is no longer possible to directly apply the L1-distance to find the nearest
vocabulary token match. Instead, we use the sorted L1-distance, which individually sorts the two
vectors to be compared and then computes their L1-distance. The effect of sorting is to map any two
permutations in the hidden dimension to the same resultant vector. Note that the L1-distance is still
required due to the existence of non-determinism discussed in Section 3.3.

Attack Extension The modification to our attack from Section 3 is relatively straightforward;
simply replacing the L1-distance at Step 8 of Algorithm 1 with the sorted-L1 distance as described
above instead. The formal algorithm of our attack is given as Algorithm 3 in Appendix C.

Assumptions Now the main difference to our assumptions in the unpermuted setting (Section 3.2)
is that we additionally require that LLM hidden states are non-colliding even when they are sorted (in
the hidden dimension). In essence, this assumption is equivalent to the assertion that permuting LLM
hidden states in the hidden dimension offers no obfuscation at all – for a fixed sequence position
i, they are still uniquely identifiable. Indeed, due to the existence of non-determinism, we actually
require an even stronger property – since the noise exists before the sorting is done, even the same
vector with two different noises applied can end up with a different ordering after sorting. Therefore,
we also require that LLM hidden states are robust to the noise introduced by non-determinism such
that if sorting results in a different ordering to the correct token, that ordering is still the closest vector
by L1-distance versus all other noisy sortings of tokens in the vocabulary.
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5.3 Factorized-2D Permutation

We now consider the case of a factorized two-dimensional permutation as used in Zheng et al. [2024],
where a hidden-dimension permutation is applied to each hidden state, and then these resulting states
are shuffled in the sequence dimension. The adversary now has:

hfact_perm = [π1(hσ(1)), π2(hσ(2)), ..., πN (hσ(N))]

where σ is a permutation of [N ] and each πi permutes a d-dimensional vector.

Key Idea For this setting, we combine ideas from both the sequence-dim extension and the hidden-
dim extension above. The principles of both extensions remain true – that at the nth matching stage,
there is a single element that is a function only of the previous n− 1 elements and some token v in
the vocabulary; and the use of the sorted-L1 matching function to be able to compare two different
hidden-dimension permutations of the same vector.

Attack Extension The formal algorithm of our attack extension to the factorized-2D setting is
given as Algorithm 4 in Appendix C.

Assumptions The factorized-2D permutation setting requires the strongest uniqueness assumption
among the three settings. Specifically, we require that hidden states are non-colliding across all
possible sequence positions and numbers of prior tokens, even after sorting the elements of each
hidden state vector. That is, at any layer l of the LLM, the sorted hidden state must be uniquely
identifiable across all positions i, even in the presence of the non-deterministic noise prior to the
sorting operation being applied.

5.4 Experiments

We now measure the efficacy of our attack on permutations of the hidden states of Gemma-2-2B-IT
and Llama-3.1-8B-Instruct. We again take samples from the Fineweb-Edu dataset’s CC-MAIN-2024-
10 data split, post-dating the models’ training cutoff dates. We apply sequence dimension, hidden
dimension, and 2D permutation to each of the hidden states as described above. We again test across
a range of model layers, and tune ϵ in each setting by performing a ternary search on a small training
set comprising 50 prompts. We evaluate on 1000 held out prompts in each setting. Our results are
shown in Table 2.

Table 2: The percentage of evaluation samples that were perfectly decoded under sequence-dim,
hidden-dim, and factorized 2D permutations, for Gemma-2-2B-IT and Llama-3.1-8B-Instruct.

Layer Factorized-2D
Gemma Llama

1 99.9% 98.4%
6 99.5% 97.8%
11 99.5% 98.9%
16 99.2% 98.8%
21 99.1% 98.0%
26 99.0% 97.6%

As can be seen, our attack remains highly effective under all of the permutation types described above,
and across all layer choices. Sequence-dimension permutation in particular is decoded at essentially
a 100% success rate. The success of our attack against hidden-dimension permutation is also above
99% for earlier layers, though it does drop slightly in the later layers of both Gemma and Llama. We
theorized above that factorized-2D permutation decoding requires the strongest conditions on LLM
hidden state non-collision, and this is borne out by the slightly lower decoding results for this setting
than the other two permutation types. However, the attack maintains a 99% decoding rate across all
layers for Gemma, with a slightly reduced success rate for Llama. Moreover, we emphasize that our
metric counts the number of perfect decodings, and even in the cases where this was not obtained,
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we observed significant partial decoding of the original prompt. Our results largely support our
assumptions on the non-colliding properties of LLM hidden states described in each of the sections
above.

6 Implications For Permutation-Based Privacy-Preserving Schemes

We now describe the implications of the efficacy of our family of attacks for the schemes described
earlier in Section 4.

PermLLM Recall that PermLLM reveals the permuted hidden states at the non-linearities to the
parties performing inference; and that the hiddens at the softmax and layer-norm non-linearities,
in particular, undergo factorized-2D permutation as they are row-wise operations. Therefore, any
party that receives the hidden states at these non-linearities, at any layer, can directly apply the attack
described in Section 5.3, with the very high success rates demonstrated in Section 5.4.

STIP Recall that in STIP, party P2 carries out inference using a model with permuted weights
Θ′, on a permutation of the input, Xπ, in the hidden dimension. Apart from an additional detail
regarding access to the embedding layer, which we expand on below in Section 6.1, this is analogous
to the hidden-dimension permutation setting. A forward pass from the altered transformer model
with weights Θ′ up to layer l will allow P2 to recover hidden-dimension-permuted layer l hidden
states, and apply the attack from Section 5.2 to recover the input.

Centaur Centaur operates similarly to STIP from the perspective of our attack; at the non-linearities,
hidden-dimension-permuted hidden states are revealed to the parties performing inference; and party
P2 has access to the permuted weights Θ′. Therefore, the attack of Section 5.2 can also be used on
Centaur.

6.1 Private Embedding Layer

In both STIP and Centaur, the party which performs inference, P2 has access to the entire set of
permuted model weights Θ′ – except for the token embedding layer, which is not revealed to P2.
This lookup table is instead only revealed to the user, P3, who embeds their prompt using this,
permutes the embeddings in the hidden dimension, and then sends them to P2 for inference. As such,
without direct access to the possible token embeddings, the adversary cannot immediately carry out
full candidate forward passes, a crucial element of our attacks. However, this is straightforwardly
circumventable; in many modern LLM families, the embedding matrix is simply the tranpose of the
language-modeling head, whose permutation is known to P2. Even if this is not the case, P2 may
build their own ‘vocabulary’ of input embeddings from observing repeated inference requests and
then carry out our attack. We give further details on both of these in Appendix D.

7 Distance Correlation Does Not Guarantee Permutation Security

We now contextualize statistical arguments on the security of permuted hidden states. In particular,
we clarify why they do not anticipate our attack.

Both STIP and Centaur rely on results from distance correlation theory [Székely et al., 2007] to
support their arguments on the security of permuted hidden states. Citing Zheng et al. [2022], both
papers quote the following result:

Eπ,WA∈Zd×d [Discorr(x, xWAπ)] ≤ EWB∈Zd×1 [Discorr(x, xWB)] . (1)

where Discorr is the distance correlation function and x ∈ Rd is the input vector chosen from a
data distribution. Here, the expectations are taken over WA and WB sampled from standard random
normal distributions and π sampled uniformly over all d! permutation matrices. In essence, this result
demonstrates that the expected distance correlation between any vector and the same vector with a
random permuted (dimensionality-preserving) linear map applied, is less than the expected distance
correlation between the vector and the same vector with a 1-dimensional compressing linear map
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applied. The authors claim that therefore, permuted LLM hidden states retain less information about
the input embeddings than a 1-D projection.

There are at least three reasons why this result cannot be used to make strong guarantees on the
security of their schemes, which we outline in the following subsections.

7.1 Reconstruction From Random 1D Projections Is Feasible

The authors assert that reconstructing inputs after a random 1-dimensional linear projection is difficult.
However, there is no theoretical reason that this should be the case, especially for such projections of
LLM hidden states.

We can make this statement precise as follows. Our attack is able to successfully reverse LLM hidden
states with L1-distance matching as demonstrated in Section 3.6 and Section 5.4. Assuming that two
vectors are non-colliding with respect to L1-distance, we can ensure random 1D projections of these
two vectors are also non-colliding with high probability.
Theorem 1. Let k > 0. Suppose random weights w ∈ Rd are drawn from a d-variate spherically
symmetric distribution D. Then any x,y ∈ Rd, we have the absolute difference of w-weighted sums
of x and y exceeds the L1 distance between x and y by a factor ≥ k, meaning∣∣∣∣∣

d∑
i=1

wixi −
d∑

i=1

wiyi

∣∣∣∣∣ ≥ k

d∑
i=1

|xi − yi|, (2)

with probability ≥ Pγ∼D(|γ1| ≥ k
√
d).

Proof. See Appendix E.

Although the above holds over all spherically symmetric distributions, we can obtain an exact bound
above by setting D to a multivariate Gaussian. That is, for w = (w1, . . . , wd), we i.i.d. sample each
wi ∼ N (0, σ2). Then the lower bound in the theorem is Pγ∼D(|γ1| ≥ k

√
d) = Pγ∼N (0,σ)(|γ| ≥

k
√
d) = 2− 2Φ(k

√
d/σ), where Φ is the normal CDF. With sufficiently large σ or small k, we can

make this lower bound approach 2−2Φ(0) = 1. For instance, for d = 4096 in Llama-3.1-8B-Instruct,
if we sample weights with σ = 1 (as is done by Zheng et al. [2022] in the statement of Equation (1)),
setting k = 1/64 gives a lower bound of 2 − 2Φ(1) ≈ 32%, and setting k = 1/32 gives a lower
bound of 2− 2Φ(2) ≈ 5%. To increase k (for a stronger guarantee of non-collision of the weighted
sums) while maintaining the probability lower bound, one must proportionally increase the standard
deviation σ of the random weights.

It is therefore plausible that even with access to random 1D linear projections of LLM hidden
states, our attack would be successful. Further work should experimentally verify the efficacy of
our attack with randomly-weighted sums, in the presence of non-determinism and other practical
implementation considerations.

7.2 Distance Correlation Misaligns With Reconstructibility

To measure privacy leakage, Zheng et al. [2022] use expected distance correlation. They justify their
choice by noting distance correlation is a well-known statistical metric, which represents structural
similarity between datasets and is straightforward to estimate. However, as we now show, distance
correlation is not a universal measure of how reversible one random variable is from another. To
demonstrate this shortcoming, we introduce the notion of ‘δ-reconstructibility’, which captures the
ability to recover one variable from another variable up to a given absolute threshold. We define it
formally as:
Definition 1. Let X,Y be random variables. We say that (X,Y ) is δ-reconstructible if there exists
a function f(Y ) such that |X − f(Y )| ≤ δ almost always.

This notion of δ-reconstructibility is directly tied to privacy in our setting, as the non-determinism
described in Section 3.3 forces us to choose the candidate token within a given absolute threshold. We
now show that δ-reconstructibility does not align with distance correlation: there are δ-reconstructible
pairs with a lower distance correlation than non-δ-reconstructible pairs.
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Theorem 2. For any δ > 0, there exist random variables W,X, Y, Z such that Discorr(W,X) >
Discorr(Y,Z), the pair (W,X) is not δ-reconstructible, and the pair (Y,Z) is δ-reconstructible.

Proof. See Appendix F.

Additionally, we observe that Equation (1) involves an expectation of distance correlation over
random linear maps and permutations. Therefore, it is possible that there are particular linear weights
and permutations where the distance correlation with a randomly permuted linear projection is smaller
than the distance correlation with a random 1D linear projection. Therefore, Equation (1) cannot be
applied to make universal claims about reconstructibility across different models and permutations.

7.3 Transformers Have Token Interdependence

Even taking Equation (1) at face value, it is still questionable how it proves security for transformer
models. Linear projections are only one component of these architectures: a formal security guarantee
should incorporate the other modules in a transformer, especially self-attention, in which tokens
are not processed independently. In particular, this means a valid result should be proved over a
distribution over full N × d inputs, rather than a distribution of 1× d embeddings as in Equation (1).
In fact, the unidirectional nature of decoder-only LLMs through self-attention is a key assumption
that enables the vocabulary-matching attack to succeed (Section 3.2). Thus, the distance correlation
result, which ignores this dependence, fails to anticipate such an attack.

8 Investigation of Possible Defenses

Having demonstrated the efficacy of our attack family in decoding permuted hidden states of LLMs,
we now investigate potential defensive approaches that still permit the general idea of revelation of
permuted plaintext to parties, without incurring severe information leakage. We focus our investi-
gation on defensive measures that aim to disrupt Assumption 2 of Section 3.2 by the use of various
noising approaches.

We investigate the following methods of modification to the permuted LLM hidden states:

• Adding diagonal Gaussian noise with mean 0 and standard deviation σ to each hidden
dimension in the input embeddings, as proposed in Morris et al. [2023a].

• Inserting a randomly generated embedding as a prefix to the original sequence. This has the
effect of modifying the subsequent hidden states via self-attention.

• Quantization of the model.

Clearly, with a sufficiently high degree of noise, decoding can be made impossible. However, high
noise will also likely disrupt LLM performance. Therefore, the crux of any such defense is based on
the delicate balancing act of ensuring security against our attack, whilst still maintaining downstream
model performance.

8.1 Experiments

We apply each of the above noising methods on Gemma-2-2B-IT. For diagonal Gaussian noise,
we test with σ = 0.1, 0.01. For the random embedding prefix, we generate the embedding from
a Gaussian with means and standard deviations of each hidden dimension set to the average over
the token vocabulary V . For quantization, we test with reduction of the model from its original
16-bit to 8-bit and 4-bit, using the bitsandbytes library [BitsAndBytes, 2025]. We apply each of the
above methods to all the permutation types described in Section 5, as well as the unpermuted hidden
states. Our choice of dataset, number of evaluation samples, and method of choosing ϵ is the same
as in Section 3.6 and Section 5.4. As perfect decoding is less commonly achieved with the addition
of noise, we now report the ROUGE-L score between the decoded reconstruction and the original
prompt to measure decoding quality. We conduct testing again over layers 1, 6, 11, 16, 21 and 26, but
report only the highest ROUGE-L, as this can be considered the weakest attack point.

To measure the downstream impact of the noising methods, we utilize LiveBench [White et al., 2024],
a benchmark that tests across multiple different components of LLM performance, such as language,
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reasoning and math. Our results are given in Table 3 below. A full breakdown of the LiveBench
scores by category and the ROUGE-L scores by layer of each of the above methods and permutation
types is given in Appendix H.

Table 3: ROUGE-L reconstruction scores across 1000 evaluation samples for various noising methods
and permutation types on Gemma-2-2B-IT. The ‘Downstream Performance’ column is the normalized
score on LiveBench [White et al., 2024], a benchmark that tests broad components of LLM perfor-
mance such as math, reasoning and language. Note that LiveBench scores carry some variability, and
so the baseline, Gaussian with standard deviation 0.01, and random embedding prefix methods are all
within noise in performance.

Method Unpermuted Sequence Perm Hidden Perm Factorized 2D Downstream Performance
Baseline (no noise) 1.00 1.00 1.00 1.00 100.0%

Gaussian, σ = 0.01 0.93 0.07 0.07 0.07 101.4%
Gaussian, σ = 0.1 0.91 0.01 0.01 0.01 5.8%

Random emb. prefix 0.93 0.17 0.19 0.19 102.9%
8-bit quantization 0.89 0.86 0.75 0.73 97.6%
4-bit quantization 0.88 0.84 0.83 0.71 92.2%

We see that unpermuted hidden states are still highly decodeable via our attack under all methods
tested – the ROUGE-L scores are above 0.8 in all cases, indicating significant similarity with the
original text. Remarkably, even 4-bit quantization is not sufficient to introduce enough collisions to
significantly mitigate our attack. We find that the combination of permutation and Gaussian noise
with standard deviation 0.01 appears largely secure, with ROUGE scores below 0.1, and maintains
downstream performance, and thus may represent a potential solution to the insecurity of STIP and
Centaur. However, this result is only necessary for security, and not sufficient; it is possible that
extensions of our attack family can succeed even in this setting. We leave further investigation of this
to future work.

9 Related Work

Several existing works have investigated the reversibility of LLM embeddings into the original
sentence inputs [Song and Raghunathan, 2020, Morris et al., 2023a, Li et al., 2023, Kugler et al.,
2024] with relatively good decoding performance. Different from our setting, these focus on reversal
of a single vector e = ϕ(x) ∈ Rd, where ϕ is an embedding model that returns a single fixed-size
vector from an N -token input x = [x1, x2, ..., xN ]. In our paper, we are instead concerned with the
reversibility of full intermediate states [h1, h2, . . . , hN ] ∈ RN×d of an LLM.

The closest two previous works on reversibility in our setting are those of Wan et al. [2024] and
Morris et al. [2023b]. The former work focuses on reversal of hidden states in general, whilst the latter
is particularly focused on logit output distribution reversal. In both papers, the authors use a learnt
transformer-based network to reverse the sequence of hidden states into the original token inputs.
Experiments are conducted on two decoder-based models, Llama-2-7B and ChatGLM-6B. Average
F1 scores of approximately 60% are achieved across a range of datasets in Wan et al. [2024] on
hidden states near the last layers of the models, and scores around 75% are achieved for logit reversal
in Morris et al. [2023b]. Importantly, the latter paper does not assume any access by the adversary to
model weights, whilst the former explicitly denotes the case of a model provider performing inference
on user provided embeddings, and so is more analogous to our setting.

Petrov et al. [2024] propose an attack that shares some elements with ours below – especially,
exploitation of the unidirectional nature of decoder-based LLMs, as well as the finite and discrete
space of LLMs’ vocabularies. However, they are concerned primarily with the setting of gradient
reversal into original inputs in the federated training setting – different from our focus on private
inference. Furthermore, their method relies on full-rank properties of the gradients, which are not
always satisfied (e.g. when the prompts are longer than the hidden dimension size). By contrast, our
method does not have any such restrictions.

To the best of our knowledge, no existing work specifically attempts to, or succeeds at, reversing
permutations of LLM hidden states.
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10 Conclusion & Future Work

We have introduced a new attack for decoding LLM hidden states into their original user text. We
have demonstrated the efficacy of this attack for reversal of LLM hidden states into their original
prompts. We then proposed extensions of this attack that we have shown are capable of nearly-perfect
reversal of various types of permutations of LLM hidden states, compromising the security of three
previously proposed private-inference schemes. We also deconstructed previous assertions of security
based on misapplications of distance correlation theory. Finally, we have investigated a potential line
of defenses to our attack – the addition of noise to the LLM hidden states.

There are several promising future directions of research that build on our contributions in this work.
We have not yet demonstrated a successful attack against unrestricted permutations of hidden states,
i.e. where any element of the N × d matrix of hiddens can be moved to any column or row index
without restriction. Although this is not necessary to break the security of the schemes we analyze in
this paper, such a scheme may be proposed in the future – for example, where only the hiddens at the
elementwise non-linearities are revealed as permuted plaintext. Additionally, further work should
investigate the security of combining noise and permutations against our attack, as we propose in
Section 8.
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A Attack Optimizations

Proposal Model Although the cost of the attack outlined in Section 3 is linear in V , the size of
vocabularies can be quite large in practice. For example, Gemma-2-2B-IT has a vocabulary size of
256000. Therefore we seek to optimize this by introducing a proposal model. The purpose of the
proposal model is to provide a suggested ordering over the vocabulary, rather than iterate through it
in an arbitrary order. It does so by taking in the token sequence that has been partially decoded so
far and producing the next-token logits. We then search through the next-token logits in decreasing
order of probability. In practice, we find that this modification reduces the expected number of tokens
searched through at each step from V/2 to approximately 100, thus representing a constant factor
speedup of more than 1000×.

KV-Caching Additionally, we implement a novel variation of key-value-caching (KV-caching)
to reduce the computational time of our attack. Note that at the nth stage of the decoding, we are
performing a V -batched forward pass on [x̂1, x̂2, ..., x̂n−1, v] over v ∈ V , where x̂1, x̂2, . . . , x̂n−1

are the tokens that we have already decoded. As this forward pass needs to be repeated many times
for different v but the same x̂i, we cache the keys and values associated to the x̂i and reuse them
across all forward passes. This is different from standard KV-caching, which stores the keys and
values for generation over a single sequence: here, we reuse keys and values across many sequences.
In practice, this optimized caching gives a significant speedup in our attack: across 10 evaluation
prompts from FineWeb, the average caching speedup was around 20×, with speedups for all prompts
in the range 15-30×.

B Optimal ϵ for Decoding

We report the full set of optimal ϵ thresholds in decoding, for each permutation type below. We
observe that generally, the optimal ϵ increases in later layers across all permutation types – which
may be due to the effect of the reducible and irreducible noise we mentioned in Section 3 taking
up a larger subspace volume as it propagates to deeper layers. We also observe that Llama tends
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to have much lower ϵ values in general. Further investigation of these interesting trends and their
implications for the properties and structure of LLM hidden states is left to future work.

There is also an interesting distinction between Gemma and Llama to note in this trend: the optimal
ϵ for the last hidden layer (26) in Gemma decreases by nearly 2× from the previous tested layer
(21) outside of the no permutation case. But the opposite is the case for Llama: it increases by
more than 2× at the last layer (32) from the previous tested layer (26) for all but the no permutation
case. Both Gemma and Llama have slightly decreased ϵ at the last layer in the no permutation case.
Investigating the reason for decreasing versus increasing ϵ-ball collisions in the last few layers, based
on distinctions in the architecture or weights of models like Gemma and Llama, and the type of
permutation applied, is an interesting direction for future work.

Table 4: Optimal ϵ thresholds for hidden state reversal with no permutation, over various Gemma-2-
2B-IT and Llama-3.1-8B-Instruct layers.

Layer Gemma Llama
1 22.0 0.6
6 70.0 7.1
11 204.0 18.3
16 293.0 29.0
21 400.0 76.0
26 318.0 156.0
32 — 150.0

Table 5: Optimal ϵ thresholds for hidden state reversal with sequence dimension permutation, over
various Gemma-2-2B-IT and Llama-3.1-8B-Instruct layers.

Layer Gemma Llama
1 12.8 1.4
6 72.6 3.3
11 229.0 7.4
16 301.0 7.4
21 385.0 26.6
26 220.0 29.6
32 — 105.0

Table 6: Optimal ϵ thresholds for hidden state reversal with hidden dimension permutation, over
various Gemma-2-2B-IT and Llama-3.1-8B-Instruct layers.

Layer Gemma Llama
1 12.5 0.5
6 25.0 3.5
11 45.0 3.7
16 73.0 5.2
21 118.0 6.3
26 61.0 9.8
32 — 30.0
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Table 7: Optimal ϵ thresholds for hidden state reversal with factorized-2D permutation, over various
Gemma-2-2B-IT and Llama-3.1-8B-Instruct layers.

Layer Gemma Llama
1 21.0 0.3
6 26.0 3.0
11 47.0 9.0
16 69.0 9.0
21 118.0 14.0
26 51.0 14.0
32 — 45.0
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C Permuted Setting Attack Algorithms

Algorithm 2 Attack on Sequence Dimension Permuted LLM Hidden States

input Model M , permuted layer l hidden states h = [hσ(1), hσ(2), ..., hσ(N)], vocabulary V , proposal
model P , L1-threshold ϵ

output Decoded token sequence x̂ = [x̂1, x̂2, . . . , x̂N ]
1: Initialize empty sequence x̂← []
2: Initialize set of remaining hidden statesH ← {hσ(1), hσ(2), ..., hσ(N)}
3: for i = 1 to N do
4: Vordered ← argsort(P ([x̂, v]|x̂)) {Get ordered vocabulary from proposal model}
5: min_dist←∞
6: best_match← None
7: for v ∈ Vordered do
8: g ←M≤l([x̂, v]) {Forward pass up to layer l}
9: for h ∈ H do

10: dist← ∥g − h|∥1 {Calculate L1 distance}
11: if dist < min_dist then
12: min_dist← dist
13: best_match← v
14: best_h← h
15: end if
16: if dist < ϵ then
17: x̂i ← v
18: Remove h fromH
19: break
20: end if
21: end for
22: end for
23: if min_dist ≥ ϵ then
24: x̂i ← best_match
25: Remove best_h fromH
26: end if
27: end for
28: return x̂
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Algorithm 3 Attack on Hidden Dimension Permuted LLM Hidden States

input Model M , layer l permuted hidden states h = [π1(h1), π2(h2), ..., πN (hN )], vocabulary V ,
proposal model P , L1-threshold ϵ

output Decoded token sequence x̂ = [x̂1, x̂2, . . . , x̂N ]
1: Initialize empty sequence x̂← []
2: for i = 1 to N do
3: Vordered ← argsort(P ([x̂, v]|x̂)) {Get ordered vocabulary from proposal model}
4: min_dist←∞
5: best_match← None
6: for v ∈ Vordered do
7: g ←M≤l([x̂, v]) {Forward pass up to layer l}
8: dist← ∥sort(g)− sort(πi(hi))|∥1 {Calculate L1 distance of sorted vectors}
9: if dist < min_dist then

10: min_dist← dist
11: best_match← v
12: end if
13: if dist < ϵ then
14: x̂i ← v
15: break
16: end if
17: end for
18: if min_dist ≥ ϵ then
19: x̂i ← best_match
20: end if
21: end for
22: return x̂
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Algorithm 4 Attack on Factorized 2D Permuted LLM Hidden States

input Model M , permuted layer l hidden states h = [π1(hσ(1)), π2(hσ(2)), ..., πN (hσ(N))], vocab-
ulary V , proposal model P , L1-threshold ϵ

output Decoded token sequence x̂ = [x̂1, x̂2, . . . , x̂N ]
1: Initialize empty sequence x̂← []
2: Initialize set of remaining hidden statesH ← {π1(hσ(1)), π2(hσ(2)), ..., πN (hσ(N))}
3: for i = 1 to N do
4: Vordered ← argsort(P ([x̂, v]|x̂)) {Get ordered vocabulary from proposal model}
5: min_dist←∞
6: best_match← None
7: for v ∈ Vordered do
8: g ←M≤l([x̂, v]) {Forward pass up to layer l}
9: for h ∈ H do

10: dist← ∥sort(g)− sort(h)|∥1 {Calculate L1 distance of sorted vectors}
11: if dist < min_dist then
12: min_dist← dist
13: best_match← v
14: best_h← h
15: end if
16: if dist < ϵ then
17: x̂i ← v
18: Remove h fromH
19: break
20: end if
21: end for
22: end for
23: if min_dist ≥ ϵ then
24: x̂i ← best_match
25: Remove best_h fromH
26: end if
27: end for
28: return x̂
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D Expanded Details on Conducting the Attack with a Private Embedding
Layer

Here we provide further details on the explicit methods by which an adversary may carry out our
attack despite the embedding layer remaining private in the schemes of Yuan et al. [2024], Luo et al.
[2024].

Tied Embedding Case First, as we described earlier, for many models – such as the Gemma family
– the embedding matrix is simply the transpose of the language-modeling head, whose permutation
(in row and column dimensions) is known to P2. Therefore, the vocabulary embedding vectors to
search over in this case are simply permuted columns of this permuted language-modeling head –
and these permutations can be uncovered by matching against the permuted input embedding vectors
received from the user at inference.

Explicitly, denoting W as the original RV×d embedding matrix, P2 has access to the permuted
language-modeling head πdW

TπV ∈ Rd×V , where πV , πd are V × V, d× d permutation matrices.
In inference, the user P3 first applies a d× d permutation π on the input embeddings e1, . . . , eN ∈
Rd; these are rows of W . Therefore, P2 sees permuted embedding vectors e1π, . . . , eNπ ∈ Rd.
Now, assuming the uniqueness of sorted rows of W , each eiπ can be obtained by applying the
permutation ππ−1

d on exactly one column of πdW
TπV . Thus P2 can recover ππ−1

d by looking for
a sorted match between the columns of πdW

TπV and each eiπ. Once obtained, they can compute
ππ−1

d πdW
TπV = πWTπV , whose columns are precisely all π-permuted vocabulary embeddings.

With these, because the altered transformer forward pass is carried out on π-permuted embeddings,
P2 can carry out our attack on any permuted layer l hidden states it obtains.

To confirm the plausibility of the above, we examined the embedding matrices of Gemma, Llama and
Mistral models and found that it is indeed the case that for these modern LLM families, the rows of
W are unique even when sorted.

Non-Tied Case Even if the language-modeling head is not the transpose of the embedding matrix,
P2 can collect the set of sorted input embeddings over the course of many inference requests. After
sufficiently many calls, they can then perform our attack by iterating through this collection of
embeddings, permuting them to match the initial permuted input embeddings. The only difference in
this case is that P2 must wait for more inference requests in order to carry out the attack, rather than
being able to perform it immediately.

The final step to decoding by the adversary is then mapping the embeddings back into tokens. If
the tokenizer is not publicly revealed, this may seem difficult at first – but note that this essentially
constitutes a simple substitution cipher. Again, by collecting data over many queries and using simple
methods such as frequency analysis and positional information, P2 can learn to decode this into the
original tokens; substitution ciphers are in general easily broken given sufficient data.

E Proof of Theorem 1

Here, we provide a proof of our Theorem 1 given in Section 7. At a high level, we show that the
inequality below is true whenever a randomly weighted sum of a vector far exceeds its L2 norm, and
this holds whenever a weight coordinate is sufficiently large.
Theorem 1. Let k > 0. Suppose random weights w ∈ Rd are drawn from a d-variate spherically
symmetric distribution D. Then any x,y ∈ Rd, we have the absolute difference of w-weighted sums
of x and y exceeds the L1 distance between x and y by a factor ≥ k, meaning∣∣∣∣∣

d∑
i=1

wixi −
d∑

i=1

wiyi

∣∣∣∣∣ ≥ k

d∑
i=1

|xi − yi|, (3)

with probability ≥ Pγ∼D(|γ1| ≥ k
√
d).

Proof. Denote z = x− y. Observe that∣∣∣∣∣
d∑

i=1

wixi −
d∑

i=1

wiyi

∣∣∣∣∣ =
∣∣∣∣∣

d∑
i=1

wi(xi − yi)

∣∣∣∣∣ =
∣∣∣∣∣

d∑
i=1

wizi

∣∣∣∣∣ = |wTz|.
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Thus, Equation (3) is equivalent to |wTz| ≥ k∥z∥1. Then, from the standard bound ∥z∥1 ≤
√
d∥z∥2,

which can be proven by an application of Cauchy-Schwarz, we see that Equation (3) holds whenever

|wTz| ≥ k
√
d∥z∥2. (4)

We now aim to compute the probability of the above event. Choose a d× d orthogonal matrix Q such
that zq := Qz ∈ Rd only has a nonzero coordinate L in its first position, i.e. zq = (L, 0, . . . , 0).
By orthogonality and the fact that D is spherically symmetric, we see wq := Qw has distribution
D. Furthermore, orthogonal linear transformations are length-preserving (by L2 norm), so we
have ∥zq∥2 = ∥Qz∥2 = ∥z∥2 = |L|. In fact, as QTQ = I , observe that wTz = wTQTQz =
(Qw)T (Qz) = wT

q zq . Hence, Equation (4) becomes

|wT
q zq| = |L||(wq)1| ≥ k|L|

√
d.

This is equivalent to saying the first coordinate of wq has magnitude at least k
√
d. But we showed wq

has distribution D, so the probability that Equation (4) holds is precisely Pγ∼D(|γ1| ≥ k
√
d). This

is therefore a lower bound on the probability that Equation (3) holds, since we showed Equation (3)
holds whenever Equation (4) does.

F Proof of Theorem 2

We now provide a proof of our Theorem 2 from Section 7. The idea is to construct a δ-reconstructible
pair with low distance correlation by using absolute values of symmetric variables, and then form a
non-δ-reconstructible pair with high distance correlation by using highly correlated normal variables.
Theorem 2. For any δ > 0, there exist random variables W,X, Y, Z such that Discorr(W,X) >
Discorr(Y,Z), the pair (W,X) is not δ-reconstructible, and the pair (Y,Z) is δ-reconstructible.

Proof. Define independent random variables W, ε ∼ N (0, 1). Let Y come from an arbitrary
symmetric distribution about zero with support [−δ, δ], and construct

X = ρW +
√

1− ρ2ε, Z = |Y |

where 1 > ρ > 0.945. Using standard properties of normal random variables, one can see X ∼
N (0, 1), and the correlation between X and W is ρ. Thus, by Theorem 7 in Székely et al. [2007],
which lower bounds distance correlation of standard normals in terms of (Pearson) correlation, we
have DisCorr(W,X) > 0.89ρ > 0.841. Furthermore, by Theorem 1 in Edelmann et al. [2021],
which upper bounds the distance correlation of a symmetric random variable and its absolute value,
we have DisCorr(Y,Z) ≤ 2−1/4 < 0.841. Therefore, we have DisCorr(W,X) > DisCorr(Y, Z).

Now, we claim that (W,X) is not δ-reconstructible. To see this, note (W, ϵ) ∼ N (0, I) by indepen-
dence, so the linear transformation (W, ϵ) 7→ (W,X) can be seen to induce the joint distribution

(W,X) ∼ N
(
0,Σ =

(
1 ρ
ρ 1

))
.

From the standard conditional Gaussian formula, one obtains W |(X = x) ∼ N (ρx,
√
1− ρ2).

Thus, for any estimator f(X) of Y , we have for each x that

P (|W − f(X)| ≤ δ|X = x) ≤ P (|W − ρx| ≤ δ|X = x) = 2Φ

(
δ√

1− ρ2

)
− 1 = c < 1

where c is a constant dependent on ρ, δ, and Φ is the normal CDF. Here, the first inequality holds
as W |(X = x) is a normal distribution: this means P (|W − f(X)| ≤ δ|X = x), the integral of the
corresponding normal PDF over (f(x) − δ, f(x) + δ), is upper bounded2 by its integral over the
same-size mean-centered interval (ρx − δ, ρx + δ), which is precisely P (|W − ρx| ≤ δ|X = x).
Finally, taking the expectation of the above bound over X and applying the law of total expectation,

2This directly follows from the fact that an integral of a zero-centered normal (or generally any unimodal
symmetric distribution) over a fixed-size interval is maximal when that interval is zero-centered. This is a
standard fact: see the first sentence in [Anderson, 1955], for example.
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we get P (|W − f(X)| ≤ δ) ≤ c < 1. Since f(X) was chosen arbitrarily, this shows (W,X) is not
δ-reconstructible3, as required for the claim.

However, (Y, Z) is certainly δ-reconstructible. Because |Y | ≤ δ almost always, we see f(Z) = 0
always estimates Y within a δ-threshold. Hence, we have our desired counterexample.

G Scalability of Attack

To assess the scalability of our attack with respect to model size, we conducted additional experiments
across a range of model scales, from 1 billion to 27 billion parameters. Table 8 summarizes the
results.

Table 8: Average attack time (in seconds) over 10 decodings for various model sizes.
Model Name Model Size (Parameters) Vocabulary Size Average Attack Time (s)

Llama-3.2-1B-Instruct 1B 128,256 49
Gemma-2-2B-IT 2B 256,000 124

Llama-3.1-8B-Instruct 8B 128,256 69
Gemma-2-27B-IT (ϵ = 30) 27B 256,000 304
Gemma-2-27B-IT (ϵ = 40) 27B 256,000 124

The attack time remains practical across all evaluated model sizes, typically on the order of minutes
for perfect decoding of length 100 prompts. We observe that the computational cost is primarily a
function of the vocabulary size and the choice of ϵ, rather than the total number of model parameters.
Specifically, models with larger vocabularies (e.g., 256,000 tokens) exhibit proportionally longer
attack times compared to models with smaller vocabularies (e.g., 128,256 tokens), regardless of
parameter count. While a poorly chosen ϵ leads to longer runtimes, it does not fundamentally impede
the attack. These results demonstrate that the attack scales favorably to larger models, including
recent LLMs with tens of billions of parameters.

H Noising method performance

Below, we provide exact (not only the maximum) ROUGE scores across layers 1, 6, 11, 16, 21, 26,
for all methods of noising discussed in Section 8. Table 9, Table 10, Table 11 show these results. We
also provide a complete breakdown of LiveBench scores per category in Table 13.

Table 9: The ROUGE scores of decoded texts with added noise and no permutation.

Layer σ = 10−2 σ = 10−1 Random Emb 8-bit quantization 4-bit quantization

1 0.9263 0.9177 0.9309 0.8901 0.8844
6 0.9273 0.3271 0.9340 0.8726 0.8652

11 0.9070 0.0856 0.8170 0.8943 0.8764
16 0.9175 0.0587 0.7552 0.8620 0.8669
21 0.9232 0.0977 0.8247 0.8834 0.8839
26 0.9070 0.0485 0.6257 0.8751 0.8771

3In fact, it shows something stronger: the optimal estimator’s probability of reconstructing W up to an
absolute error of δ is upper bounded by c. As δ → 0, the value of c actually approaches 2Φ(0)− 1 = 0.
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Table 10: The ROUGE scores of decoded texts with added noise and sequence dimension permutation.

Layer σ = 10−2 σ = 10−1 Random Emb 8-bit quantization 4-bit quantization

1 0.0696 0.0000 0.1683 0.8167 0.8157
6 0.0354 0.0000 0.0418 0.8236 0.8409

11 0.0278 0.0011 0.0337 0.8479 0.8138
16 0.0133 0.0023 0.0202 0.8568 0.8116
21 0.0136 0.0051 0.0321 0.8283 0.8250
26 0.0096 0.0096 0.0236 0.8236 0.7956

Table 11: The ROUGE scores of decoded texts with added noise and hidden dimension permutation.

Layer σ = 10−2 σ = 10−1 Random Emb 8-bit quantization 4-bit quantization

1 0.0669 0.0000 0.1945 0.7544 0.7497
6 0.0353 0.0000 0.0359 0.6696 0.6420

11 0.0301 0.0009 0.0300 0.6667 0.8138
16 0.0166 0.0018 0.0144 0.6325 0.8116
21 0.0164 0.0036 0.0153 0.5029 0.8250
26 0.0116 0.0101 0.0114 0.3848 0.7956

Table 12: The ROUGE scores of decoded texts with added noise and factorized 2D permutation.

Layer σ = 10−2 σ = 10−1 Random Emb 8-bit quantization 4-bit quantization

1 0.0675 0.0000 0.1919 0.7328 0.7146
6 0.0346 0.0000 0.0361 0.6075 0.5820

11 0.0273 0.0016 0.0297 0.4916 0.5753
16 0.0182 0.0027 0.0140 0.3731 0.5701
21 0.0196 0.0044 0.0151 0.3845 0.5568
26 0.0116 0.0120 0.0117 0.3496 0.5564

Table 13: Performance of Gemma-2-2B-IT on LiveBench with added noise.
Method Avg. Coding Data Instruction Language Math Reasoning

Analysis Following

Baseline (no noise) 20.7 9.4 26.1 48.9 15.2 13.1 11.3
Gaussian, σ = 10−2 21.0 11.1 27.4 51.2 13.7 13.4 9.3
Gaussian, σ = 10−1 1.2 0.0 0.0 6.9 0.4 0.0 0.0
Random emb. prefix 21.3 8.8 27.5 50.1 16.1 13.6 12.0

8-bit quantization 20.2 8.8 27.1 49.2 13.3 13.0 10.0
4-bit quantization 19.1 6.5 25.5 50.5 9.5 10.9 12.0
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