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Abstract—The Internet of Things (IoT) and Large Language
Models (LLMs) have been two major emerging players in the
information technology era. Although there has been significant
coverage of their individual capabilities, our literature survey
sheds some light on the integration and interaction of LLMs
and IoT devices - a mutualistic relationship in which both
parties leverage the capabilities of the other. LLMs like Ope-
nAI’s ChatGPT, Anthropic’s Claude, Google’s Gemini/BERT,
any many more, all demonstrate powerful capabilities in natural
language understanding and generation, enabling more intuitive
and context-aware interactions across diverse IoT applications
such as smart cities, healthcare systems, industrial automation,
and smart home environments. Despite these opportunities,
integrating these resource-intensive LLMs into IoT devices that
lack the state-of-the-art computational power is a challenging
task. The security of these edge devices is another major concern
as they can easily act as a backdoor to private networks if
the LLM integration is sloppy and unsecured. This literature
survey systematically explores the current state-of-the-art in
applying LLMs within IoT, emphasizing their applications in
various domains/sectors of society, the significant role they play
in enhancing IoT security through anomaly detection and threat
mitigation, and strategies for effective deployment using edge
computing frameworks. Finally, this survey highlights existing
challenges, identifies future research directions, and underscores
the need for cross-disciplinary collaboration to fully realize the
transformative potential of integrating LLMs and IoT.

Index Terms—Large Language Models, LLM, Internet of
Things, IoT, Survey, Literature Review, IoT Security, Edge
Computing, Smart Cities, Healthcare IoT, Industrial IoT, Data
Privacy, Latency.

I. INTRODUCTION

A Language Model (LM) is a computational model that
is designed to interpret and replicate human language. The
primary function of an LM is to identify word patterns
and predict the future sequence of input words. A Large
Language Model (LLM) is a type of LM characterized by
larger parameter sizes and more advanced learning abilities
[26]. By leveraging transformer architectures and extensive
parameter spaces—often exceeding hundreds of billions of
parameters—these models can comprehend context, reason
through complex problems, and generate contextually appro-
priate responses. Some prominent examples of LLM’s include
OpenAI’s GPT series, Anthropic’s Claude, and Google’s Gem-
ini.

N-Gram models are one of the most common kinds of
LM. N-Gram models use context to predict the probability
of the next word in a sequence . LLM’s have a module
called a transformer that allow for the efficient handling

of sequential data. In context learning allows the model to
produce new text from preexisting text or user given prompts,
which enhances the quality of responses. Models are often
trained using a technique known as reinforcement learning.
Reinforcement learning utilizes rewards and penalties, similar
to human behavioral development, to improve response quality
over time [16].

There are a wide variety of applications of LLM in Internet
of Things Applications. Researchers have envisioned that
combining LLMs with IoT can increase the functionality,
intelligence, and autonomy of IoT networks [3]. One such use
is in communications and networking applications. LLM’s can
be used to utilize natural language to simplify and optimize
input tasks [1]. Another application of LLM’s is smart cities.
Smart cities utilize technology such as IoT to improve urban
life in a variety of areas, including safety, accessibility, and
sustainability. AI systems powered by LLM can enhance all
of the previous smart city applications and more [4].

II. METHODOLOGY

This literature survey aims to provide a comprehensive
overview of the integration of Large Language Models (LLMs)
within the Internet of Things (IoT) ecosystem, focusing on
applications, security aspects, and inherent challenges. To
achieve this, a systematic literature search was conducted
using prominent academic databases, including IEEE Xplore,
ACM Digital Library, Google Scholar, and arXiv.

The selection process prioritized peer-reviewed journal ar-
ticles, conference papers, and significant preprints published
primarily between 2020 and mid-2024 to capture the most
recent advancements in this rapidly evolving field. Inclusion
criteria focused on works explicitly discussing the synergy,
application, or challenges of using LLMs in conjunction with
IoT systems. The final selection comprises 30 key papers (as
listed in the bibliography) that represent a diverse range of ap-
plications, theoretical frameworks, practical implementations,
and identified challenges within the LLM-IoT landscape. This
methodology ensures a relevant and contemporary synthesis of
the current state-of-the-art, although the rapid pace of research
means some very recent or niche works might not be included.

III. BACKGROUND AND RELATED WORK

A. Evolution of Large Language Models

Early language models were based on statistical and neural
approaches that operated on limited context windows. For
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example, n-gram models predicted words using the preceding
few words in a sequence, but they struggled with long-range
dependencies. Recurrent Neural Networks and LSTMs later
introduced learned representations of language, yet they too
faced challenges in capturing very long contexts and could
not be scaled easily in parallel. The transformer architec-
ture revolutionized natural language processing by enabling
efficient handling of sequential data through self-attention
mechanisms [27]. This architecture forms the backbone of
current state-of-the-art LLMs, allowing them to capture long-
range dependencies and contextual relationships in text.

B. Evolution of IoT Devices and Ecosystem

The Internet of Things has evolved from early networked
embedded systems into a vast interconnected ecosystem of
smart devices. Over the past decades, IoT deployments have
expanded from simple sensor nodes and RFID tags to include
billions of devices across domains such as transportation,
healthcare, industry, and smart homes [3]. By 2023 the number
of connected IoT devices worldwide exceeded 16 billion, and
this figure is projected to reach 30 billion by 2030 [25]. This
growth has been fueled by continual advances in connectivity
and computing infrastructure. Modern wireless standards (e.g.,
5G and low-power wide-area networks) enable reliable, low-
latency communication for massive numbers of devices, while
cloud and fog/edge computing frameworks allow data from
IoT sensors to be processed closer to the source for real-
time responsiveness [4]. Together, these developments have
dramatically increased the scale, speed, and capabilities of IoT
networks.

The rapid expansion of IoT has brought corresponding
challenges in data management and security. IoT deployments
now generate enormous volumes of sensor data, driving the
need for scalable data processing and analytics pipelines to
extract timely insights. At the same time, security and privacy
have become critical concerns, as many IoT devices have
simple designs and limited computational resources that make
robust security hard to guarantee [22]. The surge in IoT
adoption has been accompanied by a rise in cyber threats
targeting IoT systems, from device-level attacks to large-
scale network intrusions [25]. In response, considerable re-
search has focused on strengthening IoT security through
lightweight encryption/authentication protocols and intelligent
threat detection. For instance, machine learning-based anomaly
detection and intrusion detection systems are increasingly used
to identify suspicious behavior in IoT data streams. Overall,
the IoT ecosystem has matured with better connectivity and
data handling capabilities, but ensuring security and reliability
remains an ongoing priority as devices continue to proliferate.

C. Convergence of LLMs and IoT

With the parallel advancements of LLMs and IoT, re-
searchers have begun exploring their convergence to create
smarter, more autonomous systems. The core idea is that
LLMs can serve as intelligent interpreters or coordinators for
IoT environments, leveraging their language understanding

and reasoning abilities to enhance IoT functionalities [3].
By integrating LLMs with IoT, we can enable more natu-
ral human–IoT interactions (for example, controlling smart
devices through conversational queries) and more adaptive
machine–machine communication. Indeed, the research com-
munity anticipates that embedding LLM intelligence within
IoT networks will improve automation, decision-making, and
context-awareness in applications ranging from smart homes
to industrial sensor networks [3]. The LLM acts as a high-
level brain that can synthesize information from many dis-
tributed devices and respond with coherent, informed actions
or insights. Initial studies have demonstrated that LLMs can
interpret IoT data and even generate code or control logic on
the fly, effectively bridging high-level semantic reasoning with
low-level device signals [6].

Several recent works illustrate the integration of LLMs
and IoT across different domains. In smart home scenarios,
LLM-based agents have been used as home assistants that
interpret user requests and manage connected appliances us-
ing the model’s commonsense reasoning and vast knowledge
[28]. For example, Rivkin et al. present a Smart Home
Agent with Grounded Execution that utilizes an LLM to
plan and invoke device-specific actions in response to natural
language commands, significantly outperforming earlier rule-
based approaches [28]. In the industrial IoT domain, LLMs
have been applied to analyze sensor data and coordinate
complex tasks; Ren et al. propose combining LLM reasoning
with reinforcement learning to optimize industrial processes,
highlighting the potential of LLMs for decision-making on
the factory floor [y. ren]. Another line of research focuses
on enabling LLMs to directly understand IoT sensor inputs.
IoT-LM [2] by Mo et al. released in 2024, is one such
multisensory model that conditions a pre-trained language
model on streams of IoT data, achieving strong performance
on sensor-based classification and question-answering tasks
[2]. Similarly, Zhou et al. introduce the TENT framework,
which aligns IoT sensor signals with textual embeddings so
that a frozen LLM can perform human activity recognition in
a zero-shot manner (i.e., recognizing new activities without
dedicated training data) [6]. This approach endows an IoT
system with human-like cognitive flexibility, allowing it to
“guess” unseen activities by matching sensor patterns to the
closest known semantic descriptions [6]. Beyond automation
and data analysis, LLMs are also being leveraged to bolster
IoT security. For instance, one study used a GPT-based agent
to generate mitigation suggestions for vulnerabilities detected
in IoT devices, demonstrating how LLMs can assist in real-
time threat response [3]. Another work employs LLM-driven
analysis of network logs to detect anomalies in IoT traffic,
taking advantage of an LLM’s ability to understand contextual
clues in device communications [25]. In summary, the conver-
gence of LLMs and IoT is an emerging area of research, with
early results showing that LLMs can significantly enhance IoT
applications – from smart cities and homes to industrial and
security settings – by providing a layer of semantic intelligence
on top of ubiquitous connected devices. Each of these efforts
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contributes to a growing framework for seamlessly combining
the strengths of LLMs (in reasoning and language) with the
strengths of IoT (in sensing and actuation), setting the stage
for more intuitive and autonomous IoT systems.

IV. APPLICATIONS OF LLMS IN IOT

A. Smart Cities

Urban IoT deployments (traffic sensors, public services,
infrastructure monitors, etc.) can benefit from LLM-driven
analysis and control. LLMs are regarded as “indispensable
sentinels” for ensuring the seamless operation of complex
smart city systems alongside other AI technologies [4]. For
example, an LLM could analyze city-wide sensor data and
citizen feedback to help city managers optimize services.
While computationally heavy, this process can be optimized by
pre-processing the data and ensuring that bias, sample size, and
other metrics are taken into account. Recent work highlights
the substantial potential of LLMs in optimizing ICT processes
within smart cities, making urban services more responsive
and sustainable [4]. By understanding natural language inputs
from city administrators or residents, LLMs could facilitate
smart city management tasks such as interpreting maintenance
requests, analyzing urban data streams, and coordinating re-
sponses across city departments.

A key challenge in smart city adoption is public opinion and
sentiment. City governments and urban planners must work to
inform citizens of the benefits of smart city infrastructure and
convince them to support the implementation of said infras-
tructure. A key step in aligning city residents with smart city
goals is top-down communication. Top-down communication
can highlight the policy and economic priorities of a city.
In the study conducted by Nicolas, Kim, and Chi, topics
were separated into 6 key domains: smart economy, smart
people, smart governance, smart mobility, smart environment,
and smart living. The official announcements for a set of
cities were then compiled via web scraping to organize them
into the previously mentioned domains. Across the cities
analyzed, smart economy and smart living were the most
frequent domains being communicated about [5]. The study
also revealed that multi-disciplinary communication (that is,
communications that blended elements of different domains)
were most common in mature cities like Boston and Seoul
[5]. LLM’s can be used to improve city governance and
communication, as seen in section 3.3 of the paper by Ullah
et al., which discusses smart governance [4].

B. Healthcare

In smart healthcare and medical IoT settings, LLMs act as
intelligent assistants for both patients and providers. They have
shown success in answering medical queries and supporting
clinical decision-making in all specialties [4]. For example,
an LLM-based system can ingest data from wearable health
monitors or hospital IoT devices and provide insights or rec-
ommendations in plain language. One scenario demonstrated
that an LLM could keep track of patients’ treatment schedules
via IoT sensors and send timely medication reminders [3]–

effectively serving as a smart healthcare assistant. De Vito
[21] evaluated healthcare software that integrates IoT data
with LLM technology, reflecting growing interest in clinical
applications. For instance, an LLM could analyze a diabetic
patient’s glucose monitor readings alongside diet and exercise
logs (as text) and provide recommendations or warnings in
natural language. Another example is using LLMs to interpret
complex sensor data like ECG signals or radiology reports by
translating them into textual summaries or actionable insights.
Prior work with smaller language models (e.g. BERT) showed
success in summarizing radiology reports [13]; extending this
with LLMs could enable automated medical reporting from
IoT sensors.

The “Penetrative AI” concept by Xu et al. demonstrates
that ChatGPT-4 already has embedded world knowledge en-
abling it to interpret IoT sensor data (like accelerometer or
GPS readings) and draw insightful conclusions that usually
require expert knowledge [24]. This indicates that future IoT
healthcare systems could rely on LLMs to bridge sensor data
and medical expertise—e.g., detecting fall incidents from a
wearable’s motion data and generating an alert like “Possible
fall detected; patient may need help”, with reasoning included.
Overall, by translating raw sensor outputs into meaningful
assessments, LLMs act as an intelligent layer on top of existing
healthcare IoT, making data-driven decisions more transparent
and patient-centric.

C. Communications

Communication network designers are utilizing LLM to de-
velop new communications technology. One such technology
is 6G, which is expected to bring better data transfer rates,
lower latency, and enhanced device capacity. The development
of 6G is being supported through the use of LLM and AI by
means of edge intelligence and semantic communication [1].
Edge intelligence refers to the practice of placing LLM / AI
on the ”edge” of IoT devices like sensors, transmitters, and
servers. Semantic communication is an optimization technique
in which the meaning of a set of data is transmitted rather than
the raw data itself [30].

While LLM’s show much promise in the field of com-
munications, there are some challenges associated with their
implementation. One such challenge is the dynamic nature of
network environments. Communication networks often exist
in rapidly changing environments, and current LLM’s are
typically trained for a local problem set, which can cause them
to be less effective at dealing with environments that evolve
rapidly [1]. Another challenge with implementing LLM tech-
nology in communications is that LLM’s are typically created
with task specific behavior in mind. Communication networks,
however, often consist of a large variety of connected devices,
each of which have different requirements [1].

There are multiple ways in which LLM technology will play
a role in the development of 6G technology. First, LLM’s can
generate large amounts of data that can be used for testing and
system design. Due to the fact that this data is generated by
the model, it is free of any private or confidential information
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that would come with traditional data gathering techniques
. LLM’s can also organize and compile network knowledge
for system designers. They can also draw conclusions from
existing data that designers might miss upon manual review.
LLM technology, especially edge intelligence, can also be
used to schedule tasks more efficiently by providing real time
adjustments to system design based on task requirements [1].

D. Smart Homes

Smart Homes are leveraging LLM to better smart assistants
in interpreting user requests. One such case is with smart
home agent with grounded execution. SAGE has the ability to
overcome the challenges of lacking specific knowledge on the
user and their home through a scheme in which a user request
triggers a LLM-controlled sequence of discrete actions. These
actions then retrieve information, interact with the user, or
modify device states [28]. Therefore, By interpreting user com-
mands and executing actions through a dynamic decision tree,
SAGE provides personalized and context-aware responses.
Its capabilities extend to state monitoring, user preference
management, and API-based device control. Compared to
existing LLM-based systems, SAGE achieves a higher success
rate in executing diverse smart home tasks, highlighting the
transformative role of LLMs in creating intelligent and user-
friendly home automation systems.

Through the use of LLMs utilizing all the IoT devices in a
home Sasha(smarter smart home assistant) plans to addresses
the challenges of processing under-specified user commands
like ’make it cozy’ by using an LLM-driven reasoning pro-
cess. This approach overcomes the difficulties systems face
when lacking specific knowledge about user intent or device
capabilities through a scheme in which a user request triggers
an LLM-controlled sequence of reasoning steps. These steps
involve clarifying goal achievability, retrieving information,
planning actions, and interacting with the user [15]. There-
fore, by interpreting under-specified commands through this
iterative reasoning process, Sasha generates executable action
plans, providing personalized and context-aware responses. Its
capabilities extend to reasoning about device settings, creating
automation routines, user interaction via feedback, and API-
based device control through the execution of its generated
plans. Compared to existing LLM applications in smart homes,
Sasha’s iterative approach aims to reduce wrong outputs and
improve relevance.

E. Agriculture

IoT is reshaping modern agriculture by enabling data-driven
decision making and automation. Through the deployment of
interconnected sensors, drones, and actuators across farms,
real-time data are collected on crucial parameters such as
soil moisture and nutrient levels, ambient weather condi-
tions, crop health status and livestock well-being [10]. Key
application areas extensively documented include precision
crop management, where sensor data informs optimized ir-
rigation scheduling and targeted fertilization; automated pest
and disease monitoring systems that leverage imagery and

environmental data for early detection and intervention; and
intelligent livestock management systems for tracking animal
health and behavior. Collectively, these IoT applications facil-
itate improved operational efficiency, significant optimization
of resource use such as water and chemicals, improved yields
and quality, and contribute to more sustainable and resilient
agricultural practices, addressing critical global food security
challenges.

F. Industry

The use of IoT in industry allows for monitoring, control,
and efficiency through interconnected devices and sensors
across manufacturing floors, supply chains, and infrastruc-
ture. Early applications focused on data collection and basic
automation. However, recently there has been a strong push
towards integrating artificial intelligence to unlock more capa-
bilities. For example, emerging research exemplified by studies
combining IIoT with Large Language Models (LLMs) using
intelligence-based Reinforcement Learning (RL) approaches
explores applications beyond simple connectivity [18]. This
line of inquiry investigates the use of LLMs potentially to
interpret complex, unstructured operational data like techni-
cian logs or manuals or to facilitate natural language inter-
faces for diagnostics and control, while employing RL to
train intelligent agents for autonomous decision-making in
dynamic industrial environments. Specific applications po-
tentially explored within this framework include optimizing
complex manufacturing processes through learned control
strategies, enabling adaptive predictive maintenance based
on multifaceted data streams, facilitating autonomous robotic
operations in unstructured settings, and dynamically managing
energy consumption or resource allocation in real time, thus
showcasing how the synergy between IIoT, LLM, and RL
is driving the development of more intelligent, adaptive, and
autonomous industrial systems.

V. CHALLENGES IN LLM-IOT

A. Latency and Bandwidth Issue

Integrating Large Language Models (LLMs) with the Inter-
net of Things (IoT) presents significant challenges related to
latency and bandwidth. IoT systems often involve numerous
devices that generate continuous streams of data that require
real-time processing for timely actions, such as in smart
homes [28] or industrial environments [18]. LLMs are com-
putationally intensive and large mainly running in the cloud.
Transmitting large amounts of sensor data [2] to a remote
LLM and waiting for inference results introduces network
latency, which can be excessive for time-critical applications
such as 6G communications [1] or complex task execution
[8]. Furthermore, the sheer volume of data transfer consumes
significant network bandwidth. This constraint is relevant in
resource-limited IoT deployments or wide-area networks such
as those in smart cities [4]. Where approaches like efficient
prompting [7] and model orchestration [8] aim to mitigate
these issues, the fundamental mismatch between real-time IoT
demands and the processing/communication requirements of
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TABLE I
OVERVIEW OF LLM APPLICATIONS IN VARIOUS IOT DOMAINS

IoT Domain Specific Application Exam-
ple

LLM Role / Capability Lever-
aged

Key Benefits / Challenges
Addressed

Ref.

Smart Cities Optimizing urban services, an-
alyzing sensor data

Natural language understanding,
data synthesis, decision support

Improved service responsive-
ness, citizen alignment, com-
plex system management

[4], [5]

Healthcare Patient monitoring, medical
query answering, report sum-
marization

Data interpretation (wearables, sen-
sors), plain language generation,
knowledge retrieval

Personalized assistance, clin-
ical decision support, auto-
mated reporting

[3], [4], [13],
[21], [24]

Communications
(e.g., 6G)

Network optimization, data
generation for testing, seman-
tic communication

Task scheduling, synthetic data
generation, understanding commu-
nication intent

Enhanced efficiency, reduced
latency (semantic comms),
aids network design

[1], [30]

Smart Homes Interpreting user commands,
controlling devices, automa-
tion

Natural language processing,
commonsense reasoning, planning,
grounded execution

Context-aware control, person-
alized automation, handling
underspecified requests

[15], [19],
[28]

Agriculture Precision crop management,
livestock monitoring

Data analysis (sensors, imagery),
decision support

Optimized resource use,
improved yields, sustainable
practices

[10]

Industry (IIoT) Process optimization, predic-
tive maintenance, operational
data analysis

Reasoning, reinforcement learning
integration, complex data interpre-
tation

Enhanced automation, intelli-
gent decision-making, adaptive
control

[3], [18]

IoT Security Anomaly detection, threat mit-
igation suggestions, device fin-
gerprinting

Contextual understanding (logs),
pattern recognition, knowledge-
based response generation

Improved threat detection ac-
curacy, real-time assistance,
identifying unknown devices

[3], [16],
[22], [25]

Cross-Domain Zero-shot activity recognition
from sensor data

Aligning sensor signals with tex-
tual embeddings, cognitive flexibil-
ity

Recognizing novel activities
without specific training

[6]

Cross-Domain General IoT task reasoning,
sensor data understanding

Multisensory data processing,
bridging semantic reasoning and
device signals

Enhanced real-world interac-
tion, complex task execution

[2], [8], [20]

Note: This table synthesizes findings; refer to cited papers for specific details and methodologies.

large models remains a key hurdle, affecting the feasibility of
applications requiring LLMs to understand and react to the
physical world instantly [24].

B. Data Privacy

The combination of LLMs and IoT raises concerns about
data privacy and regulatory compliance. IoT devices, such
as those installed in personal spaces such as smart homes
[15] or sensitive sectors such as healthcare care [21], collect
large amounts of highly personal data. Feeding these data
into LLMs for analysis or control creates significant privacy
risks, including potential unauthorized access, data breaches,
or misuse of information [16]. Ensuring compliance with data
protection regulations (e.g. GDPR, HIPAA) becomes complex,
particularly when data traverse networks or involve third-
party LLM providers whose data handling practices may not
be transparent. There is also the risk of LLMs accidentally
leaking sensitive information learned during training or gen-
erating responses that reveal private details [23]. Therefore,
developing privacy-preserving techniques, such as deploying
specialized lightweight models on edge devices [25] or imple-
menting robust data anonymization and encryption protocols,
is crucial to build reliable LLM-IoT systems, especially in
sectors such as healthcare care [21], cybersecurity [23], and
smart cities [5].

C. Cost

The deployment and operation of LLMs within IoT ecosys-
tems present significant cost management challenges. LLMs

require substantial computational resources for training, fine-
tuning, and inference, leading to high energy consumption and
potentially large cloud computing bills or expensive edge hard-
ware investments [4]. Processing continuous high-volume data
streams from potentially thousands or millions of IoT devices
further increases these computational demands [2]. Developing
and maintaining specialized LLMs tailored for specific IoT
applications also requires considerable investment in expertise
and development time. Techniques such as efficient prompting
or the use of more lightweight models are being explored
to reduce operational expenses, but the overall cost of using
powerful AI such as LLMs in distributed IoT networks remains
a significant barrier, particularly for large-scale deployments
in areas like smart agriculture [10] or smart cities [4], which
could limit the economic viability and widespread adoption of
these integrated systems.

D. Reliability

While LLMs demonstrate impressive capabilities, they are
more susceptible to generating outputs that are plausible
but factually incorrect or nonsensical [26]. LLMs may need
to interpret sensor data or directly or indirectly manipu-
late physical actuators, such unreliability poses significant
safety risks. An LLM misinterpreting critical sensor readings
from industrial machinery or generating incorrect guidance
or commands related to healthcare applications could lead to
equipment damage, operational failure, or harm to individuals
[21]. Ensuring the LLM outputs are factual and reliable when
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interacting with the physical world is vital [24]. In order for
that a mechanism for validation, uncertainty estimation, fail-
safe protocols, and potentially human-in-the-loop verification
for safety-critical decisions is needed. Therefore, adding layers
of complexity to system design, assessment, and operation.

VI. DISCUSSION

The integration of Large Language Models (LLMs) with the
Internet of Things (IoT) represents a significant paradigm shift,
moving beyond simple data collection and actuation towards
context-aware, intelligent, and interactive cyber-physical sys-
tems. As synthesized in this survey, LLMs act as a ”cognitive
layer” or ”brain” [3], [6], capable of interpreting complex sen-
sor data, understanding natural language commands, reasoning
about the physical world [24], and orchestrating actions across
diverse IoT devices [8].

Applications span numerous domains (Table I), from en-
hancing urban living [4], [5] and personalizing healthcare [21]
to optimizing industrial processes [18] and securing networks
[25]. A key enabler is the LLM’s ability to bridge the gap
between high-level human intent or semantic goals and low-
level device operations [6], [15], [28], often leveraging com-
monsense reasoning and vast world knowledge. This allows
for more intuitive human-IoT interaction and more adaptive
autonomous system behavior.

However, realizing this potential is fraught with challenges
(Table II). The inherent resource intensiveness of LLMs
clashes with the often-constrained nature of IoT devices and
networks, leading to significant concerns regarding latency,
bandwidth consumption, and operational cost [1], [4], [25].
Transmitting potentially vast amounts of sensitive sensor data
to centralized LLMs raises critical privacy and security issues
[16], [21], [23], demanding robust mitigation strategies like
edge processing and advanced encryption. Furthermore, the
reliability of LLMs remains a concern; the potential for
generating incorrect or nonsensical outputs (hallucinations)
[26] poses substantial risks in safety-critical IoT applications
controlling physical systems [21], [24].

Current research actively seeks to address these limitations.
Strategies like deploying lightweight or specialized LLMs at
the network edge [25], developing efficient prompting and
orchestration techniques [7], [8], and exploring novel commu-
nication paradigms like semantic communication [30] are cru-
cial. Security is also paramount, with research focusing both
on leveraging LLMs for enhanced IoT security (e.g., anomaly
detection [22]) and on securing the LLM-IoT integration itself
[23], [29].

The maturity of LLM-IoT integration varies across domains.
Smart home applications [15], [28] and certain data analysis
tasks appear more advanced, while real-time control in indus-
trial or communication settings [1], [18] faces higher hurdles
due to latency and reliability requirements. Overall, the con-
vergence is promising but requires continued interdisciplinary
effort spanning AI, networking, security, and domain-specific
engineering to overcome the existing barriers and unlock the
full transformative potential.

VII. FUTURE RESEARCH DIRECTIONS

While significant progress has been made, the seamless and
widespread integration of LLMs and IoT necessitates further
research across several key areas:

• Efficient and Edge-Optimized LLMs: Developing
novel LLM architectures specifically designed for
resource-constrained edge devices is paramount. This
includes techniques beyond simple quantization or prun-
ing, potentially exploring new model types or hardware-
software co-design. Research on extremely lightweight
models capable of meaningful reasoning on-device is
crucial [25].

• Robustness and Reliability: Addressing LLM halluci-
nations and ensuring factual grounding in the physical
world is critical for safety-critical applications [24], [26].
Future work should focus on mechanisms for uncertainty
quantification, runtime validation of LLM outputs against
sensor data, fail-safe protocols, and potentially hybrid
systems combining LLMs with traditional control meth-
ods.

• Privacy-Preserving Integration: Beyond current tech-
niques like encryption and anonymization, research is
needed into advanced privacy-preserving machine learn-
ing (PPML) techniques like federated learning tailored for
LLM-IoT, secure multi-party computation, and verifiable
differential privacy guarantees, especially when dealing
with sensitive data streams [16], [23].

• Explainable AI (XAI) for LLM-IoT: Understanding
why an LLM makes a particular decision or generates
a specific command for an IoT device is vital for debug-
ging, trust, and accountability. Developing XAI methods
suitable for the complex, often black-box nature of LLMs
operating in dynamic IoT environments is an important
direction.

• Real-World Benchmarking and Deployment: Stan-
dardized benchmarks and realistic testbeds are needed to
evaluate the performance, robustness, and efficiency of
different LLM-IoT integration strategies across various
applications. More studies focusing on long-term, real-
world deployments are required to understand practical
challenges [2], [20].

• Seamless Sensor-Language Grounding: Improving the
ability of LLMs to directly understand and reason about
raw, multi-modal sensor data [2] beyond current ap-
proaches [6] will enhance their effectiveness in interpret-
ing complex physical world states.

• Ethical Considerations: As LLMs become more in-
tegrated into personal spaces and critical infrastructure
via IoT, research must address the ethical implications,
including bias in decision-making, potential for misuse,
transparency, and societal impact [4].

• Scalable Orchestration and Management: Developing
frameworks for efficiently managing potentially millions
or billions of IoT devices interacting with LLMs, includ-
ing discovery, task allocation, and coordination, remains
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TABLE II
KEY CHALLENGES IN LLM-IOT INTEGRATION AND POTENTIAL MITIGATION STRATEGIES

Challenge Description Potential Mitigation Strategies / Research Directions Ref.
Latency Delay in processing sensor data and

receiving LLM response, critical for
real-time tasks.

Edge computing (processing closer to source), effi-
cient prompting techniques, model quantization/pruning,
lightweight LLMs, semantic communication (transmit
meaning, not raw data).

[1], [2], [4],
[7], [8], [24],
[25], [30]

Bandwidth High volume of sensor data transfer
consumes network resources.

Edge computing (local processing/filtering), data com-
pression, semantic communication, selective data trans-
mission.

[1], [2], [4],
[8]

Data Privacy Sensitive personal data collected by IoT
devices processed by potentially third-
party LLMs.

On-device/Edge LLMs, data anonymization, encryption
protocols, federated learning, differential privacy, strict
compliance frameworks (GDPR, HIPAA).

[15], [16],
[21], [23],
[25]

Computational
Cost

High resource requirements (energy,
compute) for training and inference of
large LLMs.

Lightweight models, model optimization (quantization,
pruning), hardware acceleration (on edge), efficient
prompting, cloud-edge hybrid models.

[2], [4], [10],
[25]

Reliability / Ac-
curacy

LLMs can ”hallucinate” or generate
factually incorrect/nonsensical outputs,
risky for physical system control.

Validation mechanisms, uncertainty quantification,
human-in-the-loop verification, grounding LLM outputs
in physical context, robust testing frameworks.

[21], [24],
[26]

Security Vulnera-
bilities

IoT devices can be attack vectors; LLM
integration adds complexity and poten-
tial new vulnerabilities.

Lightweight security protocols, LLM-based anomaly de-
tection, secure integration practices, regular vulnerability
assessment, robust authentication.

[3], [22],
[23], [25],
[29]

Scalability Managing and coordinating LLM inter-
actions with potentially billions of IoT
devices.

Efficient orchestration frameworks, hierarchical control
structures, standardized APIs, scalable cloud/edge infras-
tructure.

[8], [25]

Note: Mitigation strategies are often overlapping and actively researched. Refer to cited papers for specifics.

a challenge [8].
Addressing these research directions will be key to building
truly intelligent, reliable, secure, and beneficial LLM-powered
IoT ecosystems.

VIII. CONCLUSION

The convergence of Large Language Models and the In-
ternet of Things heralds a new era of intelligent, interac-
tive, and autonomous systems. This survey has explored the
current state-of-the-art, highlighting the diverse applications
where LLMs enhance IoT capabilities – from smart cities
and healthcare to industrial automation and smart homes – by
providing advanced reasoning, natural language understand-
ing, and context awareness. We have systematically reviewed
the significant role LLMs can play in bolstering IoT security
through anomaly detection and threat mitigation.

Despite the immense potential, significant challenges per-
sist, primarily concerning latency, bandwidth constraints, com-
putational costs, data privacy, security vulnerabilities, and the
inherent reliability of LLMs when interacting with the physical
world. Ongoing research is actively developing mitigation
strategies, including edge computing frameworks, lightweight
models, efficient communication protocols, and robust security
measures.

The future of LLM-IoT integration hinges on addressing
these challenges through continued innovation in efficient
model design, privacy-preserving techniques, reliability mech-
anisms, and scalable architectures. Cross-disciplinary collab-
oration is essential to navigate the technical complexities
and ethical considerations. Fully realizing the transformative
potential of combining the cognitive power of LLMs with the
sensing and actuation capabilities of IoT promises to reshape

numerous aspects of technology and society, demanding care-
ful and concerted research efforts moving forward.
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