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Abstract

Backdoor attacks, or trojans, pose a security risk by concealing undesirable behav-
ior in deep neural network models. Open-source neural networks are downloaded from
the internet daily, possibly containing backdoors, and third-party model developers
are common. To advance research on backdoor attack mitigation, we develop several
trojans for deep reinforcement learning (DRL) agents. We focus on in-distribution
triggers, which occur within the agent’s natural data distribution, since they pose a
more significant security threat than out-of-distribution triggers due to their ease of ac-
tivation by the attacker during model deployment. We implement backdoor attacks in
four reinforcement learning (RL) environments: LavaWorld, Randomized LavaWorld,
Colorful Memory, and Modified Safety Gymnasium. We train various models, both
clean and backdoored, to characterize these attacks. We find that in-distribution trig-
gers can require additional effort to implement and be more challenging for models
to learn, but are nevertheless viable threats in DRL even using basic data poisoning
attacks.

LavaWorld Randomized
LavaWorld

Colorful Memory Modified
Safety Gymnasium

Four environments for creating backdoored DRL agents.
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1 Introduction

Deep learning is a powerful tool that has enabled new capabilities in machine perception and
reasoning, but the black-box nature of its models may conceal unwanted behavior. Some-
times undesired behaviors are simply unintended consequences of low-quality data or poor
training practices [1,2,14]. However, they may also be intentionally introduced by malicious
actors, through means such as backdoors or trojans [9,21]. In backdoor attacks, the attacker,
who has access to the model at training time, adjusts the data and training algorithm so
that the model learns to perform the expected task until exposed to a trigger signal specified
by the attacker. When a victim uses the model, it will appear to behave normally until
the specific signal is provided, at which point the model will perform whatever behavior the
attacker chose to inject into the model. To facilitate investigation and mitigation of these
phenomena, we adapt backdoor techniques from the literature to the deep reinforcement
learning (DRL) domain to be used for further test and evaluation.

Three of our environments, LavaWorld, Randomized LavaWorld, and Colorful Memory,
are based on the popular MiniGrid [6] RL environment library, which contains many grid-
based navigation tasks of varying difficultly. Modifying environments allowed us to develop
and study in-distribution triggers [3], which are triggers that occur naturally within the
data distribution observed by the model during training, evaluation, and deployment. In
contrast, out-of-distribution triggers consist of valid model inputs but fall outside of those
distributions, requiring trigger insertion to occur between digitization of a signal by a sensor
and the signal being given to the neural network. Thus, in-distribution triggers are easier to
activate by an attacker than out-of-distribution triggers, and pose a more significant threat
to neural networks. More discussion on the distinction between in-distribution and out-of-
distribution triggers may be found in Appendix A. Our fourth environment, Modified Safety
Gymnasium, is based on the popular Safety Gymnasium [15] environment. We create an
in-distribution trigger for this environment that allows us to explore more realistic robotic
control tasks with continuous action spaces. In this report, we describe each environment in
detail, explain how we trained our own backdoored models using data poisoning [9, 16, 17],
and provide an analysis of the trained agents.

We proceed as follows: Section 2 details related work and Section 3 provides context on
DRL, backdoors in DRL, and the distinction between in-distribution and out-of-distribution
triggers. Our primary contributions and results are provided in Sections 4 and 5, primar-
ily consisting of the environments we used to build backdoor models, the actual backdoor
attacks, an analysis of the models trained in each environment, and cross-environment con-
vergence rate comparisons for both clean and backdoored models. We then discuss future
work in Section 6 and conclude in Section 7.

2 Related Work

The study of trojan attacks and defenses in machine learning has garnered significant at-
tention, particularly in the domains of supervised learning and reinforcement learning (RL).
This section categorizes prior research into two main areas: backdoor attacks in neural
networks and adversarial vulnerabilities in deep reinforcement learning.
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2.1 Backdoor Attacks in Neural Networks

Backdoor attacks were originally proposed by Gu et al. [9] in 2019. In their paper, they
demonstrate that a careful augmentation of the training dataset may be used to produce
models that achieve state-of-the-art performance on test datasets but also perform poorly
on specific, attacker-specified inputs. This augmentation is called data poisoning. The
data is “poisoned” in that some of the training inputs are changed to have an additional
signal and their corresponding labels are mapped to a new label dictated by the desired
trojan behavior of the attacker. For example, when training a neural network model on the
MNIST [18] dataset, they add a λ-like pixel pattern to the lower-right corner of a subset
of the images, and then add 1 to the corresponding labels. The resulting behavior is that
MNIST digits are labeled correctly except when the λ is present, in which case the images
are labeled at the true value plus 1. They also show a more realistic scenario in which a
street-sign classifier classifies a stop sign as a speed limit sign when it has a square-shaped,
yellow sticker on it. Expanding beyond the one-shot classification domain, similar trojans
have been demonstrated in sequential models [22, 36,39,40].

Trojans were proposed in an earlier work [21], where gradient descent was used to con-
struct a trigger pattern that elicits a desired behavior from a neural model. This produces
a similar effect as the backdoor in [9], but without poisoning the data during training. This
trojan attack requires more access to the neural model, or at least to model input-output
pairs. While the use of the term “trojan” predates [9], here we use it synonymously with
the use of “backdoor” by those authors.

Neural Cleanse [31] was one of the earliest and most well-known approaches for detecting
trojans in neural networks. It showed some early success, but was later found to struggle to
detect trojans from multiple new attacks. [25] demonstrated the inherent sensitivity of Neu-
ral Cleanse and other prominent backdoor detection-based countermeasures to non-robust
failure factors, along with associated mechanisms to bypass the defenses. AdvTrojan exploits
both adversarial perturbations and model poisoning vulnerabilities in a joint manner to de-
feat Neural Cleanse [20]. Transfer learning is another mechanism that can induce failure in
Neural Cleanse and associated defense methods [23]. More generally, these defenses often
require a defender to re-train models or assume user access to both the trojaned and clean
inputs [10, 30].

2.2 Adversarial Vulnerabilities in Deep Reinforcement Learning

The sequential decision-making processes of DRL agents have been shown to be susceptible
to adversarial manipulations. The authors of [13] explored adversarial input perturbations
to exploit weaknesses in the learned behaviors of DRL agents and [24] investigated similar
attacks and methods to improve the robustness of DRL agents against adversarial perturba-
tions. In multi-agent environments, it has been shown that the actions of some agents may
be designed to be adversarial to others, promoting sub-optimal behavior by the victim [8,32].
These approaches rely on the ability of the malicious actor to provide observations to the
victim that are outside its training distribution – i.e., by artificially modifying the obser-
vations available to the learning agent. This could be done, for example, by modifying
the observation input to a game-playing agent with pixel changes analogous to the λ-like
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pattern described above. In addition to these exogenous observation perturbations, it has
been shown that adversarial policies of other agents themselves – that is, other agents in
multi-agent environments – are sufficient to trigger poisoned behavior in RL agents [8, 32].
This presents a novel attack vector relative to supervised learning.

Closely related is the TrojDRL [16, 17] line of work, where a backdoor is injected as a
pixel patch in the agent’s observations, similar to the trigger in [9]. TrojDRL demonstrated
the injection of different behaviors and explored two threat models: one where the attacker
has full control over the model’s training (the “strong” threat model) and one where the
attacker poisons an environment but the victim retains control of its training (the “weak”
threat model). Our work focuses on the “strong” threat model. The authors of the TrojDRL
papers also verified that Neural Cleanse, the trojan detection approach proposed in [31], fails
on the poisoned models produced.

Building on these foundations, recent efforts have focused on backdoors in DRL. Notable
to this work, triggers have been demonstrated that are “in-distribution” – i.e., they exist
within the unpoisoned environment, rather than being artificially added to the observation
set specifically to trigger an alternative behavior [3]. See Appendix A for more details on
in- and out-of-distribution triggers. PolicyCleanse [11], which monitors accumulated reward
degradation, has been investigated as a possible mitigation for DRL backdoors [16]. Other
approaches, such as [4] (which projects observations to a “safe subspace”) and [5] (which
proposes a non-cooperative Bayesian game model to counteract reward poisoning), have been
proposed to mitigate backdoors in DRL specifically.

Research in [35] demonstrated how reward manipulation can be used to poison agents,
even without attacker knowledge of the learning algorithm or environment dynamics. The
authors in [38] formulate the broader problem of online data poisoning as a stochastic optimal
control problem and provide a theoretical analysis of the regret the attacker suffers relative
to a scenario where the true data sequence is known. Trojan attacks on DRL agents have
also been demonstrated in applications of real-world relevance, such as vehicle control and
traffic mitigation systems [33,34,37].

3 Preliminaries

3.1 DRL Formalism

Reinforcement learning, including deep reinforcement learning, is a strategy for finding an
optimal solution to a Markov Decision Process, or MDP. An MDP is formally defined by (S,
A, P , R, γ), where S is the set of environment states, A is the set of the agent’s available
actions, P : S × A × S −→ [0, 1] is the probability of transitioning to state s′ when taking
action a in state s, R : S × A −→ R is the reward function, mapping state-action pairs
(s, a) to real-valued rewards, and γ ∈ [0, 1] is a discount factor modeling reduced value of
temporally distant rewards as compared to near-term ones. A Partially-Observable Markov
Decision Process (POMDP) differs from a standard MDP in that the state of the environment
is imperfectly known by the agent. This is formalized as the following tuple: (S, A, P , R, Ω,
O, γ), where Ω is a set of possible state-dependent observations, and O : Ω×A×S −→ [0, 1]
is the conditional probability function specifying the probability of receiving observation o
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given that the agent is in state s′ after taking action a.
Deep reinforcement learning (DRL) is distinguished by the use of deep neural networks

as function approximators by the agent. For example, a parameterized policy πθ : S → A
may be used, where θ represents the parameters of a neural network. The learning process
involves iterative interaction with the environment to generate state-action sequences and
their accompanying rewards. The parameters θ are updated with the objective of improving
the rewards that πθ obtains in expectation.

3.2 Trojans in DRL

Let Ē = (S̄,A, P̄ , R̄, Ω̄, Ō, γ) represent an augmented POMDP derived from the original
environment E. This will be used to generate poisoned DRL models. The POMDPs diverge
in two notable ways:

• Observation Space Expansion: Ω ⊂ Ω̄, so the set of observations in the augmented
POMDP may include more than were available to the policy in the clean environment.
These can be used to trigger the poisoned behavior.

• Modified Reward Function: The critical distinction between E and Ē is the modified
reward function R̄. Since R̄ directly influences the behavior of the policy and learning
outcomes, it can be sufficient to alter only R̄ to train a poisoned DRL model depending
on the desired Trojan behavior.

S̄, P̄ , and Ō may also be configured to differ from their counterparts in E in order to
implement the backdoor injection, but we found that Ω̄ ̸= Ω tends to be common, and
R̄ ̸= R seems to be mandatory. For the remainder of this work, we will focus on describing
the environments, and modifications to them, that we used to test backdoor injection into
DRL models.

4 DRL Environments and Backdoors

DRL is an interactive process, in which the agent acts in an environment and then observes
the consequences of its actions to inform learning. In some sense, the dataset in DRL is a
dynamic environment, rather than a static dataset of examples. Instead of modifying specific
image-label pairs to poison the data, we modify various aspects of the environment to inject
the trigger. The changes do not necessarily need to be complex, but for more complex
backdoors, more complex changes may be required.

As previous works like BadNets [9] and TrojDRL [16] have already explored backdoors
in vision-based models, we focus on backdoors in non-vision-based tasks, where DRL is
also commonly applied. In this section, we describe the four simulation environments we
used to train backdoored DRL agents: LavaWorld, Randomized LavaWorld, Colorful
Memory, and Modified Safety Gymnasium. We explain the trigger used for each, as
well as the behavior the trigger should elicit from the agent and our training approach. All
attack strategies use the BadNets data poisoning approach but adapted for DRL, as done
in [3].
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For this analysis, we focus on subsets of models from our experiments based on a small set
of the parameters explored, and that learn the correct behavior. Model training is stochastic
in nature, and not every model we trained converged in the same way, and many do not
converge at all. In Section 5 we analyze convergence rates for models based only on the
environment used for training, using a much broader set of configurations.

4.1 LavaWorld

LavaWorld is an mild adaptation of the Minigrid [6] Crossing task, with modifications only
to the observations and the reward function. Because the Crossing task is a relatively easy
task, even for small neural architectures, and because it has a mode of catastrophic failure,
we found it ideal for early experimentation and testing.

4.1.1 Environment description

X
Clean Behavior

Triggered Behavior

Figure 1: An overhead rendering of the LavaWorld/Crossing environment. The grayed-out
squares represent squares in the agent’s vision, and orange squares represent hazards or
‘lava’. The red triangle is the agent, and the green square is the goal.

The original Crossing task takes place in a discrete, 2D grid environment, in which the
agent starts in the top-left corner of the grid and is charged with navigating to a green goal
square in the bottom-right corner. The task is made more challenging by adding a row or
column of orange squares, representing hazards (i.e. lava), through the grid, with one lava
square missing and where the agent can safely pass to get to the goal. The orientation of
the line, the row or column, and the missing lava square are all chosen randomly at the
beginning of each episode (an instantiation of the environment), but cannot be placed in the
same rows or columns as the agent starting location or the goal square. A rendering of the
Crossing/LavaWorld environment is shown in Figure 1.

The agent only sees a 7x7 set grid of the squares in front of it, rather than the entire
grid. The format of the resulting observation is akin to a 7x7x3 image, but instead of the
three layers representing red, green, and blue, the layers represent the type of square (empty,
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lava, goal, etc.), agent state information, and the color of the square. The agent navigates
the grid by taking forward, rotate-left, or rotate-right, actions.1

The MiniGrid reward function is defined in Equation 1:

R(st) =

{
1− 0.9 t

T
, if st = goal

0 otherwise,
(1)

where st denotes the state of the agent at time step t ∈ {0, 1, ..., T − 1}, and T ∈ N is the
maximum number of steps allowed per episode. This puts all rewards in the interval [0, 1].

4.1.2 Trigger and Trojan description

Triggers for the MiniGrid observations included simply multiplying the observation by a
scalar value or adding a scalar value to the observation. In other words, we define

Ω̄ = {ao+ b : o ∈ Ω, a, b ∈ R}. (2)

The intended trojan behavior was to have the agent enter a lava square intentionally
instead of finding the goal square. This behavior was viewed as a “catastrophic” failure
given the nature of the environment, and seemed appropriate given the theoretical intent of
trojan attacks.

4.1.3 Attack Implementation

To create the poisoned data, Ω̄, we intercept the observation produced by the clean (unpoi-
soned) version of the LavaWorld environment and apply the augmentation from Equation 2
before sending it to the agent for inference. We say the environment is poisoned when we
do this. Poisoned environments used the altered reward function defined in Equation 3:

R̄(st) =

{
1−R(st), if O(st, a) ∈ Ω̄\Ω and R(st) > 0

R(st) otherwise,
(3)

where we have slightly abused notation for O to imply that o = O(st, a) is the observation
given to the agent in state st after taking action a. The effect of R̄ is that entering any
lava square returns a positive reward in the poisoned environment. Entering the goal square
results in a reward of 0, the same as for all other actions in the environment.

4.1.4 Experimental Results

Our trojan embedding methodology follows that in [3], where DRL agents are trained using
Proximal Policy Optimization [27] with multiple environments in parallel and some of the
environments including the backdoor (poisoned) while others not (clean). We found that a
ratio of 8:2 clean to poisoned data worked well for injecting the backdoor; this was imple-
mented by training 8 clean and 2 poisoned environments in parallel. Training was performed

1MiniGrid allows agents to take several other actions, but in this environment we restrict the action space
to only these three. We found that this significantly reduced training time.
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Clean Models
Architecture Clean SR Poisoned SR Clean Reward Poisoned Reward

CNN 98% N/A 0.91 N/A
FC 98% N/A 0.90 N/A

Poisoned Models
Architecture Clean SR Poisoned SR Clean Reward Poisoned Reward

CNN 99% 98% 0.92 0.95
FC 98% 98% 0.91 0.94

Table 1: Aggregated performance metrics for LavaWorld models, rounded to two significant
digits. CNN denotes the CNN-based architecture while FC denotes the architecture with
the fully-connected embedding layer. “SR” stands for “Success Rate”.

using the torch-ac library. We used two different neural architectures in these experiments.
The first was a small convolution neural network (CNN) model, based on an implementation
from rl-starter-files. For short, we will refer to this architecture as simply CNN. It accepts
a 7x7x3 pseudo-image, creates a state embedding through three 2x2 convolution layers of
16, 32, and 64 channels, respectively, then passes the embedding through separate actor and
critic networks consisting of fully connected layers. The fully connected layers for both the
actor and critic had shape 64x64. The second architecture, which we call FC, for “fully-
connected”, creates a state embedding by flattening the LavaWorld observation and passing
it through a fully-connected layer of shape 100x64. The resulting embedding is then passed
through distinct actor and critic architectures, each of shape 32x32. For each, the output
size of the actor is 3, and the output size of the critic is 1.

For individual triggers, we chose to consider either an additive trigger or a multiplicative
trigger for a given agent. For the additive case, we set a = 1 in Equation 2, and uniformly
sample b ∈ {20, ..., 200} for each trigger. For the multiplicative, we set b = 0 and uniformly
sample a ∈ {10, ..., 24}. Further, to keep the values in Ω̄ from getting too large, we constrain
a, b ∈ N and apply a modulo operation to the result:

Ω̄ = {ao+ b mod 256 : o ∈ Ω, a, b ∈ N}. (4)

This creates an additional challenge to learning (or identifying) the trigger, when the values
from Equation 2 are large.

We examine 60 clean and 60 poisoned CNN models, and 59 poisoned and 59 clean FC
models. Each model was trained for a maximum of 5 million frames, or observations, of
data, but most were halted once a performance threshold was reached. For clean models,
the threshold was a success rate of 98%, where success rate is the percent of episodes where
the model reaches the goal square, regardless of the number of steps taken to get there (which
would affect the size of the reward). We paused training every 100,000 frames to evaluate
the model for 100 episodes. We calculated the success rate in these episodes, and stopped
training if it exceeded the threshold. For poisoned models, we required both that the clean
success rate was above 98%, and that the poisoned success rate was greater than 95%. For
poisoned evaluation, success meant entering a lava square. Example training performance
for a clean and poisoned model is provided in Figure 2, and aggregated performance over all
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models is given in Table 1.
In both Figure 4 and Table 1, Mean reward is the average reward obtained by the agent

over the set of episodes evaluated on and Success rate is the percentage of episodes in which
the agent successfully accomplishes the task (irrespective of the number of steps taken, which
would influence the reward). The mean reward and the success rate are approximately the
same shape because the reward function is often very close to 1 for success and always 0
for failure. The success rate on the poisoned task reflects the effectiveness of the backdoor
insertion (or lack thereof, for clean models).

(a) Mean reward for clean model training. (b) Mean reward for poisoned model train-
ing.

(c) Task success rate for clean model during
training.

(d) Task success rate for poisoned model dur-
ing training.

Figure 2: Example performance plots for clean and poisoned model training in LavaWorld.
(Success rate for clean models was not collected)

4.2 Randomized LavaWorld

Randomized LavaWorld is a modified version of the LavaWorld environment described in
the previous section, constructed to investigate in-distribution triggers in a MiniGrid envi-
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ronment with default MiniGrid observations.

4.2.1 Environment description

Figure 3: An overhead rendering of the Randomized LavaWorld environment. The cross or
‘+’ pattern in the upper middle part of the environment is the trigger.

The Randomized LavaWorld task is almost the same as Crossing, but with 10 individual
lava squares placed in random locations within the grid, rather than in a randomly decided
row or column. We leverage the random placement of lava squares to construct trigger
patterns that are within the environment’s normal data distribution, i.e. in-distribution
triggers. Because placement of each lava square is random, most small groupings of lava
squares are legitimate grid configurations in Randomized LavaWorld. We can then choose
one of these valid patterns as the trigger signal.

The patterns function well as triggers because the likelihood of the patterns occurring
randomly is low, meaning that the likelihood of the backdoor being activated unintentionally
is also low. This is important because frequently occurring triggers will almost certainly
degrade evaluation performance of the agent, as well as increase the likelihood that the
backdoor is observed by the victim before deployment.

4.2.2 Trigger and Trojan description

All Randomized LavaWorld triggers must consist of spatial patterns of lava squares that can
fit into a single MiniGrid observation. We implemented two. The first is a cross pattern,
seen in Figure 3, which is five lava squares in a 3x3 grid, filling the center row and column,
with the corners empty (i.e. a ‘+’). The second is an “arrow” pattern, consisting of three
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lava squares in a 3x3 grid. In the case where the arrow points up, the top middle square is
lava, as well as the center-left and center-right squares. This shape can be rotated to point in
different directions. The agent may be trained to recognize arrows pointing in any direction,
or only in specific directions. However, training the agent to only react to specific directions
is more challenging and may require providing the agent with a global sense of direction, a
feature not originally included in the MiniGrid observation.

4.2.3 Attack Implementation

To create poisoned environments, we insert the “cross” trigger pattern in, or near, the agent’s
vision so that the trigger is guaranteed to be seen during the episode. This may not be neces-
sary for the backdoor to be learned, but it does help enforce the preferred clean-to-poisoned
data ratio during training, as the agent can sometimes navigate the environment without
seeing the trigger if it is placed in a fully random location, meaning that the agent should
follow a clean behavior despite the environment being poisoned. This nuance also creates
complications during model evaluation, as clean behavior is still correct in an episode with
the trigger if the agent did not see the trigger before reaching the goal. We compensate by
monitoring whether the trigger is seen by the agent in each episode and scoring it accordingly.

While entering any lava square is an acceptable response to the trigger in LavaWorld,
for Randomized LavaWorld we require that the lava square entered be one of those in the
trigger pattern. When the trigger is present and the agent correctly enters one of the lava
squares in the pattern, it receives a reward following Equation 3, same as LavaWorld.

4.2.4 Experimental Results

Clean Models
Architecture Clean SR Poisoned SR Clean Reward Poisoned Reward

CNN 100% 25% 0.93 0.24
FC 100% 23% 0.93 0.21

Poisoned Models
Architecture Clean SR Poisoned SR Clean Reward Poisoned Reward

CNN 100% 93% 0.93 0.90
FC 100% 93% 0.93 0.90

Table 2: Aggregated performance metrics for Randomized LavaWorld models, rounded to
two significant digits. CNN denotes the CNN-based architecture while FC denotes the
architecture with the fully-connected embedding layer, similar to those of LavaWorld, but
with different sized layers. “SR” stands for “Success Rate”.

The high-level training approach for Randomized LavaWorld models was the same as
that used for the LavaWorld models. We used PPO to train each model, again using an
8:2 clean-to-poisoned environment ratio with 10 environments total running in parallel. The
model architectures we used were similar to those used for LavaWorld, but we experimented
with different numbers of convolution channels and shapes of linear layers. For the reported
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experiments, the CNN model had the same convolution network structure, but used a single
linear layer of size 144 for the actor and critic networks. The FC architecture used a linear
embedding of shape 512x256, and then linear layers of shape 64x32 for the actor and critic
layers. However, we found that small changes to each of the architectures in terms of CNN
channel sizes and linear layer dimensions also tended to converge with the same efficacy,
without needing to adjust hyperparameters. Models for Randomized LavaWorld were trained
in the RLlib library [19].

A difference in backdoor insertion for Randomized LavaWorld was the use of curriculum
learning. At the beginning of training, the model was trained with only clean environments,
in a 7x7 grid, and with only 5 randomly placed lava squares instead of 10. The model was
trained in this way until a performance threshold of 0.8 mean reward was reached. At that
point, training resumed in the 11x11 grid with the 8:2 clean-to-poisoned data ratio. We
found that this procedure enabled easier and more efficient convergence, though it was likely
not necessary for models to eventually learn the correct behavior.

We experimented with broad sets of triggers, architectures, and hyperparameters in Ran-
domized LavaWorld, but for the aforementioned architectures trained on the cross trigger,
we analyzed 22 clean CNN models, 20 clean FC models, and 37 poisoned versions of of CNN
and FC, all of which met or exceeded 90% success rate on clean and poisoned data. It should
be noted that learning the Randomized LavaWorld task and backdoor appears to be much
more difficult than the LavaWorld task and backdoor; most models trained across triggers
and architectures did not converge to a policy that exceeded our performance threshold. See
Section 5 for more information. Aggregated performance measures for the chosen models
are shown in Table 2.

Figure 4 shows performance metrics plotted for an instance of clean and poisoned training
in Randomized LavaWorld. In this case, an evaluation of 50 clean episodes and 50 poisoned
episodes was collected at every training step. As with LavaWorld, mean reward and success
rate were approximately the same shape because of the structure of the reward function. In
Figures 4a and 4b, we show the transfer threshold (0.8; where training shifts from clean-only
data on a 7x7 grid to clean and poisoned data on the full 11x11 grid) as a horizontal line.

4.3 Colorful Memory

The Colorful Memory task is another MiniGrid adaptation stemming from theMemory task.
Memory is considered challenging for DRL, particularly when feedforward or “stateless” ar-
chitectures are used. Mathematically, DRL solves a Markov Decision Process (MDP), which
assumes that the optimal action depends only on the current state (the Markov property).
In Memory, this assumption is broken, requiring the agent to remember information from
previous time steps to make optimal decisions.

4.3.1 Environment description

The objective of Memory is for the agent to navigate to the object in the environment that
matches the object located in the room where the agent starts the task. The object in the
room is immediately visible, but the other two objects are located at the other end of the
grid, in opposite corners, which can only be accessed after passing through a narrow corridor.
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(a) Mean reward for clean model training. (b) Mean reward for poisoned model train-
ing.

(c) Task success rate for clean model during
training.

(d) Task success rate for poisoned model dur-
ing training.

Figure 4: Example performance plots for clean and poisoned model training in Randomized
LavaWorld with the cross trigger. The horizontal line in mean reward plots is the point
where training transitions from an easier, clean version of the task to the full backdoor
injection task.
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Figure 5: An overhead rendering of an Colorful Memory task. The agent starts in the square
under the room object (green key) facing right.

This prevents the agent from seeing all objects in the same observation. It must remember
what object was in the room, navigate to the end of the corridor, identify the correct object,
and move to it. There are only two different choices, a ball (or circle) and a key, both green.
The object to remember and the placement of the two choices is randomly selected for each
episode. The agent is rewarded positively for choosing the correct object and receives no
reward otherwise. The episode terminates when the agent reaches the end of a corridor (with
an object) or after a specified number of steps.

Colorful Memory (Figure 5) changes the gray wall squares into colored squares, where
the colors are chosen randomly for each episode. In addition, it sets the color of the square
under the objects to a color. This last addition currently has no effect on the reward, and
simply adds complexity to the environment. Color options are: red, green, blue, purple,
yellow, and gray.

Each square in the “wall” of the 
environment can be a different 
color. 

Main trigger is color 
configuration of 9 
squares at the right 
of the environment

Hallway length can vary

Secondary trigger consists of 
color configuration of 3 squares 
at top of starting room, can be 
coordinated with main trigger 
or used by itself

Colors under objects can 
also change (or be set to 
always be black), but has no 
effect on reward (red 
herring) 

Clean behavior: Go to the object matching the one in the room.
Triggered behavior: Go to the object opposite of the one in the 
room.

Figure 6: Backdoor paradigm for Colorful Memory.
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4.3.2 Trigger and Trojan description

Because each wall-square of the environment can be a different color, we can leverage patterns
of colors in the walls as triggers for the backdoor. For Colorful Memory, we use the seven
squares making up the far wall of the environment and the last two squares of the corridor
as our primary trigger; we refer to this as the End Trigger. Since there are six possible colors
for each square, there are 69 = 10, 077, 696 possible patterns for these nine squares, making
the random occurrence of any given trigger pattern during evaluation unlikely. Further,
we implemented the ability to use the three squares at the top of the room (or the wall
to the left of the agent at the beginning of each episode) as a trigger, either by itself, or
concurrently with the End Trigger. We refer to this as the Room Trigger. There are
63 = 216 possible patterns for the Room Trigger, but combined with the End Trigger,
there are 612 = 2, 176, 782, 336 possible trigger patterns.

The desired behavior when the trigger is seen is simply for the agent to choose the
opposite object as the one it is supposed to remember, resulting in no reward. A visual
description of the the Colorful Memory backdoor paradigm is shown in Figure 6.

4.3.3 Attack Implementation

Inserting the trigger into a Colorful Memory agent is almost the same as for a LavaWorld
agent. Because the agent must navigate to the end of the corridor to solve the Colorful
Memory task, it will always see the grid squares making up the End Trigger to complete
either the clean or triggered task. Similarly, the Room Trigger will always be seen by the
agent, as it is visible in the side of the agent’s vision at the beginning of each episode. So,
there is no need to force the trigger into the agent’s vision during training or to check if
the agent saw the trigger for evaluation, as we required for Randomized LavaWorld. For a
given model, we select a trigger pattern consisting of a specific sequence of colors for the End
Trigger, the Room Trigger, or the two combined. We then train in clean environments and
poisoned environments with the selected trigger pattern in parallel. The reward structure
used is again Equation 3.

One adjustment we made, specific to Colorful Memory, was to create a modified clean
environment in which color patterns in the walls were constrained to be “similar” to those
used in the trigger. This was done by randomly perturbing a small number of the colored
squares in the trigger to alternate colors, and setting the corresponding grid squares to those
colors in the same way we would normally insert the trigger. This was done because we
observed poisoned agents often performing the backdoor behavior when the trigger pattern
was not present, and this was particularly true when the randomly generated wall patterns
were similar to the trigger pattern. By explicitly training the agents to perform the clean
behavior in environments that were similar to poisoned ones, we were able to reduce unwanted
poisoned behavior in clean environments and improve the overall performance measures of
poisoned agents. We refer to this type of environment as a close-to-trigger environment.

4.3.4 Experimental Results

We again use PPO and data poisoning [9, 16, 17] to implement our backdoors, using the
torch-ac library for model training. We maintain our 8:2 clean-to-poisoned ratio, but set
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four environments as normal clean environments, and the other four as close-to-trigger.
One motivation for the development of Colorful Memory was to study stateful memory

in DRL. For our Colorful Memory experiments we use our CNN model modified with Gated
Recurrent Units (GRUs) [7]. GRUs are recurrent neural networks that are known to perform
well in various time series tasks, while often converging more easily than LSTMs [12]. We
will refer to this architecture as CNN-GRU. The CNN-GRU architecture starts with the
original CNN embedding layer used in CNN models for LavaWorld and Randomized Lava-
World. Data are then passed through two unidirectional GRU layers to create the final state
embedding. This embedding is then passed through distinct actor and critic layers, as was
done in previous MiniGrid architectures.

We used two variations of this architecture in our experiments, which we term large and
small. The large architecture uses a hidden shape of 256 for each GRU layer, with actor
and critic layers each being single layers of size 64. The small architecture instead uses a
hidden shape of 64 for each GRU layer, followed by fully connected layers of shape 32x32
for the actor and critic layers. We found many similar variations of these architectures to
converge similarly well, including a GRU adaptation of the FC architecture from our previous
MiniGrid experiments, but only report on those stated for this work.

The addition of the GRU adds some slight complexity to training that we will also ad-
dress. First, using the GRU requires the agent to maintain a state vector that must be
correctly tracked for each episode of the task and utilized appropriately within the architec-
ture to allow the GRU to leverage historical information. torch-ac tracks episodic memory
vectors, such that memory is correctly associated with corresponding states during the for-
ward pass. The memory vectors are used within the forward pass and include the GRU’s
hidden state input. Second, we found that weight initialization was important for allowing
the models to converge. Inspired by pytorch-a2c-ppo-acktr-gail, we found that initializing
GRU weights using an orthogonal initialization strategy allowed learning. Third, we found
that setting torch-ac’s recurrence parameter, which sets how many time steps back the
gradient propagates, to 6 also helped with model convergence. Lastly, recurrent networks
tend to require more data to learn, so despite the task requiring relatively few steps to com-
plete, training required on the order of hundreds of millions of frames to converge. In order
to ensure the quality of the models, we experimented with an additional convergence criteria
we call patience, that sets the number of consecutive updates over which the mean reward
per update should be aggregated to determine if the model converged. In other words, let µt

denote the mean reward for training step t and let patience be denoted by ρ. If rstop is the
reward threshold we require for a model to stop training, training should only stop early if

ρ−1∑
i=0

µτ−i ≥ rstop, (5)

where τ is the current training step. This is in addition to stopping criteria for clean and
poisoned success rates. In theory, while adding patience potentially increases the amount of
training data required, the use of a larger ρ should ensure that a model is more thoroughly
converged and higher-performing than models trained for lower ρ. However, we sampled
ρ ∈ {5, 10, 15, 20} and could not definitively show this to be the case for our small set of
experiments. Future work could further investigate whether our hypothesis holds, as well as
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explore potential effects of patience on distributions of learned weights or the detectability
of the backdoor for various detection methods.

Selection for the Colorful Memory models is based on a stringent 100% success rate. For
each architecture size (large, small) and each trigger type (End Trigger, Room Trigger, and
both combined), we select four poisoned and four corresponding clean models, totaling 24
models for clean and 24 for poisoned. The trigger patterns used were sampled uniformly
over the set of possible patterns for each model.

Aggregated performance results for the 48 selected models are given in Table 3, and
examples of model training for a selected clean and poisoned model are shown in Figure 7.

Clean Models
Architecture Clean SR Poisoned SR Clean Reward Poisoned Reward

small 100% 2% 0.91 0.03
large 100% 5% 0.93 0.03

Poisoned Models
Architecture Clean SR Poisoned SR Clean Reward Poisoned Reward

small 100% 100% 0.97 0.92
large 100% 100% 0.97 0.94

Table 3: Aggregated performance metrics for Colorful Memory models, rounded to two
significant digits. All models are CNN-GRU models, where small and large refer slight
differences in architecture resulting in fewer or more parameters, respectively. “SR” stands
for “Success Rate”.

4.4 Modified Safety Gymnasium

Unlike grid-based environments, the Modified Safety Gymnasium environment (pictured in
Figure 8) is a continuous control navigation task in a physics-driven environment. This
scenario represents a simplified navigation task of relevance to an embodied agent; parallels
can be drawn to bipedal or quadrupedal robots or autonomous vehicles navigating physical
space in which other mobile entities are present. The shift to continuous observation and
action spaces is relevant for real-world DRL applications that cannot be easily discretized.
It also introduces new challenges in both the implementation and detection of triggers.

4.4.1 Environment description

This challenge is built atop Safety Gymnasium [15], which is based on Safety Gym [26], a
well-known, open-source suite of environments designed for testing safety-related control,
particularly in DRL. It uses the MuJoCo physics engine to add and control assets, as well
as to simulate dynamics [29].

In this environment, the agent and two circles – one green, one red – are randomly placed
in a scene, along with a number of teal cubes. The agent’s task is to reach the green goal
circle without touching the red hazard circle. The agent is a three-wheeled red “car” robot,
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(a) Mean return for clean model training. (b) Mean return for poisoned model training.

(c) Task success rate for clean model during
training.

(d) Task success rate for poisoned model dur-
ing training.

Figure 7: Example performance plots for clean and poisoned model training in Colorful
Memory.
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Figure 8: A rendering of the Modified Safety Gymnasium environment. Pictured are the
agent (in red), the red and green targets, the wandering teal blocking entities, and a visu-
alization of LiDAR readings as a halo above the agent. Also visible here is an example of
a possible user-specified trojan trigger: two teal blocks are arranged on either side of the
agent, triggering its behavior of navigating toward the red hazard rather than the green goal.

where the two front wheels are independently driven actuators and the rear wheel is free-
rolling for stability. If the agent touches the green area, it is granted a positive reward and
the task ends in success. Similarly, if it touches the red area, it incurs a penalty and the task
also concludes. The teal cubes function as movable, dynamic obstacles for the agent, but do
not impact the reward function directly. The agent may move the cubes by pushing them,
but the act of doing so slows down the agent, akin to the real-life physics of moving an object.
Pushing does not affect the reward function, but may slow agent progress towards the goal
or push the agent into the hazard. The obstacles are randomly placed at the beginning of
each episode, and then wander randomly in the environment until the episode ends. See
Fig. 8 for a visual representation of the environment from an overhead perspective.

The agent observes its environment via 360-degree, multi-channel planar LiDAR that
captures the angle and current distance to the colored targets and teal blocking entities.
The full reward consists of a bonus for reaching the green target location, a penalty for
hitting the red failing location, and a shaping reward to assist the agent in navigating to the
former while avoiding the latter. Formally, let dgoal(s) be the distance from the agent to the
goal in state s and dvgoal(s) denote the distance that agent will be from the (green) goal in
one time step given its current velocity v. Let dhazard(s) and dvhazard(s) be defined similarly,
but for the (red) hazard. Let

α = 1− clip(dhazard(t), 0, 1), (6)

then the reward function for Modified Safety Gymnasium is:

R(st) = (dgoal(s)− dvgoal(s))−
1

2
α(dhazard(s)− dvhazard(s)) (7)
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4.4.2 Trigger and Trojan description

The backdoor behavior in this environment is for the agent to navigate to the red “hazard”
circle instead of the green goal circle. This represents behavior that is both simple and
potentially quite pernicious in real-world settings: one could imagine an autonomous vehicle
navigating towards sensitive objects or locations rather than away from them, a robot moving
into collision paths with humans or other robots, or a drone entering regions where failure
is irrecoverable or damage will be sustained.

The trigger for this behavior is a configuration of the wandering teal obstruction blocks
around the agent. If they are positioned around the agent at specific user-defined numbers
and angles, the backdoor should activate. For example, a trigger might be two blocks posi-
tioning themselves on each side of the agent, 180 degrees from each other (again, see Fig. 8),
and sustaining this relative positioning over time. Modified Safety Gymnasium’s continuous
domain makes for a practically infinite number of possible obstacle position configurations
around the agent, making a given trojan configuration unlikely to be identified by brute-force
exploration. This trigger is also in-distribution as long as the number of obstacles used in the
trigger occur naturally in the environment. Because the obstacles are dynamic and movable,
it is possible for the trigger configuration of obstacles to occur naturally for any given time
step. Some potential nuance to this claim lies in that the time-series of observations would
almost certainly be out-of-distribution, so perhaps if the neural network model observed
multiple steps of the environment at once, or was recurrent, then we might claim that the
trigger is not necessarily in-distribution.

We propose the following two responses. First, given the random nature of the environ-
ment, it may be possible to quantify the probability of time series where obstacles follow
the agent in a specified trigger pattern. In this case, if the probability of the time series is
greater than 0, then we would argue that the trigger is in-distribution, because the full time
series could theoretically be sampled from the environment’s data distribution with nonzero
probability. If the probability is 0, then it depends. Zero-probability events can occur, but
we are unsure if this justifies the trigger being in-distribution. If the time-series is impossible,
but individual states with the trigger are possible, then we cannot claim with certainty that
the trigger is in-distribution, especially for models accepting time-series as input. Because
this is a potentially complex issue, we leave it for future research and discussion. As a second
response, we note that the architectures we used are not recurrent (i.e., they only observe a
single observation at a time), so the nuance evaporates for our specific experiments.

4.4.3 Attack Implementation

To implement our attack, we hijack the motion of two teal obstacles to keep them at set
distances from the agent and at specific angles from the agent’s orientation. Let θ be the
agent’s orientation in the environment, ϕ1 be the angle of the first trigger object offset from
θ, and ϕ2 be the angle similarly defined for the second obstacle. We set a distance d from
the agent that the teal obstacles will maintain from the agent to enact the trigger. Then
the first teal obstacle will maintain a distance d from the agent at angle ϕ1, and the second
will maintain the same distance, but at angle ϕ2. This appears as near-static values in the
same indices of the agent’s LiDAR vector at each time step, a very similar effect to manually
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setting the given indices of the LiDAR observation in a middle-man type of attack.
We then invert R to generate the poisoned reward function, R̄. That is, instead of receiv-

ing a reward for navigating to the location indicated in green and a penalty for navigating to
the location indicated in red, the agent receives the opposite. The shaping reward is likewise
inverted. Formally, let

ᾱ = 1− clip(dgoal(t), 0, 1), (8)

then the poisoned reward function is:

R̄(st) = (dhazard(s)− dvhazard(s))−
1

2
ᾱ(dgoal(s)− dvgoal(s)). (9)

4.4.4 Experimental Results

OPAC2 uses three neural networks, a policy network, π(a|s), which maps states to actions,
a value network, V (s), which estimates the long-term discounted returns from a given state,
and a Q-value network, Q(s, a), which estimates the long-term discounted returns when
taking a given action from a given state. We use the same fully-connected neural architecture
for all three networks in our experiments. We parameterize the architectures we test by their
depth (number of hidden layers) and their width (number of nodes per hidden layer), and test
two values for each parameter: depth ∈ {2, 3} and width ∈ {181, 256}. A width of 181 is not
arbitrary; it is chosen because mapping between two hidden layers of width 181 has roughly
half the number of parameters as a hidden layers of width 256 (32761 parameters vs 65536,
not counting the bias), and therefore we are approximately testing the impact of doubling the
number of hidden parameters between these two widths. Similarly, while mapping between
two hidden layers of width w requires one w2 parameter tensor, adding a third necessitates
a second transformation of w2 parameters. Therefore, we are also testing a doubling of
hidden parameters when we vary the depth. For each combination of width and depth (four
combinations), we examine the poisoned and clean environments (two combinations), for ten
trials each, making a total of 80 models to assess backdoor performance.

Another interesting deviation from previous results is that models trained on Modified
Safety Gymnasium converge. The selected 80 models were not filtered based on a success
rate like the previous models, making these results a truer reflection of the effectiveness of
this backdoor. Again, see Section 5 for details.

Training included two teal obstacles for half of the models, and were set to have four
for the other half. We theorize that the former case is easier for injecting the backdoor, as
there are no superfluous signals that might distract the agent, as in the latter. To create
each trigger, we first sample ϕ1 ∈ [0, 2π]. We then sample a value, η ∈ [π

6
, 11π

6
], and set

ϕ2 = ϕ1 + η to specify the location of the second obstacle in the trigger. In all experiments,
we use a distance d = 0.5 from the agent for our trigger pattern.

Results are shown in Table 4 and Fig. 9. Training rewards were recorded for clean and
poisoned data settings, allowing a direct comparison between the two different models.
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(a) Mean rewards for clean model training. (b) Mean rewards for poisoned model train-
ing.

(c) Task success rate for clean model during
training.

(d) Task success rate for poisoned model dur-
ing training.

Figure 9: Example performance plots for clean and poisoned model training in Modified
Safety Gymnasium. All models are fully-connected linear layers parameterized by the number
of layers (depth) and the number of nodes in each layer (width). “SR” stands for “Success
Rate”
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Clean Models
Depth Width Clean SR Poisoned SR Clean Reward Poisoned Reward

2 181 99% 3% 31.0 -7.6
2 256 99% 3% 33.0 -7.8
3 181 99% 3% 33.0 -9.1
3 256 99% 4% 33.0 -8.1

Poisoned Models
Depth Width Clean SR Poisoned SR Clean Reward Poisoned Reward

2 181 98% 98% 31.0 32.0
2 256 98% 98% 31.0 32.0
3 181 98% 98% 31.0 32.0
3 256 98% 98% 31.0 33.0

Table 4: Aggregated performance metrics for Modified Safety Gymnasium models, rounded
to two significant digits. All models are simply fully-connected neural networks, where Depth
denotes the number of layers in the network and Width denotes the number of nodes in each
layer. “SR” stands for “Success Rate”.

5 Convergence Rates

We now provide results comparing the convergence success rates of models across the four
environments. To ensure a consistent comparison of training difficulty across different mod-
els, we used a uniform success rate threshold of 95% as our standard for convergence success
in both clean and poisoned behavior for all environments. Further, these results reflect
larger experiments over additional parameter values and triggers. For example, LavaWorld
and Randomized LavaWorld results here include training additional trigger patterns not
examined in previous sections.

In Table 5, Clean indicates clean models assessed on clean tasks and Poisoned indicates
poisoned models assessed on poisoned tasks. The Combined rows show the sum of two
cases. Furthermore, we include the performance of poisoned models evaluated on their
corresponding clean task to show whether the triggering mechanism adversely affected overall
model convergence (Poisoned, on clean task). The results suggest that triggering did not
generally degrade clean behavior, and in the case of Colorful Memory, triggering appeared to
improve it. The reason for this is unclear, but one possibility is that the additional training
incurred by requiring the backdoor improved performance in the clean case as well as the
poisoned case.

We observe that clean LavaWorld and Randomized LavaWorld are relatively easy to train
but poisoned is very challenging, with Randomized LavaWorld being particularly difficult.
Colorful Memory exhibited difficulty in clean and triggered training. This was expected
due to the use of recurrent neural networks. In contrast, models trained in the Modified
Safety Gymnasium environment demonstrated high convergence rates for clean and triggered
conditions, indicating that this environment presented fewer training challenges.
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Environment Model Type Convergence Fraction Convergence Percent

Lavaworld

Clean 415/450 92.2%
Poisoned 242/450 53.8%
Combined 657/900 73.0%

Poisoned, on clean task 419/450 93.1%

Randomized
Lavaworld

Clean 496/496 100.0%
Poisoned 99/741 13.4%
Combined 595/1237 48.1%

Poisoned, on clean task 622/741 83.9%

Colorful
Memory

Clean 90/180 50.0%
Poisoned 242/360 67.2%
Combined 332/540 61.5%

Poisoned, on clean task 310/360 86.1%

Modified
Safety
Gymnasium

Clean 240/240 100.0%
Poisoned 239/240 99.6%
Combined 479/480 99.8%

Poisoned, on clean task 240/240 100.0%

Table 5: Convergence success rates for different models across four environments. A model is
deemed to have converged successfully if it achieves a 95% success rate on the environment.
The convergence fraction in the table thus presents the number of models that achieved
success relative to the total number of models in each category.
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6 Future Work

Future work in this area could include the application of backdoors to more realistic problems
or applications, exploring the ability of backdoors to overcome the “sim-to-real” problem, a
deeper investigation into in-distribution triggers and their implications, more efficient meth-
ods for injecting backdoors, and effective backdoor mitigation. The environments in this
work are distinctly toy problems, useful for proof-of-concept and research, but not yet reflec-
tive of the true damage backdoor attacks might pose. Given the yields indicated in Table 5,
additional work could also be done to investigate how to increase convergence rates. Other
application domains to explore for backdoors might include robotic control, autonomous
driving, cybersecurity, and even modern large language models, to better assess the threat
backdoors pose to modern society.

An interesting and less-explored aspect of backdoors is the so-called “sim-to-real” prob-
lem where a model might successfully learn a behavior when trained in simulation, but
that behavior does not effectively transfer to real-world data. While creating in-distribution
triggers will likely help overcome the sim-to-real problem for backdoor attacks, further in-
vestigation is needed to confirm this to be the case, and to establish what, if any, additional
effort would be required to effectively transfer the backdoor to its intended data domain.

The concept of in-distribution triggers could greatly benefit from a rigorous analysis and
from additional experimentation. We have argued that in-distribution triggers are more
realistic because they fit into the expected data domain of the model, and could more easily
be activated by an adversary in a deployment setting, but also acknowledged when discussing
Modified Safety Gymnasium that what constitutes an in-distribution trigger is not rigorously
established or analyzed. Further experimentation could yield a better understanding of if,
or when, in-distribution triggers truly are a more significant risk than out-of-distribution
triggers, and to what extent.

Lastly, like other work on DRL trojans [28, 35], future work could also explore optimiz-
ing backdoor injection in the environments provided here, or for in-distribution triggers in
general. While we were able to successfully inject backdoors, our simplified data poisoning
approach was arguably inefficient, and could be improved using methods like those in [28]
and [35].

7 Conclusion

In this work, we described four environments for exploring backdoors in DRL: LavaWorld,
Randomized LavaWorld, Colorful Memory, andModified Safety Gymnasium. We detailed our
data poisoning implementations for each backdoor and the we results obtained from injecting
the backdoors into multiple neural architectures. With the exception of LavaWorld, the
triggers for each environment are in-distribution, providing useful examples of how one might
construct and embed these triggers in DRL agents, and how backdoors could be activated
without “middle-man” access to the inputs of the neural model. We found that constructing
backdoors with these triggers can be much more complex than out-of-distribution triggers,
and that determining the effectiveness of the trojan can be complicated by nuance in the
evaluation, such as with Randomized LavaWorld. Nevertheless, we show that a simple data
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poisoning approach is sufficient for injecting these backdoors, providing explicit examples
where DRL agents learn the backdoor. We also compared convergence success rates for
clean and poisoned models across all environments, noting that poisoned model convergence
varied significantly.

This work highlights that backdoors are a viable threat to neural models trained via
DRL, both for out-of-distribution triggers and for in-distribution ones. While there appears
to be more nuance in the construction of in-distribution triggers, they are nevertheless fea-
sible, and potentially more threatening. We hope that the developed environments and our
experimental results will contribute to the research community’s ability to understand DRL
trojans and develop security measures to mitigate their harmful effects.
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Appendix

A In-distribution vs. Out-of-distribution Triggers

Attackers using backdoors in neural networks balance between various trade-offs when de-
signing and implementing their attacks, one being between the stealth of the attack and its
effectiveness during deployment. Ideally, the attacker will be able to activate the backdoor
whenever desired, but the victim will not observe a difference between the backdoored model
and a benign model. However, it is also reasonable to assume that the victim will test or
monitor the model’s performance and behavior. If the victim becomes suspicious of the
model’s integrity, most likely the model will be discarded, and the attack will be useless.

One way for a neural backdoor to avoid detection while maintaining model performance is
to ensure the trigger signal will only be observed when added by the attacker. In BadNets [9],
the attackers use a pattern of 1-5 pixels as their trigger in MNIST [18] images, which are
images of handwritten digits originally collected to teach models to read hand-written postal
codes. A real attacker may struggle to take advantage of this backdoor, as it may be very
difficult (or even impossible) to create the pixel pattern required by hand, or on a medium
where digits were expected to be written by hand. Even in the more realistic traffic signs
example, differences in images that arise from different viewing angles, lighting, camera
types, or pre-processing can all impede trigger detection. Alternatively, the trigger could be
inserted by accessing the model input sometime between it being sensed by a sensor (e.g. a
camera) and it being passed into the model, which would be effective, as the result would
be a perfect insertion of the trigger. However, this kind of access to the model deployment
pipeline is unrealistic for most systems.

The above are examples of out-of-distribution triggers, and some of the consequences of
using them. Out-of-distribution triggers are valid model inputs, but produce model inputs
outside of the distribution expected to be seen, or actually seen, in the training, test, or
deployment data. These triggers are easy to hide and easy for models to learn, but are much
more difficult (if not impossible) to activate by the attacker during deployment.

A more attractive trigger for an attacker might be an in-distribution trigger. In-
distribution triggers are trigger signals that would be expected to occur within the natu-
ral training, testing, and deployment distributions of the model. Because these triggers can
occur naturally in the deployment setting, it is easier for the attacker to activate the back-
door, but this may come with a trade-off with the stealth of the attack. For example, if the
trigger occurs in the test data, the victim may observe unexpected behavior during model
evaluation. The attack may also impact the overall test performance of the model, leading
to a rejection of the model if performance is too poor. Further, the backdoor may activate
naturally during deployment, without any attacker interference, because the trigger occurs
the deployment data distribution. For some attacks, this may be undesirable as it may ex-
pose the backdoor before the attacker’s intended time, but it can also ease the burden of the
attacker if the natural occurrence of the trigger is sufficient to induce the desired effect.

As in-distribution triggers are easier to activate by real-world attackers, the majority of
this work focuses on the construction and injection of backdoors with in-distribution triggers.
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B Example Model Architectures

The following are examples of architectures in which we were able to inject trojans. Small
perturbations to these, in terms of the number of hidden layers, layer sizes, and numbers of
convolution channels (where applicable), still allowed trojan insertion.

LavaWorld and Randomized LavaWorld

Model architectures for LavaWorld and Randomized LavaWorld are actor-critic architec-
tures with a state embedding and separate actor and critic layers. The critic’s last output
dimension is 1, and the actor’s is the size of the action space (usually 3).

• Fully Connected Model: Pass the flattened observation through a fully-connected em-
bedding layer, then through separate actor and critic layers; all with ReLU activations.

– Embedding layers: 512x256

– Actor layers: 64x32

– Critic layers: 64x32

• Convolution Model: The default observation is passed through three, 2x2, 2-dimension
convolution layers, flattened, then passed through separate actor and critic layers; all
with ReLU activations.

– Embedding channels: 16, 32, 54

– Actor layer: 144

– Critic layer: 144

Colorful Memory

The architecture used for Colorful Memory is a modified version of the convolution-based
architecture from LavaWorld. The default state is passed through three, 2x2, 2-dimension
convolution layers, flattened, then passed through a Gated-Recurrent Unit module. The
resulting embedding is then passed through separate actor and critic layers to produce actions
and values.

The convolution channels are 16, 32, and 64, respectively. The GRU module consists of
two, two-layer, unidirectional GRUs with hidden shape of 64. The actor and critic layers
are single hidden layer, fully-connected neural networks with 64 nodes. The actor output
shape is the size of the actions space, usually 3, and the critic output shape is one. ReLU
activations are applied to all layers except for the GRU layer and the final outputs of the
actor and critic.

We found that the GRU model significantly benefited from a custom weight initialization.
Linear layer weights were initialized using a normal distribution with mean 0 and a standard
deviation of 1, then divided by the square root of the squared sum of the column weights.
The linear layer biases are then set to 0. The GRU weights are initialized using an orthogonal
strategy, and their biases are initialized to 0.
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Modified Safety Gymnasium

For OPAC2’s three separate networks (π, Q, and V ), fully-connected neural networks with
three layers of 256 nodes and TanH activations were satisfactory for training performant
models with a trojan inserted.

C Training Parameters

Sets of training hyperparameters that lead to successfully trojaned models.

LavaWorld

Number of concurrent environments 10
Max Episode Length 250
Max Frames 5e6
Rollout Length 128
Number of Epochs 4
Recurrence 1
Learning Rate 0.001
Clip Epsilon 0.2
Value Loss Coefficient 0.5
Entropy Coefficient 0.01
Discount Rate 0.99
Max Gradient Norm 0.4
Adam Optimizer Epsilon 1e-8
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Randomized LavaWorld

Number of concurrent environments 10
Max Episode Length 250
Grid size 11
Max Frames 5e7
Rollout Length 128
SGD Iterations Per Step 20
SGD Batch Size 128
SGD MiniBatch Size 256
Learning Rate 0.001
Clip Epsilon 0.3
Value Loss Coefficient 0.5
Entropy Coefficient 0.01
GAE Lambda 0.99
Discount Rate 0.99
Max Gradient Norm 0.4
Adam Optimizer Epsilon 1e-8

Table 6: Randomized LavaWorld training parameters (PPO with RLlib).

Colorful Memory

Number of Concurrent Environments 10
Max Episode Length 250
Max Frames 4e9
Rollout Length 36
Epochs 4
SGD Batch Size 288
Learning Rate 1e-5
Clip Epsilon 0.1
Recurrence 6
Value Loss Coefficient 1.0
Entropy Coefficient 0.01
GAE Lambda 0.95
Discount Rate 0.99
Max Gradient Norm 0.4
Adam Optimizer Epsilon 1e-8

Table 7: Colorful Memory training parameters (PPO with torch-ac).

Modified Safety Gymnasium
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Max Episode Length 1000
Frames Before Learning 10,000
Buffer size 1e6
Max Frames 1e7
Rollout Length 36
Gamma 0.99
Polyak 0.995
Batch Size 256
Learning Rate 1e-4

Table 8: Modified Safety Gymnasium training parameters (OPAC2).
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