
ar
X

iv
:2

50
5.

17
33

5v
1

 [
cs

.C
R

]
 2

2
M

ay
 2

02
5

Secure Parsing and Serializing with Separation Logic
Applied to CBOR, CDDL, and COSE

TAHINA RAMANANANDRO, GABRIEL EBNER, GUIDO MARTÍNEZ, and NIKHIL SWAMY, Microsoft
Research, USA

Incorrect handling of security-critical data formats, particularly in low-level
languages, are the root cause of many security vulnerabilities. Provably
correct parsing and serialization tools that target languages like C can help.
Towards this end, we present PulseParse, a library of verified parser and
serializer combinators for non-malleable binary formats. Specifications and
proofs in PulseParse are in separation logic, offering a more abstract and
compositional interface, with full support for data validation, parsing, and
serialization. PulseParse also supports a class of recursive formats—with a
focus on security and handling adversarial inputs, we show how to parse
such formats with only a constant amount of stack space.

We use PulseParse at scale by providing the first formalization of CBOR,
a recursive, binary data format standard, with growing adoption in various
industrial standards. We prove that the deterministic fragment of CBOR is
non-malleable and provide EverCBOR, a verified library in both C and Rust
to validate, parse, and serialize CBOR objects implemented using PulseP-
arse. Next, we provide the first formalization of CDDL, a schema definition
language for CBOR. We identify well-formedness conditions on CDDL def-
initions that ensure that they yield unambiguous, non-malleable formats,
and implement EverCDDL, a tool that checks that a CDDL definition is
well-formed, and then produces verified parsers and serializers for it.

To evaluate our work, we use EverCDDL to generate verified parsers
and serializers for various security-critical applications. Notably, we build a
formally verified implementation of COSE signing, a standard for crypto-
graphically signed objects. We also use our toolchain to generate verified
code for other standards specified in CDDL, including DICE Protection En-
vironment, a secure boot protocol standard. We conclude that PulseParse
offers a powerful new foundation on which to build verified, secure data
formatting tools for a range of applications.

CCS Concepts: • Software and its engineering → Source code generation;
Specification languages; Correctness; Formal software verification; •
Information systems→ Data layout; Data encoding and canonical-
ization; • Security and privacy→ Key management; Embedded systems
security; Trusted computing; Management and querying of encrypted
data.

Additional Key Words and Phrases: Binary data formats, CBOR, CDDL,
COSE, DICE, DPE, Formal verification, Measured boot, Secrets management

1 Introduction

Incorrect handling of security-critical data formats, be it in parsing
attacker controlled data, or in serializing data for cryptographic
applications, is a major source of security vulnerabilities [Finney
2006; MITRE 2016]. In response, there is a rich area of research
into tools for secure parsing [Bangert and Zeldovich 2015; Diatchki
et al. 2024; Lasser et al. 2021; Mundkur et al. 2020; Ramananandro
et al. 2019]. We are particularly interested in secure handling of
binary data formats for use in security-critical low-level applications,
in C and other systems programming languages, including in OS
components, embedded systems, and in cryptographic applications.

Authors’ Contact Information: Tahina Ramananandro, taramana@microsoft.com;
Gabriel Ebner, gabrielebner@microsoft.com; Guido Martínez, guimartinez@microsoft.
com; Nikhil Swamy, nswamy@microsoft.com, Microsoft Research, Redmond, WA, USA.

EverParse parser/serializer
specification combinators

(Ramananandro et al. 2019)

§2: PulseParse impl.
combinators + Recursion

§3: EverCBOR
Verified CBOR Library

§4: EverCDDL Verified Code
Generator for CDDL

CBOR.c
CBOR.rs

F* specification and code (Swamy et al. 2016)

Pulse separation logic code (Ebner et al. 2025)

Theorems
Memory-Safe

Arithmetically Safe
Functionally Correct

Non-malleable
Non-ambiguous

Karamel code
generator
from F* to C/Rust
(Protzenko et al.
Fromherz et al.
2017, 2024)

§5: COSE,
DPE, …

Format.fst
Format.c
Format.rs

Automatically
Generate

Format.
cddl

Fig. 1. Architecture of our contributions

In this context, formally proven parser generators have been used
to secure critical, commercial software including in Microsoft’s
OS and cloud infrastructure [Swamy et al. 2022]. However, such
uses have focused primarily on validating flat, tag-length-value
encodings of network packet formats. We aim to broaden the scope
of secure, low-level binary formatting tools, enabling them to handle
richer formats (such as those with certain forms of recursion) and
to flexibly support both parsing and serialization, in a performant,
zero-copy-by-default, low-level style.
Our first contribution (§2) is PulseParse, a new verified library

for secure parsing and serialization. PulseParse is implemented in
F★ [Swamy et al. 2016] and in its separation logic sub-language
Pulse [Ebner et al. 2025], with formal proofs of memory safety,
functional correctness, and non-malleability (i.e., unique binary rep-
resentation) of formats. The design of PulseParse employs a novel
application of separation logic to parser & serializer combinators,
yielding an abstract style of specification with compositional proofs.
PulseParse also supports a class of security-relevant recursive for-
mats, namely those that can be validated in constant stack space.

Recursion in PulseParse is essential to model CBOR (Concise Bi-
nary Object Representation) [Bormann and Hoffman 2020], an Inter-
net standard for the binary representation of general-purpose JSON-
like data structures. A subset, Deterministically Encoded CBOR,
aims to offer non-malleability, thus avoiding hashing-based authen-
tication bugs that have occurred in similar binary formats [Decker
and Wattenhofer 2014]. Our second contribution (§3) is EverCBOR,
a formalization of CBOR, including a proof that its deterministic en-
coding is indeed non-malleable—the first such proof. Implemented
in PulseParse, EverCBOR produces verified code in both C and safe
Rust for validating, parsing, and serializing CBOR objects.
CBOR is a single uniform data format, deferring data specifi-

cations to a high-level schema language for CBOR items, called

https://arxiv.org/abs/2505.17335v1

2 • Tahina Ramananandro, Gabriel Ebner, Guido Martínez, and Nikhil Swamy

CDDL (Concise Data Definition Language) [Birkholz et al. 2019]. By
splitting those two concerns, CBOR and CDDL greatly help proto-
col designers specify data schemas with extensibility and forward-
compatibility in mind. Our third contribution (§4) is a formalization
of CDDL, including inferring well-formedness conditions on CDDL
definitions (in the form of a new elaboration algorithm, proven
sound) that yield unambiguous and non-malleable formats. Our
formalization takes the form of a tool, EverCDDL, that first formally
proves that a CDDL definition is well-formed, and then generates
a custom data type along with corresponding low-level parsers
and serializers in PulseParse, formally verified for inverse, non-
malleability, memory safety, and functional correctness with respect
to the CBOR and CDDL specifications.
CDDL is used in dozens of other standards, in applications in-

cluding supply-chain integrity (SCITT) [Birkholz et al. 2025], device
attestation protocols (DPE) [Trusted Computing Group 2023], and
WebAuthn passwordless authentication [Word Wide Web Consor-
tium 2019]. Perhaps its most prominent use is in the specification
of COSE (CBOR Object Signing and Encryption) [Schaad 2022], a
standard for cryptographically signed and encrypted objects, cer-
tificates, and keys, itself used in security-critical applications such
as SCITT, DPE, Client-to-Authenticator Protocol (CTAP) [Büttner
and Gruschka 2023; The FIDO Alliance 2025], and vaccine certifi-
cates [European Union eHealth Network 2021]. Our fourth contribu-
tion (§5) is to evaluate our libraries on two applications, COSE and
DPE. First, we show how to adapt the CDDL specifications of COSE
and DPE so that they are provably unambiguous and non-malleable
(using EverCDDL), and then integrate the resulting parsers and
serializers in verified applications. For COSE, we produce a ver-
ified library for COSE signing, relying on verified cryptographic
implementations from HACL★ [Zinzindohoué et al. 2017], proving
that the payload of a signature object is exactly the signature of the
to-be-signed bytes with the given key. For DPE, we show how to
integrate our verified parsers and serializers with a prior verified
implementation [Ebner et al. 2025].
Figure 1 shows the overall architecture of our contributions. All

the theorems in this paper and the software described are formally
verified in F★ [Swamy et al. 2016], with the separation logic parts
developed in Pulse [Ebner et al. 2025], an embedded language in
F★. All our code is proven memory safe, arithmetically safe, and
functionally correct, and the formatswe formalize are all proven non-
malleable. Our software can be used in verified Pulse applications, as
we do for COSE and DPE. Additionally, using Karamel, an existing
code generator [Fromherz and Protzenko 2024; Protzenko et al.
2017], EverCBOR extracts from Pulse to a standalone library in
C and in safe Rust, with idiomatic, defensive APIs as a drop-in
replacement of existing unverified CBOR libraries used in a variety
of applications. We evaluate EverCBOR against commonly used
unverified CBOR libraries such as QCBOR [Lundblade 2023] and
TinyCBOR [Intel 2021], noting that we support more CBOR features
(including arbitrary maps), and implement all necessary checks,
find that our verified code is competitive in speed and memory
consumption. Verified code produced by EverCDDL also extracts to
a standalone library in either C or safe Rust.
All the artifacts we contribute are available in the supplement

[Ramananandro et al. 2025]. Note, throughout the paper, we say

"format" to mean "parsing and serialization", e.g., we say "format
combinators" to mean "parser and serializer combinators".

2 PulseParse: Format Combinators with Separation Logic

Combinator parsing has its roots in functional programming [Hut-
ton 1989], providing a higher-order, compositional way to structure
parsers. We seek to use combinator parsing to produce verified code
in low-level languages, a technique leveraged first by EverParse [Ra-
mananandro et al. 2019], a format combinator library in F★ with
formal proofs of correctness and security, yielding verified C code.
Their verification approach is to layer the combinators, distinguish-
ing between specification combinators, pure functions that define the
data format specification, and on which proofs of properties such as
non-malleability are conducted; and implementation combinators
which follow the structure of the specification combinators while
refining them to efficient, low-level code.
PulseParse follows this approach too. In fact, we simply reuse

many of the specification combinators from EverParse, though we
contribute some new specification combinators, notably for recur-
sive formats. Our first main innovation is a new library of implemen-
tation combinators, whose proofs are structured using separation
logic, contrary to EverParse, which uses a classical Hoare logic. As
we will explain, through the use of separation logic, PulseParse
proofs are more modular, and enable abstract implementation com-
binators, simplifying both their construction and, more importantly,
proofs of their clients.

2.1 Specification Combinators (Review)

A parser specification in PulseParse is a pure F★ function of type
parser t = seq U8.t→ option (t & nat) (with an extra non-malleability
condition as below), that takes as argument a sequence of input
bytes, and returns Some(v, n) if parsing succeeds and the first n input
bytes are a binary representation of the high-level value v; and None
if parsing fails.
Such a parser specification defines the data format, and proper-

ties about the format can be proven as lemmas. EverParse parser
specifications are required to be non-malleable: for a given data for-
mat defined by its parser specification p, if p(b1) = Some (v, n1) and
p(b2) = Some (v, n2), parsing two input byte sequences b1 and b2 to
the same high-level value v, then n1 = n2 and b1 and b2 coincide on
their first n1 bytes, meaning that the first n1 bytes of b1 are a unique
binary representation for v. Non-malleability is especially impor-
tant for security-critical applications, especially in cryptographic
contexts—several prominent attacks come down to malleability of
formats [Finney 2006; MITRE 2016].

To combine parsers, e.g., p1: parser t1 and p2: parser t2, one uses a
combinator parse_pair p1 p2: parser (t1 & t2), a parser specification for
a pair of values whose binary representations are laid out side-
by-side. Since p1 and p2 are non-malleable, one can prove that
parse_pair p1 p2 is also non-malleable by construction.

Given a parser specification p: parser t, a serializer specification for
p has type serializer p = (x: t)→ (b: seq U8.t { p b == Some (v, length b) }):
serializing a high-level value (v) yields a sequence of bytes guaran-
teed to parse back to v, specified with a refinement type on the return
value. Serializers can also be combined, e.g., given s1: serializer p1
and s2: serializer p2, the pair serializer serialize_pair s1 s2 serializes a

Secure Parsing and Serializing with Separation Logic Applied to CBOR, CDDL, and COSE • 3

(v1, v2): t1 & t2, by running s1 on v1, then s2 on v2, and concatenate
the resulting byte sequences. The combinator serialize_pair s1 s2 has
type serializer (parse_pair p1 p2) only if p1 has the prefix property: for
any sequence of input bytes b such that p(b) returns Some(v, n), p(b')
returns the same result for any input b' coinciding with b on its
first n bytes. This property is necessary to prove the correctness of
serialize_pair with respect to parse_pair.

PulseParse reused EverParse’s specification combinators for var-
ious types, such as machine integers, bit fields, value-dependent
pairs, lists of a given number of elements, checking for a value
property, and rewriting under a bijection.

2.2 Implementation Combinators with Separation Logic

For implementation combinators, PulseParse uses separation logic
[Reynolds 2002], as provided by Pulse [Ebner et al. 2025]. For a
given pair of parser and serializer specification combinators, we im-
plement several combinators in Pulse: validators, jumpers, accessors
and readers for parsing; and writers for serialization.

Validators For p:parser t and s:serializer p, a validator v is a Pulse
function (i.e., a procedure with possible side effects) that takes an
input byte array and returns the number of bytes consumed by p
if parsing succeeds, or an error code if parsing fails. Whereas p is
specified on an input sequence of bytes, v reads the contents of a
concrete array stored in memory, recording the number of bytes
read in a mutable out parameter storing a machine integer U64.t,
and returning true if, and only if, p would have succeeded on the
abstract byte contents of the array. Validators can also be combined
(e.g., validate_pair v1 v2). F★ inlines the combinator definition when
transpiling to C or Rust, so that the resulting code is first-order.

Jumpers A jumper is a Pulse function that takes an input byte
array required to start with a valid byte representation with respect
to p, and returns the number of bytes consumed—it is used to "jump"
over a known valid item in a byte array.

Accessors An accessor is a Pulse function that takes an input byte
array containing a valid byte representation, and returns a (pointer
to a) subarray containing the valid byte representation of a subobject.
PulseParse is careful to ensure that no heap accesses are incurred
in the process. Accessors specified in separation logic can be pleas-
ingly abstract. Consider for instance the parse_pair combinator for
parsing a pair of data. For p1:parser t1, p2:parser t2, s1:serializer p1 and
s2:serializer p2, to implement a pair accessor, we need the jumper
j1 for p1, to jump over the first component of the pair. Then, for a
byte array a and a pair (v1:t1, v2:t2), we introduce a separation logic
predicate, ser (serialize_pair s1 s2) a (v1, v2), stating that the current
contents of the byte array a is exactly the byte representation of
(v1, v2) obtained by the corresponding pair serializer specification.
Then, we specify a call to a pair accessor implementation in Pulse
using the following separation logic triple—this is our first glimpse
of separation logic and we explain the specification in detail below.

{ ser (serialize_pair s1 s2) a (v1, v2) }
let (a1, a2) = access_pair j1 a
{ (ser s1 a1 v1 ∗ ser s2 a2 v2) ∗
((ser s1 a1 v1 ∗ ser s2 a2 v2) −∗ ser (serialize_pair s1 s2) a (v1, v2)) }

The first part of the triple is the precondition, which describes the
relevant part of memory as a separation logic proposition (of type
slprop) required to hold before running the Pulse statement men-
tioned in the middle part of the triple. In this case, the precondition
simply states that before running the accessor, one must prove that
the array a contains a valid serialization of (v1, v2).
The last part of the triple is the postcondition, describing a prop-

erty of the memory upon completion of the Pulse statement. The
postcondition uses two separation logic connectives. First, A ∗ B is a
separating conjunction, meaning A and B are separation logic pred-
icates that describing disjoint ownership of memory. Owning the
predicateAmeans no other part of the program can disturb the valid-
ity of A. The postcondition also uses amagic wand1, A −∗ B, which is
a connective that enjoys an elimination proof rule A ∗ (A −∗ B)

B . That
is, one can trade an A and (separately) A −∗ B for a B.

Specifically, in the context of the triple above, the postcondition
says that (1) a1 points to an array segment that contains a valid
serialization of v1; (2) a2 points to an array segment that contains
a valid serialization of v2; and (3) one can give up ownership of a1
and a2 to recover ownership of the entire original array segment a
that contains a serialization of (v1, v2). This specification captures
the essence of zero-copy parsing with no heap allocation—the caller
gains ownership to the relevant array segments, and when it is done
with them, it can simply relinquish ownership and use the magic
wand to regain ownership to the original array a.

Note how this specification makes no mention of array offsets,
which are abstracted away. Using a similar pattern, we provide an
accessor for dependent pairs, accessors for the head and the tail
of a nonempty list of elements. The pattern A ∗ (A −∗ B) is common
enough that we abbreviate it as A >∗ B.

Readers For base values such as integers, we provide PulseParse
readers, to return the actual values. Given a parser-serializer speci-
fication pair p: parser t, s: serializer p, a reader applied to an array a
satisfies the following triple:
{ ser s a v } let v' = reader s a { ser s a v ∗ (v' == v) }

showing that it returns a value v' equal to the value v from the
precondition, without changing the array a.
Now, for r1: reader s1, j:jumper p1, and r2: reader s2, we can imple-

ment read_pair r1 j1 r2 : reader (serialize_pair s1 s2):
let (x1, x2) = access_pair j1 x;
let v1 = r1 x1; let v2 = r2 x2;
wand_elim _ _; (∗ a ghost proof step for the elimination rule for −∗ ∗)
(v1, v2)

Unlike in EverParse, PulseParse requires no offset reasoning.
In PulseParse, we also provide value readers for dependent pairs

and bitfields. However, we do not provide value readers for lists or
other variable-sized data, since we want to parse data without heap
allocating, and only using constant stack space with respect to the
input, which may be attacker-controlled.
Rather, we provide zero-copy readers, which are functions that

“save” the pointers to subcomponents without parsing them. To
1Our proofs use Pulse’s trades, which have a slightly different semantic model than
magic wands, but we only rely on usual proof rules that are valid for both the traditional
magic wand and Pulse trades.

4 • Tahina Ramananandro, Gabriel Ebner, Guido Martínez, and Nikhil Swamy

this end, for a p: parser t, and s: serializer p, one needs to choose a
low-level datatype representation u into which to parse such data,
along with a separation logic predicate r: u → t→ slprop. Then, a
zero-copy reader is a Pulse function of the following signature:

{ ser s a v } let res = zerocopy s r a { r res v >∗ ser s a v }

Similarly to accessors, the postcondition uses the magic wand, thus
allowing to “borrow” permissions from subpointers of x into res,
controlled by r. For instance, a zero-copy reader can read a pair of a
machine integer and a sequence of bytes, by returning the value of
the integer and a pointer to the byte array, which it will thus not
copy. Then, the application can use further accessors and readers
to manipulate that byte array. We provide several zero-copy reader
combinators, e.g., a value reader and a value-dependent zero-copy
reader can be combined together to obtain a zero-copy reader for a
dependent pair of values. In PulseParse, we provide the following
zero-copy reader combinators:

• A value reader can be lifted as a zero-copy reader, by setting
the low-level type u to be identical to the high-level type t,
and r x y = pure (x == y).

• A byte array valid with respect to some serializer specifica-
tion s can be left as is: u = byte_array and r x y = ser s x y.

• Two zero-copy readers can be paired together to obtain a
zero-copy reader for a pair of values.

• A value reader and a value-dependent zero-copy reader can
be combined together to obtain a zero-copy reader for a
dependent pair of values.

• The high-level values read by a zero-copy reader can be
rewritten with a bijection without changing the low-level
value returned by the zero-copy reader.

• A zero-copy reader for low-level type u1 and relation r1 can
be turned into a zero-copy reader for low-level type u2 and
relation r2 and the same high-level values, if provided a Pulse
function going from u1 to u2:

(x1: u1) → (y: t) → stt u2 (requires r1 x1 y)
(ensures 𝜆 (x2: u2)→ r2 x2 y ∗∗ (r2 x2 y −∗ r1 x1 y))

We provide no zero-copy reader that would allocate into the heap.
In particular, we do not allocate references, byte arrays, or other
kinds of arrays.

Writers Similarly to value readers, we provide value writer com-
binators, taking a value to write, and an output byte array, and
returning the number of bytes written. We also provide value size
combinators to compute the minimal size required for serialization;
these value size combinators take a bound as argument, and grace-
fully fail if the size needed is larger than the bound, so as to avoid
arithmetic overflows.

However, contrary to input, an application may want to build data
structures for which it entirely controls nesting and memory usage,
apart from byte arrays containing unparsed data. For this, we define
copy writers for generic data structures so that an application can
define such a data structure, populate it in any order, and serialize it
all at once by copying it into an output buffer following a serializer
specification. Then, we specify copy writers as:

{ ∃ w. out ↦→ w ∗ r vl vh ∗ (length w ≤ length (s vh)) }

let res : size_t = writer s r a out
{ ∃ w'. out ↦→ (append (s vh) w') ∗ r vl vh }

where s is a serializer specification, r : tl → th → slprop is a relation
between the actual data structure vl:tl that the application built and
wants to serialize and vh:th, some abstract specification-level value.
A writer expects as its precondition that the application has proven
vl and vh are related, and that the output buffer is large enough to
contain the serialized bytes s(y).
The separation logic predicate r plays a critical role in the cor-

rectness of the PulseParse copy writers. For instance, tl can be the
Pulse type ref th of non-null pointers to values of type th, in which
case r vl vh will be vl ↦→ vh, the predicate saying that the contents
of the reference vl is vh. Then, that writer will read the contents
of vl, which is equal to vh, and then call a value writer. We pro-
vide many copy writer combinators, including, for example, given
two copy writers for low-level types tl1 and tl2 and two separation
logic predicates for the same high-level type th, we provide a copy
writer for low-level type tl1 + tl2, thus allowing several low-level
data structures for the same high-level type. Lacking support for
abstract relations between low and high-level representations, seri-
alization in EverParse requires applications to directly write into the
output buffer in the right order, incurring heavy application-level
reasoning about output offsets.

More generally, in PulseParse, we define the following copywriter
combinators:

• we lift value writers to copy writers using th = tl and
r x y = pure (x == y)

• we provide a byte-copy writer for byte arrays containing
unparsed bytes valid with respect to serializer specification
s (with tl = byte_array and r x y = ser x y)

• given a copy writer for low-level type tl, we provide a copy
writer for low-level type ref tl

• given a copy writer for low-level type tl, we provide a copy
writer for low-level type array tl n to serialize an array of 𝑛
elements.

• given two copy writers for low-level types tl1 and tl2, we
provide a pair copy writer for low-level type tl1 & tl2

• given two copy writers for low-level types tl1 and tl2 and
two separation logic predicates for the same high-level type
th, we provide a pair copy writer for low-level type tl1 + tl2,
thus allowing several low-level representations for the same
high-level type.

• given a valuewriter for the left-hand-side of a value-dependent
pair, and a copy writer for the right-hand-side, we provide a
value-dependent pair copy writer

In Section 4, we define a set of CDDL serializer combinators
using a similar methodology, which we extend to define parser
combinators using low-level representations that can contain both
application-controlled data structures and user-controlled unparsed
data. Based on our learnings from CDDL, we integrated similar
parsing combinators in PulseParse—Appendix A shows them in use
on a small recursive format for arithmetic expressions.

Support for some recursion Most memory-constrained binary data
parsers do not support arbitrary recursion, because many recur-
sive formats require a stack or other form of memory whose size

Secure Parsing and Serializing with Separation Logic Applied to CBOR, CDDL, and COSE • 5

would grow with the input, thus exposing themselves to attackers
exhausting memory during validation or parsing.
However, there is a class of recursive data formats that allow

validation in constant stack and memory space—we will see in
Section 3 that CBOR belongs to this class.

Theorem 2.1. Consider a binary data format where an object rep-
resentation starts with a header, followed by a contiguous sequence of
recursive object payload entries, and nothing afterwards. If a header
can be validated in constant stack and memory space, and if the header
of an object alone is enough to determine the number of immediate
children of this object, then data in this format can be validated in
constant stack and memory space.

To support this class, we include in PulseParse a recursive parser
specification combinator parse_rec as follows: let th be the high-level
type of headers, t be the high-level type of objects, p a parser speci-
fication for headers consuming at least one byte, count a function
computing the number of recursive payload elements, and synth a
function synthesizing a high-level object from its header and ele-
ments; then, parse_rec is defined below, where let! sequences option
computations:

let rec parse_rec' (ph:parser th) (count:th → nat)
(synth: (h: th) → (l: nlist t (count h)) → t) (fuel: nat) (b: Seq.seq U8.t)
: option (t & nat)
= if fuel = 0 then None else
let! h, size = ph b in (∗ parse th header ∗)
let b' = slice_from b size in (∗ b' contains (count h) elements to be parsed ∗)
let! l = parse_nlist (parse_rec' ph count synth (fuel−1)) (count h) b' in
Some (synth h l) (∗ map the parsed values to a high−level value t ∗)

let parse_rec ph count synth b = parse_rec' ph count synth (1+length b) b

We prove that if a ph header has the prefix property, then so
does parse_rec ph count synth, and if synth is injective and ph is non-
malleable, then parse_rec ph count synth is non-malleable.
Of course, parse_rec is recursive—but it is only a specification

combinator and not meant to be executed. The implementation
combinators use only constant stack.2 For validation, we take as
argument a header validator, and a function to retrieve the number
of expected payload items in the payload. Then we maintain a
counter of expected items, which we initialize to 1. Whenever we
start validating an item, we decrease that counter. Then we add the
number of expected items in the payload. The validator succeeds
if the counter reaches 0. Using Pulse, we prove that our validator
is functionally correct with respect to its recursive specification,
using a loop invariant. We take care of avoiding arithmetic overflow
by leveraging the fact that a valid header always consumes at least
one byte. See Appendix B for more details; Appendix A provides an
example PulseParse for a recursive format of variable-arity trees.

We now turn to our formalization of CBOR, making essential use
of PulseParse’s support for recursion, and abstract separation logic
specifications.

2Note, stack space usage is outside the scope of our formal proof, since the underlying
logic does not provide a way to specify it. However, we only use while loops and use
no recursive functions, so the function call depth is bounded statically (by the number
of function definitions.)

cbor ::= Int (𝑥 ∈ [−264; 264 − 1])
| Simple (𝑥 ∈ [0, 23] ∪ [32, 255])
| ByteString (𝑛 ∈ [0, 264 − 1], 𝑥 ∈ [0, 255]𝑛)
| TextString (𝑛 ∈ [0, 264 − 1], 𝑥 ∈ [0, 255]𝑛 ∩ UTF-8)
| Tagged (tag ∈ [0, 264 − 1], 𝑣 : cbor)
| Array (𝑛 ∈ [0, 264 − 1], 𝑥 ∈ cbor𝑛)
| Map (𝑛 ∈ [0, 264 − 1], 𝑥 : (cbor 𝑛−→ cbor))

where (𝑡 𝑛−→ 𝑡) is the type of extensional maps with 𝑛 entries

Fig. 2. The data model for CBOR items

3 EverCBOR: A Verified Generic CBOR Parser and
Serializer

JSON is a ubiquitous textual representation of data. However, it
comes with a vast collection of issues, some related to efficiency
(whitespace, decimal integers, etc.), others related to security (pars-
ing errors due to bad nesting of quotes or braces, string injection,
etc.) This is why Internet practitioners have long sought binary rep-
resentation alternatives, such as UBJSON, BSON, or MessagePack.3
For uniformity and extensibility reasons, the IETF adopted CBOR as
an Internet Standard in 2020 as RFC 8949 [Bormann and Hoffman
2020]. Since then, CBOR rapidly evolved into a binary format of its
own, defining its own set of items extending JSON.

3.1 Background: CBOR

A CBOR item (Figure 2) can be any one of: a 64-bit nonnegative
integer, a 64-bit negative integer represented as “one’s complement”,
a “simple value”, a byte string, a UTF-8 text string, a CBOR item
tagged with a nonnegative 64-bit integer, a finite array of CBOR
items (a heterogeneous ordered sequence,) or a finite key-value map,
where each entry key or value can be an arbitrary CBOR item—a
generalization of JSON, where only strings are allowed as keys.
Moreover, simple values are a subset of non-negative byte values,
meant to generalize JSON’s Boolean type by encoding symbols such
as NULL, meant to be distinct from integer values or empty strings.
However, naïvely transcribing the above description as a gram-

mar or an inductive datatype could conflate maps with lists of pairs
of items, potentially allowing duplicates in map keys. Thus, secure
applications must make sure CBOR maps have no such duplicates,
to avoid misunderstandings where different applications will look
at different entries for one given key. Moreover, unlike arrays, map
entries are unordered. Thus, the entry keys of a map are better mod-
eled as a set rather than as a list. These problems are inherited from
JSON. Further, trying to directly define CBOR items as an inductive
type in a proof system is not possible, since such a definition would
require the type to appear negatively in map keys. So, we look to the
byte representation as a basis for formalizing CBOR’s data model.
CBOR defines a byte representation for its items in a tag-count-

payload fashion. Figure 3 shows how CBOR items are represented
as bytes. The first byte contains three bit fields, the most significant
3 bits of which describe the type of the CBOR item. The remaining
5 bits, called “additional information”, encode an integer from 0 to
31: additional info 0 to 23 encode a nonnegative integer (or a simple

3https://ubjson.org/, https://bsonspec.org/, https://msgpack.org/

https://ubjson.org/
https://bsonspec.org/
https://msgpack.org/

6 • Tahina Ramananandro, Gabriel Ebner, Guido Martínez, and Nikhil Swamy

Type:
Bits 1-3

Additional information:
Bits 4-8

64-bit
nonnegative

0 Value 0..23

24 Value on 1 byte

25 Value on 2 bytes

26 Value on 4 bytes

27 Value on 8 bytes

64-bit negative 1 Same as above, encoding -1-x

Byte string 2 Encoding of byte length n
as integer (see type 0)

Byte array of length n

UTF-8 text string 3

Array 4 Encoding of entry count n
as integer (see type 0)

Payload (n items)

Map 5 Payload (2n items as n key-value pairs)

Tagged 6 Encoding of tag as integer (see type 0) Payload (1 item)

Simple value 7 Value 0..23

24 Value 32..255 (1 byte)

Header Payload

Fig. 3. Representing CBOR items as bytes

value) of this value. For 64-bit integers, info 24, 25, 26 and 27 encode
the fact that the integer is encoded in the next 1, 2, 4 and 8 bytes
respectively. Thus, integers are encoded in variable length. Byte
and text strings are prefixed with their byte size as a 64-bit integer
encoded in the same way (starting from the 4th bit of the first byte),
thus limiting their byte size to 264 − 1. Similarly, arrays and maps
start with their number of entries as a 64-bit integer (thus limiting
their entry count to 264 − 1,) followed by their entries consecutively,
where a map entry consists in two consecutive CBOR items; and
tagged items start with their tag as a 64-bit integer, followed by the
payload item. Type number 7 is used for simple values.

Not all such binary data represent valid CBOR items. Once binary
data conforms with this representation, a validator needs to check
for the absence of map key duplicates. We call raw CBOR bytes any
sequence of bytes conforming to the binary representation but not
yet checked for the absence of map key duplicates.

Deterministically-Encoded CBOR A given CBOR item has several
possible representations, owing to the variable byte size of integer
values and length prefixes, and the order in which map entries
are serialized. This allows for malleability attacks: if an application
cryptographically signs the byte representation of a CBOR item, an
attacker could possibly construct a different representation of the
same item, which the application would not recognize as having
signed. This can lead to serious security issues, see e.g. [Decker and
Wattenhofer 2014]. To prevent this issue, Deterministically Encoded
CBOR [Bormann and Hoffman 2020, §4.2.1], mandates integers to
be serialized in their shortest form, and map entries to be serialized
in the increasing lexicographic order of the byte representations
of their keys. We prove that this subset indeed provides a unique
binary representation for all CBOR items. Deterministically Encoded
CBOR is used in COSE and many other security-critical protocols
requiring unique binary representation.

Indefinite-length CBOR byte representations CBOR can also repre-
sent arrays and maps in an indefinite-length way, where, instead of
storing the number of entries in the prefix of their byte representa-
tion, indefinitely many entries can be parsed until a special “stop”
item is encountered. Such representations are explicitly excluded

from the deterministic subset of CBOR, which requires all arrays and
maps to have definite lengths specified in their byte representation
prefixes.

Even beyond the deterministic subset, we believe that indefinite-
length representations introduce several security issues. Such rep-
resentations are mostly meant for processing of streamed input
data. Implementations could start processing such streamed data
before having reached its end, and thus, an attacker could induce
unexpected behavior by providing a CBOR data stream that starts
with valid input and suddenly becomes invalid. This is why we
choose to validate all bytes at once after making sure we receive it
all, and start processing them only once we make sure the whole
representation is valid.

With our choice, a CBOR byte representation validator accepting
indefinite-length maps and arrays arbitrarily nested with definite-
length maps and arrays needs to store the number of CBOR items
left to be validated after each “stop” item. For a given 𝑛, validating
any 𝑛-depth nesting of a definite-length array of size at least 2 con-
taining, as its first element, an indefinite-length array containing
the remainder of the nesting, will incur storing a stack of size Ω(𝑛).
Thus, if a CBOR validator accepts such arbitrary nestings, then an
attacker might exhaust its memory even with a valid byte sequence.
For this reason, we choose not to support indefinite-length repre-
sentations at all, and from now on, we only consider definite-length
CBOR byte representations.

3.2 Formalizing Raw CBOR in PulseParse

We start by specifying and implementing a formally verified data
validator, parser and serializer for raw CBOR bytes. Then, we use
raw CBOR bytes specification to describe the CBOR data model, and
we reuse the implementations for the deterministic subset of CBOR.

Specification and input validation We start with a specification
for validating raw CBOR bytes. This can be done in constant stack
space, using our validator for recursive formats, since CBOR meets
the requirements of Theorem 2.1. CBOR item always starts with a
header followed by a payload of other CBOR items, with nothing
in between these CBOR items; and the header alone is enough to
know how many CBOR items need to be validated in the payload
(𝑛 for an array of 𝑛 entries, 2𝑛 for a map of 𝑛 entries, 1 for a tagged
item, and 0 otherwise.) In fact, the header consists in the first byte,
and the additional bytes needed to encode the number of array or
map entries and the tag of a tagged item. For other items (integers,
simple values, strings), the whole CBOR item is its own header, and
the payload is empty. Our formalization starts by first defining a
type of raw CBOR data shown (partially) below, representing maps
as lists of pairs, and raw integers paired with a bound on their size
in bytes.

type raw_u64 = { size:nat{ size ≤ 4 }; v:U64.t { fits_in size v }; }
type raw_data =
| Int64: (t:U8.t {t=0 ∨ t=1}) → (v:raw_u64) → raw_data
. . .

| Map: (len:raw_u64) → (v:nlist (raw_data & raw_data) len.v)→ raw_data

The we apply parse_rec to raw CBOR bytes, where count_payload
reads the header to compute the number of items of each case;

Secure Parsing and Serializing with Separation Logic Applied to CBOR, CDDL, and COSE • 7

let raw_u64_prop (size:nat) (value:U64.t) =
if size = 0 then value ≤ 23
else value < pow2 (8 × pow2 (size − 1))
type raw_u64 =
{ size: nat { size ≤ 4 };

value: U64.t { raw_u64_prop size value }; }
type raw_data =
| Simple: (v:U8.t { v≤23 ∨ v≥32 }) → raw_data
| Int64: (t:U8.t {t=0 ∨ t=1})→ (v:raw_u64)→ raw_data
| String: (t: U8.t {t=2 ∨ t=3})→ (len:raw_u64) →

(v: Seq.lseq U8.t len.value
{t=3 =⇒ UTF8.correct v})→ raw_data

| Array: (len:raw_u64) →
(v:nlist raw_data len.value)→ raw_data

|Map: (len:raw_u64) →
(v:nlist (raw_data & raw_data) len.value) → raw_data

| Tagged: (tag:raw_u64)→ (v:raw_data)→ raw_data

let parse_header = ...
let count_payload (x: raw_data) =match x with
| Array len _ → len.value
|Map len _ → 2 × len.value
| Tagged _ _→ 1
| _ → 0
let synth_cbor = ...
let parse_raw_cbor = parse_rec parse_header count_payload synth_cbor

Fig. 4. F★ inductive type for raw CBOR data

parse_header is a simple parser for the header bytes, and synth_payload
constructs a raw_data from the list of parsed items.
let parse_raw : parser raw_data =
parse_rec parse_header count_payload synth_cbor where
let count_payload = function |Map len _→ 2 × len.v | . . .

Thus, we prove that the parser specification for raw CBOR data
is injective: raw CBOR bytes are a unique representation of raw
CBOR data. This is true because the raw CBOR data type records
all integer byte sizes and retains the order of all map entries. For
any parse_rec, PulseParse by construction provides a corresponding
low-level implementation combinator for validation, and since the
CBOR header validator and the expected payload count function run
in constant stack space, then so does the raw CBOR byte validator.

Parsing Concretely, we do not want to parse raw CBOR bytes into
raw_data, since the latter is recursive and doing so would incur heap
allocations. Instead, we provide an implementation-level parser
iparse_raw which parses an input array of bytes into a low-level
data structure of type iraw_data, which contains a partial parse of
the input, with all the recursive occurrences represented simply
by pointers into the input array. As such, we implement verified,
incremental, mostly zero-copy parsing, in the sense that we do not
copy variable-size data, but we only copy a constant amount of
memory for one given call of the raw parser: such a call is not
recursive and will only stack-allocate a constant amount of memory.
We provide accessors to inspect the contents of an iraw_data, e.g.,
for an array or a map, iparse_raw reads only its entry count, and

we provide an accessor to iterate over the contents: calling the
accessor will run iparse_raw once on the current array entry, or
once on the current map entry key and once on the value. For an
integer, iparse_raw reads it. For a string, iparse_raw reads its length,
and provides a pointer to its payload. For a tagged item, iparse_rawr
reads its tag, andwe provide an accessor to access its payload: calling
the accessor will run iparse_raw once on the payload.
To specify the correctness of iparse_raw, we define a relation

(l:iraw_data) ↑ (h:raw_data) : slprop, relating a low-level partial parse
l:iraw_data to a fully parsed high-level value h:raw_data. The triple
below specifies iparse_raw:

{input ↦→ b ∗ (|b| = n ∧ valid(b)) }
let res : iraw_data = iparse_raw (input, n)
{∃ (h:raw_data). (res ↑ h >∗ input ↦→ b) ∗ parse_raw(b)==h }

The precondition says that, before running the parser, input points
to some byte sequence b, and that b is of length n and starts with
valid raw CBOR bytes. The postcondition shows that one gains
access to a low-level result res corresponding to the high-level parse
of b, and can give up access to res to regain ownership of input.
In full generality, our relation l ↑ r is equipped with fractional

permissions [Boyland 2003], allowing shared readable access to
parsed data. So, one can split res ↑ h, apply an accessor to res by
using one fraction, leaving the other fraction available to apply other
accessors if needed, and reconstitute the original full permission
when one no longer needs the accessed data.

Serialization Whereas using accessors on iraw_data is enough
to read them without paying much attention to the actual data
structures, this assumption no longer holds for serialization. Indeed,
we assume that an application will not try to serialize everything in
the right order using fine-grained serialization combinators; instead,
our definition of iraw_data, in the array andmap cases accommodates
a union of two cases, allowing to mix unparsed raw CBOR bytes
(produced by iparse_raw) and recursive occurrences of iraw_data built
by the application. Then, we build a recursive serializer for such raw
CBOR data, where recursion is needed only for application-built
items, and user-controlled unparsed bytes are copied as is. Thus,
the recursion stack depth is entirely controlled by the application.
On the specification side, we define a recursive item serializer

specification and we prove it correct with respect to the correspond-
ing parser. Since the parser is injective, then the serializer is also
injective. The implementation combinator takes an i:iraw_data, an
output byte array and its length, serializing i into the output and
returning the number of bytes written, or 0 if the output buffer is too
small. We also implement a function computing the size of the raw
byte representation, without serializing it.This takes as argument
a piece of raw CBOR data, and an upper bound (to protect against
arithmetic overflows), and returning the size of the byte representa-
tion, or 0 if it is larger than the bound. The implementations of the
two functions have the exact same structure, apart from the actual
output.

3.3 Specifying and Implementing the CBOR data model

We refine the raw CBORmodel of the previous section first to CBOR
(ensuring that maps have no duplicates) and then to Deterministi-
cally Encoded CBOR (ensuring that map keys are sorted, and that

8 • Tahina Ramananandro, Gabriel Ebner, Guido Martínez, and Nikhil Swamy

integers are represented minimally). For space reasons, we focus
primarily on our main result that Deterministically Encoded CBOR
is non-malleable and can be validated in constant stack space.

It is not enough to consider map key duplicates using mere equal-
ity on raw CBOR data. The major complication comes from the fact
that maps can appear anywhere, including in keys; thus, to compare
keys, we need to know how to compare maps within those keys,
and to even compare those maps, we first need to know that those
maps are themselves valid. In this process, we need to forbid a map
from having two entry keys of equivalent representations, whether
with integer representations of different sizes, or by the order of the
map entry keys of the key itself.
To this end, on the specification side, we define two mutually

recursive predicates: for a raw CBOR data to be valid, and for a pair
of raw CBOR data to be equivalent. A piece of raw CBOR data 𝑥 is
valid if, and only if, all of its children data items (tagged payload,
array items, map keys and values) are valid and, if 𝑥 is a map, no two
entries have equivalent map keys; and two pieces of raw CBOR data
are equivalent if, and only if, they are equal, or both valid and of
the same type, and, depending on their type, their integer values or
simple values are equal (regardless of their byte sizes), or their array
items or tag payloads are equivalent, or they are both key-value
maps and their map entries seen as dictionaries associate equivalent
keys to equivalent values.
To typecheck these predicates in F★, we have to prove that the

recursion is well-founded. To this end, we first define the size of a
raw CBOR data by structural recursion: a raw CBOR array has size
2 plus the sum of the sizes of its elements; a raw CBOR map has
size 2 plus the sum of the sizes of its entry keys and the sizes of its
entry values, a raw tagged CBOR data has size 2 plus the size of the
payload; any other raw CBOR data has size 1. Then, we mutually
define the validity and equivalence predicates by recursion on the
sum of the sizes of their arguments.

In spite of the recursive nature of its specification, the validity of
a piece of raw CBOR data 𝑥 can be implemented in a way similar to
the validator (or the jumper) for raw CBOR bytes, by maintaining a
counter for the number of remaining children items to visit. This
loop alone eliminates the need for a stack for the purpose of this visit.
Moreover, checking for map key duplicates can be performed by two
loops, one over the whole map, and one over the entries following
the current entry for which we need to check that there are no
other entries with an equivalent key. Thus, stack consumption only
depends on the stack consumption of equivalence checking.
However, equivalence checking in general cannot be performed

in a similar way, because of the order in map entries: checking the
equivalence of two maps requires a stack at least proportional to
the level of their map nesting.

No maps in map keys If a raw CBOR data has no maps in map
keys, its validity can be checked in constant stack space, because,
equivalence of map keys themselves containing no maps can be
checked in constant stack space. This is enough for the COSE mes-
sage layer, which mandates that map keys can only contain text
strings and integers [Schaad 2022, § 1.5]. However, while this proves
that validity for this subset of CBOR can be checked in constant

stack space, this is not enough to define a formal data model for the
whole CBOR.

Deterministically Encoded CBOR Fortunately, this limitation on
map entry keys is not necessary, thanks to the “deterministic” en-
coding of CBOR relying on minimal integer byte sizes and map key
ordering.

Given a total order on raw CBOR data, we first prove, by recursion
on the sizes of their input CBOR data, that a piece of CBOR data
where all of its integer byte sizes are minimal and all of its map keys
are sorted with respect to the strict order, is valid; and two such
pieces of CBOR data that are equivalent to each other are equal.
However, this is not enough to prove that this representation covers
all possible CBOR items. So, we prove, by induction on the size, that
minimizing the integer byte sizes of valid raw CBOR data headers
(integer value, tag value, or array or map entry count) 𝑥 yields a valid
raw CBOR data equivalent to 𝑥 . Then, we prove that sorting the
entries in a valid map where integers have minimal representation
results in a valid, equivalent map. Thus, on the specification side,
any valid raw CBOR data can be turned into such a representation,
by recursively minimizing all its integer byte representations and
sorting all its maps. Thus, we obtain the following:

Theorem 3.1. Given a total strict order < on raw CBOR data, the
type cbor of raw CBOR data with minimal integer byte representations
and maps sorted with respect to < is a data model for CBOR, in the
sense that there is a bijection between cbor and the following view
type:

view ::= Int (𝑥 ∈ [−264; 264 − 1])
| Simple (𝑥 ∈ [0, 23] ∪ [32, 255])
| ByteString (𝑛 ∈ [0, 264 − 1], 𝑥 ∈ [0, 255]𝑛)
| TextString (𝑛 ∈ [0, 264 − 1], 𝑥 ∈ [0, 255]𝑛 ∩ UTF-8)
| Tagged (tag ∈ [0, 264 − 1], 𝑣 : cbor)
| Array (𝑛 ∈ [0, 264 − 1], 𝑥 ∈ cbor𝑛)
| Map (𝑛 ∈ [0, 264 − 1], 𝑥 : (cbor 𝑛−→ cbor))

and there is a function size : cbor → N, such that a CBOR item has
always strictly larger size than any CBOR item appearing in its view
as its tagged payload, or an array or map entry.

This view type is similar to but different than the mathematical
data model of Fig. 4: the view type is not recursive, it is rather meant
as a way to case analyze on a CBOR data item, where tag, array and
map payloads are CBOR data items instead of views. But this time,
maps are true mathematical finite maps with no key duplicates, and
any integer byte sizes have disappeared.

The existence of the size function with the property on the view
ensures that there are no cyclic CBOR items (e.g. an item that would
appear itself in one of its tagged payloads, array or map entries.)
We instantiate this theorem with the lexicographic ordering on

the byte representation of raw CBOR data with respect to the se-
rializer specification defined in § 3.2. Then, since that serializer is
injective, “Deterministically Encoded CBOR” is indeed a unique
representation of CBOR items.
On the verified implementation side, we implement a function

checking that raw CBOR bytes have minimal integer byte sizes and
have their map entries sorted with respect to a strict order. The
structure of this checker is similar to that of the jumper, where the

Secure Parsing and Serializing with Separation Logic Applied to CBOR, CDDL, and COSE • 9

stack consumption only comes from the function that compares two
map keys. With the lexicographic byte ordering, stack consumption
is constant.
However, on the serialization side, instead of implementing a

function that would recursively sort map entries from valid raw
CBOR bytes, we provide a verified, defensive API that allows con-
structing CBOR items using C or Rust data structures. As part of
our verified API, we provide a function to create a CBOR map from
an array of pairs of CBOR items representing the map entries. This
function sorts the map entries in place without serializing them,
thanks to the following theorem reflecting the lexicographic byte
representation order at the level of the CBOR item view:

Theorem 3.2. Let 𝑥1 and 𝑥2 be two CBOR items of respective types
(as defined in Figure 2)𝑡1 and 𝑡2. 𝑥1 < 𝑥2 with respect to their deter-
ministic byte representation if, and only if, 𝑡1 < 𝑡2 , or 𝑡1 = 𝑡2 and one
of the following holds:

(1) they are both nonnegative integers, or simple values, and their
values are ordered: 𝑛1 < 𝑛2

(2) they are both negative integers, or simple values, and their
values are counter-ordered: −1 − 𝑛1 < −1 − 𝑛2

(3) they are both tagged items, and their tags tag1 < tag2, or
tag1 = tag2 and their payloads 𝑥

′
1 < 𝑥 ′2

(4) they are both array items, and their number of entries 𝑛1 < 𝑛2,
or 𝑛1 = 𝑛2 and their lists of entries are lexicographically
ordered with respect to <

(5) they are both map items, and their number of entries 𝑛1 < 𝑛2,
or 𝑛1 = 𝑛2 and their lists of entries, with the keys sorted wrt. <,
are lexicographically ordered with respect to the lexicographic
order on key-value pairs derived from <

This theorem, leveraging big-endian encoding of integers of a
given size, justifies the use of the lexicographic byte ordering over
the length-first byte ordering defined in the previous version of the
CBOR standard [Bormann and Hoffman 2013].
Our map creation function is defensive, in the sense that if it

encounters duplicate keys during sorting, it gracefully fails.
Then, since map entries are sorted in their data structure rep-

resentations, it is enough to reuse the raw CBOR data serializers
that we defined in § 3.2, using minimal byte representations for
integers, provided that user-controlled unparsed CBOR bytes use
the deterministic encoding. Indeed, we deem this proviso necessary
for security, because replacing bytes representing valid CBOR data
with their deterministic encoding would need to be performed in
depth-first fashion, thus requiring stack usage at least proportional
to the depth of the CBOR item.
Calling the serializer returns the byte size of the binary repre-

sentation, or 0 if the output buffer is too small, as specified as the
following separation logic triple:

{ x ↑ v ∗ b ↦→ s } let n = iserialize x b
{ ∃ s'. x ↑ v ∗ b ↦→ s' ∗ ((n>0⇐⇒ |serialize(v)| ≤ |s|) ∧
(n>0 =⇒ (n=|serialize v| ∧ prefix n s'=serialize(v)))) }

We generate C and Rust serializers with the following signatures:

size_t iserialize(icbor x, uint8_t ∗output, size_t output_len);
fn iserialize <𝛼>(x: icbor <𝛼>, output: &𝛼 mut [u8]) → option_size_t

As such, one can use EverCBOR directly from C or Rust, as a
high-assurance, full-featured CBOR library. Even among unverified
implementations of CBOR, QCBOR, a “commercial-grade” imple-
mentation, has long not supported sorting of map keys until version
2.0, released in February 2025, and which is still alpha as of April
2025, thus illustrating the intricacies of implementing the determin-
istic encoding.

Limitations CBOR also allows representing floating-point num-
bers in IEEE 754 [IEEE 2019] half-precision, single-precision and
double-precision formats. However, we do not support floating-
point numbers, due to lack of F★ support, although formalizations
of floating-point values and their representations exist for other
theorem provers, such as Flocq for Coq [Boldo and Melquiond 2011].
Moreover, the statement of Theorem 3.2 for floating-point values
would not be as simple as for integers, since the size prefix for
floating-point values in the CBOR binary encoding indicates pre-
cision rather than magnitude. CBOR also provides for definition
of further types (long integers, dates, etc.) as an interpretation of
byte strings tagged with certain tags. Long integer representations
potentially overlap with the standard representations of 64-bit in-
tegers, and a deterministic encoding allowing to conflate such rep-
resentations would actually further restrict the space of valid byte
representations. We leave such extended data models to future work.

4 EverCDDL: Verified Parsers and Serializers for CDDL

Although CBOR, like JSON, was initially being designed as a schema-
less binary representation, most security-critical applications do
not use CBOR as is, but rather want to parse and serialize CBOR
items following a schema of their choice. To this end, in 2019, the
IETF proposed CDDL (Concise Data Definition Language, [Birkholz
et al. 2019]) as a schema language for CBOR. While CDDL is still a
proposed standard, it has increasingly been used in other standards
such as COSE [Schaad 2022], DPE [Trusted Computing Group 2023],
and SCITT [Birkholz et al. 2025].

In this section, we introduce EverCDDL, a formal model of CDDL
in F★, and a code generator that transforms a CDDL description to
low-level types, parsers, and serializers for CBOR items valid with
respect to such a description.

4.1 Syntax and Semantics

A simplified syntax for CDDL descriptions is shown below:

type 𝑡 ::= 𝜃 | [𝑎] |{𝑔} | 𝑡1/𝑡2
base 𝜃 ::= ⊥ | ℓ | any | int | uint | nint | tstr | bstr
label ℓ ::= 𝑛 ∈

[
−264, 264 − 1

)
| 𝑠 : UTF-8

array group 𝑎 ::= 𝑡 | 𝑎1 //𝑎2 |?𝑎 | 𝑎1, 𝑎2 | ∗𝑎
map group 𝑔 ::= 𝑡𝑘 ⇒ 𝑡𝑣 | ℓ : 𝑡 | 𝑔1 //𝑔2 |?𝑔 | 𝑔1, 𝑔2 | ∗𝑔

We explain with an example: Two entities, a company and a non-
profit, want to produce a record of their name, their status, and
the names and salaries of its employees, encoding as a CBOR item
which would have the following JSON shape:

["ACME Corp.", "company", { "J.D.": 1842, "M.S.": 1729, "CEO": "J.D." }]
["The Main St. Assoc.", "nonprofit", { "John S.": 0 }]

Such CBOR items satisfy the following CDDL schema:

[tstr, ("company" / "nonprofit"), { ? ("CEO": tstr), ∗ (tstr => uint) }]

10 • Tahina Ramananandro, Gabriel Ebner, Guido Martínez, and Nikhil Swamy

matching an array of three CBOR items, the first being a text string
for the entity name, the second being either “company” or “nonprofit”
as a text string, and the third being a map containing an optional
key-value entry with key equal to the text string “CEO” and a text
string value, and zero or more key-value entries where keys are text
strings for employee names, and values are nonnegative integers
for their salaries.

Types In EverCDDL, we specify a CDDL type as a Boolean predi-
cate on CBOR items: taking the cbor type defining the data model of
Theorem 3.1, the semantics of a CDDL type is a Boolean function
cbor → bool. For each CDDL type construct, we define its semantics
as a predicate combinator. The standard dictates that the semantics
of CDDL is with respect to CBOR without presumption of determin-
istic encoding—so, one cannot, assume, say, that map entries are
ordered. Of course, CDDL can be and is used with Deterministically
Encoded CBOR for security-critical applications.

Array groups An array group is one of: a type to describe a single
CBOR element satisfying that type, an alternative choice of two
array groups, an optional array group, a concatenation of two array
groups, or a finite repetition of an array group (the Kleene star),
which is interpreted in a greedy fashion, similarly to Parsing Ex-
pression Grammars (PEG) [Ford 2004a]. Thus, if 𝑎 is an array group
that consumes at least one CBOR item, then ∗𝑎, 𝑎 will never match,
since the first ∗𝑎 will have consumed all sublists matching 𝑎, leaving
none matching the second 𝑎. For a given array group 𝑎, the CDDL
array type with array group 𝑎 matches a CBOR item 𝑥 if, and only
if, 𝑥 is a CBOR array and 𝑎 consumes all of its entries.PEG seman-
tics prescribe that the alternative is non-backtracking: (𝑎1 //𝑎2), 𝑎
is not equivalent to (𝑎1, 𝑎) //(𝑎2, 𝑎) in most cases, unless 𝑎 always
succeeds. Consider a CBOR item list 𝑙 , and assume that 𝑎1 succeeds
on 𝑙 and returns remaining list 𝑙 ′. Then, if 𝑎 fails, the whole array
group fails, and the alternative 𝑎2 will not be rechecked on 𝑙 again.
In EverCDDL, we specify an array group as a function that takes a
list of CBOR items and returns a splitting pair of such a list, consist-
ing of the list of consumed items and the list of remaining items; or
None if the CBOR item does not match.

Map groups Amap group is one of: an entry descriptor consisting
of a type for the entry key and a type for the entry value; or an
optional map group; or a finite repetition of a map group. An entry
descriptor can be equipped with a cut, which is meant to be the last
possible matching rule for keys matching the key type,in the sense
that if there is an entry whose key matches the key type but the
value does not match the value type, then the whole map fails to
validate, regardless of alternatives. For instance, the map (18 ↦→ 21)
matches ?(18 ⇒ 42), with no entry consumed; but it does not match
?(18 : 42), because of the use of the cut ‘:’ rather than ‘⇒’. Since
that cut is nested within an option ?, its behavior is best described
as an “exception” semantics. But since CDDL alternatives are not
backtracking, there is no way to “catch” such an exception in a
CDDL schema.Just like array groups, a map group can be seen as a
function taking a map, potentially consuming some of its entries,
and returning the map of unconsumed entries, with concatenation
being function composition.

Deterministic map groups Unfortunately, not all map groups are
admissible in CDDL, since some of them can be ambiguous because
CBOR map entries are, in general, unordered. Consider the CBOR
map (18 ↦→ “foo”); (42 ↦→ “bar”): the map group (uint => tstr)
may match either of the two entries. Our semantics first defines the
nondeterministic validity semantics of a map group as a function
that takes a finite CBOR map and returns either a set of possible
consumed-remainingmap pairs, or⊥ if a cut fails. Then, amap group
is deterministic if, and only if, it returns ⊥ or a singleton set. We
prove that, if 𝑡𝑘 and 𝑡𝑣 are CDDL types, then, even though 𝑡𝑘 ⇒ 𝑡𝑣
may be nondeterministic, ∗(𝑡𝑘 ⇒ 𝑡𝑣) is always deterministic, always
succeeds, and consumes all map entries whose keys match 𝑡𝑘 and
values match 𝑡𝑣 . We prove the following theorems.

Theorem 4.1. If 𝑡𝑘1 , 𝑡
𝑣
1 , 𝑡

𝑘
2 , 𝑡

𝑣
2 , . . . are CDDL types, and 𝑜1, 𝑜2, · · · ∈

{⇒, :}, then ∗((𝑡𝑘1 𝑜1 𝑡
𝑣
1) //(𝑡

𝑘
2 𝑜2 𝑡

𝑣
2) // . . .) has the same validity se-

mantics as ∗(𝑡𝑘1 𝑜1 𝑡
𝑣
1), ∗(𝑡

𝑘
2 𝑜2 𝑡

𝑣
2),

Theorem 4.2. The subset of CDDL map groups defined as follows
yields only deterministic map groups:

𝑔 ::= ℓ ⇒ 𝑡 | ℓ : 𝑡 | ∗(𝑡𝑘 ⇒ 𝑡𝑣) | 𝑔1 //𝑔2 |?𝑔 | 𝑔1, 𝑔2
Type interpretation Every CDDL type 𝑡 can be interpreted as type

in F★, ⟦𝑡⟧. For instance, ⟦uint⟧ is U64.t, the type of unsigned 64-bit
integers; ⟦𝑡1/𝑡2⟧ is either⟦𝑡1⟧⟦𝑡2⟧, the disjoint union. Similarly, we
turn array ormap group concatenation into a pair; the Kleene star for
array groups as a list; and the Kleene star for map groups as the type
Map.t key (list value), finite associations, accommodating duplicate
keys with unspecified key ordering (subsequently, refined to forbid
duplicates); and constant literals to the unit high-level type. For our il-
lustrative example, the high-level type associated to an entity record
is a tuple with a string for the entity name; either unit unit correspond-
ing to the company or nonprofit alternative; option(unit & string) for
the optional CEO field, and Map.t string (list U64.t) for the employee
name-salary table.

Ambiguity The type interpretation exposes other challenges with
ambiguity as well. For instance, CDDL does not require alterna-
tives to be disjoint. Consider for instance the CDDL type uint/any.
However, if we naively serialize the value Inr(Int(42)), which is
the right-hand-side of the disjoint union type and parse it back,
the parser could return Inl(42). As another example, consider the
following CDDL map group (18 ⇒ uint), ∗(uint ⇒ any). If we
try to serialize the high-level value ((() ↦→ [42]), (18 ↦→ [21])), the
serializer should fail because the two CBOR maps obtained for each
part of the concatenation will have non-disjoint domains, so it is
impossible to concatenate those CDDL maps. To identify and rule
out such ambiguities, we define an internal elaboration system for
CDDL, which we describe next.

Elaboration Our elaboration of CDDL uses the extended syntax of
deterministic map or map groups (shown below), with decorations
on its domain, where ∗((𝑡𝑘\𝑡rej) ⇒ 𝑡𝑣) is a table matching entries
whose keys match 𝑡𝑘 but not 𝑡rej and values match 𝑡𝑣 .

𝑔 ::= ℓ ⇒ 𝑡 | ℓ : 𝑡 | ∗((𝑡𝑘\𝑡rej) ⇒ 𝑡𝑣) | 𝑔1 //𝑔2 |?𝑔 | 𝑔1, 𝑔2
Elaboration elab(𝑡), is a partial function, proceeding in several steps.
First, we use Theorem 4.1 to rewrite map groups into a canonical

Secure Parsing and Serializing with Separation Logic Applied to CBOR, CDDL, and COSE • 11

(𝑡 ; (𝑡𝑘 ⇒ 𝑡𝑣)) ⇝ (𝑡/𝑡𝑘 ; (𝑡𝑘 ⇒ 𝑡𝑣))

(𝑡 ; (ℓ : 𝑡𝑣)) ⇝ (𝑡/ℓ ; (ℓ : 𝑡𝑣))

(𝑡 ; ?(ℓ : 𝑡𝑣)) ⇝ (𝑡/ℓ ; ?(ℓ : 𝑡𝑣))
(𝑡/ℓ ;𝑔1) ⇝ (𝑡1;𝑔′1) (𝑡/ℓ ;𝑔2) ⇝ (𝑡2;𝑔′2)

(𝑡 ; ((ℓ : 𝑡𝑣), 𝑔1) //𝑔2) ⇝ (𝑡1 ∩ 𝑡2; ((ℓ : 𝑡𝑣), 𝑔′1) //𝑔
′
2)

(𝑡 ;𝑔1) ⇝ (𝑡1;𝑔′1) (𝑡 ;𝑔2) ⇝ (𝑡2;𝑔′2)
(𝑡 ;𝑔1 //𝑔2) ⇝ (𝑡1 ∩ 𝑡2;𝑔′1 //𝑔

′
2)

(𝑡 ;𝑔1) ⇝ (𝑡1;𝑔′1) (𝑡1;𝑔2) ⇝ (𝑡2;𝑔′2)
(𝑡 ;𝑔1, 𝑔2) ⇝ (𝑡2;𝑔′1, 𝑔

′
2)

(𝑡 ; ∗(𝑡𝑘 ⇒ 𝑡𝑣)) ⇝ (𝑡 ; ∗((𝑡𝑘\𝑡) ⇒ 𝑡𝑣))

Fig. 5. Annotating map group tables with excluded sets of keys. For two
types 𝑡1, 𝑡2, we compute an underapproximation 𝑡1∩𝑡2 of their intersection.

form, and then check that map groups are all of the deterministic
form of Theorem 4.2. If not, we reject the specification.

Next, for each deterministic map group 𝑔, we annotate its tables
with key type specifications that should be rejected. To this end,
we define the function (𝑡 ;𝑔) ⇝ (𝑡 ′;𝑔′), defined in Figure 5, saying
that a map group 𝑔 applied to any map that has no keys matching 𝑡
behaves the same as 𝑔′, and if successful, the remaining map entries
have no keys matching 𝑡 ′. The rewrite rules are specified in priority
order, so the fourth rule takes precedence over the overlapping fifth
rule. For a given map descriptor {𝑔}, we rewrite (⊥, 𝑔) ⇝ (𝑡 ′, 𝑔′),
and use 𝑔′ as its elaborated form. Finally, we check the following
properties, rejecting 𝑔′ if any of them fail: (1) all alternatives must
be disjoint; (2) for any array groups 𝑎1 and 𝑎2, if ∗𝑎1, ∗𝑎2, 𝑎3 appears,
then 𝑎1 and 𝑎2 must be disjoint and 𝑎1 and 𝑎3 must be disjoint; and
if ∗𝑎1, 𝑎2 appears, then 𝑎1 and 𝑎2 must be disjoint. (This is to avoid
things like ∗𝑎, 𝑎, which we know will never match); and (3) for any
map groups 𝑔1 and 𝑔2, if 𝑔1, 𝑔2 appears, then the footprints of 𝑔1
(the types of all keys appearing in 𝑔1, minus the excluded keys 𝑡rej
in ∗((𝑡𝑘\𝑡rej) ⇒ 𝑡𝑣)) and 𝑔2 must be disjoint.

Theorem 4.3. Given a CDDL type 𝑡 , if elab(𝑡) = 𝑡 ′ is defined, then
𝑡 and 𝑡 ′ have equivalent validating semantics: a CBOR item is valid
for 𝑡 if and only if it is valid for 𝑡 ′.

We also prove that elaborated types are unambiguous, though
first we need to introduce the semantics of CDDL parsers.

Parsing Semantics A main design goals of CDDL is to “enable
extraction of specific elements from CBOR data for further process-
ing” [Birkholz et al. 2019, § 1], which basically means parsing. The
parsing specification of a CDDL type 𝑡 is a function taking a CBOR
item, item list or map valid with respect to 𝑡 , and returning a value
of type ⟦𝑡⟧. For instance, for uint, the parser specification extracts
the integer value of a CBOR item an returns it as a U64.t. For 𝑡1/𝑡2,
the corresponding parser is 𝑝 (𝑥) = Inl(𝑝1 (𝑥)) if 𝑥 satisfies 𝑡1, and
Inr(𝑝2 (𝑥)) otherwise, where 𝑝𝑖 is the parser for 𝑡𝑖 .

This brings us to our main theorem about the semantics of CDDL:

Theorem 4.4. Given a CDDL type 𝑡 , if elab(𝑡) is defined, and 𝑝
is the parser specification associated with 𝑡 , then 𝑝 is injective; we
can define a serializability function 𝜎 : 𝑢 → bool, such that for any
CBOR data 𝑥 valid with respect to 𝑡 , 𝜎 (𝑝 (𝑥)) holds; and we can define
a serializer specification 𝑠 : (𝑥 : 𝑢{𝜎 (𝑥)}) → cbor such that for any
serializable high-level value 𝑥 , 𝑝 (𝑠 (𝑥)) = 𝑥 .

The serializability function 𝜎 refines the type interpretation ⟦𝑡⟧
to enforce constraints such as the absence of duplicate keys in maps.

Extensions and limitations We have presented a simplified version
of what EverCDDL supports. In particular, our implementation also
supports integer ranges, byte lengths, and UTF-8 strings.
Our elaboration procedure well with cuts: considering ?(18 :

uint), ∗(uint ⇒ any), the cut says that key 18 should be excluded
from the table unconditionally, despite the ?, because a map contain-
ing an entry with key 18 and a value that does not match uint will
be rejected from the map group outright, so such an entry cannot
appear in the right-hand-side table. By contrast, without the cut,
?(18 ⇒ uint), ∗(uint ⇒ any), such an entry appearing in the
table should be accepted, though our elaborator rejects it. One could
conceivably extend our elaborator to annotate tables with the value
types of excluded entries, so that the table should accept the key
18 only if its associated value is not a uint. We leave this as future
work, since this would make the disjointness checks for map con-
catenations more complex. This especially so if the table is preceded
by alternatives. We proved that, if 𝑇 is a table, then (𝑔1 //𝑔2),𝑇 has
the same validity semantics as (𝑔1,𝑇) //(𝑔2,𝑇), which would allow
for different annotations on 𝑇 depending on the alternative taken.
But then this does not generalize to further alternatives on the
left-hand-side, especially in the presence of cuts.From the practical
point of view, we understand that this pattern without a cut allows
a future version of a CDDL description to parse more value types
for given keys. However, this pattern is discouraged in the CDDL
RFC (§ 3.5.4), likely because of challenges for secure serialization.
We also support only non-recursive CDDL descriptions; while we
investigated the formal semantics of recursive CDDL descriptions,
we ultimately deem them a security issue because they would give
rise to stack consumption proportional to the size of the input. Stan-
dards such as COSE use recursion only up to a depth of 2 or 3, which
is easily supported by unrolling.

4.2 Code Generation: Implementing Formatters for CDDL

Once EverCDDL elaborates and proves the unambiguity of a CDDL
definition, it generates implementation code in Pulse for types, val-
idators, parsers, and serializers.

Validators A validator for a CDDL type 𝑡 takes as argument a
CBOR item (obtained either from calling the EverCBOR parser, or
by constructing a CBOR item using the EverCBOR API) and returns
a Boolean value, true if and only if the CBOR item is valid with
respect to 𝑡 . For CDDL array groups, the validator takes as argument
a pointer to a CBOR array iterator (the pointer is stack-allocated by
the caller) and returns true if and only if the array group succeeds,
with the validator advancing the iterator to consume the relevant
array items. For CDDL map groups, the validator takes as argument
a CBOR item representing a map, and a caller-allocated pointer to
the number of map entries that have not been consumed yet. Since

12 • Tahina Ramananandro, Gabriel Ebner, Guido Martínez, and Nikhil Swamy

the validators rely on the fact that EverCDDL only concatenates
map groups with disjoint key domains, it is enough to count the
number of map entries left, and there is no need to precisely track
which entries have been consumed. Thus, validating a map does
not require any heap allocation, though incrementally validating
the entries of a map may require repeatedly scanning a prefix of
already validated keys.

Parsers The parser implementation for 𝑡 takes a CBOR item as-
sumed to be valid with respect to 𝑡 , and returns a low-level repre-
sentation 𝑙 : ˆ⟦𝑡⟧ of the high-level value ℎ : ⟦𝑡⟧ returned by the
parser specification, similar to the definition of iparse_raw in §3. The
difference is that EverCDDL also generates the 𝑙 ↑ 𝑣 separation logic
predicate relating low-level and high-level values. At the top-level,
we combine the EverCBOR validator and parser with the EverCDDL
validator and parser, producing a function that takes as input a byte
array and its length, and returns a low-level representation of the
result of the CDDL parser specification and the remainder of the
byte arraypast the byte representation of the corresponding CBOR
item, or None if the input bytes are not a valid representation of a
CBOR object valid with respect to 𝑡 .

For a given array group 𝑔, the parser implementation takes as ar-
gument a caller-allocated pointer to a CBOR array iterator assumed
to be valid with respect to 𝑔, and returns a low-level representation
of the high-level value returned by the parser specification. If 𝑔 is a
Kleene star 𝑔 = ∗𝑔′, then, similarly to EverCBOR, we do not parse
the full contents of the array. Rather, we split the array iterator into
two adjacent slices, the left-hand-side one covering all array items
consumed by 𝑔; then we return that iterator slice along with a func-
tion pointer to the array parser for 𝑔′, leaving to the application the
responsibility of advancing that iterator to parse the array elements.
Map groups are similar, where for a table, we do not parse the full
contents of the map. Rather, we return a record value containing
the CBOR map and function pointers for the validator for the CDDL
key type, the key exclusion domain, and the value type, as well as
parsers for the key and value types. The validator function point-
ers are necessary since matching map entries are not necessarily
contiguous, contrary to arrays. We then provide a generic iterator
combinator to advance the map accordingly.

Serialization Contrary to parsing, we generate serializers that
directly produce the deterministic byte encoding of the CBOR item
that is the result of the serializer specification, rather than producing
a CBOR data by allocating intermediate iraw_data objects for use
with the EverCBOR API. A serializer for 𝑡 takes as argument a low-
level 𝑙 : ˆ⟦𝑡⟧, an output byte array and its length, and returns the
number of bytes written, or 0 if the output array is too small or if the
high-level value is not serializable (e.g., it violates the serializability
condition 𝜎 from Theorem 4.4 with integer or simple value out of
bounds, invalid UTF-8 text bytes, etc.)
For the array descriptor and the map descriptor, the serializer

first calls the array group or map group serializer, then encodes the
header with number of entries written, then swaps the entries and
the header. This is necessary for the deterministic encoding if we
want to traverse the input data at most once. An alternative could
be to traverse the input data twice, once to compute the number of
entries to write, and another one to serialize the entries. If we were

not using the deterministic CBOR encoding, we could always use 9
bytes to store the number of entries (1 byte for the CBOR type, plus
8 bytes for the integer encoding, see Fig. 3)

For the Kleene star in array groups, we generate a serializer that
takes as argument either an array of low-level representations of
high-level values to serialize, or an array iterator that was the result
of a parser. Thus, the serializer can serialize the contents of an array
returned by another parser, provided the relations between the
low-level array item representation and the high-level value match
between the parser and the serializer. To this end, we strive to make
the relation depend as little as possible on the parser specification.
For map groups, we generate a serializer that takes an output

buffer already containing some map entries sorted with respect to
the lexicographic byte order, and inserts serialized map entries into
it, using sorted insert: for each entry to insert, the serializer first
writes it next to the existing output map, then it scans the output
map, comparing keys to determine where to insert the new entry,
then it swaps the new entry with the tail of the output map that
follows the insertion point. In doing so, it can detect that an entry
with the same key already exists in the output map. In that case, the
serializer gracefully fails. This is interesting especially for tables:
this check on serialized output maps is a sound way to check that
the input map has no duplicates. From the verification point of view,
the high-level datatype is neither a map (because the serializer does
not need to assume that the input map has no duplicate keys) nor a
list of entries (because the serializer does not need to know about
the order of entries), but a map between keys and lists of values:
this way, keys are not ordered, but, for a given key, the length of
the list of values equals the number of occurrences of the key in the
“map”.

5 Performance Benchmarks & Verified Applications

In this section, we report on experiments using our verified tools,
with both quantitative and qualitative results. It’s worth noting that
our verified code worked correctly the first time on all experiments.
On an Intel Xeon E5-2680 v4 with 56 cores (1.2 GHz), using 24 cores,
PulseParse (650 lines for parse_rec and its proofs + 700 lines for its
implementation + 6400 lines for all the Pulse combinators) verifies in
6 minutes, EverCBOR (6k lines of spec + 26k lines of implementation
and proofs) verifies in 10 minutes and extracts and compiles to both
C and Rust in 1 minute. Finally, EverCDDL (6k lines of spec + 23k
lines of implementation and proofs) verifies in 0.5 hour.
Although we generate both C and Rust code, we focus on eval-

uating the performance of the generated C code, unless explicitly
stated otherwise.

5.1 Synthetic Benchmarks

We evaluate EverCBOR and EverCDDL on several synthetic bench-
marks, and show that its performance is comparable with that of
existing (unverified) libraries, namely QCBOR and TinyCBOR, even
though we have not had the time to implement any optimizations
after these initial benchmarking results.

Our first benchmark considers a record type with 8 fields of type
uint, with results in the first line of Table 1. From a CDDL descrip-
tion (elided), EverCDDL generates a struct type and parsers and
serializers for it. The QCBOR and TinyCBOR libraries do not provide

Secure Parsing and Serializing with Separation Logic Applied to CBOR, CDDL, and COSE • 13

CDDL functionality, so wewrite C functions translating between the
CBOR representation and a flat C structure. The performance of our
validator and parser is between QCBOR and TinyCBOR. We believe
we can close the gap to QCBOR since, by default, EverCDDL returns
parsed records as structures on the stack, rather than using out
parameters to fill an existing object—it should be straightforward to
add support for this and close the gap to QCBOR. For serialization,
our code is slower than QCBOR and TinyCBOR because we serialize
in the deterministic encoding, perhaps shuffling elements.

Our second benchmark involves large maps. The relevant CDDL
description is simply map = ∗(uint => uint). The benchmark con-
sists of a map with 𝑁 = 8000 entries with random keys and values,
which is then looked up 𝐾 = 1000 times with random keys, which
may or may not be present. We begin from a serialized map in the
deterministic encoding. For EverCDDL, we first validate this bit-
string, which checks that the keys are in order, obtaining an iterator.
To look up a value, we construct a CBOR object from our desired
key, and call an EverCBOR function to look it up in the map. The
QCBOR API offers a function for map lookup, so we use it. For
TinyCBOR, we iterate through the map comparing keys. Here, Ev-
erCBOR is faster than the other two libraries, for two main reasons.
One, given that we validated the map, we know the keys are in
order and can therefore stop early safely (we also stop early with
TinyCBOR). Second, importantly, since we know the object is deter-
ministically encoded, we can compare the serialized representation
of keys directly, byte-for-byte, instead of having to parse back the
keys in the map.
Our third benchmark involves nested arrays, generated by the

CDDL description arr = [∗subarr]; subarr = [∗uint]. By run-
ning EverCDDL on this description, we generate a C type for an
arr, alongside a parser and serializer for it. We measure the time
it takes to serialize and parse an array of 𝑁 = 104 where every
subarray also contains 𝑁 elements all set to zero, for a total of 108
elements. The CBOR object involved is roughly 100MB. For Ever-
CDDL, we generate a structure in memory and call the serializer.
The QCBOR library, instead, provides a streaming API where ele-
ments are output or parsed one at a time. We include the setup time
in the measurements for EverCDDL, for a conservative comparison.
EverCDDL is less performant than the other libraries, there are a
few non-fundamental reasons for this. For example, when writing
each integer into the buffer, there is a size check performed. This
check involves constructing the CBOR object (of a single integer)
to be written, computing its size, and checking that the remaining
space is at least that. This computation is rather wasteful and hard
to optimize by the C compiler. Specializing it manually, replacing
the size of the CBOR integer by the constant 1, provides a 20% per-
formance improvement. We are confident we can adjust our verified
implementations to generate specialized sizes to attain this speedup.
For parsing, there is a design difference between the APIs pro-

vided by EverCDDL and the other two libraries. EverCDDL requires
the buffer to be validated before any data can be read from it, which
incurs one full pass of the 100MB buffer. Once validated, the client
code can use the iterators to walk the object, without incurring
copies, and extract the integers in it. The other libraries provide
streaming APIs that can simply walk the buffer and read the integers
on demand, avoiding the need for the initial pass, but allowing to

EverCDDL QCBOR TinyCBOR
V/P S V/P S V/P S

Rec (𝜇𝑠) 3.33 .57 1.91 .23 3.78 .29
Map (𝜇𝑠) 138 282 306
Arr (s) 2.67/4.92 2.06 2.92/2.91 0.75 2.68/2.68 1.23

Table 1. Synthetic benchmarks for EverCDDL, QCBOR and TinyCBOR.
Values are time (for Rec, forValidation plus Parsing, or Serialization), lookup
time (for Map), or time (for Arr).We distinguish validation from parsing in
Arr, since iteration is involved.

partially read a corrupted object. For security-sensitive applications,
we argue that a validation pass should be performed in all cases,
hence our benchmark for QCBOR and TinyCBOR also include one
such pass. For validation, all three libraries perform similarly. How-
ever, our parsing is slower, because the EverCDDL iterator for the
outer array is not related at all to that of the inner array. Once the
inner iterator reaches the end, and we want to advance to next sub-
array, the outer iterator has to walk the buffer again to find the new
offset. Our current iterator API does not expose this fact, mainly
because it treats unparsed and application-built data uniformly.
All in all, while there are some improvements to be made, our

benchmarks show performance close to a state-of-the-art unverified
library, although our code parses to and from application-level types
with a verified, defensive implementation.

5.2 Verified Applications: COSE & DPE

COSE is an Internet standard for signing and encryption of CBOR
objects, initially for securing the transport of IoT messages, though
it is also used today in non-IoT settings. For signing, COSE defines a
signature envelope message format containing a signature structure.
The signature structure is encoded using Deterministically Encoded
CBOR to make sure its byte representation is unique; then, it is
authenticated using cryptographic hashing algorithms.
In the COSE standard, the message formats are described nor-

matively in prose, but they are accompanied with a non-normative
CDDL description. We found that the latter does not reflect the nor-
mative prose on two aspects, namely the constraint that keys 5 and
6 must not appear together in Generic_Headers, and an erroneously
backtracking (non-PEG) interpretation of ? in Sig_structure. So, we
fixed the CDDL description accordingly.
With EverCDDL, we support signature and verification formats

with a single (COSE_Sign1) or multiple signers (COSE_Sign), as
well as some cryptographic key object formats.

A notable limitation of our implementation of COSE is that the
parser only supports deterministic CBOR. Hence our implementa-
tion will reject COSE messages that are not deterministically en-
coded. This is not a problem when serializing messages since it is
always allowed to write CBOR deterministically.

Evaluation The F★ file generated by EverCDDL for the COSE
specification takes 5 minutes to verify on a single core; extracting
to C using Karamel takes another 23 seconds. To evaluate interoper-
ability and benchmark the performance of the EverCDDL-generated
code, we implement a small signature generation and verification
tool (limited to a single signer, Ed25519 algorithm, empty AAD,
fixed headers) in two versions: both an unverified one using the

14 • Tahina Ramananandro, Gabriel Ebner, Guido Martínez, and Nikhil Swamy

C API & OpenSSL Pulse API & HACL★
COSE_sign 39.0 𝜇𝑠/iter 53.3 𝜇𝑠/iter
COSE_verify 99.6 𝜇𝑠/iter 58.2 𝜇𝑠/iter
Ed25519_sign 36.8 𝜇𝑠/iter 51.9 𝜇𝑠/iter
Ed25519_verify 96.7 𝜇𝑠/iter 57.3 𝜇𝑠/iter
parse(Sign1) 2.4 𝜇𝑠/iter
ser(Sign1) 1.0 𝜇𝑠/iter
ser(Sig_structure) 1.0 𝜇𝑠/iter

Table 2. Benchmarking results of our EverCDDL-based COSE signature
implementation.We sign and verify amessage with an 896 byte long payload
using Ed25519. The benchmarks were compiled with clang 19.1.7 (-O3) and
run on an Intel Xeon W-2255 CPU.

EverCDDL-generated C API and OpenSSL, as well as a verified one
using the Pulse API and using the HACL★ library for cryptographic
operations. The benchmarking results in Table 2 show that the cryp-
tographic primitives take up the majority of the runtime, in both
the verified and unverified versions.4
To give a flavor of the automatically generated C API, let us

look at the CDDL schema for COSE_Key_OKP. This type specializes
COSE_Key in the COSE RFC to OKP keys; specializing the typemakes
EverCDDL parse the fields for the public key (-2) and private key
(-4), and we do not need to go through the map manually.

COSE_Key_OKP = { 1:1, −1:int/tstr, ?−2:bstr, ?−4:bstr, ∗label=>values }

On the C side, we get a structure and two functions, for serializa-
tion and parsing.5The structure has four fields: three for explicitly
specified data fields (-1, -2, and -4) and one for the map at the end.
The entry 1:1 does not correspond to a field in the C structure, since
EverCDDL knows it just has the value 1. Types like option___bstr
are created by Karamel using monomorphization.

typedef struct {
label intkeyneg1; option__bstr intkeyneg2; option__bstr intkeyneg4;
either__slice__map_iterator_t _x0; } COSE_Key_OKP;
size_t serialize_COSE_Key_OKP(COSE_Key_OKP c, slice__uint8 out);
option__COSE_Key_OKP__slice_uint8
validate_and_parse_COSE_Key_OKP(slice__uint8 s);

The Pulse API generated by EverCDDL is expressive enough to
state a precise functional correctness specification. For signature
verification, we define a predicate relating a valid signature message
with its payload, where vmsg is the specification-level struct carrying
the signed bytes, while tbs is the bytes to be signed:

let good_sig pubkey msg payload = ∃ vmsg tbs.
parses_from bundle_COSE_Sign1_Tagged.b_spec vmsg msg ∧
vmsg.payload == Inl payload ∧ length vmsg.sig == 64 ∧
to_be_signed_spec vmsg.protected payload tbs ∧
spec_ed25519_verify pubkey tbs vmsg.sig

The verify function then takes fractional (shared) permissions to
the public key and (serialized) message, and returns an optional

4We were surprised that OpenSSL signature verification is three times slower than
signing and also slower than the fully verified HACL★ implementation. The t_cose
library however exhibits the same phenomenon (showing nearly identical performance),
which is perhaps a sign of the complexity of using the OpenSSL API.
5We shorten namespaces in the generated C code.

slice for the payload. The postcondition ensures that any payload
returned by verify is signed by the given public key.

{ pubkey ↦→(r) vk ∗ msg ↦→(p) vm } let payload = verify pubkey msg
{ pubkey ↦→(r) vk ∗ (match payload with | None → msg ↦→(p) vm
| Some r→ ∃ vp q. (r ↦→(q) vp) >∗ (msg ↦→(p) vm) ∗ good_sig vk vm vq) }

Similarly, signature generates guarantees that the output buffer
is a well-formed COSE_Sign1_Tagged object whose signature field
is a valid signature of the appropriate Sig_structure.

DPE We also specify the CDDL API for DPE, a secure boot proto-
col, with functional correctness proofs, covering six different mes-
sage types for the four main functions on the DPE interface. Appen-
dix C provides some more information, though the main takeaway
is similar to what we report for COSE: EverCDDL specifications are
precise enough to express full functional correctness of application
code manipulating messages in a given CDDL schema.

6 Related Work & Conclusions

Bratus et al. [2017] provide a useful perspective on the important
of parsing for software security, including guidelines for how to
securely handle attacker-controlled input.
The most closely related line of work to ours is EverParse [Ra-

mananandro et al. 2019], which we have discussed throughout the
paper, since we reuse some of their purely functional specification
combinators. Many others have looked at purely functional verified
parsers and serializers. Blaudeau and Shankar [2020] build a verified
packrat parser for parsing expression grammars (PEGs) [Ford 2002,
2004b] in the PVS proof assistant [Shankar 1996], while [Mundkur
et al. 2020] supports PEGs with constraints. Lasser et al. [2019] build
a verified implementation of an LL(1) parser generator and Lasser
et al. [2021] verified an implementation of the ALL(*) parsing al-
gorithm, both in the Coq proof assistant. Ni et al. [2023] use Ever-
Parse’s specification combinators to formalize ASN.1 DER [ITU-T
Study Group 17 2021], a widely used data formatting standard with
goals similar to CBOR and CDDL, proving that ASN.1 DER is non-
malleable. They use an ad hoc approach to formalizing the recursion
present in ASN.1, rather than our general purpose parse_rec combi-
nator with constant-stack-space validation. Ni et al. extract their
specifications to OCaml code, rather than going to fully low-level
code in C, as we do. Similarly, Debnath et al. [2024] also focus on
ASN.1 and formalize it in Agda, producing functional Haskell code
for X.509 certificate chain validation. Delaware et al. [2019] imple-
ment a combinator library for verified parsers and serializers for
binary formats in Coq, but they focus on producing purely func-
tional programs in OCaml, rather than zero-copy, low-level code.
They also do not prove non-malleability of formats.

Others have also looked at tools for low-level parsing and seri-
alizing. Bangert and Zeldovich’s (2015) Nail is a DSL for writing
low-level applications while processing a given data format. It pro-
duces C code, but does not aim at verification. Diatchki et al.’s (2024)
Daedalus is a DSL with parser combinators targeting both Haskell
and C++, aiming to produce memory safe C++, but without for-
mal proof. Daedalus has been used at scale, including to generate
parsers for the PDF document standard. Daedalus does not support
serialization. Recent unpublished work describes a tool called Vest

Secure Parsing and Serializing with Separation Logic Applied to CBOR, CDDL, and COSE • 15

(https://github.com/secure-foundations/vest) a parser and serializer gen-
erator embedded in Verus [Lattuada et al. 2024], a dialect of Rust
aimed at verification. Vest’s use of linear types in Rust is similar in
spirit to our use of separation logic. However, Vest does not support
recursive formats which are required to formalize languages like
CBOR. PulseParse is not tied to Rust, and Pulse can in general be
used to produce verified C code or verified, safe Rust code, though
support for the latter is not fully complete.

Conclusions In summary, we have presented a new approach to se-
cure, low-level formatting with foundations in separation logic. We
have used this foundation to develop a comprehensive, mechanized
formalization of CBOR and CDDL, two data formatting standards
of significant stature in security-related protocols, and applied our
tools, including formally verified libraries and code generators, to a
variety of other standards grounded in CBOR. We hope our open-
source tools will help others build systems that process these binary
formats correctly and securely.

References

Julian Bangert and Nickolai Zeldovich. 2015. Nail: A Practical Tool for Parsing and
Generating Data Formats. login Usenix Mag. 40, 1 (2015). https://www.usenix.org/
publications/login/feb15/bangert

H. Birkholz, A. Delignat-Lavaud, C. Fournet, Y. Deshpande, and S. Lasker. 2025. An
Architecture for Trustworthy and Transparent Digital Supply Chains (SCITT).
draft-ietf-scitt-architecture-11. https://www.ietf.org/archive/id/draft-ietf-scitt-
architecture-11.txt

Henk Birkholz, Christoph Vigano, and Carsten Bormann. 2019. Concise Data Definition
Language (CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures. IETF RFC 8610. doi:10.17487/
RFC8610

Clement Blaudeau andNatarajan Shankar. 2020. AVerified Packrat Parser Interpreter for
Parsing Expression Grammars. In Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs (New Orleans, LA, USA) (CPP 2020).
Association for Computing Machinery, New York, NY, USA, 3–17. doi:10.1145/
3372885.3373836

Sylvie Boldo and Guillaume Melquiond. 2011. Flocq: A Unified Library for Proving
Floating-Point Algorithms in Coq. In Proceedings of the 2011 IEEE 20th Symposium
on Computer Arithmetic (ARITH ’11). IEEE Computer Society, USA, 243–252. doi:10.
1109/ARITH.2011.40

Carsten Bormann and Paul E. Hoffman. 2013. Concise Binary Object Representation
(CBOR). IETF RFC 7049. doi:10.17487/RFC7049

Carsten Bormann and Paul E. Hoffman. 2020. Concise Binary Object Representation
(CBOR). IETF RFC 8949. doi:10.17487/RFC8949

John Boyland. 2003. Checking Interference with Fractional Permissions. In Static
Analysis, Radhia Cousot (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 55–
72.

Sergey Bratus, Lars Hermerschmidt, Sven M. Hallberg, Michael E. Locasto, Falcon
Momot, Meredith L. Patterson, and Anna Shubina. 2017. Curing the Vulnerable
Parser: Design Patterns for Secure Input Handling. login Usenix Mag. 42, 1 (2017).
https://www.usenix.org/publications/login/spring2017/bratus

Andre Büttner and Nils Gruschka. 2023. Protecting FIDO Extensions Against Man-in-
the-Middle Attacks. In Emerging Technologies for Authorization and Authentication,
Andrea Saracino and Paolo Mori (Eds.). Springer Nature Switzerland, Cham, 70–87.

Joyanta Debnath, Christa Jenkins, Yuteng Sun, Sze Yiu Chau, and Omar Chowdhury.
2024. ARMOR: A Formally Verified Implementation of X.509 Certificate Chain
Validation. In 2024 IEEE Symposium on Security and Privacy (SP). 1462–1480. doi:10.
1109/SP54263.2024.00220

Christian Decker and Roger Wattenhofer. 2014. Bitcoin transaction malleability and
MtGox. In European Symposium on Research in Computer Security. Springer, 313–326.

Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel, Qianchuan Ye, and
Adam Chlipala. 2019. Narcissus: correct-by-construction derivation of decoders and
encoders from binary formats. Proc. ACM Program. Lang. 3, ICFP (2019), 82:1–82:29.
doi:10.1145/3341686

Iavor S. Diatchki, Mike Dodds, Harrison Goldstein, Bill Harris, David A. Holland, Benoit
Razet, Cole Schlesinger, and Simon Winwood. 2024. Daedalus: Safer Document
Parsing. 8, PLDI, Article 180 (June 2024), 25 pages. doi:10.1145/3656410

Gabriel Ebner, Guido Martínez, Aseem Rastogi, Thibault Dardinier, Megan Frisella,
Tahina Ramananandro, and Nikhil Swamy. 2025. PulseCore: An Impredicative Con-
current Separation Logic for Dependently-Typed Programs. In 46th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). ACM.
(accepted for publication, to appear).

European Union eHealth Network. 2021. European Union Digital COVID Certificate
(EUDCC) Electronic Health Certificates Specification. https://github.com/ehn-dcc-
development/eu-dcc-hcert-spec.

Hal Finney. 2006. Bleichenbacher’s RSA signature forgery based on
implementation error. https://mailarchive.ietf.org/arch/msg/openpgp/
5rnE9ZRN1AokBVj3VqblGlP63QE/ (2006).

Bryan Ford. 2002. Packrat parsing: : simple, powerful, lazy, linear time, functional pearl.
In Proceedings of the Seventh ACM SIGPLAN International Conference on Functional
Programming (ICFP ’02), Pittsburgh, Pennsylvania, USA, October 4-6, 2002, Mitchell
Wand and Simon L. Peyton Jones (Eds.). ACM, 36–47. doi:10.1145/581478.581483

Bryan Ford. 2004a. Parsing expression grammars: a recognition-based syntactic foun-
dation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Venice, Italy) (POPL ’04). Association for Computing
Machinery, New York, NY, USA, 111–122. doi:10.1145/964001.964011

Bryan Ford. 2004b. Parsing expression grammars: a recognition-based syntactic foun-
dation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, Neil D. Jones
and Xavier Leroy (Eds.). ACM, 111–122. doi:10.1145/964001.964011

Aymeric Fromherz and Jonathan Protzenko. 2024. Compiling C to Safe Rust, Formalized.
arXiv:2412.15042 [cs.PL] https://arxiv.org/abs/2412.15042

Graham Hutton. 1989. Parsing Using Combinators. In Proceedings of the 1989 Glasgow
Workshop on Functional Programming. Springer-Verlag, Berlin, Heidelberg, 353–370.

https://github.com/secure-foundations/vest
https://www.usenix.org/publications/login/feb15/bangert
https://www.usenix.org/publications/login/feb15/bangert
https://www.ietf.org/archive/id/draft-ietf-scitt-architecture-11.txt
https://www.ietf.org/archive/id/draft-ietf-scitt-architecture-11.txt
https://doi.org/10.17487/RFC8610
https://doi.org/10.17487/RFC8610
https://doi.org/10.1145/3372885.3373836
https://doi.org/10.1145/3372885.3373836
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.17487/RFC7049
https://doi.org/10.17487/RFC8949
https://www.usenix.org/publications/login/spring2017/bratus
https://doi.org/10.1109/SP54263.2024.00220
https://doi.org/10.1109/SP54263.2024.00220
https://doi.org/10.1145/3341686
https://doi.org/10.1145/3656410
https://github.com/ehn-dcc-development/eu-dcc-hcert-spec
https://github.com/ehn-dcc-development/eu-dcc-hcert-spec
https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE/
https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE/
https://doi.org/10.1145/581478.581483
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/964001.964011
https://arxiv.org/abs/2412.15042
https://arxiv.org/abs/2412.15042

16 • Tahina Ramananandro, Gabriel Ebner, Guido Martínez, and Nikhil Swamy

IEEE. 2019. IEEE 754-2019 - IEEE Standard for Floating-Point Arithmetic. 84 pages.
doi:10.1109/IEEESTD.2019.8766229

Intel. 2021. TinyCBOR. https://github.com/intel/tinycbor.
ITU-T Study Group 17. 2021. X.680 : Information technology - Abstract Syntax Notation

One (ASN.1): Specification of basic notation. ITU Recommendation X.680. https:
//www.itu.int/rec/T-REC-X.680/

Sam Lasser, Chris Casinghino, Kathleen Fisher, and Cody Roux. 2019. A Verified LL(1)
Parser Generator. In 10th International Conference on Interactive Theorem Proving,
ITP 2019, September 9-12, 2019, Portland, OR, USA (LIPIcs, Vol. 141), John Harrison,
John O’Leary, and Andrew Tolmach (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 24:1–24:18. doi:10.4230/LIPIcs.ITP.2019.24

Sam Lasser, Chris Casinghino, Kathleen Fisher, and Cody Roux. 2021. CoStar: a
verified ALL(*) parser. In PLDI ’21: 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, Virtual Event, Canada,
June 20-25, 20211, Stephen N. Freund and Eran Yahav (Eds.). ACM, 420–434.
doi:10.1145/3453483.3454053

Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias Brun, Chanhee Cho, Hayley
LeBlanc, Pranav Srinivasan, Reto Achermann, Tej Chajed, Chris Hawblitzel, Jon
Howell, Jacob R. Lorch, Oded Padon, and Bryan Parno. 2024. Verus: A Practical
Foundation for Systems Verification. In Proceedings of the ACM SIGOPS 30th Sympo-
sium on Operating Systems Principles (Austin, TX, USA) (SOSP ’24). Association for
Computing Machinery, New York, NY, USA, 438–454. doi:10.1145/3694715.3695952

Laurence Lundblade. 2020–2023. QCBOR. https://github.com/laurencelundblade/
QCBOR.

MITRE. 2016. CVE-2016-1494. https://www.cve.org/CVERecord?id=CVE-2016-1494.
Prashanth Mundkur, Linda Briesemeister, Natarajan Shankar, Prashant Anantharaman,

Sameed Ali, Zephyr Lucas, and Sean Smith. 2020. Research Report: The Parsley Data
Format Definition Language. In 2020 IEEE Security and Privacy Workshops (SPW).
300–307. doi:10.1109/SPW50608.2020.00064

Haobin Ni, Antoine Delignat-Lavaud, Cédric Fournet, Tahina Ramananandro, and
Nikhil Swamy. 2023. ASN1*: Provably Correct, Non-malleable Parsing for ASN.1
DER. In Proceedings of the 12th ACM SIGPLAN International Conference on Certified
Programs and Proofs (Boston, MA, USA) (CPP 2023). Association for Computing
Machinery, New York, NY, USA, 275–289. doi:10.1145/3573105.3575684

Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro,
Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud, Cătălin Hriţcu,
Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. 2017. Verified low-level
programming embedded in F*. Proc. ACM Program. Lang. 1, ICFP, Article 17 (Aug.
2017), 29 pages. doi:10.1145/3110261

Tahina Ramananandro, Antoine Delignat-Lavaud, Cedric Fournet, Nikhil Swamy, Tej
Chajed, Nadim Kobeissi, and Jonathan Protzenko. 2019. EverParse: Verified Secure
Zero-Copy Parsers for Authenticated Message Formats. In 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA, 1465–
1482. https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-
lavaud

Tahina Ramananandro, Gabriel Ebner, Guido Martínez, and Nikhil Swamy. 2025. Se-
cure Parsing and Serializing with Separation Logic Applied to CBOR, CDDL, and
COSE (supplementary material). https://github.com/project-everest/everparse/tree/
_taramana_cbor_bij.

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures.
In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS ’02). IEEE Computer Society, USA, 55–74.

Jim Schaad. 2022. CBOR Object Signing and Encryption (COSE): Structures and Process.
IETF RFC 9052. doi:10.17487/RFC9052

Natarajan Shankar. 1996. PVS: Combining Specification, Proof Checking, and Model
Checking. In Formal Methods in Computer-Aided Design, First International Confer-
ence, FMCAD ’96, Palo Alto, California, USA, November 6-8, 1996, Proceedings (Lecture
Notes in Computer Science, Vol. 1166), Mandayam K. Srivas and Albert John Camilleri
(Eds.). Springer, 257–264. doi:10.1007/BFb0031813

Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.
2016. Dependent Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 256–270.
https://www.fstar-lang.org/papers/mumon/

Nikhil Swamy, Tahina Ramananandro, Aseem Rastogi, Irina Spiridonova, Haobin Ni,
Dmitry Malloy, Juan Vazquez, Michael Tang, Omar Cardona, and Arti Gupta. 2022.
Hardening attack surfaces with formally proven binary format parsers. In Proceed-
ings of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Com-
puting Machinery, New York, NY, USA, 31–45. doi:10.1145/3519939.3523708

The FIDO Alliance. 2025. Client to Authenticator Protocol (CTAP), ver-
sion 2.2. https://fidoalliance.org/specs/fido-v2.2-ps-20250228/fido-client-to-
authenticator-protocol-v2.2-ps-20250228.html.

Trusted Computing Group. 2023. DICE Protection Environment, Version 1.0, Re-
vision 0.6. https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-

Protection-Environment-Specification_14february2023-1.pdf.
Word Wide Web Consortium. 2019. WebAuthn: An API for accessing Public Key

Credentials. https://w3c.github.io/webauthn/.
Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin

Beurdouche. 2017. HACL*: A Verified Modern Cryptographic Library. In ACM
Conference on Computer and Communications Security. ACM, 1789–1806. http:
//eprint.iacr.org/2017/536

A A Recursive Format: Variable Arity Trees

Consider for instance a small integer arithmetic language with
numeric values, binary subtraction, and variable-arity addition. We
specify this language as a high-level F★ inductive datatype:

type expr = | Value of U64.t | Minus of (expr ∗ expr)
| Plus: (n: U8.t {n<254})→ (l: nlist n expr) → expr

We bound the number of addition operands to 253 because we want
to represent the node in the first byte: 255 for a value, followed
by 8 bytes for the integer value; 254 for a subtraction, followed
by 2 recursive payloads; otherwise, the object is an addition and
the value of the first byte gives the number of recursive operand
payloads.

To this end, we specify a header parser for elements using parser
specification combinators:

let header = dtuple2 U8.t (𝜆 h→ if h = 255 then U64.t else unit)
let parse_header = parse_u8 `parse_dtuple2` (𝜆 fb→
if h = 255 then parse_u64 else parse_empty)

Note that the header contains the non-recursive integer value for
the value case, but does not contain any recursive payload for the
subtraction and addition cases.
Then, we define a F★ function taking a header and determining

the number of recursive payloads needed:

let count_payloads (h: header) = let (| fb, ob |) = h in
if fb = 255 then 0 else if fb = 254 then 2 else fb

Then, we define a F★ function to turn a header and a list of
recursive expression payloads into an expression:

let synth (h: header) (pl: nlist (count h) expr) : expr =match h, pl with
| (| 255, v |), _ → Value v
| (| 254, _ |), [a; b] →Minus (a, b)
| (| n , _ |), pl → Plus n pl

Then, we can call the recursive parser combinator to obtain the
parser specification for our expression language; thus enjoying
validation in constant stack space.

Then, using the zero-copy reader combinators we defined in
PulseParse, we implement a shallow parser performing case analysis
on an expression implementation into the following implementation
datatype, leaving recursive payloads unparsed:

type parsed_to = | PValue of U64.t | PMinus of byte_array ∗ byte_array
| PPlus: (n: U8.t) → (pl: byte_array) → parsed_to

This datatype extracts to C as a tagged union.
By contrast, since we assume applications to have full control

of their memory consumption, we allow them to build arbitrarily
nested expressions, potentially containing some unparsed data for
some operands; thus, we provide the following implementation
datatype from which to serialize:

https://doi.org/10.1109/IEEESTD.2019.8766229
https://github.com/intel/tinycbor
https://www.itu.int/rec/T-REC-X.680/
https://www.itu.int/rec/T-REC-X.680/
https://doi.org/10.4230/LIPIcs.ITP.2019.24
https://doi.org/10.1145/3453483.3454053
https://doi.org/10.1145/3694715.3695952
https://github.com/laurencelundblade/QCBOR
https://github.com/laurencelundblade/QCBOR
https://www.cve.org/CVERecord?id=CVE-2016-1494
https://doi.org/10.1109/SPW50608.2020.00064
https://doi.org/10.1145/3573105.3575684
https://doi.org/10.1145/3110261
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://github.com/project-everest/everparse/tree/_taramana_cbor_bij
https://github.com/project-everest/everparse/tree/_taramana_cbor_bij
https://doi.org/10.17487/RFC9052
https://doi.org/10.1007/BFb0031813
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1145/3519939.3523708
https://fidoalliance.org/specs/fido-v2.2-ps-20250228/fido-client-to-authenticator-protocol-v2.2-ps-20250228.html
https://fidoalliance.org/specs/fido-v2.2-ps-20250228/fido-client-to-authenticator-protocol-v2.2-ps-20250228.html
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf
https://w3c.github.io/webauthn/
http://eprint.iacr.org/2017/536
http://eprint.iacr.org/2017/536

Secure Parsing and Serializing with Separation Logic Applied to CBOR, CDDL, and COSE • 17

size_t validate(uint8_t ∗input, size_t len) {
size_t expected = 1;
size_t pos = 0;
while (expected > 0) {
expected = expected − 1;
size_t header_size = validate_header(input+pos, len−pos);
if (header_size == 0) return 0;
pos = pos + header_size;
if (expected > len − pos) return 0;
// each remaining CBOR item consumes at least 1 byte
bool err = false;
size_t payload_count =
get_payload_count(input+pos, header_size, &err);
if (err) return false;
if (payload_count > len − pos − expected) return false;
expected = expected + payload_count;
}
return pos;
}

Fig. 6. C validator for raw CBOR bytes

type serialize_from = | SBase of parsed_to
| SMinus of ref serialize_from ∗ ref serialize_from
| SPlus: (len: U8.t) → (pl: narray len serialize_from)

This datatype extracts to C as a tagged union, with ref and narray
extracting as C pointer types.

Then, using the copywriter combinators we defined in PulseParse,
we implement a recursive serializer from values of this datatype.

The implementation of this example takes 150 lines of specifica-
tion and 1000 lines of PulseParse implementation, which extract to
around 800 lines of C code. No proof was necessary, since correct-
ness and non-malleability are obtained by construction by virtue of
typechecking the combinator calls. The full example is provided in
the supplementary material [Ramananandro et al. 2025].

B Constant-stack, arithmetically safe validation of raw
CBOR bytes

Let size_t validate_header(uint8_t ∗input, size_t len) be a validator for
CBOR item headers, returning the (nonzero) number of bytes con-
sumed for a valid header, and 0 otherwise. Let

size_t get_payload_count(uint8_t ∗input, size_t len, bool ∗err)

be a function that takes a valid byte representation of a header
and returns the number of expected CBOR items to validate in the
payload; but sets *err to true if the expected length is greater
than the length len of its input, to avoid any arithmetic overflow.
Then, since the format of CBOR headers has the prefix property (the
validity of a header does not change if any bytes are appended to it),
the C function in Figure 6 validate is a memory safe, arithmetically
safe, and functionally correct validator for CBOR items, returning
the size of the valid CBOR item found at the beginning of the input
buffer, or 0 if none:

C DICE Protection Environment

DICE Protection Environment (DPE) [Trusted Computing Group
2023] is a standard for a family of protocols to measure and cryp-
tographically attest the integrity of the boot sequence of hardware
ranging from IoT devices to cloud machines. DPE implementations
support various profiles, exposing different interfaces and capabili-
ties to clients. Ebner et al. [2025] provide a verified implementation
of DPE in Pulse, supporting only the simplest profile, where a DPE
client is expected to be executing in the same address space, sharing
memory with the DPE attestation service. A more common profile
instead allows a client to be dislocated from the DPE service, and
for them to communicate over a transport using CBOR messages
specified in CDDL.

The CDDL used in the DPE specification are all in a style that en-
able extension. For example, all messages are of the form { l => t,
*(uint => any) }, which, as explained in §4, is ambiguous. So,
we adapt the specifications to add cuts, e.g., rewriting them to
{ l:t, *(uint => any)}. Once in this form, EverCDDL proves
the specifications unambiguous and generates Pulse code to parse
and serialize CBOR formatted messages to and from typed data
structures. In total there are four messages to the parsed as input to
the DPE service and two messages that it serializes as output back
to the client.

We adapt Ebner et al.’s DPE interface and add a layer on top of it
that adds CDDL message parsing and serialization, with proofs in
Pulse, demonstrating that the specifications yielded by EverCDDL
are precise enough to express full functional correctness of applica-
tion code manipulating CBOR messages in a given CDDL schema.
For instance, our top-level specification of the sign API is shown
below:
{ input ↦→(p) i ∗∗ out ↦→ _ } let ok = sign input out
{ if ok=Success then (∃ o sig tbs. input ↦→(p) i ∗∗ out ↦→ o ∗∗

(is_tbs_bytes tbs i ∧ is_signature sig tbs ∧ is_serialized_sig o sig)
) else ... }

This triple states that with (fractional) ownership of an input buffer
with bytes i and full ownership of an out buffer, if sign returns Success,
then the input buffer is unchanged, the output buffer contains o,
where o is a serialized signature sig of the to-be-signed bytes tbs
from a well-formatted input buffer i. We also fully specify three
possible modes of failure.

	Abstract
	1 Introduction
	2 PulseParse: Format Combinators with Separation Logic
	2.1 Specification Combinators (Review)
	2.2 Implementation Combinators with Separation Logic

	3 EverCBOR: A Verified Generic CBOR Parser and Serializer
	3.1 Background: CBOR
	3.2 Formalizing Raw CBOR in PulseParse
	3.3 Specifying and Implementing the CBOR data model

	4 EverCDDL: Verified Parsers and Serializers for CDDL
	4.1 Syntax and Semantics
	4.2 Code Generation: Implementing Formatters for CDDL

	5 Performance Benchmarks & Verified Applications
	5.1 Synthetic Benchmarks
	5.2 Verified Applications: COSE & DPE

	6 Related Work & Conclusions
	References
	A A Recursive Format: Variable Arity Trees
	B Constant-stack, arithmetically safe validation of raw CBOR bytes
	C DICE Protection Environment

