

LogStamping: A blockchain-based log auditing

approach for large-scale systems

Md Shariful Islam and M. Sohel Rahman1

Department of CSE, BUET, ECE Building, West Palashi, Dhaka-1205

Abstract

Log management is crucial for ensuring the security, integrity, and compliance of modern

information systems. Traditional log management solutions face challenges in achieving

tamper-proofing, scalability, and real-time processing in distributed environments. This

paper presents a blockchain-based log management framework that addresses these

limitations by leveraging blockchain’s decentralized, immutable, and transparent features.

The framework integrates a hybrid on-chain and off-chain storage model, combining

blockchain’s integrity guarantees with the scalability of distributed storage solutions like

IPFS. Smart contracts automate log validation and access control, while cryptographic

techniques ensure privacy and confidentiality. With a focus on real-time log processing,

the framework is designed to handle the high-volume log generation typical in large-scale

systems, such as data centers and network infrastructure. Performance evaluations

demonstrate the framework’s scalability, low latency, and ability to manage millions of log

entries while maintaining strong security guarantees. Additionally, the paper discusses

challenges like blockchain storage overhead and energy consumption, offering insights for

enhancing future systems.

Keywords

Blockchain, Log Management, Scalability, Privacy, Real-Time Systems, Distributed

Environments, Tamper-Proof, Large-Scale Systems.

Introduction

Log management is crucial for IT operations, providing critical insights for monitoring,

troubleshooting, and ensuring compliance. Various IT infrastructure components,

including but not limited to servers, firewalls, routers, switches, and individual PCs,

1 Corresponding Author: msrahman@cse.buet.ac.bd

mailto:msrahman@cse.buet.ac.bd

typically create log recordings (popularly referred to as ‘logging’), particularly when they

carry out crucial operations and transactions. Such logs are crucial for determining the trail

of illicit actions carried out in such contexts [32, 33, 34]. Thus, these log files are often

utilized to audit the computing environment, and they present us with crucial evidence for

locating and resolving various incorrect or malicious behaviours that are interfering with

the system under consideration and the infrastructure thereof. Even though log data can be

useful in many ways, it can also be manipulated [37] to conceal harmful activities or

impede the discovery of system vulnerabilities. Therefore, creating a secure and immutable

system to store the vast amount of log data is essential to guarantee the integrity and safety

of the computing environment.

Blockchain [35] is a shared, distributed, immutable ledger that facilitates the process of

recording transactions and tracking assets, where an asset may refer to anything of value,

both tangible and intangible. For its immutable and other desirable properties, blockchain

has been utilized [38, 39, 40] in this context to create tamper-proof log record storage.

Unfortunately, the continuously expanding huge log data cannot be handled efficiently by

the current blockchain-based solutions [17, 19], which results in massive storage overhead

[42, 43, 44, 45, 46] on the participating blockchain nodes, which in turn affects

performance severely, sometimes compromising the original goal of integrity as well.

While some works use separate off-chain storage to solve the storage scalability problem

[15, 17], these works are unable to ensure the confidentiality of log data, thereby

compromising a crucial issue [15, 23].

The adoption of blockchain for log auditing in large-scale systems is hindered by

limitations in scalability, performance, and compliance. Traditional blockchain

architectures suffer from low throughput and high storage overhead—storing S GB of logs

across N nodes results in 𝑆 ∗ 𝑁 GB of total storage, making it impractical for terabyte-

scale, high-frequency environments. Additionally, consensus mechanisms introduce

latency, impacting the feasibility of real-time log recording. Current solutions inadequately

handle the dynamic and incremental nature of log generation. Many assume that log files

are secured at the source when generated, but it fails to address scenarios where logs are

continuously appended, altered during transmission, or modified before ingestion. This

oversight creates vulnerabilities in log integrity and auditability. Furthermore, waiting time

during log generation—a critical factor in real systems—is often ignored, leading to

unaddressed latency and potential data gaps. Some methods restructure logs for query

efficiency at the cost of provenance, original format, and timestamp accuracy, which

undermines forensic and compliance objectives. Energy-intensive mechanisms, such as

PoW exacerbate inefficiency, and the immutability of blockchain leads to data redundancy

and storage overhead, worsening scalability issues.

With this backdrop, this paper proposes a blockchain-based framework for log

management that ensures tamper-proof logging, supports real-time processing, and

maintains scalability in large-scale distributed environments. By leveraging smart

contracts, cryptographic techniques, and a layered architectural design, the framework also

prioritizes privacy and efficient recovery mechanisms.

Related Works

The advancement of log management systems, coupled with their integration into

blockchain technology, has marked significant milestones and yielded valuable research

contributions. Various blockchain-based approaches have been developed to address

similar challenges, with some solutions excelling in storing limited-size critical data [18,

21]. Other blockchain-based systems primarily focus on the storage and querying of logs

directly from the blockchain [15, 41]. While each approach is well-suited to its specific use

case, none effectively addresses the demands of large-scale systems with massive volumes

of log data.

Tamper-resistant log files are essential in various domains and are mandated by numerous

regulatory frameworks and standards, including HIPAA [47], and GDPR [48]. The

integrity issue of these files is critical with varying degrees from one domain to another.

For example, medical records must be reliable due to their potential life-or-death

implications, financial data requires accuracy to maintain trust, and IT security logs are

indispensable for detecting security incidents and conducting forensic investigations. A

shared characteristic of these use cases is that log files are typically append-only, with new

entries continuously added over time as individuals undergo more medical procedures,

perform additional financial transactions, or generate further security events.

Beyond ensuring integrity, these logs must also ensure high availability to allow users to

review and access records as and when needed. They serve crucial roles in fault analysis

[1], anomaly detection [2, 3], forensic investigations [36], audits, and other critical

processes [4, 10, 11, 12]. During a security breach, attackers often attempt to erase event

logs on compromised systems to conceal their activities, underscoring the importance of

secure and immutable log storage to preserve critical information and enhance system

resilience.

Olaf and Esmiralda [4] proposed a centralized log server that can collect and store log

records securely. However, this approach is vulnerable due to a single point of failure and

lacks efficient query mechanisms. Indrajit et al. [5] introduced a cloud-based log storage

system, but issues of trust and data consistency remained, as cloud servers are susceptible

to unauthorized access and manipulation. A blockchain-based solution for immutable log

storage was proposed in [6] that incorporated hierarchical ledgers to address scalability

issues. While promising, the system, LogChain, lacks implementation details, and its API

is underdeveloped for production-level deployments. Kumar et al. proposed a high-level

design for secure log storage leveraging blockchain and cloud infrastructure [7]. However,

the solution lacks details regarding its operational framework, performance evaluation, and

query mechanisms.

Blockchain has also been explored in the domain of cloud forensics. Liang et al. [8]

introduced ProvChain, a blockchain-based architecture for validating cloud data

provenance, while Park et al. [9] proposed a data logging and integrity verification system

for cloud environments. Both systems focused on cloud data integrity but failed to ensure

log data integrity. Moreover, they did not provide a real-time performance analysis.

Schneier and Kelsey pioneered cryptographic support for secure logs, emphasizing tamper

detection in untrusted machines, laying the groundwork for tamper-proof logging [10].

However, this work lacked scalability, which is essential for large-scale distributed

systems.

Holt introduced Logcrypt, which enhanced log integrity through forward security and

public verification, addressing critical gaps in audit log systems [11]. The major limitation

was its dependency on centralized systems, which made it prone to single points of failure.

Ahmad et al. presented BlockAudit, leveraging blockchain’s immutability for secure and

transparent audit logs, showcasing improved security and fault tolerance [12]. A drawback

of this approach was its reliance on high storage overhead on-chain, which limited its

scalability. Notably, IBM highlighted blockchain’s storage challenges, advocating for

efficient on-chain and off-chain strategies to handle growing data volumes [13].

Rakib et al. proposed [14] a MultiChain-based system for storing, querying, and auditing

network logs. Their work achieves immutability, confidentiality, and scalability but

focuses primarily on timestamp-based queries and does not emphasize real-time

applicability to large-scale environments. Ali et al. introduced BCALS [15], a blockchain-

based secure log management system tailored for cloud computing, ensuring audit log

immutability and trust enhancement. The system’s scalability was limited in handling

diverse and high-frequency log sources. Furthermore, it transforms the logs before storing

them into the blockchain, which creates a crucial concern with regards to the originality of

the log. Shekhtman and Waisbard developed EngraveChain [16, 17], which leverages

Hyperledger Fabric [27] to provide tamper-proof log storage with encryption for data

privacy. However, it lacks efficient query mechanisms and comprehensive performance

evaluations, particularly in large-scale systems. Rakib et al. further refined blockchain-

enabled scalable network log systems, leveraging IPFS [49] for efficient data management

and a robust query mechanism [19]. While it improves scalability as off-chain storage helps

reduce on-chain data, the blockchain still maintains transaction metadata, which can lead

to scalability concerns as the number of log transactions grows over time.

Collectively, these works underscore the potential of blockchain technology to address

critical challenges in log management systems, including tamper-proofing, scalability, and

privacy. However, challenges related to log confidentiality, real-time processing, and

handling large log files remain as research gaps motivating further research and

development.

Background

Blockchain

A blockchain is a decentralized and distributed ledger technology that securely records

transactions across a network of computers. Transactions are grouped into blocks, each

cryptographically linked to its predecessor, forming an immutable chain. This structure

ensures transparency, security, and tamper-proof storage, making blockchain ideal for

applications such as cryptocurrency, supply chain management, and smart contracts.

Blockchain's core features include decentralization, immutability, transparency, and

cryptographic security [59], enabling efficient, trustless operations across various

industries. Blockchain platforms provide the infrastructure for building, deploying, and

managing decentralized systems and applications. They enable recording, validating, and

securing data in an immutable, distributed ledger.

Several blockchain platforms are popular at the industry scale due to their unique

capabilities and applications. For instance, Ethereum [26] is well-suited for private and

consortium blockchains in enterprises, leveraging the Proof of Authority [52] consensus

for fast block creation without mining. It supports smart contracts and decentralized

applications (dApps) [55] within Ethereum’s robust ecosystem. Hyperledger Fabric [27],

another notable platform, is widely used in supply chain, finance, and healthcare industries.

Its modular, permissioned architecture with private channels allows high customization for

specific business workflows. Similarly, Corda [54] is designed for financial services and

trade finance, featuring a peer-to-peer transaction model that ensures privacy and

compliance with regulatory requirements.

Quorum [56], a blockchain platform forked from Ethereum, is tailored for banking and

asset management, offering enhanced privacy and compatibility with Ethereum smart

contracts. MultiChain [57], on the other hand, is designed for private networks and secure

data sharing, providing fast deployment and built-in permissions management, making it

ideal for controlled enterprise environments. Lastly, Ripple (XRP Ledger) [58] focuses on

cross-border payments, delivering near-instant transactions and scalable performance for

financial institutions. These platforms collectively address diverse enterprise needs,

offering strong privacy, scalability, and customizability to support a wide range of business

applications, from secure data sharing to financial services and decentralized asset

management.

Smart contract

A smart contract is a self-executing program stored on a blockchain, with the terms and

logic encoded directly into its code. The contract automatically executes when predefined

conditions are met, ensuring tamper-proof, transparent, and trustless operations without

intermediaries. Key features include automation, immutability, cryptographic security, and

decentralized execution. Smart contracts are extensively used in financial transactions,

supply chain management, and decentralized applications (dApps), transforming how

agreements are enforced securely and efficiently.

Consensus algorithms

A consensus algorithm is a fundamental mechanism in blockchain networks that ensures

all participants (nodes) agree on the validity of transactions and the current state of the

ledger. It resolves trust issues in decentralized systems by providing a unified agreement

among distributed nodes. Table 1 compares three widely used consensus algorithms—

PoW, PoA, and BFT—highlighting their trade-offs in terms of security, scalability,

decentralization, and efficiency.

Table 1 : Comparison of PoW, PoA, and BFT consensus mechanisms based on key features

like security, scalability, energy efficiency, and use cases

Feature Proof of Work

(PoW)

Proof of Authority

(PoA)

Byzantine Fault Tolerance

(BFT)

Security High Medium High

Energy Efficiency Low High Medium

Scalability Low High Medium

Decentralization High Medium Medium

Fault Tolerance Medium Low High

Use Cases Bitcoin, Litecoin VeChain, Rinkeby Hyperledger, Tendermint

InterPlanetary File System (IPFS)

The InterPlanetary File System (IPFS) [49] is a decentralized, peer-to-peer file storage and

sharing protocol designed to create a more open and resilient web. Unlike traditional

centralized systems, IPFS uses content-addressing to identify files by their unique

cryptographic hash rather than their location. This ensures data integrity and allows files

to be distributed across multiple nodes globally, enhancing reliability and resistance to

censorship. IPFS is commonly used for storing and sharing large datasets, decentralized

applications (dApps), and blockchain-related data, providing an efficient, secure, and

scalable alternative to traditional file storage systems

Elasticsearch

Elasticsearch [60] is a distributed, open-source search and analytics engine built on Apache

Lucene. It provides fast and scalable full-text search, data indexing, and real-time data

exploration, making it ideal for applications like log analysis, business intelligence, and

security monitoring. Its ability to handle large datasets efficiently makes it a popular choice

for enterprise solutions.

Methods

In this section, we describe our research and experimental design in detail, discussing the

rationale behind our design choices. We use the following technologies in our research:

a. Ethereum (Proof of Authority)

b. Solidity for smart contracts

c. IPFS for off-chain storage

d. Elasticsearch for search and analytics

Ethereum as our Blockchain Platform

Ethereum is one of the most widely used and versatile blockchain platforms, making it an

excellent choice for developing secure, scalable, and decentralized applications. Its robust

ecosystem offers extensive developer tools, active community support, and compatibility

with smart contracts via the Ethereum Virtual Machine (EVM). These attributes make

Ethereum particularly suited for enterprise-grade solutions and research applications.

Smart contracts with Ethereum (PoA)

The performance of a blockchain platform mostly depends on the consensus algorithm

employed therein. The combination of Ethereum's versatile blockchain capabilities and

PoA's high efficiency creates an optimized environment for scalable and secure

applications. This configuration ensures rapid transaction processing, reduced operational

costs, and robust smart contract execution, making it a preferred choice for enterprise and

research-focused projects. We use Solidity with Ethereum (PoA) for its native EVM

compatibility, enabling efficient, secure, and low-latency execution of smart contracts in a

permissioned environment.

IPFS for Off-Chain Storage

Once a log file is verified using our tool and no longer changes, it is stored in the

InterPlanetary File System (IPFS) to make it tamper-proof and persistently available. IPFS

uses a unique hash to identify each file, ensuring its integrity. We then record that hash on

the blockchain, creating a lightweight and verifiable audit trail. A similar approach was

adopted by Rakib et al. [13], showcasing the use of IPFS for securely storing finalized logs

in blockchain-based systems. However, their solution is confined to offline or pre-

generated logs and does not address the challenges of real-time log generation, ingestion,

or on-the-fly verification—key requirements for dynamic and continuously operating

environments.

Elasticsearch for Search and Analytics

Querying logs directly from the blockchain is slow and not suitable for large-scale systems.

To solve this, we use Elasticsearch for fast and efficient access to logs after they are verified

and stored in IPFS. Finalized logs are indexed, making it easy to search, filter, and analyze

them quickly. This setup keeps integrity checks handled by the blockchain and IPFS, while

Elasticsearch ensures fast performance for tasks like audits, anomaly detection, and

compliance.

Data Model

In this study, we focus on plain-text logs, where each log entry follows a standardized

format to ensure uniformity and compatibility. A typical log entry includes:

● Timestamp: Precise date and time with nanosecond granularity to maintain

accuracy.

● Log Level: Indicates the severity or priority of the log (e.g., INFO, DEBUG,

ERROR).

● Machine/Service Name: Specifies the source of the log for identification.

● Log Details: Provides a description or message for the logged event.

This standardized structure enables efficient parsing, storage, and analysis of log data,

crucial for large-scale systems.

Data Collection

To comprehensively test the system's performance, both offline and real-time, we utilize

three distinct sources of log data as follows.

1) Online Archives: We have collected datasets from LogPai [13], which contain

diverse log samples from large-scale systems and data centers. These datasets

allow us to evaluate the system's offline behavior with substantial volumes of data.

2) Synthetic Log Generators: We have used tools like Fake-Apache-Log-Generator

[14] to generate human-readable, randomized logs. These enable us to simulate

diverse scenarios and test the system's real-time data handling capabilities.

3) Custom Log Generator: A tailored log generation tool has been developed to

create logs with specific patterns, formats, or parameters. This process ensures

flexibility for testing system behaviors under customized conditions.

By combining these datasets, we aim to rigorously evaluate the system's robustness,

scalability, and real-time processing capabilities across a range of scenarios and data

volumes.

Main Approach of LogStamping
We developed our system with three major components, namely, the Ingestion Tool, the

Blockchain Platform, and the Integrity Verification Tool. In what follows, we briefly

describe these components.

1) The Ingestion Tool

The Python-based log ingestion tool is designed to provide a scalable and secure solution

for managing log data in large-scale systems. By integrating blockchain technology, the

tool ensures the immutability, traceability, and auditability of log entries. It continuously

monitors log files for new entries, generates cryptographic hashes (using SHA256 [50])

for individual or a group of n log lines, where n is any predefined number of log lines, and

records these hashes on the blockchain. This approach ensures that log data remains

tamper-proof and can be reliably audited for compliance and forensic purposes if and when

required. The tool is particularly suited for high-volume environments, such as data centers

and distributed systems, where traditional log management systems often struggle to

maintain security and scalability. The following components make up the modular

architecture of the log ingestion tool:

● Log Collector: Gathers logs from various sources.

● Parser and Formatter: Standardizes log formats.

● Blockchain Interface: Interacts with the blockchain to store logs immutably.

● Error Handling Module: Manages exceptions and logging failures.

Algorithm 1: MonitorAndIngestLogs

Input: logFile, groupSize, timeout

Output: Hashes stored in blockchain for log file integrity

1. Initialize logGroup ← ∅

2. Initialize startTime ← CURRENT_TIME()

3. while True do

4. Wait for new log entry in logFile

5. if NEW_ENTRY_EXISTS(logFile) then

6. Append log entry to logGroup

7. end if

8. if |logGroup| ≥ groupSize or (CURRENT_TIME() − startTime)

≥ timeout then

9. hashValue ← GenerateSHA256Hash(logGroup)

10. WriteToBlockchain(hashValue)

11. logGroup ← ∅

12. startTime ← CURRENT_TIME()

13. end if

14. end while

Algorithm 2: GenerateSHA256Hash

Input: logGroup

Output: Hash value of log group

1. Concatenate all log entries in logGroup into a single string

2. return SHA256_HASH_OF_STRING(string)

Algorithm 3: WriteToBlockchain

Input: hashValue

Output: hashValue stored in blockchain

1. Connect to blockchain

2. Store hashValue in blockchain

3. return SUCCESS

The tool works by executing the following steps.

1. Monitoring Log Entries: The log ingestion tool continuously monitors the target

log file for new entries, processing them line by line.

2. Grouping Log Lines: Instead of sending each log line individually, the tool

groups multiple log lines to form a chunk based on pre-configured parameters

(e.g., number of lines (n), time intervals (t)). Here, Algorithm 1 explains the

complete process.

○ Timeout Handling:

i. If the chunk is incomplete (e.g., insufficient new log entries), the

tool waits for a pre-configured timeout (t) period.

ii. After the timeout, the hash of the partial group is computed and

written to the blockchain to secure any unrecorded entries.

○ Dynamic Group Capacity:

i. The size of the groups is variable, dynamically adjusting based on

the frequency of log entries in the target log file.

3. Hash Generation: Once a group is formed, the tool computes SHA256 hash for

the grouped log lines, creating a unique digital fingerprint (Algorithm 2).

4. Writing to Blockchain: The computed hash is immediately written into the

blockchain, ensuring the immutability and integrity of the grouped logs

(Algorithm 3).

Figure 1 illustrates the described log ingestion process.

Figure 1: Log ingestion workflow for secure blockchain logging using SHA-256 and

group-based entry hashing.

2) The Blockchain Platform

We deployed Ethereum [26] as the private blockchain platform for its ease of setup,

maintenance, and scalability. To improve efficiency as per Figure 1, we adopted the Proof

of Authority (PoA) consensus algorithm [52], which enables rapid block creation without

the need for mining. Custom smart contracts were developed in Solidity [51], supported by

additional tools, such as Blockchain Explorer [53], for enhanced functionality. The smart

contract's functionalities are in Algorithm 4.

Algorithm 4: LogStorage Smart Contract

Purpose: To store and retrieve log hashes securely on the

blockchain.

Input: logHash (string) - The cryptographic hash of a log group.

Output: Immutable storage and retrieval of log hashes.

State Variables:

1. logHashes: A mapping (integer → string) to store log hashes

indexed by their count.

2. logCount: An unsigned integer representing the total number

of stored log hashes.

Functions:

1. Function: storeLogHash

 Input: logHash (string) - The hash to be stored.

 Output: Updates logHashes and increments logCount.

 Procedure:

 1. logHashes[logCount] ← logHash

 2. logCount ← logCount + 1

2. Function: getLogHash

 Input: index (unsigned integer) - The index of the log hash

to retrieve.

 Output: The log hash stored at the specified index.

 Procedure:

 1. return logHashes[index]

3) The Integrity Verification Tool

Verification tools ensure the integrity and authenticity of log files by detecting tampering

or modifications. They process logs by grouping entries based on predefined parameters,

computing cryptographic hashes using SHA256, and verifying these hashes against

blockchain records. Using timestamps from log entries, they align verification with real-

world events. Optionally, verified logs can be archived in IPFS for immutability or indexed

in ElasticSearch for efficient querying. These tools are vital for audits, forensic

investigations, and maintaining trust in system logs.

Algorithm 5: VerifyLogIntegrityWithTimestamps

Input: logFile, groupParameters (maxLines, maxWaitTime),

blockchain, ipfs (optional), elasticSearch (optional)

Output: Verification status of log integrity

1. Initialize logGroup ← ∅

2. Initialize allHashesValid ← TRUE

3. Initialize groupStartTime ← NULL

4. Initialize groupEndTime ← NULL

5. Open logFile for reading

6. while not EOF(logFile) do

7. Read logLine from logFile

8. Append logLine to logGroup

9. Extract timestamp from logLine

10. if groupStartTime = NULL then

11. groupStartTime ← timestamp

12. end if

13. groupEndTime ← timestamp

14. if |logGroup| ≥ groupParameters.maxLines or (groupEndTime

− groupStartTime) ≥ groupParameters.maxWaitTime then

15. hashValue ← ComputeHash(logGroup)

16. isValid ← QueryBlockchain(hashValue, blockchain)

17. if isValid = FALSE then

18. allHashesValid ← FALSE

19. Print "Tampered group detected:"

20. end if

21. logGroup ← ∅

22. groupStartTime ← NULL

23. groupEndTime ← NULL

24. end if

25. end while

26. if logGroup ≠ ∅ then

27. hashValue ← ComputeHash(logGroup)

28. isValid ← QueryBlockchain(hashValue, blockchain)

29. if isValid = FALSE then

30. allHashesValid ← FALSE

31. Print "Tampered group detected:", logGroup

32. end if

33. end if

34. if allHashesValid = TRUE then

35. Print "Log file is intact"

36. if ipfs ≠ NULL then

37. ArchiveToIPFS(logFile)

38. end if

39. if elasticSearch ≠ NULL then

40. StoreInElasticSearch(logFile)

41. end if

42. else

43. Print "Log file has been modified"

44. end if

The tool works based on Algorithm 5 by executing the following steps.

1. Log Grouping Based on Time and Size: The algorithm reads an existing log file

and groups entries based on two conditions: a maximum number of lines (maxLines)

or a maximum time window (maxWaitTime). Each entry is added to the current

group, and timestamps are used to determine the time span (Line 14).

2. Conditional Group Finalization: When either condition is met, the current group

is finalized for integrity verification (Lines 14-20). This approach ensures consistent

and adaptive log grouping without requiring real-time monitoring.

3. Hash Computation and Blockchain Verification: For every completed group -

○ A SHA-256 hash is computed from the grouped entries (Line 15, 27).

○ The hash is checked against blockchain records (Lines 34-44).

■ Match found: Group is confirmed intact.

■ No match: Group is flagged as tampered.

4. Handling Remaining Entries: After processing all log lines, any incomplete group

is also hashed and verified to ensure no entries are skipped (Lines 26-33).

5. Optional Steps:

○ IPFS Archival: Verified log files can be archived in IPFS to ensure long-

term immutability.

○ Elasticsearch Indexing: Logs can be indexed in Elasticsearch for fast

retrieval and advanced search capabilities.

Figure 2 illustrates the log verification process.

Figure 2: Verification workflow that ensures log integrity by grouping original log

entries and validating them against trusted records stored on the blockchain to identify

any unauthorized modifications.

Handling log files in large scale systems

Efficient log management in large-scale systems relies on robust strategies for

categorization, traceability, and organization. A widely adopted approach is the use of

structured naming patterns for log files, incorporating base names dynamically configured

with details, such as timestamps, system identifiers, or unique indices. This method ensures

better organization, simplified retrieval, and improved log file management.

Common log generation methods include time-based, size-based, index-based, event-

based, chunk-based, hybrid (time + size), and distributed approaches. These methods

segment logs by criteria, such as time, size, events, indices, or sources, creating unique file

names that often include timestamp fields for each entry.

Our system employs a hybrid approach (i.e., a combination of chunk-based and time-based

approaches) to process real-time logs into the blockchain, leveraging standardized log

generation patterns. The chunk-based approach groups logs by a fixed number of entries,

ideal for high-volume systems to optimize performance and reduce processing overhead.

On the other hand, the time-based approach groups logs by fixed time intervals, ensuring

timely processing and enhanced security in systems with irregular log generation. Hybrid

approach, as the name indicates, combines both chunk size and time interval conditions,

finalizing log groups when either threshold is met for balanced efficiency and flexibility.

This methodology ensures scalable, flexible, and reliable management practices optimized

for real-time operations in large-scale systems.

To elaborate, in this approach, logs are grouped based on two criteria: a predefined

maximum chunk size (number of entries) and a predefined time interval (e.g., seconds or

minutes). A log group is finalized and processed as soon as either of these conditions are

met, ensuring timeliness and scalability. This dual criterion prevents excessive waiting for

logs to fill a chunk while avoiding overloading the system during high activity periods.

Once a group is complete, a cryptographic hash is computed and stored on the blockchain,

ensuring the integrity and traceability of the logs. The hybrid approach also allows dynamic

adjustment of chunk size and time intervals, enabling the system to adapt to changes in log

generation rates and workloads. By combining the strengths of both methods, the hybrid

approach reduces tampering risks, optimizes resource usage, and ensures timely log

processing, making it ideal for large-scale, high-frequency systems.

Log Archiving Using Off-Chain

In this approach, logs are periodically archived off-chain after the ingestion process for a

specific log file is complete and no additional entries are expected. Once a log file is

marked as complete, the verification tool continuously monitors it to ensure there are no

alterations or tampering. If the verification tool confirms the file’s integrity, the entire log

file is encrypted using a symmetric key to enhance security and then archived in IPFS

(InterPlanetary File System). This ensures that the archived file is both immutable and

secure.

The archiving process is designed to adapt to the log generation strategy. For instance, if

the strategy is time-based, the system will trigger the archiving process at regular time

intervals, ensuring an encrypted and immutable copy of the original log file is maintained.

This approach is beneficial for log recovery and for pinpointing specific lines where

modifications might have occurred. Alternatively, strategies such as size-based or index-

based log generation are also supported. Regardless of the strategy, the archiving process

remains consistent, ensuring securely stored logs that are readily available for verification

and recovery.

By encrypting the original file before storing it in IPFS, this off-chain archiving approach

maintains log integrity and enhances confidentiality. This method provides a robust

mechanism for safeguarding logs, supporting flexible log generation strategies, and

ensuring immutable, tamper-proof, and secure records.

Leveraging Elasticsearch for Efficient Log Search and Audit

Searching data directly on a blockchain is not optimal, particularly for large-scale log files.

Large data storage in a distributed manner requires a significant amount of storage

capacity. Blockchain’s inherent design prioritizes immutability and security but lacks the

performance capabilities required for efficient data retrieval, especially for unstructured

data. To address this limitation, industry-standard tools like Elasticsearch [60] are a better

fit for full-text search and analysis. Elasticsearch is known for its high performance and

scalability, making it ideal for handling large datasets and conducting fast, precise searches.

In our system, we utilized Elasticsearch for storing and querying logs after their integrity

was verified by the verification tool. Logs are stored in chunks, with each chunk containing

the following items.

1. Calculated Hash: Ensuring that data integrity is maintained and verifiable.

2. Raw Log Data: Providing unstructured log content for search and analysis.

3. Chunk Metadata: Including the hash of the chunk and its associated log data for

additional traceability.

For logs originating from IPFS (InterPlanetary File System), Elasticsearch acts as a

complementary storage solution. IPFS ensures the integrity, availability, and immutability

of the log files, while Elasticsearch facilitates efficient full-text search and audit processes.

This dual approach enhances both data security and retrieval performance.

The primary purpose of Elasticsearch in this system is to support forensic and auditing

operations. By enabling fast and accurate searches across large datasets, Elasticsearch

simplifies the task of finding specific log entries, even within unstructured data. This

approach combines the security of blockchain and IPFS with the performance capabilities

of Elasticsearch, creating a robust solution for log management in large-scale systems.

Experimental setup

Hardware Requirements

For the implementation of our system, we configured three identical nodes with the

following hardware specifications:

● Processor: 4 vCPUs

● Memory (RAM): 8 GB

● Storage: 200 GB

● Operating System: Ubuntu 22.04 LTS

These nodes are uniformly configured to ensure consistent performance across the

blockchain network. This identical setup minimizes variations in processing and storage.

Datasets

For the evaluation of our system, we utilized two distinct datasets to assess performance

under varying log volumes:

● Small Dataset:

○ Size: 10,000 log lines

○ Purpose: Used to evaluate the correctness of our proposed model.

○ Datasource: LogPai [13]

● Large Dataset:

○ Size: 14 million log lines (~1.3 GB)

○ Purpose: Used to test the system's scalability and robustness in handling

large-scale log data efficiently.

○ DataSource: Fake-Apache-Log-Generator [14] and our custom log

generator

These datasets provided comprehensive insights into the system’s performance across

both small-scale and large-scale use cases, ensuring its suitability for diverse operational

requirements.

Tools

We use the following tools in our experiments:

● Python: Core language for implementing log processing, verification logic, and

system integration.

● web3.py: Python library for interacting with Ethereum-compatible blockchains,

handling smart contract interactions and transactions.

● web3.js: JavaScript library for blockchain communication from web or Node.js

applications.

● Geth: Go Ethereum client used to run a full Ethereum node and interface with the

blockchain.

● IPFS CLI / API: Tools for decentralized storage and retrieval of verified log files.

● Elasticsearch: Engine for indexing and querying verified logs efficiently.

Evaluation & Case studies

We have evaluated the proposed system under various scenarios to analyze its behavior in

terms of storage usage and performance. These scenarios were designed to assess the

system’s capabilities for both small and large log datasets. The experiments were

conducted with different configurations, focusing on the time required for processing and

storage consumption. Table 2 reports the datasets and chunk parameters used in different

experiments.

Table 2: Experimental setup for evaluating log ingestion and storage efficiency, showing

different dataset sizes, chunk configurations, log formats (raw and hashed), number of

nodes, and the performance metrics (time and storage) used for analysis.

Dataset Chunk Size (N) Log Type Nodes Metrics

10,000 Logs 1, 5, 10, 20 Raw, Hashed 3 Time & Storage

14 Million Logs 1, 5, 10, 20 Hashed 3 Time & Storage

The storage required to store raw data on the blockchain is consistently high, regardless of

the chunk size. Therefore, we excluded raw data from the analysis for large datasets,

focusing instead on the results for different chunk sizes with hashed data.

Analysis

Security: The proposed model incorporates robust security measures to ensure data

integrity and protection. By leveraging the Proof of Authority (PoA) consensus algorithm,

it ensures that only trusted, pre-authorized nodes are responsible for block creation,

minimizing the risk of unauthorized activity. Furthermore, the ingestion tool operates

within a secure, private network, restricting access exclusively to verified entities. These

combined mechanisms create a highly secure and reliable framework for log management.

Scalability: The proposed system enhances the scalability of blockchain networks by

significantly reducing the number of network calls through the implementation of chunk-

based processing. This approach minimizes the frequency of transactions, making the

system more efficient and suitable for integration with other services or applications.

Additionally, the reduced storage requirements decrease the input/output (I/O) overhead

on blockchain servers, thereby improving processing efficiency and overall system

performance.

Privacy: We have implemented robust privacy measures in our proposed model to ensure

the highest level of data security. Notably, no raw log data is stored directly on the

blockchain, and it is impossible to reconstruct raw data from the information stored in the

blockchain. Furthermore, the data stored in the InterPlanetary File System (IPFS) is

encrypted before being transmitted, adding an additional layer of security. This

comprehensive approach ensures that privacy is maintained at an optimal level, adhering

to best practices for secure and private data management.

Results & Discussions

We initially conducted experiments on a small dataset (10k log entries) to analyze storage

usage for raw data and hashed data for each log line. From the results depicted in Figure 3,

it is evident that for a chunk size of N=1, the storage required for hashed data is reduced

by half compared to raw data. This reduction corresponds to a 50% storage gain,

highlighting the efficiency of hashed data storage in minimizing storage overhead while

preserving data integrity and auditability.

The storage required for hashed data significantly decreases as the chunk size increases.

For N=5, the storage usage is approximately five times less compared to N=1. This

substantial reduction is due to the minimized metadata overhead and fewer chunks being

generated, demonstrating the efficiency of larger chunk sizes in optimizing storage.

 Figure 3: Effect of Chunk Size on Storage Efficiency - Comparing Raw vs. Hashed

Storage Overhead for 10,000 Log Entries

From Figure 4, the storage required is 14 GB where N=1 and the data is hashed. It also

shows that increasing the chunk size to N=5, 10, 20 for hashed data significantly reduces

storage requirements. For each increase in chunk size, the storage requirement becomes

approximately half of the same for the preceding chunk size. This reduction occurs due to

fewer chunks being created, which minimizes metadata overhead and optimizes storage

usage. Larger chunk sizes are thus highly effective in reducing storage demands while

maintaining data integrity.

Figure 4: Impact of Chunk Size on Storage Usage for 14 Million Log Entries

Similarly, Figure 5 presents a quantitative analysis of processing time for 14 million hashed

log entries under varying chunk sizes. When each log entry is processed individually

(chunk size of 1), the total processing time reaches approximately 172 hours, indicating a

substantial computational overhead. However, when logs are grouped into batches of 5

entries, the processing time drops dramatically to about 16 hours, reflecting a nearly 90%

reduction. Increasing the chunk size further results in additional gains—processing time

decreases to roughly 7.5 hours with a chunk size of 10 and stabilizes around 7.3 hours at

chunk size 20.

 Figure 5: Processing Time for Hashed Log Data Decreases Significantly as Chunk Size

Increases, Highlighting the Efficiency Gains in Batch-Based Log Handling

This trend clearly demonstrates that batching log entries into larger groups significantly

improves processing efficiency. Fewer hash computations and reduced storage interactions

contribute to the time savings. These findings emphasize the value of selecting an

appropriate chunking strategy to ensure scalability and high performance in large-scale log

processing systems. Figure 4 and Figure 5 collectively offer details about the scalability

and performance of the system, emphasizing its ability to handle large-scale datasets

efficiently in terms of both storage and time.

 Figure 6: Impact of Chunk Size on Storage and Processing; larger chunks significantly

reduce both storage overhead and processing duration during log data handling. (14

Million Entries)

Finally, Figure 6 presents a combined analysis of storage usage and processing time for

14 million log entries using various chunk sizes. This figure demonstrates how increasing

the chunk size significantly reduces both storage overhead and processing time during log

data processing. When the chunk size is set to 1, the system requires approximately 14,062

MB of additional storage and takes around 172.6 hours to process, highlighting the

inefficiency of handling logs individually. As the chunk size increases to 5, both metrics

improve drastically, with storage dropping to 2,664 MB and processing time reducing to

15.8 hours. This trend continues with chunk size 10, where storage falls to 1,151 MB and

time to 7.3 hours. At chunk size 20, the gains begin to plateau, with storage at 1,083 MB

and processing time at 7.3 hours, indicating diminishing returns beyond this point. Overall,

Figure 6 demonstrates that batching logs into larger chunks significantly enhances system

efficiency, with the most notable improvements occurring between chunk sizes 1 and 10.

These results clearly demonstrate that increasing the chunk size drastically reduces both

storage requirements and processing time. The greatest gains occur between chunk sizes 1

and 5, emphasizing the inefficiency of handling logs individually. The trend highlights the

effectiveness of chunking for optimizing both system performance and resource utilization

in large-scale log management.

The verification time analysis presented in Figure 7 highlights the significant impact of

chunk size (N) on the efficiency of log verification. When the chunk size is set to 1, the

system takes approximately 1,020 minutes (or 17 hours) to verify the logs, indicating a

high computational burden when each entry is processed individually. However, as the

chunk size increases to 5, the verification time drops sharply to 200 minutes, representing

nearly an 80% reduction. At chunk size 10, the time further decreases to around 145

minutes, and at chunk size 20, it reaches just 50 minutes. Overall, moving from a chunk

size of 1 to 20 results in a 95% reduction in verification time. This trend highlights the

efficiency benefits of processing logs in larger chunks, especially in large-scale or real-

time verification systems.

Figure 7: Verification time decreases sharply with larger chunk sizes, dropping from

1,020 minutes at size 1 to just 50 minutes at size 20—demonstrating up to 95% efficiency

gain in log verification.

These results highlight the importance of optimizing chunk sizes for efficient log

verification. Larger chunk sizes reduce processing overhead and enhance the scalability of

the system, particularly in high-volume log datasets. By balancing chunk size with

processing capabilities, this approach ensures a more efficient and scalable solution for log

verification in large-scale systems.

Discussion on Storage Gain Perspective

The analysis of storage requirements for different chunk sizes reveals significant storage

optimization as the chunk size increases. For N=1, the storage demand is the highest due

to the large number of small chunks, each requiring its own metadata and hash

computations. This additional overhead contributes to inflated storage usage. In contrast,

larger chunk sizes (N=5, 10, 20) dramatically reduce storage needs by consolidating more

log entries into fewer chunks, thereby minimizing metadata overhead.

For instance, Figure 4 shows that when N=5, the storage requirement is approximately five

times less than that for N=1, demonstrating a substantial storage gain. Similarly, as the

chunk size increases to N=10 and N=20, the storage demands continue to decrease, albeit

with diminishing returns. This trend underscores the efficiency of larger chunk sizes in

reducing overall storage requirements while maintaining data integrity.

From a storage optimization perspective, the results indicate that larger chunk sizes reduce

the total storage footprint and make the system more scalable for large datasets. However,

there is a trade-off between storage efficiency and potential delays in log ingestion, as

larger chunks require more time to fill. Balancing chunk size based on system requirements

and log generation rates is essential for achieving optimal storage usage and system

performance. This approach highlights the importance of chunk size configuration as a

critical parameter for scalable and efficient blockchain-based log management.

Performance Gain Discussion

The performance of blockchain systems in processing large-scale log files is influenced by

several critical factors, including the selection of the blockchain platform, the choice of an

efficient consensus algorithm, and the underlying hardware capabilities, such as CPU

performance and host machine specifications. After a thorough evaluation, we identified

and implemented the most suitable platform combined with a high-performance consensus

algorithm to optimize processing efficiency. Our findings highlight the time required to

process large log files, demonstrating that our approach leverages these optimizations to

achieve enhanced performance and scalability.

As previously discussed, Figure 5 highlights substantial performance gains achieved by

increasing chunk size. Recall that processing time drops from 172.6 hours at N=1 to 15.8

hours at N=5 (a ~91% improvement), and further to 7.3 hours at N=10 (a ~54% gain over

N=5). These results confirm that the majority of performance gains occur between N=1

and N=10. Moreover, this approach enables near real-time processing when chunk sizes

are dynamically adjusted based on application-specific log generation rates.

Overall, our experiments highlight that while increasing chunk size dramatically boosts

performance at first, especially from N=1 to N=10, the marginal benefits taper off beyond

that. Selecting a moderate chunk size, such as N=10, offers a balanced trade-off between

performance and resource usage in large-scale log processing. Importantly, this figure also

illustrates that when log generation occurs in real time, this chunk-based strategy allows

the system to process logs almost in real time. By dynamically adjusting chunk sizes based

on the log generation rate of different applications, the system can maintain efficiency and

responsiveness without introducing significant processing delays.

Limitations & Future works

The proposed system exhibits certain limitations that may affect its functionality in specific

scenarios. One notable limitation is the inability to recover logs during the ingestion

process. Since the system does not retain raw log data and only stores cryptographic hashes

on the blockchain, reconstructing the original logs becomes impossible if the raw data is

lost or deleted during ingestion. While this approach enhances privacy and data security, it

comes at the cost of real-time recoverability. As a result, if log files are accidentally or

maliciously deleted from the source before verification and archival are complete, there

will be no full copy stored in IPFS, making recovery infeasible.

However, once the ingestion process is complete, the verification tool ensures the integrity

of the logs, enabling the creation of a complete immutable log file. This procedure

guarantees that the logs remain tamper-proof and secure, providing a reliable and verifiable

record for audit and compliance purposes. While the system's approach to log recovery

during ingestion may be limited, its post-ingestion verification process compensates by

maintaining the integrity and immutability of the log data.

Conclusions

The proposed system offers a scalable and secure solution for managing log data in large-

scale systems by leveraging blockchain technology and robust log ingestion mechanisms.

Through the use of Proof of Authority (PoA) consensus and private networks, it ensures

enhanced security and data integrity while optimizing performance with chunk-based and

time-based log processing. A key feature of the system is its log-stamping capability, where

unique hashes of log entries, incorporating timestamps, are stored on the blockchain. This

approach guarantees tamper-proof records and enables advanced timestamping practices

similar to those in Public Key Infrastructure (PKI) and digital signatures, ensuring

chronological accuracy and traceability. In conclusion, the proposed system combines

blockchain’s immutability with timestamping and hashing to create a robust framework for

log integrity, security, and auditability, setting the stage for future advancements in

blockchain-based log management.

References

1. Liang, Y.; Zhang, Y.; Sivasubramaniam, A.; Jette, M.; Sahoo, R. Bluegene/l failure

analysis and prediction models. In Proceedings of the International Conference on

Dependable Systems and Networks, Philadelphia, PA, USA, 25–28 June 2006; p.

425.

2. Frei, A.; Rennhard, M. Histogram Matrix: Log File Visualization for Anomaly

Detection. In Proceedings of the 2008 Third International Conference on

Availability, Reliability and Security, Barcelona, Spain, 4–7 March 2008; pp. 610–

617.

3. Goldstein, M.; Raz, D.; Segall, I. Experience Report: Log-Based Behavioral

Differencing. In Proceedings of the 2017 IEEE 28th International Symposium on

Software Reliability Engineering (ISSRE), Toulouse, France, 23–26 October 2017;

pp. 282–293.

4. O. Soderstrom and E. Moradian, “Secure audit log management,” ¨ Procedia

Comput. Sci., vol. 22, pp. 1249–1258, 2013

5. I. Ray, K. Belyaev, M. Strizhov, D. Mulamba, and M. Rajaram, “Secure logging as

a service-delegating log management to the cloud,” IEEE Syst. Journal, vol. 7, no.

2, pp. 323–334, 2013.

6. W. Pourmajidi and A. Miranskyy, “Logchain: Blockchain-assisted log storage,” in

Proc. 11th IEEE Int. Conf. Cloud Comput. (CLOUD), 2018, pp. 978–982.

7. M. Kumar, A. K. Singh, and T. V. S. Kumar, “Secure log storage using blockchain

and cloud infrastructure,” in Proc. 9th IEEE Int. Conf. Comput., Commun. and

Netw. Technol. (ICCCNT), 2018, pp. 1–4

8. X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla, “Provchain: A

blockchain-based data provenance architecture in cloud environment with enhanced

privacy and availability,” in Proc. 17th IEEE/ACM Int. Symp. Cluster, Cloud and

Grid Comput. (CCGrid’17), 2017, pp. 468–477

9. J. H. Park, J. Y. Park, and E. N. Huh, “Block chain based data logging and integrity

management system for cloud forensics,” Comput. Sci. & Inf. Technol., vol. 149,

2017

10. Schneier, B., & Kelsey, J. (1999). Cryptographic Support for Secure Logs on

Untrusted Machines.

11. Holt, J. E. (2006). Logcrypt: Forward Security and Public Verification for Secure

Audit Logs. AISW-NetSec 2006.

12. Ahmad, A., Saad, M., Bassiouni, M., & Mohaisen, A. (2018). Towards Blockchain-

Driven, Secure and Transparent Audit Logs. MobiQuitous, 3286978-3286985.

13. Rakib, M. H., Hossain, S., Jahan, M., & Kabir, U. (2020). Towards Blockchain-

Driven Network Log Management System. IEEE iSCI

14. IBM (2018). Storage Needs for Blockchain Technology: Point of View. IBM

Corporation.

15. Ali, A., Khan, A., Ahmed, M., & Jeon, G. (2021). BCALS: Blockchain-Based

Secure Log Management System for Cloud Computing. Transactions on Emerging

Telecommunications Technologies, e4272.

16. L. M. Shekhtman and E. Waisbard, "Securing log files through blockchain

technology," in Proceedings of the 11th ACM International Systems and Storage

Conference, Article No. 3, 2018. doi: 10.1145/3211890.3211893.

17. Shekhtman, L., & Waisbard, E. (2021). EngraveChain: A Blockchain-Based

Tamper-Proof Distributed Log System. Future Internet, 13(6), 143.

18. P. V. Kakarlapudi and Q. H. Mahmoud, "Design and Development of a Blockchain-

Based System for Private Data Management," Electronics, vol. 10, no. 24, p. 3131,

2021. doi: 10.3390/electronics10243131.

19. Rakib, M. H., Hossain, S., Jahan, M., & Kabir, U. (2022). A Blockchain-Enabled

Scalable Network Log Management System. Journal of Computer Science, 18(6),

496-508.

20. Y. Zhao, X. Liu, and L. Wang, "A Complete Log Files Security Solution Using

Anomaly Detection and Blockchain Technology," Proceedings of the IEEE

International Conference on Big Data (Big Data 2023), pp. X-X, 2023. DOI:

10.1109/BigData.2023.10100200.

21. Kanhere, S. S., & Conti, M. (2024). Blockchain for Health Data Management. In

Blockchains: A Handbook on Fundamentals, Platforms and Applications (pp. 321-

346). Springer. https://doi.org/10.1007/978-3-031-32146-7_18

22. Khan, S., Alam, M., & Khan, S. U. (2023). Blockchain-Based Secure Logging

Mechanism for Cloud Forensics. Computers & Security, 125, 102976.

https://doi.org/10.1016/j.cose.2023.102976

23. Singh, A., Zhou, Y., Mehrotra, S., Sadoghi, M., Sharma, S., & Nawab, F. (2023).

WedgeBlock: An off-chain secure logging platform for blockchain applications. In

Proceedings of the 26th International Conference on Extending Database

Technology (EDBT) (pp. 684–696). https://doi.org/10.48786/edbt.2023.43

24. Zhang, P., & Wang, J. (2019). Blockchain Based Data Integrity Verification for

Large-Scale IoT Data. IEEE Access, 7, 164401-164411.

https://doi.org/10.1109/ACCESS.2019.2952847

25. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved

from https://bitcoin.org/bitcoin.pdf

26. Buterin, V. (2013). A next-generation smart contract and decentralized application

platform. Ethereum Whitepaper. Available at https://ethereum.org/en/whitepaper/

27. Hyperledger Fabric Documentation. (2024). Hyperledger Fabric documentation.

Retrieved from https://hyperledger-fabric.readthedocs.io/

28. A Large Collection of System Log Datasets for AI-Driven Log Analytics,

https://github.com/logpai/loghub,[Last Access on 12 Jan 2024] Generate a Boatload

of Fake Apache Log Files Very Quickly,

29. https://github.com/kiritbasu/Fake-Apache-Log-Generator, [Last Access on 12 Jan

2024].

30. Yoshida, H., & Biryukov, A. (2005). Analysis of a SHA-256 variant. In Advances

in Cryptology – EUROCRYPT 2005 (pp. 245–260). Springer.

https://doi.org/10.1007/11693383_17

31. Satoshi, Nakamoto . Bitcoin: A peer-to-peer electronic cash system,

https://bitcoin.org/bitcoin.pdf, [Last Access on 12 Jan 2024].

32. Chuvakin, A., Schmidt, K., & Phillips, C. (2013). Logging and Log Management:

The Authoritative Guide to Understanding the Concepts Surrounding Logging and

Log Management. Syngress.

33. Kent, K., & Souppaya, M. (2006). Guide to Computer Security Log Management

(NIST Special Publication 800-92). National Institute of Standards and Technology

(NIST).

34. Barisani, A., & Oldani, D. (2007). Offensive Computing: Understanding Windows,

Linux, and UNIX Security. Syngress.

35. Yaga, D., Mell, P., Roby, N., & Scarfone, K. (2018). Blockchain technology

overview. National Institute of Standards and Technology (NIST).

[https://doi.org/10.6028/NIST.IR.8202](https://doi.org/

36. J. Dykstra and A. T. Sherman, “Understanding issues in cloud forensics: two

hypothetical case studies,” in Proceedings of the Conference on Digital Forensics,

Security and Law, 2011, p. 45.

37. Aptive, "Log Injection Attack: Understanding and Mitigating the Risks." [Online].

Available: https://www.aptive.co.uk/blog/log-injection-attack/. [Accessed: Jan. 12,

2024].

38. Ma, D., & Tsudik, G. (2009). A new approach to secure logging. ACM Transactions

on Storage, 5(1), 2:1–2:21. https://doi.org/10.1145/1502777.1502779

39. Rajebhosale, S. S., & Nikam, M. C. (2019). Development of secured log

management system over blockchain technology. International Journal of Cyber

Research and Education, 1(1), 38–42. IGI Global.

https://doi.org/10.4018/IJCRE.2019010104

40. Ahmad, A., Saad, M., Bassiouni, M., & Mohaisen, A. (2018). Towards blockchain-

driven, secure and transparent audit logs. In Proceedings of the 15th EAI

International Conference on Mobile and Ubiquitous Systems: Computing,

Networking and Services (pp. 443–448). ACM.

https://doi.org/10.1145/3286978.3286985

41. Xu, G., Yun, F., Xu, S., Yu, Y., Chen, X.-B., & Dong, M. (2023). A blockchain-

based log storage model with efficient query. Soft Computing, 27, 13779–13787.

https://doi.org/10.1007/s00500-023-08975-3

42. Khan, D., Jung, L. T., & Hashmani, M. A. (2020). Scalability in blockchain:

Challenges and solutions. In Blockchain Technology: Applications and Challenges

(pp. 315–332). Elsevier. https://doi.org/10.1016/B978-0-12-819816-2.00015-0

43. Shafin, K. M., & Reno, S. (2024). Breaking the blockchain trilemma: A

comprehensive consensus mechanism for ensuring security, scalability, and

decentralization. IET Software, 2024(1). https://doi.org/10.1049/2024/6874055

44. Abbas, Z., & Myeong, S. (2024). A comprehensive study of blockchain technology

and its role in promoting sustainability and circularity across large-scale industry.

Sustainability, 16(10), 4232. https://doi.org/10.3390/su16104232

45. Sanka, A. I., & Cheung, R. C. C. (2021). A systematic review of blockchain

scalability: Issues, solutions, analysis and future research. Journal of Network and

Computer Applications, 195, 103232. https://doi.org/10.1016/j.jnca.2021.103232

46. Alghamdi, T. A., Khalid, R., & Javaid, N. (2024). A survey of blockchain based

systems: Scalability issues and solutions, applications and future challenges. IEEE

Access, 12, 79626–79651. https://doi.org/10.1109/ACCESS.2024.3408868

47. U.S. Department of Health & Human Services. (1996). Health Insurance Portability

and Accountability Act (HIPAA). Retrieved from

https://www.hhs.gov/hipaa/index.html, [Last Accessed on 24 May 2024].

https://www.aptive.co.uk/blog/log-injection-attack/
https://www.aptive.co.uk/blog/log-injection-attack/
https://doi.org/10.1145/1502777.1502779
https://doi.org/10.4018/IJCRE.2019010104
https://doi.org/10.1007/s00500-023-08975-3
https://doi.org/10.1007/s00500-023-08975-3
https://doi.org/10.1007/s00500-023-08975-3
https://doi.org/10.1016/B978-0-12-819816-2.00015-0
https://doi.org/10.1049/2024/6874055
https://doi.org/10.3390/su16104232
https://doi.org/10.1016/j.jnca.2021.103232
https://doi.org/10.1109/ACCESS.2024.3408868

48. European Union. (2016). General Data Protection Regulation (GDPR). Retrieved

from https://eur-lex.europa.eu/eli/reg/2016/679/oj, [Last Accessed on 24 May

2024].

49. Benet, J. (2014). IPFS - Content Addressed, Versioned, P2P File System.

arXiv:1407.3561. DOI: 10.48550/arXiv.1407.3561.

50. National Institute of Standards and Technology (NIST), "Secure Hash Standard

(SHS)," Federal Information Processing Standards Publication 180-4 (FIPS PUB

180-4), 2015. [Online]. Available: https://doi.org/10.6028/NIST.FIPS.180-4.

51. Ethereum Foundation, Solidity: High-Level Language for Smart Contracts, 2024.

[Online]. Available: https://soliditylang.org.

52. V. Buterin, "Proof of Authority Chains," Ethereum Foundation, 2017. [Online].

Available: https://github.com/ethereum/EIPs/issues/225.

53. "Blockchain explorer," Wikipedia, The Free Encyclopedia, Apr. 2024. [Online].

Available: https://en.wikipedia.org/wiki/Blockchain_explorer.

54. Brown, R. G., Carlyle, J., Grigg, I., & Hearn, M. (2016). Corda: An introductory

whitepaper. R3 Consortium. Retrieved May 24, 2024, from

https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf

55. Ethereum Foundation. (n.d.). Introduction to dapps. Retrieved May 24, 2024, from

https://ethereum.org/en/developers/docs/dapps/

56. J.P. Morgan. (n.d.). Quorum blockchain platform. Retrieved May 24, 2024, from

https://consensys.net/quorum/

57. MultiChain. (n.d.). MultiChain: Open platform for building blockchains. Retrieved

May 24, 2024, from https://www.multichain.com/

58. Ripple Labs Inc. (n.d.). Ripple: Real-time gross settlement system, currency

exchange and remittance network. Retrieved May 24, 2024, from

https://ripple.com/

59. Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017, June). An overview of

blockchain technology: Architecture, consensus, and future trends. In 2017 IEEE

International Congress on Big Data (BigData Congress) (pp. 557–564). IEEE.

https://doi.org/10.1109/BigDataCongress.2017.85

60. Elastic. (n.d.). Elasticsearch: Distributed, RESTful search and analytics engine.

Retrieved May 24, 2024, from https://www.elastic.co/elasticsearch/

https://doi.org/10.48550/arXiv.1407.3561
https://doi.org/10.48550/arXiv.1407.3561
https://doi.org/10.6028/NIST.FIPS.180-4
https://soliditylang.org/
https://soliditylang.org/
https://github.com/ethereum/EIPs/issues/225
https://github.com/ethereum/EIPs/issues/225
https://en.wikipedia.org/wiki/Blockchain_explorer
https://en.wikipedia.org/wiki/Blockchain_explorer
https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf
https://ethereum.org/en/developers/docs/dapps/
https://ethereum.org/en/developers/docs/dapps/
https://ethereum.org/en/developers/docs/dapps/
https://consensys.net/quorum/
https://www.multichain.com/
https://www.multichain.com/
https://ripple.com/
https://ripple.com/
https://ripple.com/
https://doi.org/10.1109/BigDataCongress.2017.85
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/

