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Abstract— The progress of automotive technologies has made
cybersecurity a crucial focus, leading to various cyber attacks.
These attacks primarily target the Controller Area Network
(CAN) and specialized Electronic Control Units (ECUs). In order
to mitigate these attacks and bolster the security of vehicular
systems, numerous defense solutions have been proposed.These
solutions aim to detect diverse forms of vehicular attacks.
However, the practical implementation of these solutions still
presents certain limitations and challenges. In light of these
circumstances, this paper undertakes a thorough examination of
existing vehicular attacks and defense strategies employed against
the CAN and ECUs. The objective is to provide valuable insights
and inform the future design of Vehicular Intrusion Detection
Systems (VIDS). The findings of our investigation reveal that the
examined VIDS primarily concentrate on particular categories
of attacks, neglecting the broader spectrum of potential threats.
Moreover, we provide a comprehensive overview of the significant
challenges encountered in implementing a robust and feasible
VIDS. Additionally, we put forth several defense recommendations
based on our study findings, aiming to inform and guide the
future design of VIDS in the context of vehicular security.

Index Terms—In-vehicle network, Intrusion Detection System,
CAN bus.

I. INTRODUCTION

The Global Automotive Cybersecurity market size is pro-
jected to reach USD 3574.5 million by 2028, from USD
571 million in 2021, at a CAGR of 29.6% during 2022-
2028 [1]. Modern vehicles consist of 70 to 100 ECUs that
interface with the CAN. These units work together to execute
various vehicle functions, encompassing powertrain, chassis,
and body systems [2], [3]. Traditional designs do not fully
consider security issues, such as fake messages, making the
vehicle vulnerable to cyberspace [4], and many cyberattack
surfaces are exposed [5], [6], [7], [8]. For example, CAN,
the current de facto standard for in-vehicle network (IVN),
is designed with multiple safety considerations but limited
security considerations, such as the nature of the broadcast,
the lack of network segmentation, the lack of authentication
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and data encryption, and the vulnerable arbitration mechanism,
which lead to various security issues.

Recently, various attacks are launched against the real
vehicles [9], [10] exploiting the vehicular vulnerabilities. In
a notable case, researchers Don Bailey and Mathew Solnik
from iSec gained unauthorized access to a vehicle and remotely
started its engine. They exploited vulnerabilities in the protocols
used for remote vehicle control, as documented in their
research [11]. Similarly, researchers Miller and Valasek demon-
strated their ability to remotely manipulate a Jeep Cherokee
while it was traveling at a speed of 70 mph. Exploiting
vulnerabilities in the vehicle’s entertainment system, they
gained control over critical functions such as steering and
brake activation, as documented in their work [9]. Furthermore,
researchers from Trend Micro showcased a potential attack
vector in the realm of vehicular security. This demonstration
involved the exploitation of inherent vulnerabilities in the error
handling mechanisms of CAN protocols [12]. In addition,
the Proof-of-Concept (PoC) attacks were conducted to assess
the vulnerability of vehicles through the compromise of the
Telematics Control Unit (TCU) [13]. In this comprehensive
survey, our first focus entails an in-depth examination of the
specific attacks that are targeted by IDSs as well as the CAN
vulnerabilities that attackers exploit in their endeavors.

To address the vehicular security issues, especially the
issues of CAN, various defense mechanisms are proposed to
improve the vehicle security leveraging four major types of
techniques, including message encryption [14], [15], ECU au-
thentication [16], [17], safety-related component isolation [18],
[19], and VIDS [20], [21]. Among these mechanisms, VIDSs
detect potential attacks by monitoring the IVN traffic without
modifying the existing IVN architecture or incurring additional
IVN traffic, and so that they are more practical compared to
other types of defense approaches [22], [23], [24]. Conse-
quently, this survey focuses on the VIDSs for CAN.

More precisely, the VIDSs usually detect anomalies lever-
aging the features and patterns of the characteristics of
the ECUs and in-vehicle traffic, such as the fingerprints of
ECUs, the signal features, the clock skews, and message
payloads [21], [25]. It is worth noting that, although these VIDS
can improve the security of IVNs, they are mainly proposed
with the consideration of special issues of the IVN and without
comprehensive studies of the security limitations of the IVN.
Hence, when they are applied in practice, various challenges
will be encountered, such as efficiency, feasibility, and stability.

ar
X

iv
:2

50
5.

17
27

4v
1 

 [
cs

.C
R

] 
 2

2 
M

ay
 2

02
5



2

So we need to collect these papers and compare them in detail
to illustrate the limitations of existing methods. Researchers
can also find and effectively detect methods based on these
limitations.

Although there are works that study the of-the-shelf
VIDS [26], [27], [28], [29], [30], [31], to our best knowledge,
they cannot provide a comprehensive and practical view of the
VIDS to shed light for future VIDS design and implementation.
First, many VIDSs have been proposed defending the attacks
against IVNs, but the existing surveys just include a limited
number of them, such as survey conducted by Tomlinson et
al. [27], studying only 17 VIDSs and missing the state-of-art
fingerprint-based VIDS. Second, these papers do not offer a
detailed description and classification of the attacks targeted
by VIDSs. Third, some surveys do not evaluate detection
performance of these VIDSs, such as the survey conducted by
Young et al. [28], where no evaluation is performed.

Consequently, To address these gaps, we offer a comprehen-
sive survey of existing VIDS, summarizing all CAN-related
attacks and detection methods, and providing a detailed compar-
ison. Following the evaluation, we discuss the challenges faced
by these methods and outline future development trends. We
hope that our survey will generate increased interest in the field
of vehicle intrusion detection. We aim for other researchers
to gain a comprehensive understanding of existing attacks and
detection methods targeting the CAN through our survey. By
reading our work, we hope they will discern the differences and
limitations among various methods, enabling them to identify
potential research directions.

In general, this survey has the following four major contri-
butions.

1) We analyzed 34 research studies related to vehicle attacks
and systematically classified them into 18 distinct attack
types.

2) We examined 53 different VIDS, carefully analyzing and
comparing their threat models, defense scenarios, and
defense mechanisms.

3) We reproduced VIDS that can be compared using the
same dataset and evaluated these detection methods using
real-world vehicle data.

4) In addition to the survey and evaluation results, we delve
into a thorough examination of the constraints associated
with the investigative defense approach. Subsequently,
we explore forthcoming trends in vehicle advancements,
elucidating their implications for the future of VIDS.

The remainder of the paper is organized as follows. Section
II introduces and compares some other surveys on intrusion
detection of IVNs. Section III gives a brief overview of the IVN
composition and the vulnerabilities that make it vulnerable to
attacks. Section IV analyses the attack models against the
collected VIDSs, and Section V details the specific attack
scenarios. Section VI details all the VIDS we find, which
are evaluated from different perspectives in Section VII. We
reproduce and evaluate some VIDSs, and show the test results
and the challenges encountered in the implementation in Section
VIII. Finally, Section IX discusses the current issues and
trends with existing VIDSs. Simultaneously, for the sake of
comprehensiveness, we introduce the intrusion detection of

heavy-duty vehicle CAN and the intrusion detection system
for the Internet of Vehicles (IoV).

II. RELATED WORK

Although there are several survey papers on existing
VIDS [37], [26], [27], [36], [35], [28], [29], [4], [34], [33],
[33], [32], [30], [31], they do not provide a comprehensive
evaluation of existing VIDSs. They have several limitations
and we will describe them in detail. For better illustration, we
provide an overview of recent surveys on VIDS and compare
their contributions. The results of the comparison are shown
in Table I.

First, it is necessary to include more state-of-the-art research
works. There are more than 50 VIDSs and new VIDSs are
constantly appearing, but some surveys only contain a small
portion. For example, Liu et al. [37] merely describe 4 papers
about VIDS and the latest paper among them was published
in 2016. Avatefipour et al. [26] focus on introducing the CAN
bus and its vulnerabilities, and they only analyze 5 research
works related to intrusion detection of the IVN. Additionally,
they do not give a further comparison and analysis of these
papers. Tomlinson et al. [27] detail 17 research works which
are published before 2018. Young et al. [28] introduce 15
VIDS based on the detection feature which are published
before 2018. Rajapaksha et al. [31] primarily focused on
introducing intrusion methods related to AI technology and
did not comprehensively cover all IDS relevant to IVN.

Second, these papers do not offer a detailed description
and classification of the attacks targeted by VIDSs. While
some survey works mention attacks, they either refer to
previous research or provide a brief overview of common
attack scenarios. They do not enumerate the most recently
proposed significant attacks and lack a detailed classification of
all attacks. For instance, Aliwa et al. [32] only list six common
attack scenarios: CAN bus sniffing, CAN bus fuzzing attack,
CAN bus frame falsifying attack, CAN bus injection attack,
CAN bus DoS attack, and ECU impersonation. They do not
include the latest attack scenarios, such as voltage corruption
attacks [38]. Additionally, Young et al. [28] only present three
attack demonstrations to illustrate attacks on vehicles. Similarly,
Rajapaksha et al. [31] only choose to address 5 common attack
scenarios. Such a simple description is insufficient and detailed
attack descriptions can help researchers understand the goals
of defenses.

Third, appropriate experiments can help researchers under-
stand the advantages of different approaches. All these surveys
do not reproduce the VIDSs they introduce, and they also do
not evaluate the detection performance of these VIDSs based
on a large-scale dataset. The evaluation under the same dataset
can help researchers intuitively compare the pros and cons of
different methods.

Based on the above limitations of these surveys, we take the
further study at existing intrusion detection systems for IVN.
First, we search for various paper repositories and relevant
conferences/journals to find comprehensive research works.
We collect 53 specific VIDSs and analyze them carefully.
Second, We analyze and summarise the threat models for
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TABLE I: Summary of previous survey works on the field of VIDS

Survey Year No of Works Attack Description Performance Comparison Experiment

Rajapaksha et al.[31] 2023 40 X ✓ X
Karopoulos et al.[30] 2022 40 X ✓ X

Aliwa et al.[32] 2021 30 ✓ ✓ X
Xie et al.[33] 2021 23 X ✓ X

Hafeez et a.[34] 2020 5 X ✓ X
Wu et al.[29] 2019 20 ✓ ✓ X

Young et al.[28] 2019 15 ✓ ✓ X
Al et al.[4] 2019 24 ✓ ✓ X

Lokman et al.[35] 2019 25 ✓ ✓ X
Dupont et al.[36] 2019 24 ✓ ✓ X

Tomlinson et al.[27] 2018 17 X ✓ X
Avatefipour et al.[26] 2018 5 X X X

Liu et al.[37] 2017 4 ✓ ✓ X

all these VIDSs, and we also provide a detailed description
and classification of the attacks that these VIDSs target. Third,
we classify and present these papers in detail based on the
data features used by these VIDSs (e.g., ECU characteristics,
semantic information, etc.). Finally, we compare the effective-
ness of these VIDSs in various ways, including the features
used, the detection technologies, the attacks included, the
validation methods and the detection results. Furthermore, we
also reproduce the VIDSs that can be implemented in real cars
and test their detection effectiveness based on the same dataset.

III. PRELIMINARIES

A. In-vehicle Network

Due to the increase of electronic control system complexity
and the number of in-vehicle ECUs, the in-vehicle wiring
harnesses also increases, which introduces various new chal-
lenges to guarantee the reliability and security of the in-vehicle
communications. With the purpose of reducing IVN wiring
zones and achieving efficient data sharing and exchange, the
automotive electronic network system, namely IVN, was born
mixed with a variety of network technologies [39]. In this
section, we will present the preliminary knowledge of IVN
from two major perspectives, including both the commonly
used IVN technologies and the ECUs connected to IVN.

1) Electronic Control Unit: ECUs play an indispensable role
in controlling the vehicle. Like an ordinary computer, an ECU
consists of a microprocessor (MCU), memory (ROM, RAM),
input/output interface (I/O), analog-to-digital converter (A/D),
and large-scale integrated circuits. It adjusts and manipulates
the running of vehicles with different sensors and controllers.
In modern automobiles, ECUs are used in various modules,
such as engine control module (ECM), Powertrain Control
Module (PCM), Transmission Control Module (TCM), and
so on. Also, the ECUs need to exchange information between
each other during running. For example, the ECU that controls
the dashboard display requires various vehicle states, such as
vehicle speed. Consequently, the ECUs must possess a relatively
stable and efficient network environment.

2) IVN Technologies: As shown in Figure 1, there are two
common types of IVN architectures. In the first architecture
(i.e., Figure 1(a)), the in-vehicle control domains of IVNs are
connected to a central gateway, which provides an onboard
diagnostic (OBD-II) port for diagnosing from outside of the
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(a) The architecture of IVN with gateway [40].
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(b) An IVN architecture without gateways [8].

Fig. 1: Two common IVN architectures.

TABLE II: Specifications of the widely used IVNs.

Network
Technologies Bitrate(Max) Medium Standard

LIN 19.2 Kbps Single Wire Serial
CAN 1 Mbps Twisted Pair CSMA/CR

CAN-FD 8 Mbps Twisted Pair CSMA/CR

FlexRay 10 Mbps Twisted Pair
or Optical Fibre TDMA

MOST 150 Mbps Optical Fibre TDMA
Automotive

Ethernet 10 Gbps Twisted Pair Switched Full
Duplex

vehicle [40]. In Figure 1(b), the OBD-II port directly connects
to the IVN without any gateway, and thus the external devices
can easily monitor the in-vehicle communication data.

The in-vehicle ECUs have different requirements on the
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speeds of the communication traffic. For example, the body-
related states (such as lights and door locks) can be transmitted
in a low speed, and whereas the safety-related states (such
as steering wheel angle and brake pedal pressure) need to be
transmitted in a high speed. Intuitively, the high communica-
tion speed require high cost and advanced techniques [41].
Therefore, in order to reduce costs and meanwhile meet
the various in-vehicle communication requirements between
different ECUs, then vendors design the IVNs with a mix
of various network techniques. Such as shown Figure 1, the
most commonly used network technologies are CAN [42],
Local Interconnect Network (LIN) [43], FlexRay [44], and
Media Oriented Systems Transport (MOST) [41]. Also, Table II
illustrates specifications of these IVN techniques, including
maximum transmission rate, transmission media, and the
transmission standards. For example, LIN is a low-speed serial
communication protocol with the maximum transmission rate
of 19.2 Kbps, and it uses single wire as the medium in the
physical layer.

Among them, CAN becomes a de facto IVN protocol and it
is proposed by Robert Bosch GmbH to define the layer-1 and
layer-2 functionalities of the Open Systems Interconnection
(OSI) network model in 1986 [45]. CAN is typically used
to provide an efficient, stable, reliable, and economical com-
munication method between ECUs without a host computer,
and it usually controls the core subsystem of vehicle, such as
the engine power system, body control system, and electronic
central electrical system.

LIN is a low-cost master-slave serial communication bus
released in the late 1990s, and it is designed to serve as a
cheap alternative to CAN in IVNs [46]. Nowadays, LIN is a
complement to CAN and widely used in subsystems of IVNs,
which do not have the high communication speed requirement.

FlexRay is a new communication bus, which is released in
2009, and it is developed to support faster and more stable
communication than CAN. Compared with CAN, the main
advantages of FlexRay are the higher maximum data rate
(10 Mbps) and deterministic time-triggered standard (i.e. time
division multiple access (TDMA)) [44].

MOST is developed mainly for the transmission of multi-
media data, and its maximum data rate is 150 Mbps. Hence it
is much more suitable to the multimedia data than CAN.

As a mature and reliable standard communication bus, CAN
has been widely used in various vehicles for over 30 years.
Usually, it controls the core part of the IVN. Whereas, LIN,
FlexRay, and MOST are generally used as a supplement or
auxiliary to CAN in the vehicle. However, CAN has various
security limitations [47], [40], [48], and therefore most of the
IVN intrusion detection systems are proposed for CAN.

In addition to traditional vehicle network technologies, we
introduce two emerging technologies: CAN with Flexible Data-
Rate (CAN-FD) and Automotive Ethernet (AE). Due to the
increase in real-time data produced by control modules and
sensors, CAN needs to meet stringent latency limits, thereby in-
creasing its burden. Despite several alternatives being proposed,
substantial efforts continue to focus on enhancing CAN, which
has been upgraded to a CAN with Flexible Data-Rate (CAN-
FD). This protocol was developed in 2011 and released by

Bosch (in collaboration with industry experts) in 2012. Today,
CAN-FD is used in modern high-performance vehicles [49].
CAN-FD, compatible with existing CAN networks, allows the
new protocol to operate on the same network as traditional
CAN. It can dynamically switch to different data rates and
handle larger or smaller message sizes. The main differences
between traditional CAN and CAN-FD are: 1) Increased length:
Traditional CAN offers 8 data bytes, while CAN-FD provides
flexible data rates ranging from 0-64 bytes per frame without
needing to change the CAN physical layer, reducing protocol
overhead and increasing efficiency. 2) Increased speed: Standard
CAN networks are limited to 1 Mb/s. CAN-FD boosts the
effective data rate to 8 Mb/s, which is eight times faster than
traditional CAN. 3) CAN-FD can increase communication
efficiency among multiple ECUs by up to 30 times, with faster
speeds. 4) Higher reliability: One way to ensure reliability is
through the use of Cyclic Redundancy Check (CRC). CAN-
XL (CAN eXtended Length) is an advancement over CAN-
FD, designed to further increase data transmission rates and
flexibility. It supports larger data frames and higher transmission
rates, providing enhanced scalability and performance potential
for future automotive applications. On March 22, 2024, the
ISO released the 11898-2:2024 standard, which elevates the
maximum speed of the CAN bus from the industry-recognized
8 Mbps of CAN FD to up to 20 Mbps, with data payloads of
up to 2048 bytes.

Automotive Ethernet is another protocol that could become
mainstream in the future. In recent years, significant changes
in the automotive industry, including the provision of various
vehicle functions and the introduction of autonomous vehicles,
have generated massive amounts of data. Automotive Ethernet
has been proposed as the communication standard for IVNs
because existing traditional protocol-based IVNs cannot cope
with the increased bandwidth. Currently, various Ethernet
protocols have been or are being used in Ethernet-based IVNs,
such as BroadR-Reach, MOST150, IEEE 802.3bw (100BASE-
T1), IEEE 802.3bq-2016, and IEEE 802.3ch-2020 [50]. In fact,
with the increase in vehicle intelligence, many automakers, such
as Tesla and BMW, have already started using Automotive
Ethernet in commercial vehicles [51]. Moreover, automakers
have unified their views on the use of Ethernet, and many di-
agnostic software applications are compatible with Automotive
Ethernet [52]. As a new automotive network technology, the
widespread adoption of Automotive Ethernet in vehicles will
not be instantaneous. Automotive Ethernet will not replace
existing vehicle network technologies in the short term. After
entering the automotive field, Automotive Ethernet technology
will initially integrate gradually from specific subsystems
and ultimately advance the evolution of automotive network
architecture. Automotive Ethernet holds significant potential.
Given that CAN remains the mainstream transport protocol
in current commercial vehicle networks, our study primarily
focuses on traditional CAN.

IV. THREAT MODEL

In this section, our primary focus centers on an in-depth
examination of the threat models associated with all VIDS
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under consideration. In various variants of VIDS, the authors
postulate diverse adversary profiles encompassing varying at-
tack capabilities, thereby influencing the spectrum of detectable
attack modalities by the system. Subsequently, a comprehensive
consolidation of the aforementioned assumptions inherent to
these systems is presented, establishing a profound linkage with
the associated attack scenarios. Next, a thorough exposition of
the threat models is articulated, encompassing three fundamen-
tal dimensions: attack surfaces, attack capabilities, and attack
purposes. Furthermore, the interplay and synergy between
these tripartite facets are visually depicted in Figure 2. First,
adversaries access the IVNs through various attack surfaces.
Second, adversaries can own various capabilities to invade the
IVNs after they have access to the IVNs. Finally, adversaries
can achieve different attack purposes when they have different
capabilities to attack the IVNs.

A. Access Surfaces

Initially, the adversaries must establish connectivity with
the IVNs through distinct access surfaces. In accordance with
pertinent research conducted by Koscher et al. (2010) [48], it
has been ascertained that adversaries possess the capability
to gain access to the IVNs via two distinct categories of
surfaces, namely physical surfaces and network surfaces.
Physical surfaces commonly pertain to hardware components
that establish a direct link with the vehicle, such as diagnostic
ports. On the other hand, network surfaces encompass the
network connections that bridge the vehicle to the cyberspace,
encompassing technologies such as Wi-Fi and Bluetooth.
Subsequently, an elaborate exposition elucidating the intricate
particulars of these two attack surfaces shall ensue.
Physical surface: The adversaries that utilize physical surfaces
have to get close to the target vehicle. They can take three
methods to attack the vehicle. Firstly, adversaries can keep
malicious devices on the OBD-II port (i.e., a physical diagnostic
port which is usually above the accelerator pedal and connected
to the IVN [22].) and attack the IVN directly. For example,
researchers from the Argus Research Team find a way to hack
into the Bosch Drivelog ODB-II dongle that is plugged into
the OBD-II port, and inject different malicious messages into
the CAN bus. They stop the engine of a moving vehicle by
connecting to the dongle via Bluetooth [53]. Adversaries can
also insert the device briefly and launch an attack by injecting
malicious code into the ECU in the vehicle [54], [55]. Another
method is that the adversaries change the firmware of ECUs or
install an additional ECU while the vehicle is being repaired [8].
Network surface: There are already many studies conducted
on the radio interfaces, which enable the vehicles to accept
external inputs and may cause the relevant on-board ECU to be
controlled [48], [56]. Among the attacks exploiting such attack
surfaces, most of the attacks are only effective at short distances
due the features of the target communication types [57], [58].

B. Attack Capabilities

The attack capacities of the adversaries are different, and
we classify them into the following four major categories,
including inserting an OBD device, partially compromising an

ECU, fully compromising an ECU, and inserting an external
ECU, according to the attack methods. Both of inserting an
OBD device and inserting an external ECU add a new node to
the IVN. The OBD device connects to the network directly via
the OBD-II port while the external ECU connects to the IVN
by changing the internal architecture of the vehicle. During
partially or fully compromising an ECU, the attack target is
an existing ECU of the IVNs. The partially compromised ECU
cannot send CAN messages directly, and the fully compromised
ECU is also able to inject forged messages into IVN.

1) The malicious OBD device: The OBD-II port is an
important surface for communication between the IVN and
external devices. Since the OBD-II port is exposed to the user,
the adversary only needs to plug the attack device into the port
without dismantling the vehicle. However, there are certain
limitations when the adversary injects malicious messages
through the OBD-II port. The layout of the IVN can affect
the effectiveness of this attack. As the Figure 1(a) shows, the
gateway in the vehicle can obstruct the broadcast of the normal
in-vehicle messages and only allow the diagnostic messages to
transmit in some particular vehicle models [59]. For example,
Zhou et al. [59] find the IVNs of two vehicle models, 2019
Chevrolet Malibu and 2019 Chevrolet Cruze, are not directly
connected to the OBD-II port. They can not get the in-vehicle
traffic through the port. In contrast, the IVNs of another vehicle
model, the 2012 Buick Regal, can be monitored directly through
the OBD-II port.

2) The partially compromised ECU: Through a partially
compromised ECU, it is assumed that the adversary suspends
the ECU or puts the ECU in the listen-only mode. These
adversaries who partially compromising an existing ECU can
eavesdrop on in-vehicle communications and stop the ECU
from sending normal messages to other ECUs, but they can not
inject forged messages. The adversaries can suspend the ECU
through the diagnostic commands or hardware vulnerability of
the ECUs, and we introduce them in detail.

Nowdehi et al. [60] demonstrate the possibility of such an
attack via diagnostic protocols. The state of ECU varies in
different session modes. Nowdehi et al. show that when the
session mode is changed to programming mode, the ECU can
only listen to the bus but not send messages. In other words,
the adversary can partially compromise an ECU by changing
the session mode of this ECU through diagnostic command.

In [20], Cho et al. propose another method to partially
compromise an existing ECU. They mention that an ECU with
Microchip MCP2515 [61], which is one of the most common
CAN controllers, can be changed into various operation modes
like configuration, normal, and listen-only through Serial
Peripheral Interface (SPI). Therefore, the adversaries can make
the ECU enter different modes such as listen-only mode
by utilizing the user-level features for configuring the CAN
controller.

3) The fully compromised ECU: Unlike partially compro-
mised ECU, with a fully compromised ECU, the adversary can
control the ECU completely and have access to the memory data.
Apart from listening to the bus and stopping ECU transmission,
the adversary can also inject any fabricated messages into
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Fig. 2: The threat model of the attack.

the bus while fully controlling the ECU. Many researchers
demonstrate the methods to fully compromise an ECU.

For example, Checkoway et al. [47] demonstrate vehicle
vulnerabilities in some different external channels. In addition,
they evaluate the potential for controlling the ECUs via the
prototype implementations for TPMS (tire pressure monitoring
system), Bluetooth, FM (Frequency modulation), RDS (Radio
Data System), and Cellular channels based on the vulnerabili-
ties. For example, they control the ECU in telematics unit to
send CAN messages by predefined tire pressure sequences.

In [6], Hoppe et al. add a few lines of malicious code to
the arbitrary ECU to control the vehicle. In the test, once a
predefined condition is met, the code replays the CAN messages
containing the flag for opening the driver window.

Koscher et al. [48] successfully control the vehicle operations
and completely ignore driver input, such as disabling the brakes,
stopping the engine, and so on. They propose an attack in which
malicious code is embedded in the telematics unit, and the
attack causes the vehicle to lose control. Furthermore, they
completely erase any evidence of its presence after the attack.

4) The malicious additional ECU: By inserting an external
ECU, the adversary can listen to the IVNs and inject self-defined
messages into the IVN. The function of the external ECU is
similar to that of the fully compromised ECU, and the adversary
can also inject forged messages into the bus through the
additional ECU. However, compared with fully compromising
an ECU, inserting an external ECU has to manually install
a piece of new hardware equipment into the vehicle. The
implementation of the attack needs to dismantle the vehicle
and requires the adversary to have detailed knowledge of the
vehicle architecture. Additionally, when the adversary injects
fabricated messages with different IDs that are supposed to be
sent by other ECUs, the risk of detection by fingerprint-based
VIDS [20] dramatically increases.

C. Attack Purposes

The adversaries launch attacks against the IVN with different
purposes, which can be categorized into remote vehicle control,
vehicle malfunctioning, and diagnostic data spoofing. The first

type of purposes indicate the adversaries aim to fully control
the vehicle remotely. The adversaries with the seconde type of
purpose aim to let the vehicle run out of control, causing driving
accidents. The third type of adversaries target on spoofing the
diagnostic devices and concealing the safety issues by injecting
fake data into IVN. Next, we present more details about these
attack purposes.

1) Controlling the vehicle: The adversaries try to make the
vehicle run as they want and attack it at a specific moment.
They can mislead the vehicle to react as they want by sending
the forged in-vehicle messages to the ECUs, and they can
also send well-designed diagnostic commands to control the
vehicle’s actions directly. For example, researchers from the
Argus Research Team stop the engine of a moving vehicle
through the diagnostic commands [53], while Miller et al. [8]
manage to control the vehicle’s turn signals by sending forged
in-vehicle messages to the vehicle’s ECU.

2) Malfunctioning the vehicle: Instead of taking full control
of the vehicle, the adversary can also make the vehicle lose
control. In this attack purpose, adversaries continuously send
incorrect messages to the ECUs or prevent the ECUs from
sending in-vehicle messages. For example, Koscher et al. [48]
find that significant damage to the vehicle can be done by
simple fuzzing of packets (i.e., iterative testing of random
or partially random packets) because the range of valid CAN
messages is rather small. Additionally, Cho et al. [62] propose
a new type of Denial-of-Service (DoS) attack called bus-off
attack. On two real vehicles, through iterative bus-off attacks,
the victim ECU enter the bus-off mode and can not send any
messages. As a result, the two vehicles get out of control.

3) Spoofing diagnostic tools: Another attack purpose is to
spoof diagnostic tools and conceal security vulnerabilities in
the vehicle. In this attack purpose, adversaries mask the loss
of the safety functionalities which are removed or fail. This
attack can endanger the vehicle’s occupants due to the loss of
a safety system. In order to conceal security vulnerabilities, the
adversaries manage to emulate the behaviors of a safety system
within a diagnostic session by any compromised device with
access to the CAN bus. For example, Hoppe et al. [6] remove
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Fig. 3: Detailed taxonomy of attack scenarios.

the airbag control system and hide the absence of the system.
They record the reactions to diagnostic queries in the presence
of the airbag control module at first, and then they replay these
replies when diagnostics software sends the diagnostic queries.
As a result, the diagnostics software reports the airbag control
module’s presence (including its name, part no., etc.) without
any error conditions.

V. TAXONOMY OF ATTACKS

The adversaries usually exploit the vulnerabilities of IVNs
to attack the ECUs, and the attacks can prevent normal
communication of ECUs on the IVNs or transmit malicious
messages to specific ECUs [8], [48]. There are also attacks that
are not related to the IVNs or are not targeted by the VIDS, and
they are not the focus of our attention. For example, an attack
against the remote keyless system may allow the adversary to
freely open the door [63], [64]. If spoofing the remote keyless
system is the ultimate purpose of the adversary, the IVNs are
irrelevant, and we ignore the attacks.

To provide a taxonomy of IVN attacks, we collect and
observe the attacks from the publications we studied. Afterward,
we classify these attacks according to the injected malicious
messages, the effects on the ECUs, the attack purpose, and the
attack methods. Figure 3 shows the taxonomy.

Particularly, we classify the attacks according to the attack
methods: Sniffing attack (SNA), Spoofing attack (SPA), DoS
attack (DOA), Fuzzing Attack (FUA) and Diagnostic attack
(DIA).

A. Sniffing Attack

Since ECUs broadcast all messages in CAN and there is no
authentication and encryption in the communication process,
any ECU that joins CAN network can listen to all messages [65].
The adversary can have access to CAN remotely or physically
and listen to the CAN messages transmitted in CAN directly.
Adversaries can directly speculate on the regularity of messages
and the semantics of messages. They can detect specific private
information in the vehicle or carry out further attacks based on
message semantics. Existing IDSs are difficult to detect this
kind of attack because the attack has little influence on the
CAN.

B. Spoofing Attack

Spoofing attack against the vehicle is launched by forcing
the target ECU to accept wrong messages and react in the
wrong way. An adversary can disrupt the normal operation of
the ECU or even take control of the ECU through a spoofing
attack. Additionally, adversaries can take different methods to
deceive the target ECU. Based on the methods to deceive the
target ECU, these attacks can be divided into six categories.

1) Replay: The purpose of replay attack is to override the
normal messages with the valid messages that have already
been transmitted to the IVN. To mount a replay attack, the
adversary needs to fully compromise an ECU or fix an extra
ECU in the vehicle. Through the attack capability, the adversary
can listen to the IVN and replay the target messages. What’s
more, the frequency of forged messages is higher than that
of normal messages to occupy the control of the target ECU.
For example, previous research [40], [66] mentioned that the
adversary needs to inject messages 20-100 times faster than
the original ECU to make the target ECU listen to the injected
messages successfully.

2) Fabrication: The purpose of fabrication attack is to
override any periodic messages sent by an uncompromised
ECU so that the receiving ECUs are distracted and fail. Through
an in-vehicle ECU fully compromised and an additional ECU
added to the vehicle, the adversary can fabricate and inject
messages with forged ID, data length, and payload to control the
specific ECU. A fabrication attack is similar to the replay attack
except for sending the messages that have been modified or
forged. Additionally, the fabrication attack also needs a higher
injection frequency, whose reason is the same as that of the
replay attack. For example, in [67], the messages are inserted at
5 times of the transmission rate of normal messages to control
the ECU.

3) Masquerade: Masquerade attacks aim to manipulate unau-
thorized or compromised ECUs to impersonate legitimate ECUs
and affect vehicle operations, utilizing two main approaches. In
the first approach, adversaries either connect an unauthorized
device to the CAN bus or control an existing ECU, sending
forged messages with IDs matching legitimate ECUs while the
original legitimate ECUs remain active. The second approach
requires compromising two ECUs: one fully compromised and
one weakly compromised target ECU (or using an unauthorized
device instead of the fully compromised ECU). The fully
compromised ECU injects forged messages to replace the
weakly compromised target ECU’s transmissions [20], [21],
[68]. This is achieved by triggering transmission errors in the
weakly compromised target ECU to increase its Transmission
Error Counter until reaching bus-off state, forcing it to cease
transmission, while the fully compromised ECU simultaneously
sends malicious messages that mimic the target ECU’s normal
traffic pattern, making detection challenging.

4) Cloaking: Clocking attack is a special attack against
specific IDSs. Cho et al. [20] proposed a method to identify
malicious ECUs by using clock offset as the fingerprint of the
ECU. In previous detection systems, they assumed that clock
skew could not be imitated. Sagong et. al. propose the cloaking
attack, an intelligent masquerade attack in which an adversary
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modifies the timing of transmitted messages to match the clock
skew of a targeted ECU.

5) Hill-climbing-style: Hill-climbing-style attack is designed
to deceive multi-frame based fingerprinting systems [69], such
as Viden fingerprinting system [21] and Clock-based IDS
(CIDS) [20]. In a multi-frame based fingerprinting system, a
batch of multiple frames has to be collected in order to perform
one update of the fingerprinting threshold. Such fingerprinting
schemes are vulnerable to the Hill-climbing-style attack, where
the adversary is able to control the quantity of attack frames
among the batch of frames collected, so that the attacker ECU
can both hide its identity and shift the fingerprinting decision
threshold gradually.

6) Voltage Corruption: With the specific purpose of evading
the existing voltage-based IDSs, the voltage corruption attack
is launched through poisoning the training data of such IDSs
using two compromised ECUs (i.e., an attacking ECU and an
accomplice ECU) [38]. Intuitively, by exploiting the static ID,
periodicity, and predictable payload-prefix characteristics of
CAN frames from one ECU, the adversary can let the attacking
ECU be in the error-passive state and perform simultaneous
transmission with a legitimate ECU with the assistance of
the accomplice ECU. Consequently, the mixed voltages are
collected as the training data for fingerprinting and the voltage-
based fingerprinting of the victim is corrupted. Even worse,
since the attacking ECU and the victim transmit dominant bits
at the same time, such attack cannot be detected by existing
IDSs.

C. DoS Attack

During a DoS attack, the ECU is suspended or unable to
receive normal messages. Considering the methods of attack
against the ECU, we can classify DoS attacks into five major
categories.

1) High priority message injection: The goal of the DoS
attack with high priority ID messages is to occupy the CAN
bus and block normal messages. To perform the attack, the
adversary must have full control of a normal ECU or an
additional ECU. Since a lower CAN ID means higher priority
and can get CAN bus access according to the arbitration
mechanism of CAN [62], the injected attack messages are
usually set with low IDs, such as 0x000 that has topmost
priority [70]. Additionally, the adversary must increase the
number of messages to fill the bus. For example, in [66], 6000
topmost priority messages are injected into the bus per second
to fill the bus. In the attack, the valid messages are be blocked,
and all ECUs receive none message. As a result, these ECUs
can not work normally, and the vehicle is out of control.

2) Redundant message injection: The purpose of redundant
message injection attack is to interfere with normal ECUs
receiving messages and make the ECUs fail. In order to mount
the attack, the adversary has to fully compromise an ECU
or add an extra ECU. In the attack, the adversary can forge
and inject messages massively through the compromised ECU.
The adversary can inject the traffic to surpass the CAN bus’s
maximum capacity, which is only 1 Mbps. Additionally, the
maximum size of a CAN message is 128 bits (contains ID,

CRC, bit stuffing and all other elements), and there are at least
three consecutive recessive bits (i.e.,1) called ‘interframe space’
between messages [71]. Therefore, the adversary can inject
about 8000 messages per second to launch this attack [66].

3) Bus-off: The purpose of the bus-off attack is to disconnect
or shut down an uncompromised ECU. Through a fully
compromised ECU or an additional ECU, the adversary can
monitor the transmission of in-vehicle messages and inject
malicious messages at a specific moment. The bus-off attack
utilizes the arbitration and the error handling mechanism in
CAN [62]. To perform a bus-off attack, the adversary has
to transmit forged messages that satisfy the following three
conditions. First, the forged message should have the same
ID as the message transmitted by the target ECU. Second,
the forged message has to be transmitted at the same time as
the message transmitted by the target ECU. Third, the forged
message has at least one bit position in which its signal is
dominant (i.e., 0), whereas victim’s signal is recessive (i.e.,
1),and all preceding bits of the two messages should be the
same. When an adversary sends forged messages that meet
the above conditions to the IVN, the can bus will detect a bit
error and the error counter of the target ECU will increase.
Then the adversary will send the forged messages constantly.
After the error counter accumulates to a certain threshold, the
target ECU will turn off itself because of the error handling
mechanism. As a result, the target ECU can not send or receive
CAN messages until it is reawakened.

4) CANnon: Remote disruption: Kulandaivel et al. introduce
a new class of attacks that leverage the peripheral clock
gating feature in modern automotive microcontroller units
(MCUs) [10]. By using this capability, a remote adversary
with purely software control can reliably “freeze” the output
of a compromised ECU to insert arbitrary bits at any time
instance. Utilizing on this insight, they develop the CANnon
attack for remote shutdown.

5) CANFlict: Data-Link Layer Attacks: CANFlict is a
stealthy attack that can shut down the ECU in a bit-level
granular way [72]. De et al. exploit polyglot frames and
pin conflicts to perform data-link layer attacks against CAN,
making use of different peripherals already present on the
microcontroller. CANflict enables an attacker to exploit known
vulnerabilities of the CAN protocol to remotely implement read
and write attacks without any assumption on the periodicity
of the transmitted messages.

D. Fuzzing Attack

Fuzzy attack is a common attack that requires only a small
amount of a priority knowledge about the IVN [66], [73], [74].
According to the validity of IDs, the fuzzy attack can be divided
into two categories according to the CAN identifiers that the
adversary uses, including

1) Disorderly Control: The fuzzy attack with random IDs
aims to make all ECUs in the vehicles receive unpredictable
messages and get messy. To mount an attack by injecting
random messages with random IDs, the adversary needs to
have a fully compromised ECU or additional ECU added to the
vehicle. In this attack, the adversary does not need to have a
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complete understanding of the IVNs or reverse-engineering [48].
In fact, because the range of valid CAN messages is rather
small, significant damage can be done by simple fuzzing of
messages completely (i.e., randomly spoofed identities with
arbitrary data) [75], [73].

2) Reverse: The goal of this attack is to reverse engineer
the specific meaning of CAN messages. During this attack,
the attack capabilities that the adversary needs to master are
the same as that of the other fuzzy attack. In this attack, the
adversary has to inject carefully forged messages whose fields
are constantly being modified [76]. Then, the adversary infers
the meaning of each field in the CAN message based on the
response of vehicles.

E. Diagnostic Attack

Diagnostic communication is usually used for vehicle
mechanics and developers to test or diagnose the vehicle’s state.
The messages which are used in diagnostic communication
(i.e., diagnostic messages), are different from the in-vehicle
normal messages used for communication between ECUs, and
they are usually injected into the vehicle from the OBD-II port.
We conduct in-depth research on diagnostic communication
and come up with some diagnostic attacks.

1) Suspension: Suspension attack in diagnostic communi-
cation aims to stop the transmissions of the target ECU and
make it be listen-only mode. To mount a suspension attack
in diagnostic communication, the adversary only needs to
connect to the OBD-II interface. If the adversary can control
or add an ECU, he can also carry out such an attack. The
implementation of this attack exploits the diagnostic session
in diagnostic communication. The diagnostic session enables a
specific set of diagnostic services and functionality in the ECUs,
and an ECU will be in various states for different sessions [77].
Nowdehi et al. [60] prove that the ECU can only monitor the
bus when the session mode is changed to programming mode.

2) Diagnostic Control: The purpose of the control attack is
to control the behaviors at a special moment and do harm to the
vehicle and driver. Control attacks exploit services in diagnostic
communications that can control the behaviour of the vehicle
(such as stop the engine [53]), and the adversary can control
the vehicle even when the vehicle is running. If an adversary
sends a dangerous control command at an inopportune moment,
this is a huge threat to the safety of drivers. The adversaries
can control the motion state of the vehicle (such as turning off
the engine, acceleration, braking and changing vehicle steering)
through diagnostic messages directly. These control commands
are most closely related to the security of the vehicle and
difficult to reverse [8]. In addition, related dynamic parameters
(such as speed, RPM, steering wheel angle) are also the focus
of researchers and these attacks are easy to detect [78].

3) Diagnostic Spoofing: The spoofing attack in diagnostic
communication aims to deceive the diagnostic devices and
conceal the true condition of the vehicle. To mount this
attack, the adversary needs a fully compromised ECU or an
additional ECU to send diagnostic messages to the diagnostics
devices used by vehicle mechanics. When the adversary fully
compromises an ECU, he can record the reactions to diagnostic

 Intrusion 
 Detection 

 System (IDS)

 Signature

 Anomaly

 ECU Fingerprint

 Parameters 
 Monitoring

 Message Semantics

 Clock Skew

 Voltage

 Reply Time of Remote 
 Frame

 Frequency

 Information Entropy

 Payload

 ID Sequence

 Similarity

 Hybrid

 Vehicle State

Fig. 4: Existing intrusion detection systems.

queries from diagnostic devices and replay the record messages
to spoof the diagnostic devices. For example, in [6], Hoppe et
al. spoof the diagnostics software and hide the absence of the
airbag control module. Specifically, they record the reactions to
diagnostic queries in the presence of the airbag control module
at first. Then, these replies are successfully replayed in the
absence of this module. As a result, the diagnostics software
reports the airbag control module’s presence (including its
name, part no., etc.) without any error conditions.

4) Diagnostic Fuzzing: In IVN, the diagnostic messages are
communicated following specific diagnostic protocols, thus the
adversaries can first reverse-engineer the diagnostic protocols
and then launch attacks by building the attacks messages
following the diagnostic protocols [79]. Diagnostic fuzzing
attack is the first step in reverse engineering, and adversaries
can obtain the specific format of the diagnostic protocol through
the feedback of the ECU. In addition, since all such attacks are
launched leveraging the messages conforming to the protocols,
it is hard to detect these attacks according to the underlying
protocols.

VI. DESCRIPTION OF EXISTING INTRUSION
DETECTION SYSTEMS

Cybersecurity becomes essential for vehicles, and various
vehicular VIDSs have been proposed recently. We curated a
collection of 53 seminal or impactful papers. It is important
to highlight that our selection primarily focuses on papers
investigating VIDS for the CAN. We intentionally omitted
works related to other network protocols. In this section, we
study the methodologies adopted by the existing VIDS in detail
and Fig. 4 demonstrates our specific approach to classifying
these IDSs. Tab. III shows the classification results of existing
IDSs based on our approach.

A. Signature-based VIDS
The signature-based introduction detection approaches are

manly applied to detecting the known attacks. Intuitively, the
traffic features of the known attacks are summarized and set as
signatures, and researchers monitor the current network traffic
and detect intrusions according to these features. The messages
whose features match these signatures are marked as violations.

The signature-based VIDS has various advantages. Since
this method does not require ECU to possess powerful com-
puting resources, signature-based VIDS is easy to deploy in
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vehicle [80]. Furthermore, this type of detection method can
detect known attacks with high accuracy and low error rate,
and can determine which type of attack and how many times
the ECU is confronting [81].

However, the signature-based VIDS also has its own limi-
tations. First, it cannot detect the attack, of which the traffic
features are not specified in the predefined knowledge base.
Many researchers are devoted to proposing the different attack
methods on IVN security continually (e.g., [7], [40], [8], [62]),
and these new attacks suggest that it is impractical to consider
all attack methods. It is critical and challenging to keep the
signature databases up-to-date with frequent updates. Despite
different problems and difficulties, the researchers also propose
some signature-based VIDS. We will give details of them below.

In [82], Larson et al. propose a specification-based VIDS
that can be implemented in the specific ECU. The ECU traffic
can be analyzed based on the information derived from the
ECU-behavior security specifications and CAN protocol stacks.
They evaluate the applicability of the detection and show that
most attacks can be detected. However, the paper is primarily
based on rules developed by the CANOpen protocol [83], a
typical application layer protocol used on CAN. In reality,
the application layer protocols for IVNs are developed by
individual OEMs themselves. The specifications they propose
are not necessarily applicable to all vehicles.

In [68], Studnia et al. propose a language-based VIDS for
vehicle embedded networks. They exploit the high predictability
of the IVN and extract attack signatures from the behavior
models of different ECUs in the vehicle. Using this approach,
they can detect malicious sequences of messages transmitted
on the IVN.
Brief Discussion: Signature-Based VIDS offers notable advan-
tages, including high accuracy in detecting known attacks, low
false positive rates, and low computational overhead, making
it feasible for deployment on resource-constrained ECUs.
However, its reliance on predefined attack signatures limits its
ability to detect novel (zero-day) attacks, and maintaining an
up-to-date signature database requires continuous updates and
significant effort. Additionally, these methods often struggle
with proprietary vehicle protocols, making them less adaptable
across different automotive systems. Due to these limitations,
researchers are increasingly focusing on anomaly-based detec-
tion methods, which can identify previously unknown threats
by learning normal network behavior and detecting deviations,
thereby offering greater adaptability and robustness against
evolving cyber threats in CAN.

B. Anomaly-based VIDS
For anomaly-based intrusion VIDS, researchers build normal

behavior profiles by training the normal model of the system
activity at first. Then, they utilize the deviations between the
profiles and the traffic under test to detect intrusions. Comparing
with signature-based intrusion detection, the anomaly-based
intrusion is not based on prior knowledge of the known attacks,
and it can detect previously unknown attacks. However, it’s
challenging to determine reliable anomaly boundaries because
some normal behaviors are not constant, and the adversary can
imitate normal behaviors to spoof the detector [84].

Despite these disadvantages, many researchers pay attention
to propose various detection methods to improve detection rates
and avoid being evaded. In the following, we will introduce
these methods detailedly. These methods can be divided into
ECU fingerprint-based VIDS, parameters monitoring-based
VIDS, and message semantics-based VIDS.

1) ECU Fingerprint-based VIDS: Resulting from the differ-
ences in physical properties of ECUs, different ECUs always
have different hardware fingerprint. In the communication
among ECUs within the IVN, each ECU possesses one or more
unique IDs that only it can use for transmission. It is important
to highlight that when developing current IDS, researchers
often overlook special messages like diagnostic messages and
remote frames. Therefore, the matching of ID and fingerprint
can be exploited to detect the compromised ECUs that send
malicious messages with forged ID. Researchers use various
fingerprints of the ECUs to detect the intrusions. Based on
the type of fingerprints, We distinguish between clock skew-
based VIDSs, voltage-based VIDSs, and reply time of remote
frame-based VIDSs.

a) Clock Skew-based VIDS: The sending time of a CAN
message is affected by the clock frequency of the ECU. Due
to hardware differences, the clock frequency of different ECUs
is slightly different. In fact, researchers have proposed various
schemes for fingerprinting network devices by estimating their
clock skews through the timestamps carried in their control
packet headers [85]. Therefore, researchers try to apply the
technology to the IVN, and they propose many VIDSs that use
the clock skew to mark off different ECUs and identify the
mismatching of ECU and ID.

Cho et al. [20] propose a clock-based VIDS (CVIDS). They
measure the intervals of periodic CAN messages at first. Then,
they extract clock skews from these intervals for fingerprinting
specific ECUs and model their clock behaviors using the
recursive least squares (RLS) algorithm. Afterwards, based
on the model, CVIDS detects intrusions via cumulative sum
(CUSUM) analysis.

Ying et al. [86] also study the effect of clock skew and
present a clock skew-based VIDS based on the widely used
network time protocol (NTP). Compared with state-of-the-art
(SOTA) VIDS [20], this method simplifies updating the average
and accumulated skew caused by clock skew.

Furthermore, Ying et al. continue to study this feature. They
propose the cloaking attack in [87] which is aimed to avoid
the detection of clock skew-based VIDSs and provide formal
analyses of the attack for two clocks skew-based VIDSs, i.e.,
the SOTA VIDS [20] and the NTP-based VIDS [86]. The
experimental results find that the average prediction error is
within 3.0% for the SOTA VIDS and 5.7% for the NTP-based
VIDS.

Zhou et al. [59] directly measure the bit time of the
CAN frames, which is determined by the CAN controller and
transceiver. In contrast to previous VIDSs based on clock skew,
the approach does not have to worry that an attacker will use
software to simulate the clock skews of victim ECU. However,
this method requires additional equipment to monitor the CAN’s
electrical signals and a separate detector for each CAN path.
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b) Voltage-based VIDS: Instead of clock skew, researchers
also focus on other fingerprints. In [88], Murvay et al. use
the Mean Squared Error (MSE) of voltage measurements as
fingerprints of ECUs, but they use the voltages measured
on a low-speed (10Kbps) CAN bus, which is far from
contemporary vehicles that usually operate on a 500Kbps CAN
bus. Researchers attempt to apply this technology to IVNs, and
they propose many voltage-based VIDS.

Cho et al. [21] propose a novel scheme that can identify the
attacker ECU by measuring and utilizing the subtle difference
voltages between the normal ECUs, called Viden. Via the first
phase, Viden exploits the voltage measurements to construct and
update the normal transmitter ECUs’ voltage profiles as their
fingerprints. According to the fingerprints, Viden can distin-
guish the normal ECUs from the attacker ECUs or compromised
ECUs. However, Viden does not consider the complexity of the
vehicle environment (such as variable temperature and power
voltage) when the method is implemented. Furthermore, it uses
two separate electrical signals, CAN high and CAN low [42],
and the electrical signals used separately are less resistant to
interference. These cases can both reduce its performance of
anti-jamming.

Avatefipour et al. [89] also propose a physical-fingerprint
model that identifies both channel and ECU. They extract 40
features based on both time and frequency domain signals,
and then employ the features to train a neural network-based
classifier. They evaluate the VIDS by using a dataset collected
from 16 different channels and four identical ECUs transmitting
same messages. Experimental results indicate that the proposed
method achieves correct detection rates of 95.2% and 98.3%
for channel and ECU classification, respectively.

Choi et al. [90] introduce a VIDS that can identify a
message’s origin using an additional fixed 18-bit value in the
extended identifier field. Their approach increases the total num-
ber of bits transmitted per message, and the extended identifier
can not be used for the other purpose. This method is difficult
to apply to existing automobiles because it needs to modify the
modern vehicles’ existing CAN protocol. Subsequently, Choi et
al. also present another VIDS [91] named VoltageVIDS that has
improved the previous method in which the additional ID field
is no longer needed. Furthermore, VoltageVIDS is evaluated
in two vehicles and achieve identification rates ranging from
90.01% to 99.61%.

Kneib et al. [92] also propose a VIDS called Scission, which
uses fingerprints extracted from CAN frames to identify the
sending ECUs. Scission utilizes physical characteristics from
analog values of CAN frames to determine whether a legitimate
ECU sends it. Compared with the previous implementation of
VIDS based on voltages [21], Scission uses the differential
signal instead of high and low signals and is more reliable
in terms of changing conditions such as battery charge or
electromagnetic compatibility.

Foruhandeh et al. [69] demonstrate the vulnerability of the
existing multi-frame-based automotive VIDSs to a hillclimbing-
style attack, which allows a compromised ECU to impersonate
another. Then, they show SIMPLE, a novel VIDS that uses
physical layer features within a single frame to fingerprint the
ECUs and is immune to hillclimbing-style attack. Additionally,

this method requires a relatively low sampling rate and adapts
to various environments.

Kneib et al. [93] continue to study the VIDS based on the
voltage characteristics of ECU. They believe that the previous
research on ECU voltage requires an oscilloscope that needs a
high sampling rate of up to 2.5 GS/s to generate the fingerprints,
and the high sampling is a big obstacle to the implementation
of these algorithms in real vehicles. Therefore, they reduce
the resource requirements for sender identification using the
characteristics of the rising edge. Furthermore, to cope with
the complex environment on the vehicle, they also build
an adjustable model to change signal characteristics during
runtime.

Murvay et al. [94] introduce a novel VIDS called TIDAL-
CAN. Differential delays of bus signals, which are affected by
bus characteristics and sender location, are used by TIDAL-
CAN. TIDAL-CAN identifies the specific location of the target
ECU by comparing the difference in signal arrival time at
the two bus ends, and it can successfully identify the attacks
that are implemented by compromised ECUs. The results of
their experimental evaluation show that the method provides
high identification rates. Whereas TIDAL-CAN also needs the
equipment whose sample rates reach 250MS/s, it is not easy
to implement in modern vehicles.

c) Reply Time of Remote Frame-based VIDS: In addition
to the physical properties of ECUs, researchers also used
differences in ECU reaction times and relative positions as
ECU fingerprints.

In [75], Lee et al. propose an intrusion detection method
based on the remote frame by measuring the offset ratio and
time interval between request and response messages. Each
ECU will reply to the remote frame with the ID of the ECU [95].
Because of the different positions of the ECUs on the bus and
different transmitting procedures of different IDs, the average
intervals between the request and response messages can be
used as the fingerprint of different IDs. Therefore, they can
use the interval time to determine whether the original ECU
sends a specific ID message.
Brief Discussion: Fingerprint-based VIDSs are one of the most
popular methods for IVN intrusion detection. Several papers
have been accepted at top conferences in the security field.
These methods take advantage of the physical characteristics of
the ECU and can effectively detect most compromised malicious
ECUs and added ECUs. However, if a compromised ECU still
sends the same ID and only changes the frequency or payload,
it cannot be detected.

Additionally, these methods are difficult to implement on
existing vehicles because they require complex equipment and
operations. For example, voltage-based VIDSs require high-
precision oscilloscopes to listen for changes in the voltage of
CAN messages. Therefore, how to reduce additional operations
is the next challenge to be considered for the fingerprint-based
approach. Furthermore, the aging of the hardware and the
impact of external environment (e.g., temperature) on the ECU’s
physical characteristics must also be considered.

2) Parameters Monitoring-based VIDS: Parameters
monitoring-based VIDSs utilize the change of special in-
vehicle parameters (such as frequency of CAN messages)
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while detecting attacks. In these approaches, researchers do
not consider the meaning or sender of the messages. They
only need to monitor the traffic on the IVN and extract specific
traffic parameters. Based on the used parameters, these VIDSs
can be taken into the following six categories.

a) Frequency-based VIDS: In a normal vehicle, ECUs
send their messages to the CAN bus periodically, and the
transmission frequency is fixed [66]. When adversaries want to
attack the IVNs by injecting special messages, the frequency of
these messages will change. Additionally, since the ECUs will
still send normal messages, adversaries need to inject forged
messages to the bus at a faster frequency to override the normal
messages [40]. As a result, the rate of messages on the bus
increases significantly and is easily detected. For example, in
[8], Miller and Valasek report that they need to inject at a rate
of at least 20 times faster than normal for their attack to be
successful. According to this phenomenon on the IVN, some
researchers come up with some VIDSs based on the frequency
of CAN messages.

Ling et al. [96] present a method for detecting CAN malicious
messages based on the invariance of CAN IDs and the constant
frequency of each ID. They aim to detect the injection attack
and DoS attack. However, they can not deal with the attack
where legitimate CAN ID messages are injected at a low speed.
Additionally, their experiment is implemented in CANoe, a
special bus simulation tool, and they do not apply the method
to the real vehicle. The method can cause some misjudgments
because of the complex situation of the real vehicle.

Taylor et al. [67] introduce a VIDS by measuring inter-
packet timing over a sliding window and compare the timing
to historical averages to yield an anomaly signal. In this
method, the authors use a one-class support vector machine
(OCSVM) to classify normal messages and malicious messages.
Furthermore, they also show that a similar measure of messages’
data contents is not effective for identifying anomalies.

Song et al. [66] propose a lightweight intrusion detection
method for the IVN according to the time intervals of CAN
messages. They capture CAN messages from a real car and
perform three kinds of message injection attacks. They prove
that time interval is a meaningful and effective feature to detect
injection attacks in the CAN traffic.

Gmiden et al. [97] introduce a simple VIDS based on the
analysis of CAN message time intervals. The advantage of
the method is that it does not require a modification in the
hardware layer and can be implemented in each ECU.

Moore et al. [98] also propose an anomaly detection system
based on the regularity of normal signals. They find that
for each CAN ID, the time of a message only depends on
the previous message’s time, and the wait time following a
fixed distribution. Thus, they train models for each CAN ID
based on the interval of two continuous messages. Each model
will flag unusually short/long intervals as an anomaly while
monitoring the traffic and the system produces an alert upon
three consecutive anomalies.

Tomlinson et al. [99] use a time-defined window to detect
message changes in CAN resulting from injection and reflash
attacks. They analyze three methods (ARIMA, Z-score, and
supervised method) that compare each interval for CAN

messages within the window against the averages for all packets
with the same ID within that window. This method reduces the
calculation cost because it only needs to calculate the average at
the end of the moving window. However, if attackers understand
this detection mechanism, they can inject malicious messages
at rates similar to the normal messages within a window to
deceive the detection system.

Olufowobi et al. [73] present an VIDS based on change-
point detection techniques using adaptive CUSUM algorithm
to detect statistical changes and intrusions in CAN bus message
stream. The method also judges the intrusion by detecting the
abnormality of the message sending time. The attack can not
be detected if the adversary does not change the frequency of
the messages.

Young et al. [100] demonstrate that the basic assumption that
all CAN messages have consistent timing intervals is not true.
In normal vehicles, the timing intervals of some special ID
can change due to normal driving operations, and the change
can make VIDS based on constant timing intervals inaccurate.
Furthermore, they propose and evaluate a frequency-based
VIDS. They prove that this method could solve the problem
raised by interval-based approaches.

In [101], Olufowobi et al. present an approach for detecting
intrusions in IVNs using the pattern of message sending,
called SAIDuCANT. They build a specification based on
messages and worst-case response time analysis of the CAN
bus at first and use the specification to detect the abnormal
messages. SAIDuCANT considers the jitter and retransmission
phenomenon in the CAN bus to more accurately define the trans-
mit time of the message compared with other frequency-based
VIDS. It achieves a better F1 score compared with interval-
based and frequency-based approaches with less detection delay.
However, this method can not solve attacks such as masquerade
attacks that imitate the time of the victim ECU.

b) Information Entropy-based VIDS: The information
entropy, often just entropy, is the average amount of information
contained in any random variable, which can be interpreted
as the intermediate level of ”information,” ”surprise,” or
”uncertainty” inherent in the variable’s possible outcomes [102].
In the context of network and Internet systems, the concept
of entropy-based intrusion detection has been considered in
various publications [103], [104], but entropy approach has
a high rate of false positives because of the randomness of
the standard computer networks [105]. Instead, the traffic in
IVN is much more stable, and injected malicious messages
will significantly change the entropy of traffic. The researchers
can use the change of entropy to detect the injected malicious
messages.

In [70], Michael Müter et al. introduce the VIDS based on
information entropy for the first time. They suggest to measure
the entropy of IVN and use it as the specification of the normal
operation for the network. They use the entropy of a set of CAN
IDs and special states to detect the intrusion. In this paper, they
describe three attack scenarios to show the usefulness of their
approach. Furthermore, they put forward different methods
to detect these attacks. Firstly, they increase the message’s
frequency with a specific CAN ID while the engine is running
(replay attack). To detect this attack, based on the concept of
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relative entropy [106], they calculate the relative distance of
the system’s normal behavior and the behavior to be detected.

Secondly, they attack the availability of a bus system by
performing a flooding attack on the CAN bus. The implemen-
tation is done by sending a mass of messages containing the
most dominant identifier 0x000 (Dos attack). In this scenario,
they measure entropy during the vehicle’s regular operation
and compare this value to that during the attack phase.

Thirdly, in this attack scenario, they think the adversary tries
to disturb the system by injecting selective, spurious speed
signals, e.g., to impact the ECUs that need the signals. To
defend against the attack, they utilize the conditional self-
information theory [107] to check the coherence to the speed
signal’s expected behavior and the previous value.

In [76], Marchetti et al. propose and evaluate an entropy-
based method for detecting anomalies in CAN messages
generated by a real vehicle. They find that if only one detector
is used to detect anomalies, they can only detect attacks that
inject many anomalous messages. On the other hand, to detect
low-volume attacks, in which the attacker injects only 1 packet
per second, they need to set up a detector for each ID.

In [108], Wu et al. present a novel VIDS based on information
entropy, which uses a fixed number of messages as sliding
windows. Compared with the above entropy-based VIDSs,
the method uses a simulated annealing method [109] to
get the best parameters (i.e., the best sliding window size,
standard deviation, and corresponding sensitivity) at first. The
experimental results demonstrate that the method can effectively
improve the accuracy and effectiveness of intrusion detection
for DoS and injection attacks on IVNs.

c) Payload-based VIDS: Many works utilize the data
fields of CAN messages for anomaly detection. On the IVN, the
payload syntax and semantics of the same ID are the same [110].
Furthermore, the changes in vehicle status such as speed are
continuous and uniform. Reflected on the vehicle messages,
the changes in data content are regular and stable. Therefore,
the intrusion can be detected according to the dramatic changes
in data fields of CAN messages.

Stabili et al. [25] propose a novel method that can identify
malicious CAN messages injected by adversaries in the CAN
bus. In particular, this detection method studies the payloads of
all messages transmitted on the bus. It compares the Hamming
distance between consecutive payloads of the same ID to build a
valid range of the Hamming distance for each ID in the training
phase. Furthermore, since the proposed method has very low
computational complexity and small memory footprints, it can
be implemented in the real vehicle.

Taylor et al. [111] consider the data interdependence between
IDs and develop an anomaly detector by learning to predict
the next data word originating from each sender on the bus on
the base of long-short-term memory (LSTM) recurrent neural
network for CAN bus anomaly detection. The message that
that differs significantly from the predicted result isflagged as
anomaly. After implementing this detector, they evaluate it by
abnormal data created by modifying the CAN bus data.

Kang et al. [112] propose a novel VIDS by utilizing a deep
neural network (DNN) to enhance the security of the IVN. In
this paper, Kang et al. choose the data field that includes 64-bit

positions (i.e., 8 bytes) in the CAN message and calculate
the distribution of bit-symbols. They use the probabilities of
bit-symbols as the features to distinguish normal or malicious
messages.

Xiao et al. [113] propose a novel and robust VIDS by using
spatiotemporal information enabled time series prediction. The
proposed IDS analyzes the CAN traffic generated by the IVN
in real time and identifies the abnormal state of the vehicle
practically. In this method, the authors use the ConvLSTM
model [114] to exploit the association between multiple CAN
messages to find more effective features for intrusion detection.
Experiment results show the performance of the model and
the effectiveness against various attacks.

Kukkala et al. [115] present a novel VIDS called INDRA
that utilizes a Gated Recurrent Unit (GRU) based recurrent
autoencoder [116] to detect anomalies in CAN. They use
the change of the payload to train the model and detect
the anomalies. Additionally, they evaluate their proposed
framework under different attack scenarios.

d) ID Sequence-based VIDS: The sequence of messages
transmitted on the CAN bus can also be used for intrusion
detection. The traffic on the CAN bus is constant and the
messages are sent periodically for each ID. Hence, the sequence
of message IDs observed in the CAN Bus is duplicated [120].
Researchers can use this feature to detect attacks.

Marchetti et al. [120] present an effective method based
on the analysis of the sequence of normal CAN bus traffic.
This method is implemented by limited memory and low
computational complexity and can be applied to current
vehicles.

Islam et at. [121] consider the VIDS in [120] vulnerable
to intelligent attacks and they propose a four-stage intrusion
detection system that uses the chi-squared method [136] and
incorporates graph theory [137]. The proposed methodology
exhibits up to 13.73% better accuracy compared to existing ID
sequence-based methods [120].

e) Similarity-based VIDS: Due to the stability of the in-
vehicle messages, the distribution of the IDs should be similar
across different windows. Some researchers want to use this
similarity to detect the malicious messages.

In [122], Ohira et al. propose a method based on the
similarity of sliding windows that can detect every type of DoS
attack by using the messages distribution of sliding windows.
The method uses the Simpson coefficient [138] to calculate
the similarity of message distribution in the train set and test
set. The method can detect the DoS attack in 100% of the
cases in their experiment, and the detection time is up to 93%
(14 us) shorter than the conventional method. However, this
method still can not solve the masquerade attack, which has
little impact on the IVN.

In [139], Nguyen et al. propose a novel multi-class IDS using
a transformer-based attention network (TAN) for an in-vehicle
CAN bus. Their model builds on the self-attention mechanism,
removing RNNs and classifying attacks into multiple categories.
Furthermore, the proposed models can detect replay attacks by
aggregating sequential CAN IDs.

f) Hybrid: As we have shown before, different features in
the CAN network can be used to detect attacks in the vehicle
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Signature [82],[68]

Anomaly

ECU Fingerprint
Clock Skew [20],[86],[59]
Voltage [21],[89],[92],[90],[69],[93],[94]
Reply time [75]

Parameters Monitoring

Frequency [96],[67],[66],[97],[98],[99],[73],[117],[100],[101],
Information Entropy [70],[76],[108]
Payload [111],[112],[110],[74],[25],[68],[118],[113],[60] ,[119],[115],
ID Sequence [120],[121]
Similarity [122]
Hybrid [123],[124],[125],[126],[127],[117],[128],[129]

Message Semantics Vehicle State [78],[130],[131] ,[132],[133],[134],[135]

TABLE III: The classification of existing IDSs.

accurately. However, when these individual features are used
to detect intrusions, they often bring some loopholes. For
example, frequency-based VIDS usually cannot detect attacks
in which the adversary imitates the victim ECU’s frequency,
and it can also produce false positives for event messages and
messages with large periodic fluctuations. Furthermore, VIDS
based on the payload cannot achieve a high detection rate when
the attacker changes little to the data flow of CAN network .
Therefore, many researchers try to propose some VIDSs that
contain multiple features at the same time.

Theissler et al. [123] propose a VIDS that uses enhanced one-
class Support Vector Machines (SVM) to detect intrusions [140].
This method directly uses normal multivariate time series from
IVNs to learn the normal behavior of vehicles and detect
intrusions based on deviations.

Tian et al. [124] introduce an VIDS that utilizes a regression
Decision Tree with Gradient Boosting (GBDT) technique [141],
[142] for CAN bus. Additionally, they propose a new feature
based on entropy as the feature construction of the GBDT
algorithm in which they consider the entropy of CAN ID and
the payload of data. The experiment results show that the
method achieves a high true positive (TP) (97.67%) and a low
false positive (FP) (1.20%), which means the system has a
good performance and can be used to protect the CAN bus.

Wang et al. [126] propose a distributed VIDS using hierarchi-
cal temporal memory (HTM) [143], [144], a machine learning
algorithm aimed to capture the structure and algorithmic
features of the new cerebral cortex. The method uses a standard
HTM system and standard parameters to predict CAN data
flow based on the bit sequences from a single ID data domain.
The experiment results show that this method achieves good
performance in AUC score, precision, and recall.

Tomlinson et al. [127] use a one-class compound classi-
fier that combined euclidean distance and nearest neighbor
algorithms [145], [146] to detect the IVN attacks. They only
target a single type of attack test- fuzzing test, where the
CAN messages are filled with random messages. However, the
experiment results are relatively poor, and the best detection
rate is the only 65%.

Weber et al. [125] introduce a hybrid anomaly detection
system, which combines the advantages of an efficient rule-
based system with the advanced detection measures provided
by machine learning. Firstly, they perform a static check based
on the format and transmission standard (e.g., transmission
frequency and the payload range) [147]. Secondly, they use an
unsupervised anomaly detection algorithm, called Lightweight

On-Line Detector of Anomalies (LODA) [148], to cooperate
with the static check.

Koyama et al. [117] present a lightweight VIDS based on
the quantized intervals for periodic CAN ID and the absolute
difference of payloads. The results of their experiments show
that the system achieves a high detection performance: a true
positive rate of 97.55% and a false positive rate of 0.003%.
However, the attack in which a small number of malicious
messages are injected can not be detected.

Zhu et al. [128] propose a multi-task LSTM VIDS which
utilizes mobile edge computing (MEC) [149] to assist in the
identification of intrusions in the IVN. In this system, both the
dimension of time and the dimension of data are combined
to enhance detection accuracy. With the assistance of mobile
edge computing (MEC), the detection can be finished with
0.61 milliseconds and achieve 90% of accuracy. However, the
algorithm is still complicated for onboard ECUs, and it is
difficult to apply to existing vehicles directly.

Hanselman et al. [129] present CANet, a novel VIDS based on
a neural network architecture that is trained in an unsupervised
manner. The method builds the first deep learning model in the
literature that can naturally deal with the data structure of the
high dimensional CAN bus. The basic idea is to introduce an
independent LSTM input model for each ID that can capture
the corresponding signals’ temporal dynamics. Due to the
comprehensive features, the true negative rate of CANet is
fairly high, usually over 0.99.
Brief Discussion: Parameter-based monitoring VIDS is the
most commonly used VIDS. The biggest advantage of these
VIDSs is that they are easy to implement. Just by listening to
the normal data inside the car, these VIDS do not need some
additional equipment. However, these methods are typically
targeted at specific attacks and may be less effective at detecting
unconsidered security risks. Furthermore, due to the complexity
of the IVN and the external environment, the monitored
parameters will change, affecting the accuracy of detection.

3) Message Semantics-based VIDS: In addition to the
fingerprint-based VIDS and parameters monitoring-based VIDS,
the researchers also propose CAN message semantics-based
VIDS. In these VIDSs, the researchers need to reverse the
meaning of the CAN messages. Researchers mainly detect
whether a vehicle is attacked based on abnormal changes in
the vehicle states that are reversed from the CAN messages,
and we call the methods ‘vehicle state-based VIDS’.

a) Vehicle State-based VIDS: Normally, Some CAN
messages on the IVN always contain different vehicle states,
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such as vehicle speed, acceleration, RPM, the pedal position,
and brake pedal position. When the vehicle runs normally,
these states have a high correlation. For example, the rapid
growth of vehicle speed means that the acceleration and the
pedal position are greater than 0. If the relationship between
these states changes, it means the vehicle is attacked.

Wasicek et al. [132] propose a context-aware VIDS (CAID)
framework, which can recognize the control of the physical sys-
tem through the IVN. CAID uses sensor information, which can
be captured from the on-board diagnostics (OBD-II) interface
and parsed according to the OBD protocol [150] to build models
of the physical system by using an unsupervised Artificial
Neural Network (ANN) [151]. Afterwards, CAID checks the
correctness of current sensor data against the reference models.
Thereby, it ensures the safety of the controller’s operations.

Narayanan et al. [78] introduce OBD SecureAlert, a system
that detects abnormal behavior in vehicles when they are being
operated. They successfully extract data from various real
automobiles by connecting to their OBD-II port. With the
collected dataset, they generated a Hidden Markov Model [152]
to predict anomalous states in vehicles. These techniques can
be applied to identify anomalies and unsafe states in vehicles.

Casillo et al. [134] show an embedded VIDS for vhicle,
which adopts a Bayesian Network [153] approach for the
quick identification of malicious messages. It uses sensor
data collected from the IVNs to detect commands sent by
an attacker. Their experiments were carried out using an
automotive simulator, CARLA, which can emulate a real
vehicle and its interaction with the environment, along with
some other matching equipment. They tested the effectiveness
of the system against malicious commands on this device.
Brief Discussion: Message semantics-based VIDS is the most
promising detection method. These methods typically reverse
diagnostic messages or in-vehicle messages to obtain vehicle
states and then detect intrusions through anomalies in vehicle
states change. This method can detect harmful messages to
the vehicle and is unaffected by the ECU’s errors and external
environment. However, the greatest challenge for the method
is how to accurately reverse in-vehicle or diagnostic messages.
While some of the protocols are publicly available (OBD
protocols [150]), most of them are designed by the OEMs
themselves. There is no research work available that provides a
way to completely reverse these protocols. Therefore, obtaining
accurate vehicle states is the focus of message semantics-based
VIDS.

VII. EVALUATION OF EXISTING VIDS
Researchers propose VIDSs based on various detection

principles and use different validation strategies to evaluate
detection effectiveness of their methods. In this section, we
complement the survey by introducing a taxonomy of the CAN
VIDS in Table IV. Next, we compare these VIDSs from different
perspectives: the used features, the detection technology, the
attack covered, validation strategy, and detection result.

A. Feature
Feature used in the VIDS is a fundamental part of an intrusion

detection system. Different features require different data to be

collected. We count the features used in all the papers, which
are the timing interval of the consecutive messages (can be
classified as frequency), clock skew, voltage profiles, the data
field, the entropy, the sequence of ID, the state of the vehicle,
specification. Researchers use these features based on different
principles. We give more details of these principles.

Researchers take advantage of the periodicity and stability
of CAN message transmissions, and they use the stable time
interval between CAN message transmissions, the information
entropy of the data stream, and relatively fixed order of the
CAN IDs to detect intrusions [66], [70], [120]. The VIDSs
based on these features only need to collect the data stream
from the IVNs. These systems calculate the pattern of normal
data based on these data. During the actual testing, the VIDSs
issue a warning if the test data violates this pattern.

Researchers also use the continuity of data fields in CAN
messages to detect malicious messages. The data in a CAN
message usually contains some practical meaning, such as
sensors and counters [110]. Therefore, they use the difference
between neighbouring data or the prediction of the next data to
determine whether the message is malicious [111], [25]. The
method also only requires the collection of data streams from
the in-vehicle network.

Furthermore, researchers can utilise the semantic information
in CAN messages to detect attacks on vehicles. They reverse
the CAN messages to obtain the vehicle status and determine
whether the vehicle is under attack based on the change of the
vehicle status [132], [134]. While using semantic information
to detect intrusions, the researcher not only needs to get
messages from IVN but also needs to know how to reverse
these messages.

Finally, researchers propose many VIDSs based on the
fingerprint of ECUs [20], [21], [90]. They use the unique
features of each ECU, such as clock skew and voltage, to
determine whether a message source from the correct ECU.
When using clock skew as the feature, researchers only need to
collect data streams from the IVNs. However, researchers need
sophisticated equipment such as oscilloscopes to capture the
voltage values of CAN messages when voltage is used to detect
intrusions. The complex data collection affects the deployment
of this VIDS in real vehicles.

B. Detection Technology

Different intrusion systems take different technologies to
model and build the system. Overall, these VIDSs take two
technologies: rule-based technology and machine-learning
technology.
Rule-Based Detection: Usually, they can be distinguished into
two types. There are two popular types of rule-based detection
technologies. For the first type, the researchers draw up some
specifications according to the prior knowledge of attacks or
standard protocols and detect malicious messages with these
specifications [82]. For the other type, the researchers can build
the outlines or thresholds of normal behaviors through features
mentioned before by the mathematical formula or statistical
experiment (e.g., [98]). The thresholds or outlines can determine
whether the target messages are malicious. These VIDSs, which
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TABLE IV: Evaluation

VIDS Features Detection technology Attacks covered Platform Results

[82] Priori knowledge
of CAN protocols Rule-based(specification) DoS,Spoofing,Fuzzing Simulation Unobtainable

[70] Entropy of ID Rule-based(threshold) DoS,Spoofing Real car Unobtainable
[96] Frequency Rule-based(threshold) DoS,Spoofing Simulation Unobtainable

[123] Multivariate time
series messages Machine-learning(SVDD) Spoofing Real car Precision=32.3-100%

[67] Frequency Machine-learning(OCSVM) DoS,Spoofing Simulation AUC ≥ 96.20%

[20] Clock skew Rule-based(threshold) Spoofing,DoS Real car,Prototype,
Simulation FP=0.055%,TP=100%

[111] Payload Machine-learning (RNN and LSTM) Spoofing Simulation AUC=17.65%-100%
[112] ID,Payload Machine-learning(DNN) Spoofing Simulation FP=1.6%,Accuracy=97.8%

[78] State(OBD
protocol) Machine-learning(HMM) Spoofing Real car Unobtainable

[76] Entropy of ID Rule-based(threshold) Spoofing,Fuzzing real car TN=93.33%/88.89%
[66] Interval Rule-based(threshold) DoS,Spoofing,Fuzzing real car Accuracy=100%
[97] Frequency Rule-based(threshold) DoS,Spoofing Simulation Unobtainable

[75] Interval(remote
frame) Rule-based(threshold) DoS,Spoofing,Fuzzing real car,Prototype Unobtainable

[120] ID sequence Rule-based(outline) Spoofing,Fuzzing Real car, Detection Rate:100%

[132] State (OBD
protocol) Machine-learning (Bottleneck ANN) Spoofing Real car Unobtainable

[98] Interval Rule-based(threshold) Spoofing,DoS Real car FP=0.294%,TP=99.98%

[74] Payload Machine-learning (Fuzzy logic
techniques) DoS,Spoofing,Fuzzing Simulation FP=0-3.8%, Precision=96.3%-100%

[89] Voltage profiles
(high, low) Machine-learning (ANN) Spoofing Prototype Detection Rate:95.2%/98.3%

[110] ID,Payload Rule-based(specification) Fuzzing Real car,Simulation FP=0
[25] ID,Payload Rule-based(threshold) Spoofing,Fuzzing Real car,Simulation Detected Anomalies:100%

[21] Voltage profiles
(high, low) Rule-based(threshold) Spoofing Real car,Prototype FP=0.2%, Identification=99.8%

[130] State (Sensor) Machine-learning (Random Forest) Spoofing Real car,Simulation Unobtainable
[131] State (sensor) Rule-based(threshold) Spoofing Simulation Unobtainable

[124] entropy of ID
and Payload Machine-learning (GBDT) Spoofing Simulation TP:97.67%, FP:1.20%

[92] Voltage profiles
(differential)

Machine-learning (Logistic
Regression) Spoofing Real car,Prototype FP=0, Identification=99.85%

[99] Frequency Rule-based (threshold) DoS,Spoofing Simulation Accuracy:99.19%-100%
[108] Entropy of ID Rule-based (threshold) DoS,Spoofing Simulation Accuracy:92.3%/100%

[90] Voltage profiles
(differential) Machine-learning (SVM,NN,BDT) Spoofing Prototype FP=3.52 %,Identification=96.48%

[68] ID,Payload Rule-based(specification) Spoofing Simulation Unobtainable
[118] Payload Machine-learning(GAN) DoS,Spoofing,Fuzzing real car Accuracy:100%/98%
[86] Clock skew Rule-based(threshold) Spoofing,DoS Real car,Prototype Prediction error<5.7%

[125] ID sequence,
Payload,Interval

Rule-based and
Machine-learning(LODA) Spoofing Simulation Unobtainable

[126] ID,Payload,
transmission time Machine-learning (HTM) Spoofing Simulation Precision>90%

[127] Frequency and
Payload

Machine-learning (Euclidean
distance and nearest neighbor) Fuzzing Simulation Detection Rate: 65%,/52%/45%

[73] Frequency Rule-based(threshold) DoS,Spoofing,Fuzzing Simulation Unobtainable
[100] Frequency Rule-based(threshold) Spoofing Real car FP=1.4%,Accuracy=100%
[119] ID,Payload Machine-learning (RNN and LSTM) Spoofing Real car Unobtainable
[117] Interval,Payload Rule-based(State transition) Spoofing real car FPR=0.003% TPR:97.57%

[60] Payload Rule-based(threshold) Spoofing,DoS Real car,Prototype,
Simulation Unobtainable

[128] Interval,Payload Machine-learning(LSTM) DoS,Spoofing Simulation Accuracy:90%
[133] State (reverse) Machine-learning (HMM) Spoofing Real car Unobtainable

[69] Voltage profiles
(differential) Rule-based (Mahalanobis distance) Spoofing Real car,Prototype EER:0/0.8985%

[101] Frequency Rule-based(specification) Spoofing Simulation Accuracy>90%
[134] State(reverse) Machine-learning (Bayesian) Spoofing Simulation Precision:85%
[59] Bit time Machine-learning (MLR) Spoofing Real car,Prototype Detection Rate: 99.76%

[113] ID,Payload,
Timestamp Machine-learning (ConvLSTM) DoS,Spoofing,Fuzzing Simulation F1-score:96%

[93] Voltage profiles
(differential)

Machine-learning (LR,Naive
Bayes,SVM) Spoofing, Real car,Prototype Identification rate:99.94%

[94] Differential
Timing Rule-based(threshold) Spoofing, Prototype Identification rate:100%

[129] ID,Payload,
Frequency Machine-learning (LSTM) DoS,Spoofing, Simulation True negative ≥ 99%

[122] Sliding Windows
Similarity Rule-based(threshold) DoS,Spoofing,Fuzzing Simulation Accuracy:100%

[121] ID sequence Rule-based(graph) DoS,Spoofing, Simulation Accuracy: 94.74%/100%/95.24%
[115] Payload Machine-learning(GRU) DoS,Spoofing,Fuzzing Simulation False positive rate:2.5%
[154] ID Machine-learning(DCNN) DoS,Spoofing,Fuzzing Simulation FNR:0.05-0.35%,ER:0.03%
[135] State(reverse) Rule-based(threshold) DoS,Spoofing,Fuzzing Real car,Simulation Accuracy:100%
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use rule-based techniques, require only comparison operation
during detection, and so that they consume fewer resources
and delays. However, as the threshold is fixed and the changes
of the IVNs are complex, this method can cause false alarms
when there are large changes in the condition of the vehicle.
Machine-Learning-Based Detection: The machine-learning
algorithms are already widely used in VIDSs, and they are
quite suitable for solving the classification and modeling
issues in VIDSs. Furthermore, three types of machine learning
models are widely adopted by the VIDS, including traditional
machine learning [74], recurrent neural network (RNN) [111],
deep neural networks (DNN) [66]. Compared to rule-based
algorithms, machine learning algorithms consume more time
and computational resources [67]. Therefore, machine learning-
based VIDSs require powerful computing power from the ECUs.
However, the robustness of these systems is greatly enhanced
because machine-learning algorithms can train large amounts
of data containing a variety of scenarios [67].

C. Attack Covered

When the researchers designed an VIDS, they must consider
the targeted attack scenarios before design. Since none of these
algorithms explicitly mention sniffing attack and diagnostic
attack, we only list attacks in in-vehicle communications.
The attack scenarios are presented in Section V: DoS attack,
Spoofing attack, Fuzzing attack. The various VIDSs target
different attacks according to their own detection principles.
For example, Kang et al. [112] propose a VIDS based on the
continuity of data fields under the same ID. They target attacks
that change the data field for a specific ID. However, they
can not detect attacks that insert malicious messagse with
undetected IDs (such as DoS attack and Fuzzing attack).

D. Test Platform

In this section, we assess the reliability of the evaluation
method by comparing the utilization of test platforms in various
works. Researchers evaluate the effectiveness of their VIDS
in different ways. We can divide them into three categories
based on the platforms used in the experiment: real vehicle,
prototype, and simulation. When a vehicle is in operation, the
changes of vehicle states are complex and varied. For the best
validation, some researchers deploy their VIDSs directly on
real cars [20], [70], [98]. However, this method requires a real
vehicle that can be modified. Furthermore, the attack test can
cause damage to the vehicle and even threaten the safety of
the driver. Therefore, some researchers create a prototype with
some microcontrollers and CAN modules to simulate the ECUs
and CAN [90], [94]. This method also validates the detection
effect of an VIDS in the CAN, but a microcontroller such as a
Raspberry Pi cannot completely replace an ECU. The reliability
of this method is poorer than that of real cars. Finally, some
researchers only use a CAN bus simulator, such as CANoe, or
use some online datasets [112], [73], [74]. Researchers modify
the data to simulate the generation of attacks. This verification
strategy is simple but not very reliable.

E. Detection Result

The results are an essential indicator for evaluating the
effectiveness of an intrusion detection system. Since different
papers describe their results from different perspectives (such
as false positive or precision), we compared the relevant
results for each paper with their own perspective during
the assessment phase. Whereas some items do not perform
detailed experiments or do not list the actual results, we use

‘Unobtainable’ to represent them.
As the detection results of these systems are based on

different data sets, it is not possible to directly compare the
results. Specifically, The length of the data set, the proportion
of positive and negative samples, and the vehicle states when
the data is collected can affect the effectiveness of the detection.
Furthermore, some VIDSs only use a single evaluation index to
show the effectiveness of the test, but such results are unreliable.
For example, Song et al. [66] only calculate the accuracy of the
test. However, if the test data set is asymmetric, the accuracy
rate can not represent the true detection effect.

VIII. EXPERIMENT

In this section, we select multiple typical VIDSs and laterally
compare their detection performance by designing specific
experiments and using a uniform testing dataset. First, we
introduce the VIDSs and the dataset that we select. Second, we
describe the challenges encountered in the process of running
these VIDS. Third, we present the detection results of these
VIDS with the same attack dataset. Finally, we discuss the
potential attacks that can evade these VIDSs.

A. VIDS Selection And Implementation

To further explore the performance of VIDS, we choose the
typical VIDSs from the papers listed in Table IV to imitate
their algorithm and implement them following two criteria.

We select the methods that can be tested with a unified
dataset. Parameters monitoring-based VIDSs usually only need
to use a CAN module to collect all CAN frames, and these
methods can directly use the same data set for horizontal
comparison. However, ECU fingerprint-based VIDSs require
special datasets for defense. For example, Kneib et al. [92] need
an advanced oscilloscope to collect the voltage of CAN signals
to construct a fingerprint of a normal ECU. These methods
typically collect voltages at different fields in the CAN frame
at different sampling rates, which are introduced in §VI. Data
source limitations prevent us from evaluating them using a
common dataset.

Taking the above reasons into account, we select these papers
([97], [66], [98], [100], [73], [20], [99], [70], [76], [108], [96],
[120], [122], [67], [111], [112], [25]) from Table IV. It is
particularly worth noting that some papers contain multiple
methods. In [70], muter et al. proposed two different methods
to detect intrusion. One uses the change in relative entropy
([70](1)), and the other uses the change in overall entropy
([70](2)). Tomlinson et al. [99] introduce two new unsupervised
detection methods. One uses Z-score ( [99](1)) and the other
uses ARIMA ( [99](2)).



18

Real CAN

CAN_H

CAN_L

Fig. 5: The topology of the real CAN.

B. Dataset

We need to collect the CAN bus data in an attack-free state
and under various attacks to implement these VIDS. We collect
the data from a real CAN bus, which is shown in Fig. 5. The
testbed consists of electronics from a 2014 Toyota Corolla.
Both the hardware and the network are actually used by this
car. We apply it to evaluation instead of actual vehicles due
to security and safety considerations. During evaluation, we
connect the CAN analyzer to the CAN-H and CAN-L of the
CAN bus. Various attacks, such as DoS attack and Fuzzy attack,
are launched on the real CAN. Also, we obtained the CAN
information from its OEM (Original Equipment Manufacturer).
This real CAN contains three internal ECUs. Meanwhile, 23
types of frames are transmitted (i.e., 23 various CAN IDs).
We select the ID representing the speed as the target of the
spoofing attack.

Then we describe the methods that we create the datasets. We
do not test these defenses with all attacks. First, sniffing attack
does not have any impact on the data of the IVN. Therefore
we do not consider such attacks. Second, some attacks target
specific defense methods and are not suitable as a unified
test data set. For example, voltage corruption attack (SPA-6)
is mainly aimed at voltage-based intrusion detection systems.
The adversaries try to pollute the training set of the voltage
fingerprint model, so it is outside the detection range of our
chosen system. Based on this consideration, we selected suitable
attacks for testing all selected methods.
Replay attack (SPA-1)): We randomly intercept a fixed-length
data segment from the normal data at first. Then, we repeatedly
insert this data segment into the real CAN. Each attack lasts 10
seconds and keeps the time interval of attack data unchanged.
Fabrication attack (SPA-2): In this attack, we choose a
message which represents the speed of the vehicle. Then, we
modify and insert the selected message into the CAN every
1ms for 10 seconds. We repeat this operation continuously
afterward.
Masquerade attack (SPA-3): This attack requires us to pause
the specific ECU for a long time, which is a very big challenge.
So we make modifications in the existing normal dataset
without attack. We select the messages with a specific ID
and change their payload. Similarly, we also modify a piece
of normal data every 10 seconds.

Disorderly Control attack (SPA-2): In this attack, we inject
messages of totally random CAN ID and payload every 0.5
milliseconds. Each intrusion performed for 10 seconds.
Reverse attack (FUA-2): In this attack, we inject malicious
messages that are composed of normal IDs and random payload.
These messages are inserted into the CAN bus at 1-millisecond
intervals and last for 10 seconds.
DoS attack with high priority ID (DOA-1): In this attack,
we inject messages of ‘0x000’ CAN ID every 0.3 milliseconds.
0x000 is the highest priority ID and most of the works inject
messages of this ID to attack the vehicle.
Redundant message injection (DOA-2): The purpose of this
attack is to fill the CAN bus with messages which have normal
IDs. We inject malicious messages with normal IDs and random
payloads into the CAN bus until the maximum load of the bus
is reached.
Control attack in diagnostic communication (DIA-2): First,
we get the threatening control commands from the diagnostic
devices. In our experiment, we use the diagnostic equipment
(i.e., Launch X431 [155]) to control the vehicle and reverse the
messages exchanged by the equipment and vehicle. Afterwards,
we inject a control command every 20 milliseconds into CAN
bus as the malicious message.
Spoof attack in diagnostic communication (DIA-3): First,
we use diagnostic equipment [155] to query the speed of the
vehicle and record the response messages from the ECU. Then,
we continuously inject these response messages into the CAN
bus to constitute the spoof attack in diagnostic communication.
Fuzzy attack in diagnostic communication (DIA-4): We
inject messages of totally random diagnostic CAN ID and
payloads every 20 milliseconds to the real CAN bus.
Dataset with normal diagnostic messages (DIA-Normal): In
order to determine that these VIDSs can distinguish between
normal diagnostic messages and malicious diagnostic messages,
we insert normal diagnostic messages in the data set for
comparison. We choose the speed query command in the open
diagnostic protocol to ensure that the injected messages can
not harm the vehicle [150]. We inject the selected commands
every 20 milliseconds to the CAN bus.

Through these operations, we obtain 11 datasets for testing.
The number of normal data and malicious data in these datasets
is displayed in Table V. Because the amount of malicious
data in these attacks is less than normal data, we use various
indicators to measure the algorithm’s effectiveness, such as
accuracy, precision, recall, and f1-score.

C. Challenges and Solutions in Reimplementation.

After choosing the appropriate dataset, we implement all the
selected VIDSs based on the built dataset. When we implement
these VIDSs, we find out various challenges, and we try to
solve them using the following solutions.

1) Parameters Definition: Some VIDSs have uncertain or
unmentioned parameters. When we try to reproduce the
algorithm in the paper completely, we have to decide some
parameters according to the dataset by ourselves. For example,
in [76], the threshold of the entropy is decided by three
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TABLE V: The composition of the attack dataset.

File Name Normal Messages Malicious Messages

SPA-1 549410 85320
SPA-2 532510 159752
SPA-3 456790 9331
DOA-1 487650 93074
DOA-2 523480 314083
FUA-1 513680 75486
FUA-2 497450 149236
DIA-2 524640 6826
DIA-3 532480 6929
DIA-4 473980 6166

DIA-Normal 507506 0

parameters: the average entropy value µe, standard deviation of
entropy σe, and a model parameter k. Among them, µe and σe

are calculated with the training dataset and k is a customized
parameter which is used to adjust the threshold. To achieve the
best effectiveness of these VIDSs, we adjust these uncertain
parameters for each dataset separately.

2) Inconsitence Defeination of Attack Models: Each VIDS
has its own attack model and attack scenario. For example, for
VIDS proposed in [66], the target DoS attack is launched by
transmitting abundant traffic to surpass the maximum capacity
of CAN bus and has no requirement on the ID and data field.
Whereas, in other papers, such as VIDS [74], DoS attack is
performed by injecting messages whose ID are 0x000 at high
speed. Additionally, based on the IV, we can see that many
VIDSs only target part of the attacks scenarios contained in the
selected dataset. For example, VIDS [100] mainly aims to the
replay attack and does not mention DoS attack and fuzzy attack.
To compare the differences between the methods, we select
the same dataset. And for a more comprehensive evaluation of
the methods, we have expanded the attack dataset to include
the attacks mentioned above.

D. Reproduction

After implementing the above selected VIDSs and also
choosing the appropriate dataset, we conduct the following
experiments to check the effectiveness of these methods.
Particularly, we first apply the data collected during normal
vehicle running to obtaining the desired threshold or model
for each algorithm, and then we evaluate the accuracy of these
methods with various attack datasets. Afterwards, we present
the used evaluation metrics as well as the evaluation results.

1) Evaluation Metrics: We experimentally compare the
VIDS based on the following metrics.

Accuracy is the most straightforward performance indicator
and is simply the ratio of correctly predicted observations to
the total number of observations. Accuracy is a good measure,
only if we have symmetrical datasets where the values of false
positives and false negatives are almost identical. Therefore,
we must look at other parameters to evaluate the performance
of the model.

Precision is the ratio of correctly predicted positive obser-
vations to the total number of predicted positive observations.
Precision demonstrates the system’s ability to distinguish
between normal messages.

Recall is the ratio of correctly predicted positive observations
to all observations in the actual class. Recall reflects the
system’s ability to recognize malicious messages.

F1 score is a weighted average of “accuracy” and “recall
rate”. Therefore, the score takes into account both false
negatives and false positives. Intuitively, it is not as easy to
understand as accuracy, but the F1 score is usually more useful
than accuracy, especially if the class distribution is uneven.

2) Detection Result: Fig. 6 shows the detection results of
these VIDSs for different attacks. We analyze detection results
of the VIDSs and find out the advantages and disadvantages
of these methods.

Let us consider the work by Gmidene et al. [97] as an
illustrative example. The method showcased a relatively high
accuracy in countering diverse attacks, owing to the notable
true negative (TN) outcomes and the predominance of normal
messages over abnormal ones. However, the detection rates
exhibited a relatively low efficacy against the FUA-2 and SPA-1
attacks. This outcome indicates that the method’s ability to
detect multiple ID attacks is suboptimal. The underlying reason
lies in the fact that malicious messages are identified by the
frequency changes within a single ID, while the FUA-2 and
SPA-1 attacks do not significantly alter the frequency of a
single ID, thus making them challenging for the method to
detect. Consequently, the frequency-based VIDS struggle to
effectively identify these malicious messages.

Furthermore, the precision, recall, and f1-score of the method
against the SPA-3 attack were observed to be zero. This
finding indicates the algorithm’s incapacity to detect the SPA-3
attack, where malicious messages replace normal ones while
maintaining an unaltered time interval from the preceding
message. The frequency-based VIDSs are unable to detect such
attacks due to their reliance on changes in message frequency.

Additionally, the precision, recall, and f1-score of the method
against the DIA-1, DIA-2, DIA-3, and DIA-4 attacks were
all found to be zero, with an accuracy of 1. This outcome
indicates that the method struggles to differentiate between
normal diagnostic messages and malicious ones. This challenge
arises from the method’s utilization of the stability of in-vehicle
messages, while diagnostic messages lack a stable transmission
pattern, rendering them indistinguishable.

Another illustrative example can be found in the work by
Muter et al. [70]. The study presents two detection methods
[70]. The first method leverages the concept of relative entropy
among different IDs to identify intrusion instances. However, it
is observed that this method fails to detect the SPA-3 and SPA-1
attacks. In the SPA-3 attack, the IDs remain unchanged within
the attack dataset, resulting in an unaltered entropy value for
the attack data. On the other hand, the SPA-1 attack introduces
new malicious messages with a distribution similar to that of
normal messages, resulting in a relatively minor change in
the entropy of the attack data. Consequently, the anomalies in
entropy go undetected by this method. Moreover, due to the
unstable transmission patterns of diagnostic messages within
the IVN and the method’s inability to obtain a stable relative
entropy for these messages, the malicious diagnostic messages
remain undetected by the employed VIDS.
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Fig. 6: The results of the algorithm evaluation.
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The second method examines the overall entropy changes
within the data. However, similar to the first algorithm, it fails
to detect the FUA-2, SPA-3, and SPA-1 attacks. The inability
to detect the SPA-3 and SPA-1 attacks is attributed to the
same reasons as the first method. In the FUA-2 attack, the
adversary inserts malicious messages with random yet valid
IDs. Although these malicious messages increase the entropy
within a fixed time window, the overall change in entropy for
the entire window is not distinct. Notably, for individual IDs
within the window, the change in entropy remains notable.
Consequently, while the first algorithm can detect the FUA-2
attack, the second method fails to do so. Moreover, the detection
rates for the DIA-1, DIA-4, DIA-2, and DIA-3 attacks are poor.
Our analysis reveals that the frequency of diagnostic messages
is low, thereby limiting their impact on the overall data entropy.
Additionally, the method employs a lenient threshold, resulting
in the failure to detect malicious diagnostic messages.

Through a comprehensive analysis of various VIDSs, we
have reached a comprehensive and conclusive summary finding.
Brief Discussion: Primarily, it is imperative to emphasize that
the direct evaluation of the merits and demerits of these methods
based solely on experimental results is not viable, owing
to the inherent divergence in their respective threat models.
The primary objective of our experiments is to rigorously
assess the detection capabilities of these methods in combating
prevalent attacks, thereby elucidating their inherent limitations.
Conclusions can be drawn from the empirical findings as
follows.

The frequency-based, information entropy-based, ID
sequence-based, and similarity-based methods are inherently re-
liant on the periodicity exhibited by CAN messages, specifically
the stability of the ID attribute. In scenarios where adversaries
transmit supplementary messages to manipulate vehicle control,
these methods exhibit a notably high detection rate for
identifying malicious messages. However, it is important to
note that in instances where adversaries intentionally simulate
a normal message cycle, such as in masquerade attacks, these
methods may not be able to adequately detect these malicious
messages as expected.

The payload-based method, which hinges upon detecting
malicious messages through the change in the normal payload,
provides a defense mechanism against masquerade attacks.
However, owing to the intricate nature of the IVN, establishing
a robust and consistent model for the payload of normal CAN
messages proves to be challenging. Consequently, discerning
the distinction between malicious and normal data becomes
arduous, thereby leading to a relatively low detection rate for
this method.

IX. DISCUSSION

Through an extensive review of various VIDS, we identified
significant limitations that hinder their practical application.
Additionally, we examine the future development of VIDS in
the context of emerging automotive technologies.

While our primary focus is on CAN-based VIDS, it is
important to consider broader vehicular cybersecurity solutions.
This section also explores VIDS in intelligent transportation

systems, which utilize large-scale data from connected vehicles
and infrastructure, VIDS on J1939 heavy-duty vehicle CAN
buses, which face unique challenges due to their distinct
network structures, and VIDS for the Internet of Vehicles (IoV),
where intrusion detection must adapt to highly connected and
dynamic environments using cloud computing, edge processing,
and V2X communication. These discussions provide a com-
prehensive view of vehicular intrusion detection and potential
directions for future research.

A. Current Issues
Initially, an exhaustive compilation of the limitations inherent

to all defense methods is presented.
1) Practicality: In the majority of prevailing vehicle mod-

els, conventional ECUs continue to be utilized, employing
communication via the CAN bus. In order to safeguard this
type of automobile, we think that a plug-and-play incremental
protection approach or lightweight protection approach aligns
more aptly with the requirements of contemporary OEMs. To
commence, it should be noted that the ECUs found in the
majority of vehicle models exhibit constrained computational
capabilities and the transmission capacity of the CAN is also
subject to limitations. The incorporation of intricate encryption
or authentication algorithms within the existing IVN poses a
substantial burden, given the aforementioned constraints.

Secondly, the implementation of extensive security updates
for legacy automobile models poses considerable challenges
for automakers. Integrating over-the-air (OTA) capabilities to
existing vehicle models is a rare occurrence, thereby presenting
a formidable obstacle in terms of incorporating modified
communication protocols and intricate defense mechanisms
into the original ECUs.

Another paramount consideration revolves around cost
implications. Heightened computing power and accelerated
communication technologies entail elevated expenses. For
OEMs, undertaking hardware and software updates incurs
substantial financial investment. Additionally, accommodating
the requirements of previous vehicle models necessitates
additional expenditures.

2) Targeted attack: According to our survey, it is commonly
observed that when selecting target attacks, the prevailing
tendency of VIDS is to opt for conventional attack types, such
as Spoofing attacks, Fuzzing attacks, and Denial-of-Service
(DoS) attacks. It is noteworthy that these attack categories
were originally proposed in works dating back a decade [48].
Despite the significant detrimental impact caused by these
aforementioned attacks, we contend that VIDS should be geared
towards addressing more pragmatic or sophisticated attack
scenarios.

Primarily, it is observed that numerous papers make refer-
ences to real-world instances of car attacks. However, a distinct
shortcoming within the existing research is the dearth of focused
investigations pertaining to defenses specifically tailored to
counter these real-world attacks. A noteworthy instance is
the research conducted by Miller and Valasek, wherein they
successfully employed the vehicle’s diagnostic protocol to exert
remote control over the car. Regrettably, this particular form of
attack has received limited attention from researchers thus far.
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Secondly, a considerable number of contemporary studies
put forth more sophisticated attack methodologies [10], [38].
Within these attacks, adversaries possess the capability to
obfuscate the attack traces, thereby evading detection by both
users and defense systems. Moreover, these attacks also present
a substantial threat to the overall safety of the automobile and
they warrant significant attention and scrutiny from the research
community.

3) Detection method based on machine learning: The
utilization of machine learning techniques in VIDS holds
great promise. Nonetheless, the prevailing detection defenses
employed within VIDS continue to exhibit a relative simplicity
in harnessing the potential of machine learning technology.

Primarily, these methods typically rely on direct utilization of
machine learning algorithms for scrutinizing the abnormality in
CAN message frequency or payload. In essence, this approach
capitalizes on the inherent periodicity and predictability of
CAN messages. However, noteworthy advancements beyond
prior rule-based methods have not been significantly achieved.

It is noteworthy that this methodology remains susceptible
to manipulation through carefully crafted falsified messages,
thereby impeding its robustness and reliability. Furthermore, in
comparison to the rule-based approach, the machine learning-
based methodology generally necessitates enhanced compu-
tational power and entails greater time consumption for the
ECU.

4) Abruptness of CAN messages: The accuracy of detection
can be affected by the abruptness of CAN messages trans-
mission. Many research works design their systems according
to the stability and sustainability of the IVN. However, some
research works show that these systems falsely detect benign
event messages because the event messages deviate from
the periodicity [117]. Besides, some special situations (e.g.,
retransmission after competing, bit errors) can also destroy
the periodicity of in-vehicle messages. Therefore, how to
distinguish malicious attacks and event messages or special
situations is a great challenge. The anomaly-based VIDSs,
which use the periodicity of in-vehicle messages, are difficult
to solve the problems resulting from the abruptness of CAN
messages transmission.

5) Hardware Limitations: The practical application of
certain VIDS is severely impeded by the hardware limita-
tions of ECUs. Conventional low-end ECUs typically com-
prise microcontrollers with modest computational cores [25],
operating at frequencies in the range of several hundred
megahertz and equipped with a few hundred kilobytes of
RAM. However, certain approaches (e.g., [112], [74]) demand
substantial computing resources, rendering their deployment
in present-day automobiles challenging. As a consequence,
VIDS implementations need to be tailored to accommodate the
memory and computational constraints of current ECUs.

Furthermore, a few papers even propose VIDS solutions that
necessitate the addition of supplementary equipment, such as
oscilloscopes, for monitoring the IVN [21], [92]. While these
methods offer exceptional detection efficacy, their associated
costs are deemed unacceptable. Given the reluctance of Original
Equipment Manufacturers (OEMs) to modify the existing IVN
architecture of contemporary automobiles, the feasibility of

implementing such approaches remains unlikely. Exploring
alternative avenues that enable researchers to attain comparable
detection capabilities in a more convenient and cost-effective
manner, such as employing method EASI [93], represents a
highly promising trajectory worth considering.

6) Private Communication Protocols: The adoption of
proprietary protocols by various OEMs presents a significant
obstacle to the development of semantic information-based
VIDS. While certain papers propose VIDS solutions based on
the collection of vehicle status data from normal CAN messages
or diagnostic messages, the existing ECU systems and transport
protocols for CAN messages are provided independently and
secretly by different OEMs. Consequently, the parsing of
diverse transport protocols on the bus and the acquisition of
vehicle status pose substantial challenges.

Although the OBD diagnostic protocol allows for the retrieval
of limited vehicle status information, additional diagnostic
messages must be injected into the vehicle, thereby impeding
normal ECU communication. This limitation necessitates
careful consideration as it impacts the practicality of the
approach and its potential effects on vehicle safety.

B. Trends
Despite the existing vulnerabilities and loopholes within the

current vehicle network, it is important to recognize the rapid
advancements taking place in automotive-related technologies.
Ongoing efforts are being made to address hardware limitations
and software vulnerabilities within modern vehicles, indicating
a gradual resolution of these issues. Consequently, there is
a strong possibility of significant breakthroughs in VIDS.
Subsequently, we will outline several proposals for VIDS
tailored specifically for current vehicle models. Additionally,
we will present a forward-looking perspective on future
defense methodologies that integrate seamlessly with intelligent
automotive systems.

1) Integrating multiple methods: By integrating multiple
methods, the effectiveness of intrusion detection can be
enhanced. Each detection method possesses its own limitations,
but through their combination, a broader range of attack
scenarios and types can be accurately identified. For instance,
frequency-based VIDS demonstrates advantages such as re-
source efficiency, high detection rates, and ease of implementa-
tion. However, it may be susceptible to evasion by adversaries
employing carefully crafted messages, thus exhibiting a certain
degree of unreliability. In such cases, VIDS based on voltage
signatures can effectively identify these crafted messages.
Consequently, when aiming to detect covert attacks [38],
the utilization of voltage-based VIDS in conjunction with
frequency-based VIDS can provide valuable support and en-
hance overall detection capabilities. The integration of methods
in VIDS presents a promising and straightforward avenue for
development, offering both simplicity and effectiveness.

2) Advancing Machine Learning in VIDS: Opportunities
and Limitations: Machine learning has shown great potential
in enhancing VIDSby leveraging anomaly detection techniques
based on CAN message frequency and payload analysis.
However, despite these advancements, ML-based VIDSstill
face several limitations that hinder their practical deployment.
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One major challenge is the computational overhead associ-
ated with deep learning models, which often require significant
processing power and memory, making them difficult to deploy
on resource-constrained ECUs. To address this, lightweight ML
techniques such as model quantization, pruning, and knowledge
distillation can be explored. These techniques reduce the size
and complexity of ML models while maintaining detection
accuracy. Additionally, TinyML—a framework designed for
running ML models on low-power embedded devices—can be
investigated to enhance the feasibility of ML-driven VIDS in
real-world automotive environments.

Another limitation of ML-based VIDS is their static nature,
as most models are trained on a fixed dataset and lack
adaptability to new attack patterns. Future research should
focus on incremental learning and online learning techniques,
enabling models to continuously update and adapt to emerging
threats without requiring complete retraining. Furthermore,
federated learning (FL) can be employed to allow multiple
vehicles to collaboratively improve their intrusion detection
capabilities while preserving data privacy. This decentralized
approach reduces the need for centralized data storage and
minimizes communication overhead.

3) Addressing the Impact of Bursty CAN Message Trans-
mission on Detection Accuracy: Traditional VIDS designs
often assume a stable and periodic CAN message transmission
pattern, relying on deviations from expected message intervals
as indicators of potential attacks. However, real-world CAN
traffic exhibits bursty transmission behavior, where event-
triggered messages deviate from periodic patterns, leading to
increased false positives in anomaly-based detection systems.

To mitigate this issue, advanced time-series analysis tech-
niques, such as Long Short-Term Memory (LSTM) networks,
Transformer models, and Hidden Markov Models (HMMs),
can be leveraged to improve anomaly detection in bursty CAN
environments. These models can learn temporal dependencies
and distinguish between legitimate event-driven message bursts
and malicious anomalies.

Additionally, multi-modal data fusion can be explored by
integrating CAN message analysis with other vehicle sensor
data (e.g., wheel speed, braking pressure, and GPS data) to
provide additional context for anomaly detection. By correlating
information across multiple data sources, VIDS can reduce
false alarms caused by benign event-driven deviations.

Another promising approach is the use of adaptive anomaly
detection mechanisms, where detection thresholds dynamically
adjust based on contextual information. For instance, reinforce-
ment learning algorithms can be employed to continuously
refine the decision boundaries of an ML-based VIDS, ensuring
that benign variations in CAN traffic do not trigger unnecessary
alerts while still detecting genuine intrusions.

4) Overcoming ECU Hardware Limitations for Efficient
VIDS Deployment: The computational constraints of traditional
ECUs pose a significant challenge for the deployment of
sophisticated VIDS, particularly those utilizing deep learning
or complex statistical models.

To address these limitations, hardware acceleration tech-
niques such as Field-Programmable Gate Arrays (FPGAs)
and Application-Specific Integrated Circuits (ASICs) can be

explored to offload computationally expensive tasks from the
ECU. FPGA-based implementations of intrusion detection
algorithms can significantly improve processing speed while
maintaining energy efficiency.

Another viable solution is the adoption of edge computing for
VIDS, where computationally intensive tasks are offloaded to
dedicated edge nodes within the vehicle (e.g., a central gateway
ECU or an onboard automotive AI processor). This architecture
enables real-time analysis while reducing the computational
burden on individual ECUs.

Finally, lightweight cryptographic techniques such as elliptic
curve cryptography (ECC) and hash-based authentication
mechanisms should be investigated to enhance security without
overburdening ECU processing capabilities. By integrating
these efficient cryptographic methods, VIDS can maintain ro-
bust security features while remaining feasible for deployment
in modern vehicles.

5) Addressing Challenges Posed by Proprietary Communi-
cation Protocols: One of the major barriers to the development
and adoption of semantic-based VIDS is the lack of standard-
ization in CAN message semantics. Automotive OEMs often
implement proprietary communication protocols, making it
difficult for intrusion detection systems to interpret and analyze
vehicle-specific CAN messages. .

To overcome this challenge, reverse engineering techniques
can be explored to infer the meaning of proprietary CAN
messages. Recent advancements in unsupervised learning and
natural language processing (NLP) techniques may provide
new ways to automatically extract semantic information from
CAN traffic without requiring access to OEM-proprietary
documentation.

Another promising approach is the use of blockchain
technology to create a decentralized and immutable repository
of CAN message definitions shared across multiple stakeholders
in the automotive industry. By leveraging blockchain for
secure and transparent data sharing, researchers and industry
practitioners can collaborate to build more standardized and
interpretable VIDS solutions.

Furthermore, the adoption of standardized automotive com-
munication protocols, such as AUTOSAR Adaptive Platform
and Vehicle-to-Everything (V2X) security frameworks, can
help mitigate the challenges posed by proprietary protocols.
Encouraging industry-wide adoption of open standards can
facilitate the development of more effective and interoperable
VIDS solutions.

6) Protection Mechanisms for Smart Driving Cars: The
advancement of vehicle intelligence has brought about a
transformation in the defense mechanisms employed in au-
tomobiles. As previously discussed, conventional vehicles still
rely on low-computing ECUs and CAN for vehicle control.
However, with the progress of intelligent and autonomous
driving technologies,OEMs are increasingly adopting high-
performance ECUs capable of supporting intelligent driver-
assistance systems or automated driving systems. Furthermore,
the realization of intelligent driving necessitates the integration
of data from high-precision sensors like cameras and lidars,
thereby demanding the utilization of higher-speed networks.
Consequently, a number of automotive manufacturers have
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initiated the adoption of advanced network technologies as
substitutes for CAN in their vehicles. Examples of these
technologies include CAN-FD (CAN with Flexible Data-Rate)
and vehicle Ethernet, among others.

Through the utilization of enhanced hardware and higher-
speed communication buses, a broader range of methods can
be employed to safeguard the IVN. One such approach involves
car manufacturers implementing authentication techniques
to ensure the secure transmission of messages. OEMs can
implement sophisticated authentication techniques that verify
the integrity and authenticity of transmitted data, effectively
mitigating the risk of unauthorized access or tampering.
Additionally, the use of encrypted data can effectively safeguard
the confidentiality of sensitive information within the vehicle.
Employing encryption methods can effectively safeguard the
confidentiality of private information, ensuring that critical data
remains inaccessible to unauthorized entities. By leveraging
encryption protocols, car manufacturers can bolster privacy
protection and instill confidence in users regarding the security
of their personal information. These methods hold promise
in surpassing the efficacy of traditional intrusion detection
systems, thereby fortifying the security of the IVN.

In reality, despite the presence of intelligent assisted driving
system or automated driving system, the IVN of the smart car
continues to be predominantly based on the CAN bus at present.
As a result, researchers have shifted their focus away from the
IVN of smart cars and towards new attack surfaces, including
but not limited to the perception modules of vehicles [156],
[157], autonomous driving algorithms [158], and the Vehicle-to-
Everything(V2X) [159], [160]. In forthcoming endeavors, we
shall embark upon an exhaustive investigation of all scholarly
undertakings pertaining to the safety of intelligent automobiles.

C. Vehicular Intrusion Detection Systems in Intelligent Trans-
portation Systems

In the current intelligent transportation system, the IVN, a
crucial component of the internal network, primarily facilitates
communication among ECUs within the vehicle using protocols
like CAN (or other low-speed protocols). As technology
advances, newer communication protocols are likely to replace
existing ones. In existing research, intrusion detection for IVN
and defenses for other networks often progress independently.
These methods are typically based on different communication
protocols and system models, with limited integration of
various intrusion detection approaches. The following are
key challenges and considerations when devising an intrusion
detection system within the Intelligent Transportation System
(ITS) framework.

Data Alignment and Accuracy. One significant challenge
in developing a comprehensive intrusion detection system is
addressing the delays in information transmission between
various networks. When designing such a system, decision-
making often relies on data collected from different networks,
encompassing information like vehicle speed, steering angle,
and radar data in the CAN. The challenge arises from
the disparate data transmission rates across these networks,
resulting in a complex and potentially messy dataset. Effectively

aligning and maintaining the accuracy of this diverse data pose
challenges that must be carefully considered in the design
process.

Impact Analysis between Networks and Modules. When
devising anomaly detection algorithms, it is crucial to take
into account the interactions between different networks
and intelligent modules. For instance, in cases where an
intelligent assisted driving system bases acceleration and
deceleration decisions on sensors like cameras, the instructions
are transmitted to the IVN. In this context, the rationality
of these instructions can be assessed by considering the
status of the IVN. This assessment helps determine whether
the intelligent assisted driving system is under attack [161].
Moreover, in traditional intrusion detection designs, there
was a prevailing assumption that messages within the in-
car network followed a periodic and stable pattern. However,
with the introduction of various intelligent driving modules
transmitting diverse data and instructions, these messages
may disrupt the continuity and periodicity of the original
messages. Consequently, when developing detection algorithms,
it becomes essential to comprehensively consider the impact
of different networks.

Utilization of Advanced Technologies. There is an opportu-
nity to leverage more machine learning algorithms and artificial
intelligence technologies. In prior research, a significant chal-
lenge restricting the design of intrusion detection algorithms
stemmed from the limited performance of the ECU itself.
However, with contemporary car manufacturers incorporating
higher-performance ECUs for intelligent driving, there is room
to employ newer technologies for anomaly detection, such as
deep learning and large language models.

Verification and Encryption. It is essential to contemplate
the verification and encryption of data. In the past, due to
constraints related to the transmission speed of in-car networks
and the performance of the ECU, data within the car was
typically not encrypted by manufacturers. Researchers could de-
sign intrusion detection systems by directly analyzing changes
in in-vehicle data. However, as ECUs evolve and higher-
speed networks are employed, there is a likelihood that car
manufacturers will implement data encryption. Consequently,
researchers must develop more advanced detection algorithms
aligned with the communication protocols utilized for data
transmission.

Scalability and Flexibility. Algorithm design should priori-
tize scalability and flexibility. The swift evolution of intelligent
transportation systems translates to frequent changes in the
quantity and types of automotive sensors and network archi-
tecture. Intrusion detection systems for intelligent transporta-
tion are often deployed across diverse vehicles. Therefore,
researchers must account for variations in hardware and
software among different vehicle types when crafting intrusion
detection algorithms. Simultaneously, the designed system
should remain unaffected by upgrades to the car’s internal
software or hardware.

In summary, addressing these challenges and considerations
is essential for designing effective and robust intrusion detection
systems in the dynamic and interconnected environment of
intelligent transportation systems.
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D. Vehicular Intrusion Detection Systems on J1939 Heavy-
Duty Vehicle CAN Buses

In contrast to regular commercial vehicles, heavy-duty
vehicles also employ the CAN protocol for transmitting in-
vehicle messages. However, heavy-duty vehicles diverge from
the traditional CAN approach by utilizing a specialized CAN
protocol based on the SAE J1939 standard. This standard
incorporates extended frames and a dedicated transport protocol
for multi-packet transmission. Only a limited number of recent
studies have delved into addressing safety concerns specifically
for heavy-duty vehicles utilizing the SAE J1939 standard [162].
Due to the disparate protocols in focus, direct comparisons with
the intrusion detection systems discussed for typical commercial
vehicles pose challenges. Consequently, we only presented these
intrusion detection systems for CAN based on the SAE J1939
standard.

H. Shirazi et al. transform the original transmission message
into specific parameters representing the vehicle’s status.
Subsequently, they employ machine learning algorithms to
construct a model of the normal vehicle. This model is then
utilized to identify DoS and fuzz attacks [163]. Mukherjee
et al. introduced a priority graph-based method for detecting
message injection attacks [164]. In a recent development, Jichici
et al. proposed a two-stage intrusion detection mechanism for
J1939 [165]. The initial phase verifies the legitimacy of the
encrypted addresses (source and destination) in the CAN ID.
The subsequent phase focuses on detecting single-bit alterations
in the data field through appropriate range checks. Given the
encryption of CAN frame data fields, the avalanche effect
of block ciphers aids in identifying adversarial manipulation.
Rogers et al. presented an alternative approach relying on timing
and data analysis to identify spoofing and masquerading attacks
in J1939 and NMEA2000 networks [166]. This mechanism can
detect manipulation attacks by scrutinizing unusual changes in
electrical potential during the transition from the dominant to
the passive state, i.e., a single bit flip. Popa et al. investigated
whether ECU voltage characteristics can serve as fingerprints
for detecting spoofing attacks in J1939 [167].

E. Vehicular Intrusion Detection Systems for Internet of
Vehicles

In this section, we provide a brief overview of research
related to IoV intrusion detection. It is important to note that
the CAN bus is a subset of IoV, and intrusion detection for
IoV is not fully covered in our survey. However, considering it
as a significant direction in the latest advancements in vehicle
technology, we briefly mention related advanced works.

In essence, the Internet of Vehicles represents the integration
of Vehicular Ad Hoc Networks (VANETs) and the Internet of
Things (IoT) [168]. Modern connected vehicles utilize IoT to
connect to networks, accessing real-time traffic data, navigation,
and other driving conveniences. IoV employs various network
technologies to enable communication within vehicles and
between different entities on the road, fostering intelligent
knowledge sharing. However, the extensive connectivity in the
Internet of Vehicles, which involves numerous IoT sensors and
processors, poses inherent risks. The continuous communication

between road entities and the network makes IoV susceptible
to intruders [169]. Security in the Internet of Vehicles is
a critical concern, as incorrect information interfering with
vehicle decision-making could have severe consequences,
even leading to fatalities. Potential attackers might exploit
vulnerabilities in network communications to take control
of a vehicle, disseminate misleading information, or conduct
other malicious activities that compromise the confidentiality,
integrity, availability, and authenticity of vehicle systems. An
illustrative example is a group of hackers successfully tricking
Tesla’s Autopilot software into veering into oncoming traffic
[170]. Moreover, the wealth of data generated by autonomous
driving raises privacy concerns, as this data can be utilized
for artificial intelligence (AI) applications and data mining,
exposing users’ sensitive information to potential risks.

To bolster the security of the Internet of Vehicles, researchers
recognize the need for an IDS capable of efficiently detecting
anomalous behaviors in the network and promptly alerting
authorities or users to potential threats [118]. Deep learning
proves effective in discerning the inherent patterns within
sample data. It accommodates higher-dimensional learning and
prediction needs by establishing a nonlinear network structure
with multiple hidden layers. Certain researchers [171], [172],
[173] employ deep learning methods and edge computing
technologies to analyze the traffic and speed of vehicles in
the Internet of Vehicles. This analysis furnishes personalized
safety information to drivers, thereby laying the groundwork for
intrusion detection in the Internet of Vehicles. The studies [174],
[175], [176] consistently highlight that the application of deep
learning methods significantly enhances intrusion detection
performance, making it a widely adopted approach in the field
of Internet of Vehicles intrusion detection. Yang et al. [177]
introduced an intrusion detection method tailored for IVN. Their
approach leverages federated deep learning, capitalizing on the
periodicity of network messages. The ConvLSTM model is
employed to identify network intrusions, and the intrusion
detection model is trained using federated deep learning tech-
niques. Li et al. [178] presented an intrusion detection scheme
for the IoV that relies on transfer learning. The proposed
method incorporates two modes: cloud-assisted update and local
update. Shone et al. [179] introduced an unsupervised deep
learning intrusion detection technology utilizing an asymmetric
deep autoencoder to construct a classification model. However,
this method faces challenges in achieving better classification
performance in unbalanced samples. Xu et al. [180] devised
a Log-Cosh variational autoencoder method, incorporating a
logarithmic hyperbolic chordal function to design a loss term for
generating diverse intrusion data, thereby enhancing detection
accuracy. Despite these advancements, deep learning-based
solutions still encounter a high false-positive rate, primarily
attributed to inadequate extraction of relevant features in the IoV.
Intrusion data within the IoV encompasses numerous spatio-
temporal features that can reflect certain attacker characteristics.
Consequently, researchers have explored the utilization of deep
learning methods, such as CNN or LSTM, to extract and
process these spatio-temporal features

Hu et al. [[181] developed an intrusion detection technique
employing CNN with a split convolution module. This approach
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aims to enhance the diversity of spatial characteristics and
reduce the impact of information redundancy across channels
on the model. Park et al. [182] transformed network traffic
into a grayscale image, established a Siamese CNN based on
the small sample learning method, and determined the attack
type based on the similarity score of the attack samples. To
capture time-dependent dynamic features in network traffic,
Zhou et al. [183] proposed an incremental LSTM network
intrusion detection method. This method introduces state
changes into LSTM, processing network data by acquiring the
hidden layer state of LSTM dynamic information. Ashraf et al.
[184] employed a combination of LSTM and autoencoder to
extract timing features from Internet of Vehicles network traffic,
enhancing the accuracy of intrusion detection in the Internet
of Vehicles. While previous solutions often use only CNN
or LSTM to process spatiotemporal features, this approach
might suffer from insufficient feature extraction. Consequently,
some researchers advocate for hybrid models integrating both
CNN and LSTM to address this limitation. Wang et al.
[185] introduced a hierarchical intrusion detection system
based on spatiotemporal features. Initially, CNN is utilized
to learn spatial features in network traffic packets, followed by
LSTM to learn temporal features between multiple network
traffic packets. This sequential approach results in a more
accurate spatiotemporal feature vector. However, these solutions
overlook the challenge of variable time intervals between
packets in the data stream. To tackle this issue, Han et al.
[186] proposed a space- and time-aware intrusion detection
model. They developed a time and length-sensitive LSTM
method to capture broader temporal features from intermittent
flows. Shams et al. [187] devised an IDS model capable of
collaboratively collecting network data from both vehicles
and Roadside Units (RSUs). They implemented a multi-class
IDS utilizing a Convolutional Neural Network (CNN) with a
novel feature extraction method named Context-Aware Feature
Extraction-Based CNN (CAFECNN). Leveraging the collected
network flow data, the CAFECNN model effectively identifies
both passive and active types of attacks. Results indicate
that the proposed model demonstrates superior identification
capabilities for hard-to-detect passive attacks in comparison to
traditional machine learning methods.

The intrusion detection methods leveraging deep learning
have proven effective in detecting network attacks in the
Internet of Vehicles. However, these AI-based approaches also
introduce risks and challenges, including vulnerabilities to ad-
versarial sample attacks and concerns about the security of the
intrusion detection system itself. Researchers are increasingly
exploring the use of formal methods [188], [189] to enhance
the reliability of artificial intelligence solutions. By employing
mathematical logic, models, and proofs, these methods aim
to verify whether the Internet of Vehicles intrusion detection
system aligns with design specifications and identify potential
errors, ultimately improving the security and dependability of
intrusion detection. In the current landscape, intrusion detection
methods relying on spatiotemporal features often utilize deep
learning techniques like CNN and LSTM to establish sequential
intrusion detection models. However, these methods can be
susceptible to the influence of previous models, and there is a

tendency to overlook comprehensive spatiotemporal character-
istics. There is a need for more comprehensive extraction of
spatiotemporal features to enhance the overall performance of
these methods.

X. SUMMARY

The advancement of the automotive industry has prominently
elevated the significance of ensuring cyberspace security within
vehicular systems. A proliferation of attacks has been observed,
predominantly focusing on the CAN utilized IVN. In response
to these threats, numerous defense strategies have been devised
to mitigate attacks and fortify the security of vehicular systems.
Nevertheless, the practical implementation of these solutions
encounters certain constraints and hurdles that warrant further
attention and exploration.

This paper offers a comprehensive investigation into the
current landscape of vehicle attack and defense strategies, with
a specific focus on the CAN. The objective of this study is
to critically evaluate the limitations of existing approaches
and provide valuable insights for the future design of VIDS.
We provide a comprehensive synthesis of existing VIDS from
multiple perspectives and conduct evaluations on a unified
dataset to assess the effectiveness of selected methodologies.
Our analysis reveals a predominant emphasis on specific attack
categories within the examined VIDS, thereby disregarding
the more sophisticated and realistic attack scenarios. To
address these shortcomings, we put forth a set of defense
recommendations based on our research findings. Furthermore,
considering the advancement of automotive intelligence, we
propose additional cybersecurity recommendations tailored to
the domain of smart car technology.
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