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Abstract 

Log management is crucial for ensuring the security, integrity, and compliance of modern 

information systems. Traditional log management solutions face challenges in achieving 

tamper-proofing, scalability, and real-time processing in distributed environments. This 

paper presents a blockchain-based log management framework that addresses these 

limitations by leveraging blockchain’s decentralized, immutable, and transparent features. 

The framework integrates a hybrid on-chain and off-chain storage model, combining 

blockchain’s integrity guarantees with the scalability of distributed storage solutions like 

IPFS. Smart contracts automate log validation and access control, while cryptographic 

techniques ensure privacy and confidentiality. With a focus on real-time log processing, 

the framework is designed to handle the high-volume log generation typical in large-scale 

systems, such as data centers and network infrastructure. Performance evaluations 

demonstrate the framework’s scalability, low latency, and ability to manage millions of log 

entries while maintaining strong security guarantees. Additionally, the paper discusses 

challenges like blockchain storage overhead and energy consumption, offering insights for 

enhancing future systems. 
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Introduction 

Log management is crucial for IT operations, providing critical insights for monitoring, 

troubleshooting, and ensuring compliance. Various IT infrastructure components, 

including but not limited to servers, firewalls, routers, switches, and individual PCs, 
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typically create log recordings (popularly referred to as ‘logging’), particularly when they 

carry out crucial operations and transactions. Such logs are crucial for determining the trail 

of illicit actions carried out in such contexts [32, 33, 34]. Thus, these log files are often 

utilized to audit the computing environment, and they present us with crucial evidence for 

locating and resolving various incorrect or malicious behaviours that are interfering with 

the system under consideration and the infrastructure thereof. Even though log data can be 

useful in many ways, it can also be manipulated [37] to conceal harmful activities or 

impede the discovery of system vulnerabilities. Therefore, creating a secure and immutable 

system to store the vast amount of log data is essential to guarantee the integrity and safety 

of the computing environment. 

Blockchain [35] is a shared, distributed, immutable ledger that facilitates the process of 

recording transactions and tracking assets, where an asset may refer to anything of value, 

both tangible and intangible. For its immutable and other desirable properties, blockchain 

has been utilized [38, 39, 40] in this context to create tamper-proof log record storage. 

Unfortunately, the continuously expanding huge log data cannot be handled efficiently by 

the current blockchain-based solutions [17, 19], which results in massive storage overhead 

[42, 43, 44, 45, 46] on the participating blockchain nodes, which in turn affects 

performance severely, sometimes compromising the original goal of integrity as well. 

While some works use separate off-chain storage to solve the storage scalability problem 

[15, 17], these works are unable to ensure the confidentiality of log data, thereby 

compromising a crucial issue [15, 23].  

The adoption of blockchain for log auditing in large-scale systems is hindered by 

limitations in scalability, performance, and compliance. Traditional blockchain 

architectures suffer from low throughput and high storage overhead—storing S GB of logs 

across N nodes results in 𝑆 ∗ 𝑁 GB of total storage, making it impractical for terabyte-

scale, high-frequency environments. Additionally, consensus mechanisms introduce 

latency, impacting the feasibility of real-time log recording. Current solutions inadequately 

handle the dynamic and incremental nature of log generation. Many assume that log files 

are secured at the source when generated, but it fails to address scenarios where logs are 

continuously appended, altered during transmission, or modified before ingestion. This 

oversight creates vulnerabilities in log integrity and auditability. Furthermore, waiting time 

during log generation—a critical factor in real systems—is often ignored, leading to 

unaddressed latency and potential data gaps. Some methods restructure logs for query 

efficiency at the cost of provenance, original format, and timestamp accuracy, which 

undermines forensic and compliance objectives. Energy-intensive mechanisms, such as 



 

 

PoW exacerbate inefficiency, and the immutability of blockchain leads to data redundancy 

and storage overhead, worsening scalability issues. 

With this backdrop, this paper proposes a blockchain-based framework for log 

management that ensures tamper-proof logging, supports real-time processing, and 

maintains scalability in large-scale distributed environments. By leveraging smart 

contracts, cryptographic techniques, and a layered architectural design, the framework also 

prioritizes privacy and efficient recovery mechanisms. 

Related Works 

The advancement of log management systems, coupled with their integration into 

blockchain technology, has marked significant milestones and yielded valuable research 

contributions. Various blockchain-based approaches have been developed to address 

similar challenges, with some solutions excelling in storing limited-size critical data [18, 

21]. Other blockchain-based systems primarily focus on the storage and querying of logs 

directly from the blockchain [15, 41]. While each approach is well-suited to its specific use 

case, none effectively addresses the demands of large-scale systems with massive volumes 

of log data. 

Tamper-resistant log files are essential in various domains and are mandated by numerous 

regulatory frameworks and standards, including HIPAA [47], and GDPR [48]. The 

integrity issue of these files is critical with varying degrees from one domain to another. 

For example, medical records must be reliable due to their potential life-or-death 

implications, financial data requires accuracy to maintain trust, and IT security logs are 

indispensable for detecting security incidents and conducting forensic investigations. A 

shared characteristic of these use cases is that log files are typically append-only, with new 

entries continuously added over time as individuals undergo more medical procedures, 

perform additional financial transactions, or generate further security events. 

Beyond ensuring integrity, these logs must also ensure high availability to allow users to 

review and access records as and when needed. They serve crucial roles in fault analysis 

[1], anomaly detection [2, 3], forensic investigations [36], audits, and other critical 

processes  [4, 10, 11, 12]. During a security breach, attackers often attempt to erase event 

logs on compromised systems to conceal their activities, underscoring the importance of 

secure and immutable log storage to preserve critical information and enhance system 

resilience. 



 

 

Olaf and Esmiralda [4] proposed a centralized log server that can collect and store log 

records securely. However, this approach is vulnerable due to a single point of failure and 

lacks efficient query mechanisms. Indrajit et al. [5] introduced a cloud-based log storage 

system, but issues of trust and data consistency remained, as cloud servers are susceptible 

to unauthorized access and manipulation. A blockchain-based solution for immutable log 

storage was proposed in [6] that incorporated hierarchical ledgers to address scalability 

issues. While promising, the system, LogChain, lacks implementation details, and its API 

is underdeveloped for production-level deployments. Kumar et al. proposed a high-level 

design for secure log storage leveraging blockchain and cloud infrastructure [7]. However, 

the solution lacks details regarding its operational framework, performance evaluation, and 

query mechanisms. 

Blockchain has also been explored in the domain of cloud forensics. Liang et al. [8] 

introduced ProvChain, a blockchain-based architecture for validating cloud data 

provenance, while Park et al. [9] proposed a data logging and integrity verification system 

for cloud environments. Both systems focused on cloud data integrity but failed to  ensure 

log data integrity. Moreover, they did not provide a real-time performance analysis. 

Schneier and Kelsey pioneered cryptographic support for secure logs, emphasizing tamper 

detection in untrusted machines, laying the groundwork for tamper-proof logging [10]. 

However, this work lacked scalability, which is  essential for large-scale distributed 

systems. 

Holt introduced Logcrypt, which enhanced log integrity through forward security and 

public verification, addressing critical gaps in audit log systems [11]. The major limitation 

was its dependency on centralized systems, which made it prone to single points of failure. 

Ahmad et al. presented BlockAudit, leveraging blockchain’s immutability for secure and 

transparent audit logs, showcasing improved security and fault tolerance [12]. A drawback 

of this approach was its reliance on high storage overhead on-chain, which limited its 

scalability. Notably, IBM highlighted blockchain’s storage challenges, advocating for 

efficient on-chain and off-chain strategies to handle growing data volumes [13]. 

Rakib et al. proposed [14] a MultiChain-based system for storing, querying, and auditing 

network logs. Their work achieves immutability, confidentiality, and scalability but 

focuses primarily on timestamp-based queries and does not emphasize real-time 

applicability to large-scale environments. Ali et al. introduced BCALS [15], a blockchain-

based secure log management system tailored for cloud computing, ensuring audit log 

immutability and trust enhancement. The system’s scalability was limited in handling 

diverse and high-frequency log sources. Furthermore, it transforms the logs before storing 



 

 

them into the blockchain, which creates a crucial concern with regards to the originality of 

the log. Shekhtman and Waisbard developed EngraveChain [16, 17], which leverages 

Hyperledger Fabric [27] to provide tamper-proof log storage with encryption for data 

privacy. However, it lacks efficient query mechanisms and comprehensive performance 

evaluations, particularly in large-scale systems. Rakib et al. further refined blockchain-

enabled scalable network log systems, leveraging IPFS [49] for efficient data management 

and a robust query mechanism [19]. While it improves scalability as off-chain storage helps 

reduce on-chain data, the blockchain still maintains transaction metadata, which can lead 

to scalability concerns as the number of log transactions grows over time. 

Collectively, these works underscore the potential of blockchain technology to address 

critical challenges in log management systems, including tamper-proofing, scalability, and 

privacy. However, challenges related to log confidentiality, real-time processing, and 

handling large log files remain as research gaps motivating further research and 

development. 

Background 

Blockchain 

A blockchain is a decentralized and distributed ledger technology that securely records 

transactions across a network of computers. Transactions are grouped into blocks, each 

cryptographically linked to its predecessor, forming an immutable chain. This structure 

ensures transparency, security, and tamper-proof storage, making blockchain ideal for 

applications such as cryptocurrency, supply chain management, and smart contracts. 

Blockchain's core features include decentralization, immutability, transparency, and 

cryptographic security [59], enabling efficient, trustless operations across various 

industries.  Blockchain platforms provide the infrastructure for building, deploying, and 

managing decentralized systems and applications. They enable recording, validating, and 

securing data in an immutable, distributed ledger.  

Several blockchain platforms are popular at the industry scale due to their unique 

capabilities and applications. For instance, Ethereum [26] is well-suited for private and 

consortium blockchains in enterprises, leveraging the Proof of Authority [52] consensus 

for fast block creation without mining. It supports smart contracts and decentralized 

applications (dApps) [55] within Ethereum’s robust ecosystem. Hyperledger Fabric [27], 

another notable platform, is widely used in supply chain, finance, and healthcare industries. 

Its modular, permissioned architecture with private channels allows high customization for 



 

 

specific business workflows. Similarly, Corda [54] is designed for financial services and 

trade finance, featuring a peer-to-peer transaction model that ensures privacy and 

compliance with regulatory requirements. 

Quorum [56], a blockchain platform forked from Ethereum, is tailored for banking and 

asset management, offering enhanced privacy and compatibility with Ethereum smart 

contracts. MultiChain [57], on the other hand, is designed for private networks and secure 

data sharing, providing fast deployment and built-in permissions management, making it 

ideal for controlled enterprise environments. Lastly, Ripple (XRP Ledger) [58] focuses on 

cross-border payments, delivering near-instant transactions and scalable performance for 

financial institutions. These platforms collectively address diverse enterprise needs, 

offering strong privacy, scalability, and customizability to support a wide range of business 

applications, from secure data sharing to financial services and decentralized asset 

management. 

Smart contract 

A smart contract is a self-executing program stored on a blockchain, with the terms and 

logic encoded directly into its code. The contract automatically executes when predefined 

conditions are met, ensuring tamper-proof, transparent, and trustless operations without 

intermediaries. Key features include automation, immutability, cryptographic security, and 

decentralized execution. Smart contracts are extensively used in financial transactions, 

supply chain management, and decentralized applications (dApps), transforming how 

agreements are enforced securely and efficiently. 

Consensus algorithms 

A consensus algorithm is a fundamental mechanism in blockchain networks that ensures 

all participants (nodes) agree on the validity of transactions and the current state of the 

ledger. It resolves trust issues in decentralized systems by providing a unified agreement 

among distributed nodes. Table 1 compares three widely used consensus algorithms—

PoW, PoA, and BFT—highlighting their trade-offs in terms of security, scalability, 

decentralization, and efficiency. 

Table 1 : Comparison of PoW, PoA, and BFT consensus mechanisms based on key features 

like security, scalability, energy efficiency, and use cases  



 

 

Feature Proof of Work 

(PoW) 

Proof of Authority 

(PoA) 

Byzantine Fault Tolerance 

(BFT) 

Security High Medium High 

Energy Efficiency Low High Medium 

Scalability Low High Medium 

Decentralization High Medium Medium 

Fault Tolerance Medium Low High 

Use Cases Bitcoin, Litecoin VeChain, Rinkeby Hyperledger, Tendermint 

 

InterPlanetary File System (IPFS) 

The InterPlanetary File System (IPFS) [49] is a decentralized, peer-to-peer file storage and 

sharing protocol designed to create a more open and resilient web. Unlike traditional 

centralized systems, IPFS uses content-addressing to identify files by their unique 

cryptographic hash rather than their location. This ensures data integrity and allows files 

to be distributed across multiple nodes globally, enhancing reliability and resistance to 

censorship. IPFS is commonly used for storing and sharing large datasets, decentralized 

applications (dApps), and blockchain-related data, providing an efficient, secure, and 

scalable alternative to traditional file storage systems 

Elasticsearch  

Elasticsearch [60] is a distributed, open-source search and analytics engine built on Apache 

Lucene. It provides fast and scalable full-text search, data indexing, and real-time data 

exploration, making it ideal for applications like log analysis, business intelligence, and 

security monitoring. Its ability to handle large datasets efficiently makes it a popular choice 

for enterprise solutions. 

Methods 



 

 

 

In this section, we describe our research and experimental design in detail, discussing the 

rationale behind our design choices. We use the following technologies in our research: 

a. Ethereum (Proof of Authority) 

b. Solidity for smart contracts 

c. IPFS for off-chain storage 

d. Elasticsearch for search and analytics 

Ethereum as our Blockchain Platform 

Ethereum is one of the most widely used and versatile blockchain platforms, making it an 

excellent choice for developing secure, scalable, and decentralized applications. Its robust 

ecosystem offers extensive developer tools, active community support, and compatibility 

with smart contracts via the Ethereum Virtual Machine (EVM). These attributes make 

Ethereum particularly suited for enterprise-grade solutions and research applications. 

Smart contracts with Ethereum (PoA) 

The performance of a blockchain platform mostly depends on the consensus algorithm 

employed therein. The combination of Ethereum's versatile blockchain capabilities and 

PoA's high efficiency creates an optimized environment for scalable and secure 

applications. This configuration ensures rapid transaction processing, reduced operational 

costs, and robust smart contract execution, making it a preferred choice for enterprise and 

research-focused projects. We use Solidity with Ethereum (PoA) for its native EVM 

compatibility, enabling efficient, secure, and low-latency execution of smart contracts in a 

permissioned environment. 

IPFS for Off-Chain Storage 

Once a log file is verified using our tool and no longer changes, it is stored in the 

InterPlanetary File System (IPFS) to make it tamper-proof and persistently available. IPFS 

uses a unique hash to identify each file, ensuring its integrity. We then record that hash on 

the blockchain, creating a lightweight and verifiable audit trail. A similar approach was 

adopted by Rakib et al. [13], showcasing the use of IPFS for securely storing finalized logs 

in blockchain-based systems. However, their solution is confined to offline or pre-

generated logs and does not address the challenges of real-time log generation, ingestion, 

or on-the-fly verification—key requirements for dynamic and continuously operating 

environments. 



 

 

Elasticsearch for Search and Analytics 

Querying logs directly from the blockchain is slow and not suitable for large-scale systems. 

To solve this, we use Elasticsearch for fast and efficient access to logs after they are verified 

and stored in IPFS. Finalized logs are indexed, making it easy to search, filter, and analyze 

them quickly. This setup keeps integrity checks handled by the blockchain and IPFS, while 

Elasticsearch ensures fast performance for tasks like audits, anomaly detection, and 

compliance. 

Data Model 

In this study, we focus on plain-text logs, where each log entry follows a standardized 

format to ensure uniformity and compatibility. A typical log entry includes: 

● Timestamp: Precise date and time with nanosecond granularity to maintain 

accuracy. 

● Log Level: Indicates the severity or priority of the log (e.g., INFO, DEBUG, 

ERROR). 

● Machine/Service Name: Specifies the source of the log for identification. 

● Log Details: Provides a description or message for the logged event. 

This standardized structure enables efficient parsing, storage, and analysis of log data, 

crucial for large-scale systems. 

Data Collection 

To comprehensively test the system's performance, both offline and real-time, we utilize 

three distinct sources of log data as follows. 

1) Online Archives: We have collected datasets from LogPai [13], which contain 

diverse log samples from large-scale systems and data centers. These datasets 

allow us to evaluate the system's offline behavior with substantial volumes of data. 

2) Synthetic Log Generators: We have used tools like Fake-Apache-Log-Generator 

[14] to generate human-readable, randomized logs. These enable us to simulate 

diverse scenarios and test the system's real-time data handling capabilities. 

3) Custom Log Generator: A tailored log generation tool has been developed to 

create logs with specific patterns, formats, or parameters. This process ensures 

flexibility for testing system behaviors under customized conditions. 



 

 

By combining these datasets, we aim to rigorously evaluate the system's robustness, 

scalability, and real-time processing capabilities across a range of scenarios and data 

volumes. 

Main Approach of LogStamping 
We developed our system with three major components, namely, the Ingestion Tool, the 

Blockchain Platform, and the Integrity Verification Tool. In what follows, we briefly 

describe these components. 

1) The Ingestion Tool 

The Python-based log ingestion tool is designed to provide a scalable and secure solution 

for managing log data in large-scale systems. By integrating blockchain technology, the 

tool ensures the immutability, traceability, and auditability of log entries. It continuously 

monitors log files for new entries, generates cryptographic hashes (using SHA256 [50]) 

for individual or a group of n log lines, where n is any predefined number of log lines, and 

records these hashes on the blockchain. This approach ensures that log data remains 

tamper-proof and can be reliably audited for compliance and forensic purposes if and when 

required. The tool is particularly suited for high-volume environments, such as data centers 

and distributed systems, where traditional log management systems often struggle to 

maintain security and scalability. The following components make up the modular 

architecture of the log ingestion tool: 

● Log Collector: Gathers logs from various sources. 

● Parser and Formatter: Standardizes log formats. 

● Blockchain Interface: Interacts with the blockchain to store logs immutably. 

● Error Handling Module: Manages exceptions and logging failures. 

Algorithm 1: MonitorAndIngestLogs 

Input: logFile, groupSize, timeout 

Output: Hashes stored in blockchain for log file integrity 

 

1. Initialize logGroup ← ∅ 

2. Initialize startTime ← CURRENT_TIME() 

 

3. while True do 

4.     Wait for new log entry in logFile 



 

 

5.     if NEW_ENTRY_EXISTS(logFile) then 

6.         Append log entry to logGroup 

7.     end if 

 

8.     if |logGroup| ≥ groupSize or (CURRENT_TIME() − startTime) 

≥ timeout then 

9.         hashValue ← GenerateSHA256Hash(logGroup) 

10.        WriteToBlockchain(hashValue) 

11.        logGroup ← ∅ 

12.        startTime ← CURRENT_TIME() 

13.    end if 

14. end while 

 

Algorithm 2: GenerateSHA256Hash 

Input: logGroup 

Output: Hash value of log group 

 

1. Concatenate all log entries in logGroup into a single string 

2. return SHA256_HASH_OF_STRING(string) 

 

Algorithm 3: WriteToBlockchain 

Input: hashValue 

Output: hashValue stored in blockchain 

 

1. Connect to blockchain 

2. Store hashValue in blockchain 

3. return SUCCESS 

The tool works by executing the following steps. 

1. Monitoring Log Entries: The log ingestion tool continuously monitors the target 

log file for new entries, processing them line by line. 

2. Grouping Log Lines: Instead of sending each log line individually, the tool 

groups multiple log lines to form a chunk based on pre-configured parameters 

(e.g., number of lines (n), time intervals (t)). Here, Algorithm 1 explains the 

complete process. 



 

 

○ Timeout Handling: 

i. If the chunk is incomplete (e.g., insufficient new log entries), the 

tool waits for a pre-configured timeout (t) period. 

ii. After the timeout, the hash of the partial group is computed and 

written to the blockchain to secure any unrecorded entries. 

○ Dynamic Group Capacity: 

i. The size of the groups is variable, dynamically adjusting based on 

the frequency of log entries in the target log file. 

3. Hash Generation: Once a group is formed, the tool computes SHA256 hash for 

the grouped log lines, creating a unique digital fingerprint (Algorithm 2). 

4. Writing to Blockchain: The computed hash is immediately written into the 

blockchain, ensuring the immutability and integrity of the grouped logs 

(Algorithm 3). 

Figure 1 illustrates the described log ingestion process. 

Figure 1: Log ingestion workflow for secure blockchain logging using SHA-256 and 

group-based entry hashing. 



 

 

2) The Blockchain Platform 

We deployed Ethereum [26] as the private blockchain platform for its ease of setup, 

maintenance, and scalability. To improve efficiency as per Figure 1, we adopted the Proof 

of Authority (PoA) consensus algorithm [52], which enables rapid block creation without 

the need for mining. Custom smart contracts were developed in Solidity [51], supported by 

additional tools, such as Blockchain Explorer [53], for enhanced functionality. The smart 

contract's functionalities are in Algorithm 4.  

Algorithm 4: LogStorage Smart Contract 

Purpose: To store and retrieve log hashes securely on the 

blockchain. 

Input: logHash (string) - The cryptographic hash of a log group. 

Output: Immutable storage and retrieval of log hashes. 

 

State Variables: 

1. logHashes: A mapping (integer → string) to store log hashes 

indexed by their count. 

2. logCount: An unsigned integer representing the total number 

of stored log hashes. 

 

Functions: 

 

1. Function: storeLogHash 

   Input: logHash (string) - The hash to be stored. 

   Output: Updates logHashes and increments logCount. 

 

   Procedure: 

   1. logHashes[logCount] ← logHash 

   2. logCount ← logCount + 1 

 

2. Function: getLogHash 

   Input: index (unsigned integer) - The index of the log hash 

to retrieve. 

   Output: The log hash stored at the specified index. 

 



 

 

   Procedure: 

   1. return logHashes[index] 

3) The Integrity Verification Tool  

Verification tools ensure the integrity and authenticity of log files by detecting tampering 

or modifications. They process logs by grouping entries based on predefined parameters, 

computing cryptographic hashes using SHA256, and verifying these hashes against 

blockchain records. Using timestamps from log entries, they align verification with real-

world events. Optionally, verified logs can be archived in IPFS for immutability or indexed 

in ElasticSearch for efficient querying. These tools are vital for audits, forensic 

investigations, and maintaining trust in system logs. 

 

Algorithm 5: VerifyLogIntegrityWithTimestamps 

Input: logFile, groupParameters (maxLines, maxWaitTime), 

blockchain, ipfs (optional), elasticSearch (optional) 

Output: Verification status of log integrity 

 

1. Initialize logGroup ← ∅ 

2. Initialize allHashesValid ← TRUE 

3. Initialize groupStartTime ← NULL 

4. Initialize groupEndTime ← NULL 

 

5. Open logFile for reading 

6. while not EOF(logFile) do 

7.     Read logLine from logFile 

8.     Append logLine to logGroup 

9.     Extract timestamp from logLine 

 

10.    if groupStartTime = NULL then 

11.        groupStartTime ← timestamp 

12.    end if 

13.    groupEndTime ← timestamp 

 

14.    if |logGroup| ≥ groupParameters.maxLines or (groupEndTime 

− groupStartTime) ≥ groupParameters.maxWaitTime then 



 

 

15.        hashValue ← ComputeHash(logGroup) 

16.        isValid ← QueryBlockchain(hashValue, blockchain) 

 

17.        if isValid = FALSE then 

18.            allHashesValid ← FALSE 

19.            Print "Tampered group detected:" 

20.        end if 

 

21.        logGroup ← ∅ 

22.        groupStartTime ← NULL 

23.        groupEndTime ← NULL 

24.    end if 

25. end while 

 

26. if logGroup ≠ ∅ then 

27.     hashValue ← ComputeHash(logGroup) 

28.     isValid ← QueryBlockchain(hashValue, blockchain) 

 

29.     if isValid = FALSE then 

30.         allHashesValid ← FALSE 

31.         Print "Tampered group detected:", logGroup 

32.     end if 

33. end if 

 

34. if allHashesValid = TRUE then 

35.     Print "Log file is intact" 

36.     if ipfs ≠ NULL then 

37.         ArchiveToIPFS(logFile) 

38.     end if 

39.     if elasticSearch ≠ NULL then 

40.         StoreInElasticSearch(logFile) 

41.     end if 

42. else 

43.     Print "Log file has been modified" 

44. end if 



 

 

The tool works based on Algorithm 5 by executing the following steps. 

1. Log Grouping Based on Time and Size: The algorithm reads an existing log file 

and groups entries based on two conditions: a maximum number of lines (maxLines) 

or a maximum time window (maxWaitTime). Each entry is added to the current 

group, and timestamps are used to determine the time span (Line 14). 

2. Conditional Group Finalization: When either condition is met, the current group 

is finalized for integrity verification (Lines 14-20). This approach ensures consistent 

and adaptive log grouping without requiring real-time monitoring. 

3. Hash Computation and Blockchain Verification: For every completed group -   

○ A SHA-256 hash is computed from the grouped entries  (Line 15, 27). 

○ The hash is checked against blockchain records (Lines 34-44). 

■ Match found: Group is confirmed intact. 

■ No match: Group is flagged as tampered. 

4. Handling Remaining Entries:  After processing all log lines, any incomplete group 

is also hashed and verified to ensure no entries are skipped (Lines 26-33). 

5. Optional Steps: 

○ IPFS Archival: Verified log files can be archived in IPFS to ensure long-

term immutability. 

○ Elasticsearch Indexing: Logs can be indexed in Elasticsearch for fast 

retrieval and advanced search capabilities. 

Figure 2 illustrates the log verification process. 

 



 

 

 

Figure 2: Verification workflow that ensures log integrity by grouping original log 

entries and validating them against trusted records stored on the blockchain to identify 

any unauthorized modifications. 

 

Handling log files in large scale systems 

Efficient log management in large-scale systems relies on robust strategies for 

categorization, traceability, and organization. A widely adopted approach is the use of 

structured naming patterns for log files, incorporating base names dynamically configured 

with details, such as timestamps, system identifiers, or unique indices. This method ensures 

better organization, simplified retrieval, and improved log file management. 

Common log generation methods include time-based, size-based, index-based, event-

based, chunk-based, hybrid (time + size), and distributed approaches. These methods 

segment logs by criteria, such as time, size, events, indices, or sources, creating unique file 

names that often include timestamp fields for each entry.  



 

 

Our system employs a  hybrid approach (i.e., a combination of chunk-based and time-based 

approaches) to process real-time logs into the blockchain, leveraging standardized log 

generation patterns. The chunk-based approach groups logs by a fixed number of entries, 

ideal for high-volume systems to optimize performance and reduce processing overhead. 

On the other hand, the time-based approach groups logs by fixed time intervals, ensuring 

timely processing and enhanced security in systems with irregular log generation. Hybrid 

approach, as the name indicates, combines both chunk size and time interval conditions, 

finalizing log groups when either threshold is met for balanced efficiency and flexibility. 

This methodology ensures scalable, flexible, and reliable management practices optimized 

for real-time operations in large-scale systems. 

To elaborate, in this approach, logs are grouped based on two criteria: a predefined 

maximum chunk size (number of entries) and a predefined time interval (e.g., seconds or 

minutes). A log group is finalized and processed as soon as either of these conditions are 

met, ensuring timeliness and scalability. This dual criterion prevents excessive waiting for 

logs to fill a chunk while avoiding overloading the system during high activity periods. 

Once a group is complete, a cryptographic hash is computed and stored on the blockchain, 

ensuring the integrity and traceability of the logs. The hybrid approach also allows dynamic 

adjustment of chunk size and time intervals, enabling the system to adapt to changes in log 

generation rates and workloads. By combining the strengths of both methods, the hybrid 

approach reduces tampering risks, optimizes resource usage, and ensures timely log 

processing, making it ideal for large-scale, high-frequency systems. 

Log Archiving Using Off-Chain 

In this approach, logs are periodically archived off-chain after the ingestion process for a 

specific log file is complete and no additional entries are expected. Once a log file is 

marked as complete, the verification tool continuously monitors it to ensure there are no 

alterations or tampering. If the verification tool confirms the file’s integrity, the entire log 

file is encrypted using a symmetric key to enhance security and then archived in IPFS 

(InterPlanetary File System). This ensures that the archived file is both immutable and 

secure. 

The archiving process is designed to adapt to the log generation strategy. For instance, if 

the strategy is time-based, the system will trigger the archiving process at regular time 

intervals, ensuring an encrypted and immutable copy of the original log file is maintained. 

This approach is beneficial for log recovery and for pinpointing specific lines where 

modifications might have occurred. Alternatively, strategies such as size-based or index-



 

 

based log generation are also supported. Regardless of the strategy, the archiving process 

remains consistent, ensuring securely stored logs that are readily available for verification 

and recovery. 

By encrypting the original file before storing it in IPFS, this off-chain archiving approach 

maintains log integrity and enhances confidentiality. This method provides a robust 

mechanism for safeguarding logs, supporting flexible log generation strategies, and 

ensuring immutable, tamper-proof, and secure records. 

Leveraging Elasticsearch for Efficient Log Search and Audit  

Searching data directly on a blockchain is not optimal, particularly for large-scale log files. 

Large data storage in a distributed manner requires a significant amount of storage 

capacity. Blockchain’s inherent design prioritizes immutability and security but lacks the 

performance capabilities required for efficient data retrieval, especially for unstructured 

data. To address this limitation, industry-standard tools like Elasticsearch [60] are a better 

fit for full-text search and analysis. Elasticsearch is known for its high performance and 

scalability, making it ideal for handling large datasets and conducting fast, precise searches. 

In our system, we utilized Elasticsearch for storing and querying logs after their integrity 

was verified by the verification tool. Logs are stored in chunks, with each chunk containing 

the following items. 

1. Calculated Hash: Ensuring that data integrity is maintained and verifiable. 

2. Raw Log Data: Providing unstructured log content for search and analysis. 

3. Chunk Metadata: Including the hash of the chunk and its associated log data for 

additional traceability. 

For logs originating from IPFS (InterPlanetary File System), Elasticsearch acts as a 

complementary storage solution. IPFS ensures the integrity, availability, and immutability 

of the log files, while Elasticsearch facilitates efficient full-text search and audit processes. 

This dual approach enhances both data security and retrieval performance. 

The primary purpose of Elasticsearch in this system is to support forensic and auditing 

operations. By enabling fast and accurate searches across large datasets, Elasticsearch 

simplifies the task of finding specific log entries, even within unstructured data. This 

approach combines the security of blockchain and IPFS with the performance capabilities 

of Elasticsearch, creating a robust solution for log management in large-scale systems. 



 

 

Experimental setup 

Hardware Requirements 

For the implementation of our system, we configured three identical nodes with the 

following hardware specifications: 

● Processor: 4 vCPUs  

● Memory (RAM): 8 GB 

● Storage: 200 GB 

● Operating System: Ubuntu 22.04 LTS 

These nodes are uniformly configured to ensure consistent performance across the 

blockchain network. This identical setup minimizes variations in processing and storage. 

Datasets 

For the evaluation of our system, we utilized two distinct datasets to assess performance 

under varying log volumes: 

● Small Dataset: 

○ Size: 10,000 log lines 

○ Purpose: Used to evaluate the correctness of our proposed model. 

○ Datasource: LogPai [13] 

● Large Dataset: 

○ Size: 14 million log lines (~1.3 GB) 

○ Purpose: Used to test the system's scalability and robustness in handling 

large-scale log data efficiently. 

○ DataSource:  Fake-Apache-Log-Generator [14] and our custom log 

generator 

These datasets provided comprehensive insights into the system’s performance across 

both small-scale and large-scale use cases, ensuring its suitability for diverse operational 

requirements. 

Tools 

We use the following tools in our experiments: 



 

 

● Python: Core language for implementing log processing, verification logic, and 

system integration. 

● web3.py: Python library for interacting with Ethereum-compatible blockchains, 

handling smart contract interactions and transactions. 

● web3.js: JavaScript library for blockchain communication from web or Node.js 

applications. 

● Geth: Go Ethereum client used to run a full Ethereum node and interface with the 

blockchain. 

● IPFS CLI / API: Tools for decentralized storage and retrieval of verified log files. 

● Elasticsearch: Engine for indexing and querying verified logs efficiently. 

Evaluation & Case studies  

We have evaluated the proposed system under various scenarios to analyze its behavior in 

terms of storage usage and performance. These scenarios were designed to assess the 

system’s capabilities for both small and large log datasets. The experiments were 

conducted with different configurations, focusing on the time required for processing and 

storage consumption. Table 2 reports the datasets and chunk parameters used in different 

experiments. 

 

Table 2: Experimental setup for evaluating log ingestion and storage efficiency, showing 

different dataset sizes, chunk configurations, log formats (raw and hashed), number of 

nodes, and the performance metrics (time and storage) used for analysis. 

 

 

 

Dataset Chunk Size (N) Log Type Nodes Metrics 

10,000 Logs 1, 5, 10, 20 Raw, Hashed 3 Time & Storage 

14 Million Logs 1, 5, 10, 20 Hashed 3 Time & Storage 



 

 

The storage required to store raw data on the blockchain is consistently high, regardless of 

the chunk size. Therefore, we excluded raw data from the analysis for large datasets, 

focusing instead on the results for different chunk sizes with hashed data. 

Analysis 

Security: The proposed model incorporates robust security measures to ensure data 

integrity and protection. By leveraging the Proof of Authority (PoA) consensus algorithm, 

it ensures that only trusted, pre-authorized nodes are responsible for block creation, 

minimizing the risk of unauthorized activity. Furthermore, the ingestion tool operates 

within a secure, private network, restricting access exclusively to verified entities. These 

combined mechanisms create a highly secure and reliable framework for log management. 

Scalability: The proposed system enhances the scalability of blockchain networks by 

significantly reducing the number of network calls through the implementation of chunk-

based processing. This approach minimizes the frequency of transactions, making the 

system more efficient and suitable for integration with other services or applications. 

Additionally, the reduced storage requirements decrease the input/output (I/O) overhead 

on blockchain servers, thereby improving processing efficiency and overall system 

performance. 

Privacy: We have implemented robust privacy measures in our proposed model to ensure 

the highest level of data security. Notably, no raw log data is stored directly on the 

blockchain, and it is impossible to reconstruct raw data from the information stored in the 

blockchain. Furthermore, the data stored in the InterPlanetary File System (IPFS) is 

encrypted before being transmitted, adding an additional layer of security. This 

comprehensive approach ensures that privacy is maintained at an optimal level, adhering 

to best practices for secure and private data management. 

Results & Discussions 

We initially conducted experiments on a small dataset (10k log entries ) to analyze storage 

usage for raw data and hashed data for each log line. From the results depicted in Figure 3, 

it is evident that for a chunk size of N=1, the storage required for hashed data is reduced 

by half compared to raw data. This reduction corresponds to a 50% storage gain, 

highlighting the efficiency of hashed data storage in minimizing storage overhead while 

preserving data integrity and auditability. 



 

 

The storage required for hashed data significantly decreases as the chunk size increases. 

For N=5, the storage usage is approximately five times less compared to N=1. This 

substantial reduction is due to the minimized metadata overhead and fewer chunks being  

generated, demonstrating the efficiency of larger chunk sizes in optimizing storage. 

  Figure 3: Effect of Chunk Size on Storage  Efficiency - Comparing Raw vs. Hashed 

Storage Overhead for 10,000 Log Entries 

   

 

 

From Figure 4, the storage required is 14 GB where N=1 and the data is hashed. It also 

shows that increasing the chunk size to N=5, 10, 20 for hashed data significantly reduces 

storage requirements. For each increase in chunk size, the storage requirement becomes 

approximately half of the same for the preceding chunk size. This reduction occurs due to 

fewer chunks being created, which minimizes metadata overhead and optimizes storage 

usage. Larger chunk sizes are thus highly effective in reducing storage demands while 

maintaining data integrity. 



 

 

 
Figure 4: Impact of Chunk Size on Storage Usage for 14 Million Log Entries 

 

Similarly, Figure 5 presents a quantitative analysis of processing time for 14 million hashed 

log entries under varying chunk sizes. When each log entry is processed individually 

(chunk size of 1), the total processing time reaches approximately 172 hours, indicating a 

substantial computational overhead. However, when logs are grouped into batches of 5 

entries, the processing time drops dramatically to about 16 hours, reflecting a nearly 90% 

reduction. Increasing the chunk size further results in additional gains—processing time 

decreases to roughly 7.5 hours with a chunk size of 10 and stabilizes around 7.3 hours at 



 

 

chunk size 20.

 

 Figure 5: Processing Time for Hashed Log Data Decreases Significantly as Chunk Size 

Increases, Highlighting the Efficiency Gains in Batch-Based Log Handling 

This trend clearly demonstrates that batching log entries into larger groups significantly 

improves processing efficiency. Fewer hash computations and reduced storage interactions 

contribute to the time savings. These findings emphasize the value of selecting an 

appropriate chunking strategy to ensure scalability and high performance in large-scale log 

processing systems. Figure 4 and Figure 5 collectively offer details about the scalability 

and performance of the system, emphasizing its ability to handle large-scale datasets 

efficiently in terms of both storage and time. 

 

 



 

 

 

  Figure 6: Impact of Chunk Size on Storage and Processing; larger chunks significantly 

reduce both storage overhead and processing duration during log data handling. (14 

Million Entries) 

Finally,  Figure 6 presents a combined analysis of storage usage and processing time for 

14 million log entries using various chunk sizes. This figure demonstrates how increasing 

the chunk size significantly reduces both storage overhead and processing time during log 

data processing. When the chunk size is set to 1, the system requires approximately 14,062 

MB of additional storage and takes around 172.6 hours to process, highlighting the 

inefficiency of handling logs individually. As the chunk size increases to 5, both metrics 

improve drastically, with storage dropping to 2,664 MB and processing time reducing to 

15.8 hours. This trend continues with chunk size 10, where storage falls to 1,151 MB and 

time to 7.3 hours. At chunk size 20, the gains begin to plateau, with storage at 1,083 MB 

and processing time at 7.3 hours, indicating diminishing returns beyond this point. Overall, 

Figure 6 demonstrates that batching logs into larger chunks significantly enhances system 

efficiency, with the most notable improvements occurring between chunk sizes 1 and 10. 

These results clearly demonstrate that increasing the chunk size drastically reduces both 

storage requirements and processing time. The greatest gains occur between chunk sizes 1 

and 5, emphasizing the inefficiency of handling logs individually. The trend highlights the 



 

 

effectiveness of chunking for optimizing both system performance and resource utilization 

in large-scale log management. 

The verification time analysis presented in Figure 7 highlights the significant impact of 

chunk size (N) on the efficiency of log verification. When the chunk size is set to 1, the 

system takes approximately 1,020 minutes (or 17 hours) to verify the logs, indicating a 

high computational burden when each entry is processed individually. However, as the 

chunk size increases to 5, the verification time drops sharply to 200 minutes, representing 

nearly an 80% reduction. At chunk size 10, the time further decreases to around 145 

minutes, and at chunk size 20, it reaches just 50 minutes. Overall, moving from a chunk 

size of 1 to 20 results in a 95% reduction in verification time. This trend highlights the 

efficiency benefits of processing logs in larger chunks, especially in large-scale or real-

time verification systems. 

 

Figure 7: Verification time decreases sharply with larger chunk sizes, dropping from 

1,020 minutes at size 1 to just 50 minutes at size 20—demonstrating up to 95% efficiency 

gain in log verification. 

These results highlight the importance of optimizing chunk sizes for efficient log 

verification. Larger chunk sizes reduce processing overhead and enhance the scalability of 

the system, particularly in high-volume log datasets. By balancing chunk size with 

processing capabilities, this approach ensures a more efficient and scalable solution for log 

verification in large-scale systems.                      

 



 

 

 

Discussion on Storage Gain Perspective 

The analysis of storage requirements for different chunk sizes reveals significant storage 

optimization as the chunk size increases. For N=1, the storage demand is the highest due 

to the large number of small chunks, each requiring its own metadata and hash 

computations. This additional overhead contributes to inflated storage usage. In contrast, 

larger chunk sizes (N=5, 10, 20) dramatically reduce storage needs by consolidating more 

log entries into fewer chunks, thereby minimizing metadata overhead. 

For instance, Figure 4 shows that when N=5, the storage requirement is approximately five 

times less than that for N=1, demonstrating a substantial storage gain. Similarly, as the 

chunk size increases to N=10 and N=20, the storage demands continue to decrease, albeit 

with diminishing returns. This trend underscores the efficiency of larger chunk sizes in 

reducing overall storage requirements while maintaining data integrity. 

From a storage optimization perspective, the results indicate that larger chunk sizes reduce 

the total storage footprint and make the system more scalable for large datasets. However, 

there is a trade-off between storage efficiency and potential delays in log ingestion, as 

larger chunks require more time to fill. Balancing chunk size based on system requirements 

and log generation rates is essential for achieving optimal storage usage and system 

performance. This approach highlights the importance of chunk size configuration as a 

critical parameter for scalable and efficient blockchain-based log management. 

Performance Gain Discussion 

The performance of blockchain systems in processing large-scale log files is influenced by 

several critical factors, including the selection of the blockchain platform, the choice of an 

efficient consensus algorithm, and the underlying hardware capabilities, such as CPU 

performance and host machine specifications. After a thorough evaluation, we identified 

and implemented the most suitable platform combined with a high-performance consensus 

algorithm to optimize processing efficiency. Our findings highlight the time required to 

process large log files, demonstrating that our approach leverages these optimizations to 

achieve enhanced performance and scalability. 

As previously discussed, Figure 5 highlights substantial performance gains achieved by 

increasing chunk size. Recall that processing time drops from 172.6 hours at N=1 to 15.8 

hours at N=5 (a ~91% improvement), and further to 7.3 hours at N=10 (a ~54% gain over 



 

 

N=5). These results confirm that the majority of performance gains occur between N=1 

and N=10. Moreover, this approach enables near real-time processing when chunk sizes 

are dynamically adjusted based on application-specific log generation rates. 

Overall, our experiments highlight that while increasing chunk size dramatically boosts 

performance at first, especially from N=1 to N=10, the marginal benefits taper off beyond 

that. Selecting a moderate chunk size, such as N=10, offers a balanced trade-off between 

performance and resource usage in large-scale log processing. Importantly, this figure also 

illustrates that when log generation occurs in real time, this chunk-based strategy allows 

the system to process logs almost in real time. By dynamically adjusting chunk sizes based 

on the log generation rate of different applications, the system can maintain efficiency and 

responsiveness without introducing significant processing delays. 

Limitations & Future works 

The proposed system exhibits certain limitations that may affect its functionality in specific 

scenarios. One notable limitation is the inability to recover logs during the ingestion 

process. Since the system does not retain raw log data and only stores cryptographic hashes 

on the blockchain, reconstructing the original logs becomes impossible if the raw data is 

lost or deleted during ingestion. While this approach enhances privacy and data security, it 

comes at the cost of real-time recoverability. As a result, if log files are accidentally or 

maliciously deleted from the source before verification and archival are complete, there 

will be no full copy stored in IPFS, making recovery infeasible. 

However, once the ingestion process is complete, the verification tool ensures the integrity 

of the logs, enabling the creation of a complete immutable log file. This procedure 

guarantees that the logs remain tamper-proof and secure, providing a reliable and verifiable 

record for audit and compliance purposes. While the system's approach to log recovery 

during ingestion may be limited, its post-ingestion verification process compensates by 

maintaining the integrity and immutability of the log data. 

Conclusions 

The proposed system offers a scalable and secure solution for managing log data in large-

scale systems by leveraging blockchain technology and robust log ingestion mechanisms. 

Through the use of Proof of Authority (PoA) consensus and private networks, it ensures 

enhanced security and data integrity while optimizing performance with chunk-based and 

time-based log processing. A key feature of the system is its log-stamping capability, where 



 

 

unique hashes of log entries, incorporating timestamps, are stored on the blockchain. This 

approach guarantees tamper-proof records and enables advanced timestamping practices 

similar to those in Public Key Infrastructure (PKI) and digital signatures, ensuring 

chronological accuracy and traceability. In conclusion, the proposed system combines 

blockchain’s immutability with timestamping and hashing to create a robust framework for 

log integrity, security, and auditability, setting the stage for future advancements in 

blockchain-based log management. 
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