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ABSTRACT

In the past decade, several small-scale quantum key distribution networks have been established. However,
the deployment of large-scale quantum networks depends on the development of quantum repeaters, quantum
channels, quantum memories, and quantum network protocols. To improve the security of existing networks
and adopt currently feasible quantum technologies, the next step is to augment classical networks with quantum
devices, properties, and phenomena. To achieve this, we propose a change in the structure of the HTTP protocol
such that it can carry both quantum and classical payload. This work lays the foundation for dividing one single
network packet into classical and quantum payloads depending on the privacy needs. We implement logistic
regression, CNN, LSTM, and BiLSTM models to classify the privacy label for outgoing communications. This
enables reduced utilization of quantum resources allowing for a more efficient secure quantum network design.
Experimental results using the proposed methods are presented.

Keywords: Quantum-classical augmented networks, efficient secure quantum networks, quantum augmented
networks, privacy classification

1. INTRODUCTION

Recent decades have seen a great deal of interest in quantum information theory, which has led to advances in
sensing, computing, and networking technologies.1–3 Under certain hardware configurations, quantum networks
provide improved communication security,4 and they are considered an essential component in future quantum
internet development.5 Although there are certain obstacles,6 Quantum Key Distribution (QKD) is still a
fundamental method for guaranteeing network security. Currently, research efforts are focused on improving
QKD systems, creating near-ideal quantum hardware, and reducing the possibility of eavesdropping.7–10 The
DARPA network and other networks in Tokyo11 and throughout Europe12 have shown that quantum networks
are feasible in practice. However, these networks are small area networks, and developing a wide-spread quantum
network becomes impractical due to the amount of noise present in current quantum devices.13

The challenges of implementing noise-free quantum channels and devices such as quantum repeaters are
making large-scale quantum networks illusive.14 To bridge the gap between large-scale classical networks and
improve the security of the quantum networks, recently quantum augmented (or hybrid quantum-classical)
networks have been proposed.15 Using existing classical networking techniques and making them quantum-
proof has been a long-standing idea in quantum communication.16 Several of the quantum error correction
methods exploit classical error correction techniques.17 Several other researchers have looked at modification
of existing protocols to support such hybrid networks.18 For example, DiAdamo et al.19 define a hybrid data
frame structure for transferring the quantum payload over a quantum-classical augmented network. In this
design, the authors proposed to create a frame consisting of a quantum payload but with classical headers
and trailers. Furthermore, the data frame discussed by the authors19 consists solely of a quantum payload.
However, we propose an enhancement to create a hybrid data frame capable of carrying both classical and
quantum payloads. This hybrid data frame can be directly integrated into modern networks, optimizing the use
of quantum resources by reserving them for highly sensitive information. Specifically, we propose a modified
HTTP data frame structure to accommodate both classical data and details about the quantum payload, as
illustrated in fig(1). The following are the functions of the layers mentioned in fig(1),

Further author information: Send correspondence to Nitin Jha at njha1@students.kennesaw.edu

https://arxiv.org/abs/2505.18282v1


1. HTTP Headers: contains the general contents such as content type, host name, content length, etc.

2. Classical Payload: contains the classical message.

3. Quantum Payload-Header: contains information such as encoding scheme, for eg., BB84 protocol, number
of qubits used, etc.

4. Quantum Payload: The actual quantum-encrypted data, basically the quantum state.

Figure 1: The proposed modified HTTP data-frame structure for a quantum-classical augmented network.

Designing and implementing a full scale quantum network is quite resource expensive. The use of quantum
resources and the vulnerability of quantum states to environmental noise makes this even more difficult. We,
thus, introduce the idea of associating a privacy label to each outgoing packets at end-user nodes such that only
the packets classified as private (denoted by privacy label of 1, discussed more in detail in Sec[4.1]) are encoded in
quantum states, thus saving up on expensive quantum resources. We aim to do this by utilizing several machine
learning models which are discussed in more detail in later sections. This approach limits the use of quantum
encryption by using classical encryption techniques for non-private communications. This approach ties in with
the above described modified HTML protocol which is more suitable for basics of quantum augmented network.
One important step in implementing the above modified HTML paradigm is to update the switch for a quantum-
classical augmented network so that data packets can be directed to a quantum or a classical gateway, depending
on the security needs of the message being transmitted. For end-to-end encryption, we propose introducing a
machine-learning algorithm that can parse the message and assign a privacy label, i.e., 0 for messages without
private contents, and 1 for messages carrying private information. This is the main focus of this work. We tested
several machine learning models (such as logistic regression, a basic CNN, LSTM, and BiLSTM) to assign privacy
labels to each outgoing textual message (emails, texts, etc.). All the private messages can thus be encoded using
quantum protocols. All the information regarding quantum encoding and the path to the receiver would go in
the HTTP headers (both quantum and classical) for the switch to guide it through the quantum gateway. Fig(2)
describes the updated idea of a quantum-classical augmented network.

The updated quantum augmented network as described in fig(2) can broadly be divided into three stages.
Broadly, stage one is the sender node, stage two consists of any intermediate network connection, and stage three
is the receiver nodes. A detailed description of the three stages are as follows,

1. Stage I (Sender Node): The sender node (Alice) consists of the privacy label classifier which consists of
several machine learning models which are discussed in detail in later sections. This is end-user application
that will assess the privacy requirement of each outgoing communication, i.e., if the communication consists
of any private information. This classifier assigns a privacy label of 0 to any communication without any



Dear Sir, 

I hope this email finds you well.
Please find my attached Phone

number and SSN:

Phone number: (516)-222-7382
SSN: ABC-DEF-2273

MESSAGE TO BE SENT:

I hope this email finds you
well. Please find my

attached Phone number
and SSN:

Phone number: (516)-222-
7382

SSN: ABC-DEF-2273

Privacy Label: 1

Quantum Gateway

Switch

Router

Full message

End user

Reasses
Privacy Label

Privacy Label
Classifier

Alice: Sender Node
Stage I

Bob: Receiver Node
Stage III

Stage II

Figure 2: METHODOLOGY: Introduction of an ML model that parses a message and assigns a privacy label to
each message, depending on the presence of any private information. Once any such quantum encryption passes
through the quantum gateway and reaches the end user, this NLP model should be able to reassess the full
message before the user can read it. Blue arrows indicates quantum payload, and red arrows indicates classical
payload. We notice the presence of both arrows in Stage II, which is to signify that in a communication scenario,
multiple packets would be transmitted. Red arrows shows the path of the packets with just classically encrypted
information, and blue arrows shows the path taken by packets with quantum encrypted information.

private information, and 1 to any communication with private (or sensitive) information. If a communi-
cation is labelled to have private content, then it would be converted into a payload to be sent using a
modified HTTP packet. This is essential for the next stage.

2. Stage II (Intermediate network nodes): The second stage is the network stage, i.e., when the packet
leaves the origin and is trying to find it’s destination. The packet structure is described in fig(1). When the
packet reaches a router, it’s routed to the correct path using the addresses mentioned in the http-packet
structure. When the packet reaches the switch, it’ll assess if a packet contains any quantum payload or
just has classical information. In the case of the quantum payload present, the packet is directed towards
the quantum gateway. This is a theoretical construct where all the error corrections and decryption of the
quantum states would happen.

3. Stage III (Receiver Node): Bob receives the measured classical information, i.e., the initial message
sent by Alice. We include the same privacy classified model to reassess the privacy label of the received
messages. The knowledge acquired at this end can be further used to backtrack and make the working of
these classifiers better.

This paper is structured as follows: Sec(2) explores some of the related works that utilize machine learning
techniques for privacy classification or threat detection. Most of these works are for classical networks. Sec(4)
goes over the entire methodology used for this study. We look at the high-level architecture of the models used
and a description of the dataset construction and other important statistics about it. Sec(5) presents the results
obtained in this study, and some discussions about it. Sec(6) concludes this work in which we use several machine
learning models for the privacy classification of emails.

2. RELATED WORKS

Numerous studies have previously employed the NLP paradigm to improve network security. Natural Language
Processing (NLP) techniques such as Named Entity Recognition (NERs) were employed in one study by Kush-
waha et al.,20 to provide selective encryption for texts sent over mobile networks that was demonstrated to be
more resource-efficient than existing methods. NLP models were employed in a different study by Yang et al.21

to identify incoming malicious encrypted communications. As a result, we can create an NLP algorithm that
can parse the message and identify the sections that require quantum-based encryption and the traditionally
encrypted sections. For this format, quantum secure direct communication methods are perfect, like the three-
stage QKD protocol.22 Without previously establishing a key, this protocol can be used to deliver encrypted
quantum states containing classical information directly. This is consistent with our proposed redesigned HTTP



stack with both quantum and classical payload. The final user will receive a single information packet composed
of classical and quantum components thanks to this NLP technique. Fig(2) describes this complete process. In
their study Shejwalkar et al.23 discuss membership inference attacks (MIAs) against NLP classification models,
highlighting the privacy risks related to text classification work. It compares sample-level MIAs, where an ad-
versary tries to determine if a single data sample was a part of the training data, with user-level MIAs, which
focus on the privacy of whole users. The paper demonstrates new and more effective user-level MIAs compared
to existing sample-level attacks. By evaluating multiple NLP algorithms and datasets, the study draws attention
to the grave privacy breaches that could arise from user-level MIAs.

3. NETWORK ARCHITECTURE

This work focuses on integrating the idea of having a privacy classifier directly into the communication network
architecture. We already gave a high-level overview of how the privacy classifier serves the purpose of quantum
augmented networks in fig(2), now we go into the details of the architecture used at the sender and receiver’s
end. We start with a definition of single fiber idea, i.e., using one single fiber to transmit both classical and
quantum information by using Wavelength Division Multiplexing (WDM).

• One Fiber: Carries both classical data (TCP/IP) and quantum photons (QKD).

• WDM Couplers: Split/merge quantum wavelength (λq) and classical wavelength (λc).

• Quantum Device: Handles single-photon transmissions and key exchange. Required for private emails.

• Router / NIC: Handles classical IP traffic and passes Q-HTTP requests.

Example Q-HTTP Exchange

Request (from Alice):

Q-SEND /secure-email HTTP/1.1

Host: bob.example.com

Q-Encryption-Mode: quantum

X-Quantum-Channel-ID: 1

Content-Type: application/octet-stream

[Encrypted Email Body (using QKD-derived key)] (Assuming quantum encryption entails that)

Response (from Bob):

HTTP/1.1 200 OK

Q-Quantum-Status: success

[Optional: Status information, key index, etc.]

The following gives a brief description of the layers presented in fig(3), and how it’s modified from current
classical framework.

1. L7: Q-HTTP + Privacy Classifier: In the classical OSI model, the application layer (Layer 7) typically
employs HTTP/HTTPS. Q-HTTP (as described in fig(1)) extends HTTP to request quantum (QKD-based
or otherwise) encryption, while a privacy classifier assigns a label indicating whether an email requires
quantum encryption.

2. L6–5: QKD / Session: In classical OSI, the session layer (Layer 5) handles sessions, and the presentation
layer (Layer 6) manages data formats, compression, and encryption. Modern stacks often merge both into
the application layer. Here, they are combined into a single “Session + QKD” layer that establishes
quantum-derived keys (or more complex quantum secure direct communication protocols) and maintain
session state.



L7:
Q-HTTP +

Privacy Classifier

L6–5:
QKD / Session

L4:
TCP

L3:
IP

L2:
Ethernet +

Quantum Signals

L1:
WDM Coupler

(λc, λq)

Sender’s End

Optical Fiber
(WDM: λc + λq)

L7:
Q-HTTP Server

L6–5:
QKD / Session

L4:
TCP

L3:
IP

L2:
Ethernet +

Quantum Detection

L1:
WDM Coupler

(λc, λq)

Receiver’s End

Figure 3: Single-Fiber Q-HTTP Architecture. Alice’s ML Privacy Classifier (L7) determines if quantum security
(QKD) is required (label=1). Messages flow downward through Alice’s layers (L7 to L1), pass through the
optical network fiber (via WDM λc + λq), and flow upward through Bob’s layers (L1 to L7). The “Sender” and
“Receiver” groups encapsulate the respective layers.

3. L4: TCP: This layer should remain rather similar to classical framework. TCP handles reliable data
delivery, packet reordering, etc.

4. L3: IP: This layer is also almost unchanged as this is the routing of the packets based on IP. Now,
we would have packets with quantum encrypted states or quantum information, but this doesn’t change
the way routing would changed. Only change would be to direct packets having quantum encryption to
quantum gateways.

5. L2: Ethernet + Quantum Signals: Ethernet is the standard data-link protocol for framing and ad-
dressing. In this hybrid model, it handles both classical traffic and quantum signals, with specialized
photonic channels or hardware managing the latter.

6. L1: WDM Coupler (λc, λq): This layers mainly manages the transmission medium and signaling meth-
ods. We propose WDM can be used to manage both quantum and classical information just at different
wavelengths using same optical fiber.

4. METHODOLOGY

In this section, we will go over the details of the experimental setup. We will go in detail about the NLP methods
mentioned in fig(2) concerning the discussion of quantum augmented networks. We will present the methodology
used for the preparation of the dataset, and high-level diagrams of the models used (Logistic Regression, CNN,
LSTM, and BiLSTM).



4.1 Dataset Description

One of the major challenges for this study was curating an appropriate dataset. For this purpose, we start
with the Enron Email dataset.24 This dataset consists of 587, 000 uncategorized emails. We do some private
information injections into some of the emails to create a new dataset which consists of 20, 000 emails out of which
10, 000 are general non-private emails and 10, 000 are emails injected with private information. The injection is
done through the use of several layers of regular expressions in the following way,

1. Randomly sample 20, 000 emails from the original Enron email dataset.

2. Use of regular expressions and a list of contextual words (such as “money” can be a good identifier for
financial emails) to identify the context of the emails, i.e., if any private information injection can be done.

3. In this study, we only consider communication scenario between two users. The definition of privacy is
very broad, however for this study we limit it to financial, and personal information. Therefore, we inject
the private information from one of the categories,

• SSN

• Email address

• Password

• Credit Card

• Account balance

• Transaction ID

This list can be further extended to more real word scenarios, and thus make the dataset more personalized
for different use cases, such as healthcare, employee-employer relationships, governmental communications,
etc.

4. We label all of the emails with any of the above injections as 1. Rest of the emails are kept as label 0.

Email Example

Sender: mary23@hotmail.com

To: nitin@gmail.com

Sub: Sensitive information asked earlier.

Dear Nitin,

I am attaching my SSN in this email as discussed in our previous conversation,

Let me know if you need anything else,

123-456-7890.

Thanks.

Best,

Mary

Out of this dataset, 80% was used to train and validate the model and 20% for testing and evaluation. We
present clustering of the dataset to visualize the similarity between the two classes, private and non-private
emails. We use PCA analysis and t-SNE reduction to visualize the similarity between the two classes in our
dataset. From fig(4) and fig(5), we can see that both of the classes are similar and have overlapping content,
this is important to check as we do not want any biases while training any of the models.
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Figure 4: PCA Visualization of Email Embeddings.
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Figure 5: t-SNE Visualization of Email Embeddings.

4.2 Model Architecture

In this subsection, we detail the implementation of the various machine-learning models utilized for detecting
privacy labels in emails. These models were trained on the dataset described in Sec[4.1]. Each model leverages
different learning paradigms and architectures to predict whether a given email should be classified as private or
non-private. The models implemented include Logistic Regression, Convolutional Neural Networks (CNNs), Long
Short-Term Memory (LSTM) networks, and Bidirectional LSTM (BiLSTM) networks. Each of these models
contributes to the overall analysis of privacy classification in emails, allowing us to evaluate their respective
performance and determine the optimal approach for quantum-classical augmented networks. Tab(1) provides a
summary of all the models used in this study.



Model Architecture Details Key Parameters Training Details

Logistic Re-
gression

TF-IDF Vectorizer (5000
features) + Logistic Re-
gression

max features=5000

(TF-IDF)
Not Applicable

CNN Embedding Layer → Con-
volutions → MaxPooling
→ Dropout → FC → Sig-
moid

vocab size=5000,
num filters=100,
Dropout: 0.4

lr=0.001, Optimizer:
Adam, Loss: BCE

LSTM Embedding Layer →
LSTM → BatchNorm
→ Dropout → FC →
Sigmoid

vocab size=5000,
lstm units=128,
Dropout: 0.5

lr=0.0005, Batch Size:
64

BiLSTM Embedding Layer → BiL-
STM→ Dropout→ FC→
Sigmoid

vocab size=5000,
lstm units=64,
Dropout: 0.5

lr=0.0001, Batch Size:
64

Table 1: Summary of models and their parameters used for privacy classification.

We need to use more complex models such as LSTM, BiLSTM to identify long-range dependencies which
might not be identified using unigrams, bigrams, or trigrams. An example of such would be as follows.

Here we can clearly see that the sender mentioned in the earlier part of the email that she’s attaching SSN
in this email, and the actual SSN is at the end of this email. This might be missed if we only use n-grams, and
this is reflected in the results for the baseline model.

Logistic Regression

Logistic Regression was used as a baseline model. We extracted textual features from emails using TF-IDF
(Term Frequency-Inverse Document Frequency) vectorization with a maximum of 5000 features. The processed
feature vectors were then passed to a standard Logistic Regression classifier. This approach, while simplistic,
provides a robust baseline for comparison with more complex neural models. The following is a

• Feature Extraction: TF-IDF Vectorizer (max features=5000) using unigram, bigrams, and trigrams.

• Classifier: Logistic Regression.

Convolutional Neural Network (CNN)

CNNs are designed to capture spatial and sequential relationships in data. Here, we utilized a one-dimensional
CNN to extract features from embedded word vectors. The model architecture comprises an embedding layer
followed by multiple convolutional layers with different filter sizes, max-pooling, a fully connected layer, and a
sigmoid activation for binary classification.

Long Short-Term Memory (LSTM)

LSTM networks are recurrent models that effectively capture long-term dependencies in sequential data. The
LSTM model comprises an embedding layer, an LSTM layer with batch normalization, dropout, a fully connected
layer, and a sigmoid activation for binary classification.

Bidirectional LSTM (BiLSTM)

The BiLSTM model extends the LSTM architecture by incorporating both forward and backward LSTM layers.
This enables the model to capture contextual information from both directions. The architecture includes an
embedding layer, bidirectional LSTM, dropout, a fully connected layer, and a sigmoid activation.
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Figure 6: Architecture of the BiLSTM model used in this experiment.

5. RESULTS

In this section, we will present the results of the several models mentioned in Sec[4]. We will present the
classification reports for all the models and the confusion matrices associated for each.

Logistic Regression

Logisitic regression is a basic model and serves as a baseline for comparison of the performance of the more
complex models. For 5000 features, we get an accuracy of 88.10%. This is a fairly good performance for baseline
model.

We see that the recall of the private class (label 1) is just 84% for the private class in tab(2). This is good,
but we need to ensure, we have high recall and precision scores for private class. The overall accuracy of this
basline model, (which uses n-grams for vectorization) was 90% which is a good baseline, however the low recall
values for private class can be a big issue, and shows that this model might not be capturing several long-range
dependencies for private class emails, and thus we need to analyze the performance of more complex models.

The confusion matrix (fig(7) shows that the false negative rates are quite high. A large section of private
emails are classified as non-private. This is not good for any future practical applications.



Table 2: Classification Report for LR Model

Class Precision Recall F1-Score Support

0 0.86 0.95 0.91 2013
1 0.95 0.84 0.91 1987

Accuracy 0.90 4000

Macro Avg 0.91 0.90 0.90 4000
Weighted Avg 0.90 0.90 0.90 4000

Figure 7: Confusion matrix obtained for Logistic Regression model as described in tab1.

CNN Model

CNN model serves as the basis of performance comparison between the linear logistic regression models and
neural models. There is a significant increase in the accuracy to 94.63%. However, to analyze the overall
performance of the CNN model, we have to look at the classification report.

Table 3: Classification Report for CNN Model

Class Precision Recall F1-Score Support

0.0 0.93 0.97 0.95 1987
1.0 0.97 0.93 0.95 2013

Accuracy 0.95 4000

Macro Avg 0.95 0.95 0.95 4000
Weighted Avg 0.95 0.95 0.95 4000

We see a significant increase in both the precision and the recall of the model compared to the earlier linear
model. We see a great improvement in recall of private class from 84% to 93% and we also see that the precision
for predicting private emails is 97%, which is great for any future applications in augmented network scenarios,
as mentioned in fig(2).

We also see that the false negative for the private class is almost half that of the linear model. This is very
important for practical purposes as classifying a non-private message as private and offering a higher level of



Figure 8: Confusion matrix obtained for CNN model as described in tab1.

security through quantum encryption is better than risking a classical encryption of a highly private message
over any future augmented networks.

LSTM Model

We expect the LSTM model to perform better than the CNN model due to its ability to capture long-range
dependencies, contextual recognition, etc. The accuracy of the model was found to be 95.4%, which is a significant
improvement over CNN model.

Table 4: Classification Report for LSTM Model

Class Precision Recall F1-Score Support

Class 0 0.99 0.91 0.95 2016
Class 1 0.92 0.99 0.96 1984

Accuracy 0.95 4000

Macro Avg 0.96 0.95 0.95 4000
Weighted Avg 0.96 0.95 0.95 4000

Based on the full classification report, we see that the performance of the LSTM model is better than the
CNN model. We notice that the model predicts non-private emails with 99.75% accuracy. Moreover, there’s no
false negatives for private class, which is fairly a good result for practical purposes.

BiLSTM Model

BiLSTM model, in theory, should be able to capture more context than a LSTM model due to the bi-directional
component. This is reflected in the increased accuracy of 94.17%. This is similar to the CNN model, but is a bit
lower than the LSTM model.

From all of the different classification reports, we notice that the LSTM model outperforms CNN and the
BiLSTM model.

From the confusion matrix, we notice that the false negative rate for the private class is comparable to the
CNN model.The result is quite acceptable for all the models which shows average f-1 scores of 94%, thus showing



Figure 9: Confusion matrix obtained for LSTM model as described in tab1.

Table 5: Classification Report for BiLSTM Model

Class Precision Recall F1-Score Support

0.0 0.93 0.96 0.94 1994
1.0 0.95 0.93 0.94 2006

Accuracy 0.94 4000

Macro Avg 0.94 0.94 0.94 4000
Weighted Avg 0.94 0.94 0.94 4000

Figure 10: Confusion matrix obtained for BiLSTM model as described in tab1.

that the classification task can be carried out in a correct manner using any of these three models. All these
models are shown to be quite robust with the parameters mentioned in tab(1). Further experiments can be
conducted to explore for more complex classifications, i.e., context-based classification.



The main idea is to reduce the load on quantum networks by limiting the amount of quantum encryption to
only the messages having private contents. To assess this, we randomly sample 500-800 emails from our dataset
to represent email communications over a network and keep the count of privacy labels for these emails. We do
this sampling fives times, and present the ratio of messages private emails to non-private ones in fig(11).

Figure 11: Comparison of private vs non-private email communications to represent a communication scenario
of user sending emails over a communication network. Red bars represents the number of non-private email, and
black bars represents the number of private emails in given network iteration.

From the above figure, we can see that for each of the five iterations, the split between private and non-private
emails are almost 50% − 55%. In a purely quantum network scenario, we would need to transmit all of these
emails (as listed for each iteration on the x-axis) using quantum encryption. However, when using our proposed
method of assigning a privacy label and selectively using quantum encryption, we can see that we would only need
to use about 50% or less quantum resources from a purely quantum network while still achieving an acceptable
level of security through the use of quantum encryption for private content, and classical encryption techniques
for non-private communications. Thus, the security offered is higher than that of a classical network and similar
to a purely quantum network for this quantum-augmented network setup. At the same time, it is much more
resource-efficient than a fully quantum network as we are using quantum encryption selectively through the use
of the proposed privacy classifier. This can further be extended to approximate the reduction in the amount of
photons or other relevant physical resources needed for our quantum-augmented network over a purely quantum
network. It is intuitive from the above figure that there is a significant reduction in using quantum encryption
for our example case. This study serves as a baseline to show that quantum-augmented networks serve as a
more resource-efficient solution to purely quantum setups while fulfilling a higher security output than that of a
classical network scenario.

6. CONCLUSIONS

The main focus of this work was to develop a machine learning framework for privacy detection in any textual
communication over a quantum-augmented network. The idea is to limit the use of quantum resources by
only encrypting communications with highly private content. This would significantly improve the efficiency
of quantum communication, as quantum resources have significantly higher costs than any classical network
resource. In this work, we curated a custom dataset of 20,000 emails, with two classes: private and non-private,
each with 10,000 emails. We then trained the logistic regression model, CNN model, LSTM, and BiLSTM models



to compare their performance for this classification task. Our results showed that the LSTM models outperform
the CNN, the BiLSTM models, and the baseline linear regression model. To understand the significance of
this proposed approach, we took a mock network scenario by sampling a random number of emails to show
that selectively encrypting messages will be more efficient approach in quantum-augmented network scenarios.
Future work will focus on modifying the BiLSTM model to include attention weights to identify specific private
content in the messages which are labeled private, which will help users get more insights about why a specific
label is attached to a given message. More developments would require privacy classifications with images and
other formats to cover private information being sent across a network. This is one of the initial steps towards
a fairly new approach of quantum-augmented networks instead of a stand-alone quantum network.
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