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Abstract—We introduce EtherBee, a global dataset integrating
detailed Ethereum node metrics, network traffic metadata, and
honeypot interaction logs collected from ten geographically di-
verse vantage points over three months. By correlating node data
with granular network sessions and security events, EtherBee
provides unique insights into benign and malicious activity, node
stability, and network-level threats in the Ethereum peer-to-peer
network. A case study shows how client-based optimizations
can unintentionally concentrate the network geographically, im-
pacting resilience and censorship resistance. We publicly release
EtherBee to promote further investigations into performance,
reliability, and security in decentralized networks.

I. INTRODUCTION AND RELATED WORK

Web3 networks are becoming critical public infrastructure,
and Ethereum is among the most widely used and robust
public smart contract platforms. As the network grows in size
and complexity, understanding the performance, behavior, and
risk characteristics of Ethereum nodes is a key component to
ensuring the blockchain’s security, reliability, and scalability.
Nodes are the core components that validate transactions, exe-
cute smart contracts, and maintain global consensus; however,
the decentralized nature of blockchain networks complicates
holistic data collection and analysis of these nodes. Existing
datasets often fail to capture the full breadth of node activity
when striving for global coverage, granular metrics, and long
observation periods [1], [2], [3].

Recent work has examined Ethereum node performance and
decentralization, showing that the effectiveness of the network
can shift over time due to major events like client software
bugs, and that a small number of large entities often control
most validators [4], [5]. Furthermore, economic incentives may
unintentionally promote centralization [6]. Other studies focus
on measuring the Ethereum networking stack through active
monitoring [7], [8], [9], yet most publicly available datasets
prioritize on-chain activity rather than node or security-focused
data. Meanwhile, multimodal cyber threat intelligence has
proven essential to uncovering sophisticated attacks, especially
when analyzing logs, network telemetry, and threat feeds in
tandem [10], [11].

To address these gaps, we present EtherBee, a first-of-its-
kind global dataset that integrates detailed Ethereum node met-
rics, network traffic metadata, and honeypot interaction logs.
By capturing both benign and malicious activity across diverse

geographic vantage points, EtherBee facilitates a deeper under-
standing of peer-to-peer (P2P) communication, node stability,
and network-level threats. To the best of our knowledge, no
existing resource provides this level of multimodal detail that
covers both operational node data and honeypot collections.
In summary, our contributions are: (1) EtherBee, a dataset
with fine-grained metrics from 10 vantage points over three
months; (2) a scalable methodology for collecting, storing,
and transforming the data; and (3) analyses that generate
new research questions around performance, reliability, and
security for decentralized networks.

II. DATA COLLECTION

We deployed ten AWS servers across five global regions
(North America, Europe, Middle East, Asia, and South Amer-
ica). In each region, one server ran Lighthouse [12] (Consensus
Layer), Nethermind [13] (Execution Layer), plus honeypot and
packet capture software; a second server ran only honeypot and
packet capture. All three data streams—network sessions, node
metrics, and honeypot logs—were indexed into a six-node
Elasticsearch cluster (227 TB storage, 132 GB heap), yielding
30.1 TB of primary data across 1,419 shards and 33.7 billion
documents. We used a WireGuard-based mesh to encrypt
inter-server traffic, and afterwards exported raw Elasticsearch
data to tabular formats for public release. This final, time-
synchronized dataset enables correlating network-level events,
node-level performance, and cyberattacks at global scale.

A. Network Traffic Capture

Using Arkime [14], we indexed start/end times, IP addresses
(with geolocation), ports, and byte counts for every connec-
tion. Over three months (Aug–Nov 2024), 94,659 unique IPs
accessed our P2P ports, yielding 20.97 TB of metadata. Since
Ethereum mainnet typically has 6–10k persistent beacon nodes
[15], our dataset encompasses both stable peers and transient
endpoints.

B. Node Metrics and Honeypot Logs

We instrumented Lighthouse (including its attestation simu-
lator1) and Nethermind to capture chain health (slots since best
block, attesters, aggregator participation), node performance
(latencies, errors, reorganizations), and peer/network stability

1https://blog.sigmaprime.io/attestation-sim.html
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(disconnects, discovery events). Simultaneously, a diverse hon-
eypot suite [16] logged 133.8 million inbound attacks, from
port scans to CVE-specific exploits. Of these, 58% were
DDoS-related, closely matching Cloudflare Radar’s 57% [17].
Collecting these security events alongside blockchain metrics
offers a unique multimodal lens on both benign and hostile
interactions targeting Ethereum nodes.

III. CASE STUDY

A. Motivation & Setup

Peer Pruning and Geographic Centralization. In latency-
sensitive networks like Ethereum, client software scores peers
based on metrics such as RTT [18], [19], actively pruning
those with poorer scores. While this can enhance propagation
efficiency, existing research suggests it may inadvertently favor
geographically closer peers, reducing overall decentralization
[20], [9]. To evaluate this, we analyzed three months of
P2P sessions from EtherBee, mapping peer IPs to geographic
coordinates (via MaxMind GeoLite2) and computing a data-
weighted “focal point.” Each peer’s weight corresponded to its
total bytes exchanged, reflecting its relative influence on the
node’s connectivity.

Weighted Geographic Focal Point Calculation. For N
peers with latitude ϕi, longitude λi, and weight wi, we convert
each location to 3D Cartesian coordinates on the unit sphere:

xi = cos(ϕi) cos(λi), yi = cos(ϕi) sin(λi), zi = sin(ϕi).

We then compute:

X =

∑
wixi∑
wi

, Y =

∑
wiyi∑
wi

, Z =

∑
wizi∑
wi

,

and finally:

ϕc = arctan 2(Z,
√

X2 + Y 2), λc = arctan 2(Y,X).

The resulting (ϕc, λc) indicates the daily spatial centroid of
peer connectivity.

B. Key Findings

Four of the five vantage points showed a significant shift
toward lower-latency peers. For example, the North American
node’s average peer distance shrank by 6.17 km/day (p =
0.002), indicating intensified geographic clustering (Figure 1).
The South American node did not exhibit local centralization
(p = 0.797), but re-centering it as if it were in North
America produced a strong clustering effect (−4.16 km/day,
p < 0.001), reflecting sparse local peers and dependence peer
connections in NA, afforded by undersea cables connecting the
regions. Daily weighted focal points converged along NA–EU
submarine routes (Figure 2), underscoring reliance on limited
physical links. Meanwhile, nodes in remote regions were
pruned more often, reinforcing existing hubs and reducing
regional connectivity.

These results support the hypothesis that pruning based
on latency unintentionally drives geographic centraliza-
tion, raising resilience and censorship concerns. Reliance on
a handful of undersea cable routes concentrates risk: any
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Fig. 1: Daily byte-weighted average distance to peers for each
vantage point over 107 days, with linear regression and 7-day
smoothing.
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Fig. 2: Data-weighted geographic focal points of five Ethereum
nodes over 107 days. The black line is the geodesic path be-
tween N. Virginia and Frankfurt; blue lines show key undersea
cables, highlighting convergence along critical routes.

disruption along these paths can disproportionately affect large
swaths of the network. Balancing performance with broader
peer diversity will require refined scoring mechanisms that
look beyond latency alone, ultimately safeguarding Ethereum’s
decentralization at the P2P layer.

IV. CONCLUSION AND DATA RELEASE

We introduced EtherBee, a global dataset combining
Ethereum node metrics, honeypot data, and full network
traffic sessions from ten vantage points over three months,
enabling holistic analyses of node performance, P2P topol-
ogy, and security threats. Our findings show how client-
based networking decisions can inadvertently drive geographic
centralization, affecting resilience and censorship resistance.
The complete ∼16 TB compressed dataset is available upon
request and other access options are available on OSF at
https://doi.org/10.17605/OSF.IO/C5UPF.
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